[go: up one dir, main page]

US20060241157A1 - Heterocyclic ppar modulators - Google Patents

Heterocyclic ppar modulators Download PDF

Info

Publication number
US20060241157A1
US20060241157A1 US10/540,341 US54034105A US2006241157A1 US 20060241157 A1 US20060241157 A1 US 20060241157A1 US 54034105 A US54034105 A US 54034105A US 2006241157 A1 US2006241157 A1 US 2006241157A1
Authority
US
United States
Prior art keywords
alkyl
phenyl
methyl
group
aryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/540,341
Other languages
English (en)
Inventor
Scott Conner
Tianwei Ma
Nathan Mantlo
Daniel Mayhugh
Jeffrey Schkeryantz
Alan Warshawsky
Guoxin Zhu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eli Lilly and Co
Original Assignee
Eli Lilly and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eli Lilly and Co filed Critical Eli Lilly and Co
Priority to US10/540,341 priority Critical patent/US20060241157A1/en
Assigned to ELI LILLY AND COMPANY reassignment ELI LILLY AND COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MA, TIANWEI, MANTLO, NATHAN BRYAN, CONNER, SCOTT EUGENE, MAYHUGH, DANIEL RAY, ZHU, GUOXIN, SCHKERYANTZ, JEFFREY MICHAEL, WARSHAWAKY, ALAN M
Publication of US20060241157A1 publication Critical patent/US20060241157A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/20Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/20Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D233/22Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/041,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
    • C07D249/061,2,3-Triazoles; Hydrogenated 1,2,3-triazoles with aryl radicals directly attached to ring atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D253/00Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00
    • C07D253/02Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00 not condensed with other rings
    • C07D253/041,2,3-Triazines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • C07D261/06Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
    • C07D261/08Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms

