US20060193778A1 - Receptor-mediated uptake of peptides that bind the human transferrin receptor - Google Patents
Receptor-mediated uptake of peptides that bind the human transferrin receptor Download PDFInfo
- Publication number
- US20060193778A1 US20060193778A1 US10/806,477 US80647704A US2006193778A1 US 20060193778 A1 US20060193778 A1 US 20060193778A1 US 80647704 A US80647704 A US 80647704A US 2006193778 A1 US2006193778 A1 US 2006193778A1
- Authority
- US
- United States
- Prior art keywords
- seq
- cells
- htfr
- peptides
- phage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 81
- 102000004196 processed proteins & peptides Human genes 0.000 title abstract description 49
- 102000007238 Transferrin Receptors Human genes 0.000 title abstract description 17
- 101000766306 Homo sapiens Serotransferrin Proteins 0.000 title abstract description 13
- XNSAINXGIQZQOO-SRVKXCTJSA-N protirelin Chemical compound NC(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@H]1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-SRVKXCTJSA-N 0.000 title abstract description 13
- 102000005962 receptors Human genes 0.000 title description 12
- 108020003175 receptors Proteins 0.000 title description 12
- 230000001404 mediated effect Effects 0.000 title 1
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 29
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 28
- 239000000427 antigen Substances 0.000 claims description 19
- 102000036639 antigens Human genes 0.000 claims description 19
- 108091007433 antigens Proteins 0.000 claims description 19
- 239000003795 chemical substances by application Substances 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 9
- 239000002246 antineoplastic agent Substances 0.000 claims description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 2
- 229940127089 cytotoxic agent Drugs 0.000 claims description 2
- 239000012216 imaging agent Substances 0.000 claims description 2
- 239000002773 nucleotide Substances 0.000 claims 1
- 125000003729 nucleotide group Chemical group 0.000 claims 1
- 230000008685 targeting Effects 0.000 abstract description 8
- 230000004927 fusion Effects 0.000 abstract description 5
- 210000004027 cell Anatomy 0.000 description 96
- 235000018102 proteins Nutrition 0.000 description 24
- 239000005090 green fluorescent protein Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 19
- 239000003446 ligand Substances 0.000 description 15
- 239000012124 Opti-MEM Substances 0.000 description 13
- 102000004338 Transferrin Human genes 0.000 description 13
- 108090000901 Transferrin Proteins 0.000 description 13
- 239000012581 transferrin Substances 0.000 description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 108091005971 Wild-type GFP Proteins 0.000 description 10
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 10
- 241000287828 Gallus gallus Species 0.000 description 8
- 239000004971 Cross linker Substances 0.000 description 7
- 108010033576 Transferrin Receptors Proteins 0.000 description 7
- 238000010166 immunofluorescence Methods 0.000 description 7
- 239000006174 pH buffer Substances 0.000 description 7
- 238000002823 phage display Methods 0.000 description 7
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 108091034117 Oligonucleotide Proteins 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 210000002950 fibroblast Anatomy 0.000 description 6
- 102000037865 fusion proteins Human genes 0.000 description 6
- 108020001507 fusion proteins Proteins 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 210000001161 mammalian embryo Anatomy 0.000 description 6
- 210000002966 serum Anatomy 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 5
- 108010067902 Peptide Library Proteins 0.000 description 5
- 150000001413 amino acids Chemical class 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- 102000000844 Cell Surface Receptors Human genes 0.000 description 4
- 108010001857 Cell Surface Receptors Proteins 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- 101710145505 Fiber protein Proteins 0.000 description 4
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 229940034982 antineoplastic agent Drugs 0.000 description 4
- 229940098773 bovine serum albumin Drugs 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 229960000485 methotrexate Drugs 0.000 description 4
- 239000003068 molecular probe Substances 0.000 description 4