Definitions

  • PPARs Peroxisome Proliferator Activated Receptors
  • PPAR ⁇ Three subtypes of PPARs have been isolated: PPAR ⁇ , PPAR ⁇ and PPAR ⁇ .
  • each isoform differs significantly from the others, whereby PPAR ⁇ is expressed primarily, but not exclusively in liver; PPAR ⁇ is expressed primarily in adipose tissue; and PPAR ⁇ is expressed ubiquitously.
  • PPAR ⁇ agonists such as pioglitazone, can be useful in the treatment of non-insulin dependent diabetes mellitus. Such PPAR ⁇ agonists are associated with insulin sensitization.
  • PPAR ⁇ agonists such as fenofibrate
  • PPAR ⁇ agonists can be useful in the treatment of hyperlipidemia.
  • clinical evidence is not available to reveal the utility of PPAR ⁇ agonists in humans, several preclinical studies suggest that PPAR ⁇ agonists can be useful in the treatment of diabetes and lipid disorders.
  • Metabolic Syndrome osteosity, insulin resistance, hyperlipidemia, hypertension and atherosclerosis
  • PPAR ⁇ agonists have been suggested as a potential treatment for use in regulating many of the parameters associated with Metabolic Syndrome and Atherosclerosis.
  • a PPAR ⁇ agonist reduced circulating triglycerides and LDL, decreased basal insulin levels and increased HDL (Oliver, W. R. et al. Proc Natl Acad Sci 98:5306-5311; 2001).
  • the insulin sensitization observed with the use of a PPAR ⁇ agonist is thought to be in part due to decreased myocellular lipids (Dressel, U. et al. Mol Endocrinol 17:2477-2493; 2003).
  • Atherosclerosis is considered to be a disease consequence of dyslipidemia and may be associated with inflammatory disease.
  • C-reactive protein (CRP) production is part of the acute-phase response to most forms of inflammation, infection and tissue damage. It is measured diagnostically as a marker of low-grade inflammation. Plasma CRP levels of greater than 3 mg/L have been considered predictive of high risk for coronary artery disease (J. Clin. Invest 111: 1085-1812, 2003).
  • PPAR ⁇ agonists are believed to mediate anti-inflammatory effects. Indeed, treatment of LPS-stimulated macrophages with a PPAR ⁇ agonist has been observed to reduce the expression of iNOS, IL12, and IL-6 (Welch, J. S. et al. Proc Natl Acad Sci 100:6712-67172003).
  • the active pharmaceutical agent selectively modulates a PPAR receptor subtype to provide an especially desirable pharmacological profile.
  • the present invention is directed to compounds represented by the following structural Formula I′: and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:
  • a further embodiement of the present invention is a compound of the Formula I′′: and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:
  • Another embodiment of the present invention is a compound of the Formula I′′′: and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:
  • Another embodiment claimed herein is a compound of the Formula I: and stereoisomers, pharmaceutically acceptable salts, solvates and hydrates thereof, wherein:
  • the present invention also relates to pharmaceutical compositions comprising at least one compound of the present invention, or a pharmaceutically acceptable salt, solvate, hydrate, or stereioisomer thereof, and a pharmaceutically acceptable carrier.
  • the present invention relates to a method of selectively modulating a PPAR delta receptor by contacting the receptor with at least one compound represented by Structural Formula I, or a pharmaceutically acceptable salt, solvate, hydrate, or stereioisomer thereof.
  • the present invention relates to a method of modulating one or more of the PPAR alpha, beta, gamma, and/or delta receptors.
  • the present invention relates to a method of making a compound represented by Structural Formula I.
  • the compounds of the present invention are believed to be effective in treating and preventing Metabolic Disorder, Type II diabetes, hyperglycemia, hyperlipidemia, obesity, coagaulopathy, hypertension, atherosclerosis, and other disorders related to Metabolic Disorder and cardiovascular diseases. Further, compounds of this invention can be useful for lowering fibrinogen, increasing HDL levels, treating renal disease, controlling desirable weight, treating demyelinating diseases, treating certain viral infections, and treating liver disease. In addition, the compounds can be associated with fewer clinical side effects than compounds currently used to treat such conditions.
  • aliphatic linker or “aliphatic group” is a non-aromatic, consisting solely of carbon and hydrogen and may optionally contain one or more units of unsaturation, e.g., double and/or triple bonds (also refer herein as “alkenyl” and “alkynyl”).
  • An aliphatic or aliphatic group may be straight chained, branched (also refer herein as “alkyl”) or cyclic (also refer herein as “cycloalkyl). When straight chained or branched, an aliphatic group typically contains between about 1 and about 10 carbon atoms, more typically between about 1 and about 6 carbon atoms.
  • an aliphatic typically contains between about 3 and about 10 carbon atoms, more typically between about 3 and about 7 carbon atoms.
  • Aliphatics are preferably C 1 -C 10 straight chained or branched alkyl groups (i.e. completely saturated aliphatic groups), more preferably C 1 -C 6 straight chained or branched alkyl groups. Examples include, but are not limited to methyl, ethyl, propyl, n-propyl, iso-propyl, n-butyl, sec-butyl, and tert-butyl.
  • Additional examples include, but are not limited to, cyclopropyl, cyclopentyl, cyclohexyl, cyclopentyl, cyclohexylyl and the like.
  • Such aliphatic linker is optionally substituted with from one to four substituents each independently selected from R30. It can be preferred that aliphatic linker is substituted with from zero to two substituents each independently selected from R30. Further, it may be preferred that one carbon of the alphatic linker is replaced with an O, NH, or S.
  • alkyl refers to those alkyl groups of a designated number of carbon atoms of either a straight or branched saturated configuration.
  • C 0 alkyl means that there is no carbon and therefore represents a bond.
  • alkyl include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl, pentyl, hexyl, isopentyl and the like.
  • Alkyl as defined above may be optionally substituted with a designated number of substituents as set forth in the embodiment recited above.
  • alkyloxo means an alkyl group of the designated number of carbon atoms with a “ ⁇ O” substituent.
  • alkenyl or “alkylenyl” means hydrocarbon chain of a specified number of carbon atoms of either a straight or branched configuration and having at least one carbon-carbon double bond, which may occur at any point along the chain, such as ethenyl, propenyl, butenyl, pentenyl, vinyl, alkyl, 2-butenyl and the like.
  • Alkenyl as defined above may be optionally substituted with designated number of substituents as set forth in the embodiment recited above.
  • alkynyl means hydrocarbon chain of a specified number of carbon atoms of either a straight or branched configuration and having at least one carbon-carbon triple bond, which may occur at any point along the chain.
  • Example of alkynyl is acetylene.
  • Alkynyl as defined above may be optionally substituted with designated number of substituents as set forth in the embodiment recited above.
  • heteroalkyl refers to a means hydrocarbon chain of a specified number of carbon atoms wherein at least one carbon is replaced by a heteroatom selected from the group consisting of O, N and S.
  • cycloalkyl refers to a saturated or partially saturated carbocycle containing one or more rings of from 3 to 12 carbon atoms, typically 3 to 7 carbon atoms.
  • Examples of cycloalkyl includes, but are not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl, and the like.
  • Cycloalkyaryl means that an aryl is fused with a cycloalkyl
  • Cycloalkylaryl-alkyl means that the cycloalkylaryl is linked to the parent molecule through the alkyl. Cycloalkyl as defined above may be optionally substituted with a designated number of substituents as set forth in the embodiment recited above.
  • halo refers to fluoro, chloro, bromo and iodo.
  • haloalkyl is a C 1 -C 6 alkyl group, which is substituted with one or more halo atoms selected from F, Br, Cl and I.
  • An example of a haloalkyl group is trifluoromethyl (CF 3 ).
  • alkoxy represents an alkyl group of indicated number of carbon atoms attached through an oxygen bridge, such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, tert-butoxy, pentoxy, and the like. Alkoxy as defined above may be optionally substituted with a designated number of substituents as set forth in the embodiment recited above.
  • haloalkyloxy represents a C 1 -C 6 haloalkyl group attached through an oxygen bridge, such as OCF 3 .
  • the “haloalkyloxy” as defined above may be optionally substituted with a designated number of substituents as set forth in the embodiment recited above.
  • aryl includes carbocyclic aromatic ring systems (e.g. phenyl), fused polycyclic aromatic ring systems (e.g. naphthyl and anthracenyl) and aromatic ring systems fused to carbocyclic non-aromatic ring systems (e.g., 1,2,3,4-tetrahydronaphthyl).
  • Aryl as defined above may be optionally substituted with a designated number of substituents as set forth in the embodiment recited above.
  • arylalkyl refers to an aryl alkyl group which is linked to the parent molecule through the alkyl group, which may be further optionally substituted with a designated number of substituents as set forth in the embodiment recited above.
  • arylalkyl is arylC 0 alkyl, then the aryl group is bonded directly to the parent molecule.
  • arylheteroalkyl means an aryl group linked to the parent molecule through the heteroalkyl group.
  • acyl refers to alkylcarbonyl species.
  • heteroaryl group is an aromatic ring system having at least one heteroatom such as nitrogen, sulfur or oxygen and includes monocyclic, bicyclic or tricyclic aromatic ring of 5- to 14-carbon atoms containing one or more heteroatoms selected from the group consisting of O, N, and S.
  • heteroaryl as defined above may be optionally substituted with a designated number of substituents as set forth in the embodiment recited above.
  • heteroaryl examples include, but are not limited to, furanyl, indolyl, thienyl (also referred to herein as “thiophenyl”) thiazolyl, imidazolyl, isoxazoyl, oxazoyl, pyrazoyl, pyrrolyl, pyrazinyl, pyridyl, pyrimidyl, pyrimidinyl and purinyl, cinnolinyl, benzofuranyl, benzothienyl, benzotriazolyl, benzoxazolyl, quinoline, isoxazolyl, isoquinoline and the like.
  • heteroarylalkyl means that the heteroaryl group is linked to the parent molecule through the alkyl portion of the heteroarylalkyl.
  • heterocycloalkyl refers to a non-aromatic ring which contains one or more oxygen, nitrogen or sulfur and includes a monocyclic, bicyclic or tricyclic non-aromatic ring of 5 to 14 carbon atoms containing one or more heteroatoms selected from O, N or S.
  • the “heterocycloalkyl” as defined above may be optionally substituted with a designated number of substituents as set forth in the embodiment recited above.
  • Examples of heterocycloalkyl include, but are not limited to, morpholine, piperidine, piperazine, pyrrolidine, and thiomorpholine.
  • alkyl groups include straight chained and branched hydrocarbons, which are completely saturated.
  • the phrase “selectively modulate” means a compound whose EC50 for the stated PPAR receptor is at least ten fold lower than its EC50 for the other PPAR receptor subtypes.
  • PPAR ⁇ has been proposed to associate with and dissociate from selective co-repressors (BCL-6) that control basal and stimulated anti-inflammatory activities (Lee, C-H. et al. Science 302:453-4572003).
  • BCL-6 selective co-repressors
  • PPAR ⁇ agonists are thought to be useful to attenuate other inflammatory conditions such as inflammation of the joints and connective tissue as occurs in rheumatoid arthritis, related autoimmune diseases, osteroarthritis, as well as myriad other inflammatory diseases, Crohne's disease, and psoriasis.
  • a compound represented by Structural Formula I When a compound represented by Structural Formula I has more than one chiral substituent it may exist in diastereoisomeric forms.
  • the diastereoisomeric pairs may be separated by methods known to those skilled in the art, for example chromatography or crystallization and the individual enantiomers within each pair may be separated using methods familiar to the skilled artisan.
  • the present invention includes each diastereoisomer of compounds of Structural Formula I and mixtures thereof.
  • Certain compounds of Structural Formula I may exist in different stable conformational forms which may be separable. Torsional asymmetry due to restricted rotation about an asymmetric single bond, for example because of steric hindrance or ring strain, may permit separation of different conformers.
  • the present invention includes each conformational isomer of compounds of Structural Formula I and mixtures thereof.
  • Certain compounds of Structural Formula I may exist in zwitterionic form and the present invention includes each zwitterionic form of compounds of Structural Formula I and mixtures thereof.
  • “Pharmaceutically-acceptable salt” refers to salts of the compounds of the Structural Formula I which are considered to be acceptable for clinical and/or veterinary use.
  • Typical pharmaceutically-acceptable salts include those salts prepared by reaction of the compounds of the present invention with a mineral or organic acid or an organic or inorganic base. Such salts are known as acid additiona salts and base addition salts, respectively. It will be recognized that the particular counterion forming a part of any salt of this invention is not of a critical nature, so long as the salt as a whole is pharmaceutically-acceptable and as long as the counterion does not contribute undesired qualities to the salt as a whole. These salts may be prepared by methods known to the skilled artisan.
  • active ingredient means the compounds generically described by Structural Formula I as well as the sterioisomers, salts, solvates, and hydrates,
  • compositions of the present invention are prepared by procedures known in the art using well known and readily available ingredients.
  • Preventing refers to reducing the likelihood that the recipient will incur or develop any of the pathological conditions described herein.
  • the term “preventing” is particularly applicable to a patient that is susceptible to the particular patholical condition.
  • Treating refers to mediating a disease or condition and preventing, or mitigating, its further progression or ameliorate the symptoms associated with the disease or condition.