- 230000037361 pathway Effects 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- 238000001712 DNA sequencing Methods 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 239000006391 Luria-Bertani Medium Substances 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000008045 co-localization Effects 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001378 electrochemiluminescence detection Methods 0.000 description 3
- 230000002121 endocytic effect Effects 0.000 description 3
- 230000012202 endocytosis Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000010647 peptide synthesis reaction Methods 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- JJAHTWIKCUJRDK-UHFFFAOYSA-N succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate Chemical compound C1CC(CN2C(C=CC2=O)=O)CCC1C(=O)ON1C(=O)CCC1=O JJAHTWIKCUJRDK-UHFFFAOYSA-N 0.000 description 3
- 239000003656 tris buffered saline Substances 0.000 description 3
- 229960005486 vaccine Drugs 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- VGIRNWJSIRVFRT-UHFFFAOYSA-N 2',7'-difluorofluorescein Chemical compound OC(=O)C1=CC=CC=C1C1=C2C=C(F)C(=O)C=C2OC2=CC(O)=C(F)C=C21 VGIRNWJSIRVFRT-UHFFFAOYSA-N 0.000 description 2
- IVLXQGJVBGMLRR-UHFFFAOYSA-N 2-aminoacetic acid;hydron;chloride Chemical compound Cl.NCC(O)=O IVLXQGJVBGMLRR-UHFFFAOYSA-N 0.000 description 2
- 108700026758 Adenovirus hexon capsid Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102100033620 Calponin-1 Human genes 0.000 description 2
- 101710132601 Capsid protein Proteins 0.000 description 2
- 101710094648 Coat protein Proteins 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 2
- 101000945318 Homo sapiens Calponin-1 Proteins 0.000 description 2
- 101000652736 Homo sapiens Transgelin Proteins 0.000 description 2
- 101710125418 Major capsid protein Proteins 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 101710141454 Nucleoprotein Proteins 0.000 description 2
- 101710083689 Probable capsid protein Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 210000000612 antigen-presenting cell Anatomy 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000000032 diagnostic agent Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 210000001163 endosome Anatomy 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000002523 gelfiltration Methods 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000007480 sanger sequencing Methods 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 241001515965 unidentified phage Species 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- FPNZBYLXNYPRLR-UHFFFAOYSA-N 2-(4-carbamimidoylphenyl)-1h-indole-6-carboximidamide;hydron;dichloride Chemical compound Cl.Cl.C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FPNZBYLXNYPRLR-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- RMMVRBURQHNABQ-FHNDMYTFSA-N 2-aminoacetic acid;(2s)-pyrrolidine-2-carboxylic acid Chemical compound NCC(O)=O.NCC(O)=O.OC(=O)[C@@H]1CCCN1 RMMVRBURQHNABQ-FHNDMYTFSA-N 0.000 description 1
- CTRPRMNBTVRDFH-UHFFFAOYSA-N 2-n-methyl-1,3,5-triazine-2,4,6-triamine Chemical class CNC1=NC(N)=NC(N)=N1 CTRPRMNBTVRDFH-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 101710192393 Attachment protein G3P Proteins 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical class C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 101800001415 Bri23 peptide Proteins 0.000 description 1
- 101800000655 C-terminal peptide Proteins 0.000 description 1
- 102400000107 C-terminal peptide Human genes 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 102000005853 Clathrin Human genes 0.000 description 1
- 108010019874 Clathrin Proteins 0.000 description 1
- 241001429175 Colitis phage Species 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241001524679 Escherichia virus M13 Species 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920002594 Polyethylene Glycol 8000 Polymers 0.000 description 1
- 239000004353 Polyethylene glycol 8000 Substances 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229940045719 antineoplastic alkylating agent nitrosoureas Drugs 0.000 description 1
- 108010054176 apotransferrin Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229960005243 carmustine Drugs 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 229930193282 clathrin Natural products 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 108010045676 holotransferrin Proteins 0.000 description 1
- 238000010820 immunofluorescence microscopy Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000013101 initial test Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000004264 monolayer culture Methods 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000007523 nucleic acids