  • “Pharmaceutically-effective amount” means that amount of active ingredientit, that will elicit the biological or medical response of a tissue, system, or mammal. Such an amount can be administered prophylactically to a patient thought to be susceptible to development of a disease or condition. Such amount when administered prophylactically to a patient can also be effective to prevent or lessen the severity of the mediated condition. Such an amount is intended to include an amount which is sufficient to modulate a selected PPAR receptor or to prevent or mediate a disease or condition.
  • the effective amount of a Compound of Formula I will be between 0.02 through 5000 mg per day. Preferably the effective amount is between 1 through 1,500 mg per day. Preferably the dosage is from 1 through 1,000 mg per day. A most preferable the dose can be from 1 through 100 mg per day.
  • the desired dose may be presented in a single dose or as divisded doses administered at appropriate intervals.
  • a “mammal” is an individual animal that is a member of the taxonomic class Mammalia.
  • the class Mammalia includes humans, monkeys, chimpanzees, gorillas, cattle, swine, horses, sheep, dogs, cats, mice, and rats.
  • the compounds and compositions of the present invention are useful for the treatment and/or prophylaxis of cardiovascular disease, for raising serum HDL cholesterol levels, for lowering serum triglyceride levels and for lower serum LDL cholesterol levels. Elevated triglyceride and LDL levels, and low HDL levels, are risk factors for the development of heart disease, stroke, and circulatory system disorders and diseases.
  • the compound and compositions of the present invention may reduce the incidence of undesired cardiac events in patients.
  • the physician of ordinary skill will know how to identify-humans who will benefit from administration of the compounds and compositions of the present invention.
  • the compounds and compositions of the present invention are also useful for treating and/or preventing obesity.
  • these compounds and compositions are useful for the treatment and/or prophylaxis of non-insulin dependent diabetes mellitus (NIDDM) with reduced or no body weight gains by the patients.
  • NIDDM non-insulin dependent diabetes mellitus
  • the compounds and compositions of the present invention are useful to treat or prevent acute or transient disorders in insulin sensitivity, such as sometimes occur following surgery, trauma, myocardial infarction, and the like. The physician of ordinary skill will know how to identify humans who will benefit from administration of the compounds and compositions of the present invention.
  • the present invention further provides a method for the treatment and/or prophylaxis of hyperglycemia in a human or non-human mammal which comprises administering an effective amount of active ingredient, as defined herein, to a hyperglycemic human or non-human mammal in need thereof.
  • the invention also relates to the use of a compound of Formula I as described above, for the manufacture of a medicament for treating a PPAR receptor mediated condition.
  • a therapeutically effective amount of a compound of Structural Formula I can be used for the preparation of a medicament useful for treating Metabolic Disorder, diabetes, treating obesity, lowering tryglyceride levels, lowering serum LDL levels, raising the plasma level of high density lipoprotein, and for treating, preventing or reducing the risk of developing atherosclerosis, and for preventing or reducing the risk of having a first or subsequent atherosclerotic disease event in mammals, particularly in humans.
  • a therapeutically effective amount of a compound of the present invention typically reduces serum triglyceride levels of a patient by about 20% or more, and increases serum HDL levels in a patient. Preferably, HDL levels will be increased by about 30% or more.
  • a therapeutically effective amount of a compound, used to prevent or treat NIDDM typically reduces serum glucose levels, or more specifically HbAlc, of a patient by about 0.7% or more.
  • Metabolic Syndrome includes pre-diabetic insulin resistance syndrome and the resulting complications thereof, insulin resistance, non-insulin dependent diabetes, dyslipidemia, hyperglycemia obesity, coagulopathy, hypertension and other complications associated with diabetes.
  • the methods and treatments mentioned herein include the above and encompass the treatment and/or prophylaxis of any one of or any combination of the following: pre-diabetic insulin resistance syndrome, the resulting complications thereof, insulin resistance, Type II or non-insulin dependent diabetes, dyslipidemia, hyperglycemia, obesity and the complications associated with diabetes including cardiovascular disease, especially atherosclerosis.
  • the methods and treatments mentioned herein include the above and encompass the treatment and/or prophylaxis of any one of or any combination of the following inflammatory and autoimmune diseases: adult r emotionalory distress syndrome, rheumatoid arthritis, demyelinating disease, Chrohne's disease, asthma, systemic lupus erythematosus, psoriasis, and bursitis.
  • compositions are formulated and administered in the same general manner as detailed herein.
  • the compounds of the instant invention may be used effectively alone or in combination with one or more additional active agents depending on the desired target therapy.
  • Combination therapy includes administration of a single pharmaceutical dosage composition which contains a compound of Structural Formula I, a stereoisomer, salt, solvate and/or hydrate thereof (“Active Igredient”) and one or more additional active agents, as well as administration of a compound of Active Ingredient and each active agent in its own separate pharmaceutical dosage formulation.
  • an Active Ingredient and an insulin secretogogue such as biguanides, thiazolidinediones, sulfonylureas, insulin, or ⁇ -glucosidose inhibitors can be administered to the patient together in a single oral dosage composition such as a tablet or capsule, or each agent administered in separate oral dosage formulations.
  • an Active Ingredient and one or more additional active agents can be administered at essentially the same time, i.e., concurrently, or at separately staggered times, i.e., sequentially; combination therapy is understood to include all these regimens.
  • An example of combination treatment or prevention of atherosclerosis may be wherein an Active Ingredient is administered in combination with one or more of the following active agents: antihyperlipidemic agents; plasma HDL-raising agents; antihypercholesterolemic agents, fibrates, vitamins, aspirin, and the like.
  • active agents antihyperlipidemic agents; plasma HDL-raising agents; antihypercholesterolemic agents, fibrates, vitamins, aspirin, and the like.
  • the Active Ingredient can be administered in combination with more than one additional active agent.
  • Another example of combination therapy can be seen in treating diabetes and related disorders wherein the Active Ingredient can be effectively used in combination with, for example, sulfonylureas, biguanides, thiazolidinediones, ⁇ -glucosidase inhibitors, other insulin secretogogues, insulin as well as the active agents discussed above for treating atherosclerosis.
  • Active Ingredient can be effectively used in combination with, for example, sulfonylureas, biguanides, thiazolidinediones, ⁇ -glucosidase inhibitors, other insulin secretogogues, insulin as well as the active agents discussed above for treating atherosclerosis.
  • the Active Ingredients of the present invention have valuable pharmacological properties and can be used in pharmaceutical compositions containing a therapeutically effective amount of Active Ingredient of the present invention, in combination with one or more pharmaceutically acceptable excipients.
  • Excipients are inert substances such as, without limitation carriers, diluents, fillers, flavoring agents, sweeteners, lubricants, solubilizers, suspending agents, wetting agents, binders, disintegrating agents, encapsulating material and other-conventional adjuvants. Proper formulation is dependent upon the route of administration chosen.
  • Pharmaceutical compositions typically contain from about 1 to about 99 weight percent of the Active Ingredient of the present invention.
  • the pharmaceutical formulation is in unit dosage form.
  • a “unit dosage form” is a physically discrete unit containing a unit dose, suitable for administration in human subjects or other mammals.
  • a unit dosage form can be a capsule or tablet, or a number of capsules or tablets.
  • a “unit dose” is a predetermined quantity of the Active Ingredient of the present invention, calculated to produce the desired therapeutic effect, in association with one or more pharmaceutically-acceptable excipients.
  • the quantity of active ingredient in a unit dose may be varied or adjusted from about 0.1 to about 1500 milligrams or more according to the particular treatment involved. It may be preferred that the unit dosage is from about 1 mg to about 1000 mg.
  • the dosage regimen utilizing the compounds of the present invention is selected by one of ordinary skill in the medical or veterinary arts, in view of a variety of factors, including, without limitation, the species, age, weight, sex, and medical condition of the recipient, the severity of the condition to be treated, the route of administration, the level of metabolic and excretory function of the recipient, the dosage form employed, the particular compound and salt thereof employed, and the like.
  • compositions containing the compound of Structural Formula I or the salts thereof may be provided in dosage unit form, preferably each dosage unit containing from about 1 to about 500 mg be administered although it will, of course, readily be understood that the amount of the compound or compounds of Structural Formula I actually to be administered will be determined by a physician, in the light of all the relevant circumstances.
  • the compounds of the present invention are administered in a single daily dose, or the total daily dose may be administered in divided doses, two, three, or more times per day. Where delivery is via transdermal forms, of course, administration is continuous.
  • Suitable routes of administration of pharmaceutical compositions of the present invention include, for example, oral, eyedrop, rectal, transmucosal, topical, or intestinal administration; parenteral delivery (bolus or infusion), including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections.
  • parenteral delivery bolus or infusion
  • intramuscular, subcutaneous, intramedullary injections as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections.
  • the compounds of the invention can also be administered in a targeted drug delivery system, such as, for example, in a liposome coated with endothelial cell-specific antibody.
  • Solid form formulations include powders, tablets and capsules.
  • Sterile liquid formulations include suspensions, emulsions, syrups, and elixirs.
  • compositions of the present invention can be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.
  • Hard gelatin capsules are prepared using the following ingredients: Quantity (mg/capsule) Active Ingredient 250 Starch, dried 200 Magnesium stearate 10 Total 460 mg
  • a tablet is prepared using the ingredients below: Quantity (mg/tablet) Active Ingredient 250 Cellulose, microcrystalline 400 Silicon dioxide, fumed 10 Stearic acid 5 Total 665 mg
  • the components are blended and compressed to form tablets each weighing 665 mg .
  • the compound is radiolabelled, such as with carbon-14, or tritiated.
  • Said radiolabelled or tritiated compounds are useful as reference standards for in vitro assays to identify new selective PPAR receptor agonists.
  • the compounds of the present invention can be useful for modulating insulin secretion and as research tools. Certain compounds and conditions within-the scope of this invention are preferred. The following conditions, invention embodiments, and compound characteristics listed in tabular form may be independently combined to produce a variety of preferred compounds and process conditions. The following list of embodiments of this invention is not intended to limit the scope of this invention in any way.
  • an intermediate like A is alkylated with an alkylating agent B in the presence of a base (e.g. K2CO3, Cs2CO3 etc.). Hydrolysis in the presence of aqueous NaOH or LiOH gave the acid product.
  • a base e.g. K2CO3, Cs2CO3 etc.
  • an intermediate like A is coupled with an alcohol C under Mitsunobu reaction condition (DEAD/PPh3, ADDP/Pbu3 etc.). Hydrolysis in the presence of aqueous NaOH or LiOH gave the acid product:
  • Thioether analogs could also be prepared by a ZnI2 mediated thioether formation reaction as shown below:
  • the pyrazole intermediates can be made by the following method starting from ⁇ -ketoesters:
  • Imidazole intermediate can be made according to scheme 5:
  • Isoxazole intermediate is obtained by the following cycloaddition reaction:
  • Triazole intermediate can be made by the following method:
  • Infrared spectra are recorded on a Perkin Elmer 781 spectrometer.
  • 13 C NMR are recorded on a Varian 400 MHz spectrometer at ambient temperature.
  • Phenoxy-acetic acid ethyl ester (9.1 mL) is added to chlorosulfonic acid (15 mL) at 0° C. dropwise. The reaction is stirred at 0° C. for 30 min, it is allowed to warm to room temperature. After 2 hrs, the reaction mixture is poured into ice, solid product is collected by filtration and dried under vacuum.
  • This compound can also be made by the following procedure: To a stirred suspension of Zn powder (10 ⁇ m, 78.16 g, 1.2 mol) and dichlorodimethyl silane (154.30 g, 145.02 mL, 1.2 mol) in 500 mL of dichloroethane is added a solution of (4-chlorosulfonyl-2-methyl-phenoxy)-acetic acid ethyl ester (100 g, 0.34 mol) and 1,3-dimethylimidazolidin-2-one (116.98 g, 112.05 mL, 1.02 mol) in 1 L of DCE.
  • Addition is at a rate so as to maintain the internal temperature at ⁇ 52° C., cooling with chilled water as necessary. After addition is complete, the mixture is heated at 75° C. for 1 hour. It is then cooled to room temperature, filtered and concentrated iv. Add MTBE, washed twice with saturated LiCl solution concentrate iv again. Take up the residue in CH 3 CN, wash with hexane (4 ⁇ ) and concentrate iv to yield a biphasic mixture. Let stand in a separatory funnel and separate layers, keeping the bottom layer for product. Filtration through a plug of silica gel (1 Kg, 25% EtOAc/hexane) and subsequent concentration yields 61 g (79%) of a clear, colorless oil.
  • 3-(4-Dimethylthiocarbamoyloxy-2-methyl-phenyl)-propionic acid methyl ester taken crude from the previous step, is diluted with 75 mL of tetradecane and heated to reflux under nitrogen. The reaction is monitored by TLC until all the conversion is complete, 20h. The reaction is allowed to cool to room temperature, then the tetradecane is decanted away from the resulting oil. The residue is-rinsed several times with hexanes. This oil is then purified using flash column chromatography, yielding 5.01 g, or 69% (2 steps) of the product.
  • Methylacrylate (10 mL, 121.5 mmol), palladium acetate (1.12 g, 5 mmol), tri-o-tolylphosphine (3.0 g, 10 mmol), and N,N-diisopropyl ethylamine (8.7 mL, 50 mmol) are sequentially added and the resulting reaction mixture is heated to 110 deg C. 3 hr.
  • the mixture is concentrated, and the residue diluted with aqueous hydrochloric acid (100 mL, 1M).
  • the product is extracted with dichloromethane (2 ⁇ 100 mL) and ethyl acetate (100 mL).
  • the intermediate obtained from Step A is obtained from two separate methods.
  • This compound can be prepared by the following two different method:
  • a solution of potassium tert-butoxide (3.74 g, 33.3 mmol) in tetrahydrofuran (25 ml) is added dropwise over 15 minutes to a cooled (0° C.) suspension of methoxymethyltriphenylphosphonium chloride (11.41 g, 33.3 mmol) in tetrahydrofuran (35 ml) .
  • the mixture is stirred at 0° C. for 20 minutes and then treated dropwise over 5 minutes with a solution of 1-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-ethanone (3.0 g, 11.1 mmol) in tetrahydrofuran (20 ml).
  • the oxime intermediate (2.40 g, 12.7 mmol) is then dissolved in DMF (10 mL) and added the NCS (0.93 g, 6.95 mmol). Use heat gun to initiate the reaction and then add another portion of NCS (0.93 g, 6.95 mmol).
  • the reaction mixture is stirred at room temperature for 2 hours and quenched with water (50 mL).
  • the mixture is extracted with EtOAc (50 mL ⁇ 2) and the combined organics are dried (Na 2 SO 4 ), concentrated,. and purified on silica gel chromatography column with 20-50% EtOAc/Hexanes to yield the title compound (2.60 g, 92%).
  • Lithium hexamethyldisilazane (0.51 mL, 0.51 mmol) is added dropwise to a solution of (3- ⁇ 1-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-ethylsulfanyl ⁇ -phenyl)-acetic acid methyl ester (0.20 g, 0.46 mmol) in 5 mL THF at ⁇ 78 C.
  • the resultant solution is stirred for 30 minutes and methyl iodide (0.034 mL, 0.55 mmol) is added dropwise.
  • Zinc iodide (105 mg, 0.33 mmol) is added to a solution of 1-[3-Methyl-1-(4-trifluoromethyl-phenyl)-1H-pyrazol-4-yl]-propan-1-ol (185 mg, 0.65 mmol) and (4-Mercapto-2-methyl-phenoxy)-acetic acid ethyl ester (176 mg, 0.78 mmol) in 1,2-dichloroethane (1 ml) and the solution stirred at ambient temperature for 1 hour. The mixture is diluted with water (20 ml) and dichloromethane (10 ml), the organic layer is removed, and the remaining aqueous layer extracted with dichloromethane (2 ⁇ 10 ml).
  • the title compound is obtained via chiral chromatography of the racemate on a Chiralcel OD (4.6 ⁇ 250 mm) column with an eluent consisting of 10% n-propanol in heptane containing 0.2% trifluoroacetic acid as buffer, and eluted as the first enantiomer.
  • the structure is also confirmed by proton NMR.
  • the title compound is obtained via chiral chromatography of the racemate on a Chiralcel OD (4.6 ⁇ 250 mm) column with an eluent consisting of 10% n-propanol in heptane containing 0.2% trifluoroacetic acid as buffer, and eluted as the second enantiomer.
  • the structure is also confirmed by proton NMR.
  • the title compound is obtained via chiral chromatography of the racemate on a Chiralpak AD (4.6 ⁇ 250 mm) column with an eluent consisting of 20% isopropanol in heptane containing 0.2% trifluoroacetic acid as buffer, and eluted as the first enantiomer.
  • the structure is also confirmed by proton NMR.
  • the title compound is obtained via chiral chromatography of the racemate on a Chiralpak AD (4.6 ⁇ 250 mm) column with an eluent consisting of 20% isopropanol in heptane containing 0.2% trifluoroacetic acid as buffer, and eluted as the second enantiomer.
  • the structure is also confirmed by proton NMR.
  • the title compound is obtained via chiral chromatography of the racemate on a Chiralpak AD (4.6 ⁇ 250 mm) column with an eluent consisting of 20% isopropanol in heptane containing 0.2% trifluoroacetic acid as buffer, and eluted as the first enantiomer.
  • the structure is also confirmed by proton NMR.
  • the title compound is obtained via chiral chromatography of the racemate on a Chiralpak AD (4.6 ⁇ 250 mm) column with an eluent consisting of 20% isopropanol in heptane containing 0.2% trifluoroacetic acid as buffer, and eluted as the second enantiomer.
  • the structure is also confirmed by proton NMR.
  • the title compound is obtained via chiral chromatography of the racemate on a Chiralpak AD (4.6 ⁇ 250 mm) column with an eluent consisting of 20% isopropanol in heptane containing 0.2% trifluoroacetic acid as buffer, and eluted as the first enantiomer.
  • the structure is also confirmed by proton NMR.
  • the title compound is obtained via chiral chromatography of the racemate on a Chiralpak AD (4.6 ⁇ 250 mm) column with an eluent consisting of 20% isopropanol in heptane containing 0.2% trifluoroacetic acid as buffer, and eluted as the second enantiomer.
  • the structure is also confirmed by proton NMR.
  • the title compound is obtained via chiral chromatography of the racemate on a Chiralpak AD (4.6 ⁇ 250 mm) column with an eluent consisting of 10% ethanol in heptane containing 0.1% trifluoroacetic acid as buffer, and eluted as the first enantiomer.
  • the structure is also confirmed by proton NMR.
  • the title compound is obtained via chiral chromatography of the racemate on a Chiralpak AD (4.6 ⁇ 250 mm) column with an eluent consisting of 10% ethanol in heptane containing 0.1% trifluoroacetic acid as buffer, and eluted as the second enantiomer.
  • the structure is also confirmed by proton NMR.
  • the title compound is obtained via chiral chromatography of the racemate on a Chiralpak AD (4.6 ⁇ 250 mm) column with an eluent consisting of 15% ethanol in heptane containing 0.1% trifluoroacetic acid as buffer, and eluted as the first enantiomer.
  • the structure is also confirmed by proton NMR.
  • the title compound is obtained via chiral chromatography of the racemate on a Chiralpak AD (4.6 ⁇ 250 mm) column with an eluent consisting of 15% ethanol in heptane containing 0.1% trifluoroacetic acid as buffer, and eluted as the second enantiomer.
  • the structure is also confirmed by proton NMR.
  • the title compound is obtained via chiral chromatography of the racemate on a Chiralcel OJ (4.6 ⁇ 250 mm) column with an eluent consisting of 100% ethanol containing 0.2% trifluoroacetic acid as buffer, and eluted as the first enantiomer.
  • the structure is also confirmed by proton NMR.
  • the title compound is obtained via chiral chromatography of the racemate on a Chiralcel OJ (4.6 ⁇ 250 mm) column with an eluent consisting of 100% ethanol containing 0.2% trifluoroacetic acid as buffer, and eluted as the second enantiomer.
  • the structure is also confirmed by proton NMR.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Diabetes (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Endocrinology (AREA)
  • Emergency Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
US10/540,341 2003-01-06 2003-12-31 Heterocyclic ppar modulators Abandoned US20060241157A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/540,341 US20060241157A1 (en) 2003-01-06 2003-12-31 Heterocyclic ppar modulators

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US43856303P 2003-01-06 2003-01-06
US10/540,341 US20060241157A1 (en) 2003-01-06 2003-12-31 Heterocyclic ppar modulators
PCT/US2003/039119 WO2004063166A1 (fr) 2003-01-06 2003-12-31 Modulateurs de ppar heterocycliques

Publications (1)

Publication Number Publication Date
US20060241157A1 true US20060241157A1 (en) 2006-10-26

Family

ID=32713346

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/540,341 Abandoned US20060241157A1 (en) 2003-01-06 2003-12-31 Heterocyclic ppar modulators
US10/537,282 Expired - Fee Related US7396850B2 (en) 2003-01-06 2003-12-31 Pyrazole derivative as PPAR modulator

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/537,282 Expired - Fee Related US7396850B2 (en) 2003-01-06 2003-12-31 Pyrazole derivative as PPAR modulator

Country Status (8)

Country Link
US (2) US20060241157A1 (fr)
EP (2) EP1585733A1 (fr)
AR (1) AR042705A1 (fr)
AU (2) AU2003296404A1 (fr)
CL (1) CL2004000011A1 (fr)
PE (1) PE20041039A1 (fr)
TW (1) TW200505867A (fr)
WO (2) WO2004063165A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050245589A1 (en) * 2004-04-28 2005-11-03 Jean Ackermann Pyrazole phenyl derivatives
US20070043220A1 (en) * 2003-01-06 2007-02-22 Conner Scott E Pyrazole derivative as ppar modulator
WO2008073825A1 (fr) * 2006-12-08 2008-06-19 Exelixis, Inc. Modulateurs lxr et fxr
US20100075964A1 (en) * 2005-06-27 2010-03-25 Exelixis, Inc. Imidazole based lxr modulators
US20100183696A1 (en) * 2007-01-30 2010-07-22 Allergan, Inc Treating Ocular Diseases Using Peroxisome Proliferator-Activated Receptor Delta Antagonists
US20100324104A1 (en) * 2008-02-12 2010-12-23 Bristol-Myers Squibb Company 1,2,3-triazoles as 11-beta hydroxysteroid dehydrogenase type i inhibitors
US11034669B2 (en) 2018-11-30 2021-06-15 Nuvation Bio Inc. Pyrrole and pyrazole compounds and methods of use thereof

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0409949A (pt) * 2003-05-01 2006-04-25 Bristol Myers Squibb Co compostos de pirazol amida aril-substituìda úteis como inibidores de cinase
EP1745003B1 (fr) 2004-05-05 2010-10-27 High Point Pharmaceuticals, LLC Nouveaux composes, leur preparation et leur utilisation
WO2005105736A1 (fr) 2004-05-05 2005-11-10 Novo Nordisk A/S Nouveaux composes, leur preparation et leur utilisation
FR2882359A1 (fr) * 2005-02-24 2006-08-25 Negma Lerads Soc Par Actions S Derives activateurs de ppar, procede de preparation et application en therapeutique
CN101166720A (zh) * 2005-02-28 2008-04-23 日本化学医药株式会社 过氧化物酶体增殖剂激活受体δ的激活剂
EP1887000A4 (fr) 2005-05-27 2011-09-07 Shionogi & Co Derive d'arylacetate ayant un squelette isoxazole
EP2298742B1 (fr) 2005-06-30 2014-01-08 High Point Pharmaceuticals, LLC acides phénoxyacétiques en tant qu'activateurs PPAR delta
CA2621164A1 (fr) 2005-08-26 2007-03-01 Shionogi & Co., Ltd. Derive ayant une activite agoniste vis-a-vis du ppar
US20080249137A1 (en) * 2005-09-07 2008-10-09 Jack Lin PPAR active compounds
EP2386540A1 (fr) 2005-12-22 2011-11-16 High Point Pharmaceuticals, LLC Nouveaux composés, leur utilisation et préparation
WO2007101864A2 (fr) 2006-03-09 2007-09-13 High Point Pharmaceuticals, Llc Nouveaux composés, leur préparation et utilisation
ZA200809148B (en) 2006-04-18 2010-01-27 Nippon Chemiphar Co Activating agent for peroxisome proliferator activated receptor delta
WO2008010511A1 (fr) * 2006-07-19 2008-01-24 Takeda Pharmaceutical Company Limited procédé de criblage
MX2009008998A (es) * 2007-02-23 2009-09-02 Lilly Co Eli Moduladores del receptor activado por proliferador de peroxisoma.
BRPI0911197A2 (pt) 2008-04-15 2015-10-13 Nippon Chemiphar Co composto, ativador de receptor ativado pelo proliferador de peroxissoma, e, medicamento para o tratamento e /ou profilaxia de uma doença.
CN101643451B (zh) 2008-08-07 2013-03-06 浙江海正药业股份有限公司 过氧化物酶增殖物激活受体亚型δ类激动剂化合物及其制备方法
JP2013538215A (ja) 2010-08-31 2013-10-10 エスエヌユー アールアンドディービー ファウンデーション PPARδアゴニストの胎児再プログラミング用途
KR102006518B1 (ko) * 2012-05-14 2019-08-01 바이엘 크롭사이언스 악티엔게젤샤프트 1-알킬-3-플루오로알킬-1h-피라졸-4-카르복실산 클로라이드의 제조 방법
US9169214B2 (en) 2012-12-21 2015-10-27 The Board Of Trustees Of The Leland Stanford Junior University Compounds and compositions that bind and stabilize transthyretin and their use for inhibiting transthyretin amyloidosis and protein-protein interactions
ES2811087T3 (es) 2013-09-09 2021-03-10 Vtv Therapeutics Llc Uso de agonistas de PPAR-delta para tratar la atrofia muscular
EP3097081B1 (fr) * 2014-01-24 2018-01-10 Bayer CropScience Aktiengesellschaft Méthode de préparation de 1-alkyl-3-difluorométhyl-5-fluoro-1h-pyrazole-4-carbaldéhydes et 1-alkyl-3-difluorométhyl-5-fluoro-1h-pyrazole-4-carboxylates
JOP20190039B1 (ar) 2016-10-05 2023-03-28 Mitobridge Inc أشكال بلورية وملحية لمركبات مساعدة لمستقبل منشط لناشر لجسيمات تأكسدية ppar
WO2023147309A1 (fr) 2022-01-25 2023-08-03 Reneo Pharmaceuticals, Inc. Utilisation d'agonistes ppar-delta dans le traitement d'une maladie

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070043220A1 (en) * 2003-01-06 2007-02-22 Conner Scott E Pyrazole derivative as ppar modulator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2036192A1 (fr) 1990-02-13 1991-08-14 Nicholas Meanwell Acides carboxyliques heterocycliques et esters
JP3694774B2 (ja) * 1997-10-31 2005-09-14 大鵬薬品工業株式会社 フェニルカルボン酸誘導体
DK1206457T3 (da) 1999-08-27 2004-02-16 Lilly Co Eli Biaryl-oxa(thia)zolderivater og deres anvendelse som modulatorer PPAP'ER
AR035912A1 (es) * 2000-03-02 2004-07-28 Aventis Cropscience Sa Compuestos de 4-tiometilpirazol, composicion plaguicida, metodo para el control de plagas en un lugar, semillas tratadas o recubiertas,uso de estos compuestos o composiciones para el control de plagas, uso de estos compuestos para preparar un medicamento veterinario, y,proceso para la preparacion de
DE60216094T2 (de) 2001-06-07 2007-06-06 Eli Lilly And Co., Indianapolis Modulatoren der peroxisom-proliferator-aktivierten rezeptoren (ppar)
US6875780B2 (en) * 2002-04-05 2005-04-05 Warner-Lambert Company Compounds that modulate PPAR activity and methods for their preparation
WO2003099793A1 (fr) * 2002-05-24 2003-12-04 Takeda Pharmaceutical Company Limited Derives 1,2-azole presentant une activite hypoglycemique et hypolipidemique

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070043220A1 (en) * 2003-01-06 2007-02-22 Conner Scott E Pyrazole derivative as ppar modulator

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070043220A1 (en) * 2003-01-06 2007-02-22 Conner Scott E Pyrazole derivative as ppar modulator
US7396850B2 (en) 2003-01-06 2008-07-08 Eli Lilly And Company Pyrazole derivative as PPAR modulator
US20050245589A1 (en) * 2004-04-28 2005-11-03 Jean Ackermann Pyrazole phenyl derivatives
US20110237640A1 (en) * 2004-04-28 2011-09-29 Jean Ackermann Pyrazole phenyl derivatives
US20100035953A1 (en) * 2004-04-28 2010-02-11 Jean Ackermann Pyrazole Phenyl Derivatives
US20100331295A1 (en) * 2005-06-27 2010-12-30 Exelixis, Inc. Modulators of lxr
US20100075964A1 (en) * 2005-06-27 2010-03-25 Exelixis, Inc. Imidazole based lxr modulators
US8569352B2 (en) 2005-06-27 2013-10-29 Exelixis Patent Company Llc Imidazole based LXR modulators
US8703805B2 (en) 2005-06-27 2014-04-22 Exelixis Patent Company Llc Modulators of LXR
US9000022B2 (en) 2005-06-27 2015-04-07 Exelixis Patent Company Llc Imidazole based LXR modulators
US7998995B2 (en) 2006-12-08 2011-08-16 Exelixis Patent Company Llc LXR and FXR modulators
WO2008073825A1 (fr) * 2006-12-08 2008-06-19 Exelixis, Inc. Modulateurs lxr et fxr
US20100183696A1 (en) * 2007-01-30 2010-07-22 Allergan, Inc Treating Ocular Diseases Using Peroxisome Proliferator-Activated Receptor Delta Antagonists
US8729042B2 (en) 2007-01-30 2014-05-20 Allergan, Inc. Treating ocular diseases using peroxisome proliferator—activated receptor delta antagonists
US20100324104A1 (en) * 2008-02-12 2010-12-23 Bristol-Myers Squibb Company 1,2,3-triazoles as 11-beta hydroxysteroid dehydrogenase type i inhibitors
US8263630B2 (en) 2008-02-12 2012-09-11 Bristol-Myers Squibb Company 1,2,3-triazoles as 11-beta hydroxysteroid dehydrogenase type I inhibitors
US11034669B2 (en) 2018-11-30 2021-06-15 Nuvation Bio Inc. Pyrrole and pyrazole compounds and methods of use thereof

Also Published As

Publication number Publication date
EP1583746A1 (fr) 2005-10-12
PE20041039A1 (es) 2004-12-30
US20070043220A1 (en) 2007-02-22
EP1585733A1 (fr) 2005-10-19
US7396850B2 (en) 2008-07-08
CL2004000011A1 (es) 2005-04-15
WO2004063166A1 (fr) 2004-07-29
AR042705A1 (es) 2005-06-29
WO2004063166A8 (fr) 2005-03-03
WO2004063165A1 (fr) 2004-07-29
AU2003296404A1 (en) 2004-08-10
TW200505867A (en) 2005-02-16
AU2003296401A1 (en) 2004-08-10

Similar Documents

Publication Publication Date Title
US20060241157A1 (en) Heterocyclic ppar modulators
US7544707B2 (en) Bicyclic derivatives as PPAR modulators
US7507832B2 (en) Triazole PPAR modulators
US7384965B2 (en) Fused heterocyclic derivatives as PPAR modulators
US7153878B2 (en) Peroxisome proliferator activated receptor modulators
US7259175B2 (en) Peroxisome proliferator activated receptor modulators
US7528160B2 (en) Fused heterocyclic derivatives as PPAR modulators
US20090176863A1 (en) Thiophene derivative ppar modulators
US7544812B2 (en) Peroxisome proliferator activated receptor agonists
US6930120B2 (en) Oxazolyl-arylproplonic acid derivatives and their use as ppar agonists
US7220880B2 (en) Amide linker peroxisome proliferator activated receptor modulators
US7176224B2 (en) Oxazolyl-aryloxyacetic acid derivatives and their use as PPAR agonists
US20060166983A1 (en) Indole derivatives as ppar modulators
MXPA96005520A (en) New azolidindions as agents antiglicemi

Legal Events

Date Code Title Description
AS Assignment

Owner name: ELI LILLY AND COMPANY, INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CONNER, SCOTT EUGENE;MA, TIANWEI;MANTLO, NATHAN BRYAN;AND OTHERS;REEL/FRAME:017441/0031;SIGNING DATES FROM 20040204 TO 20040318

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION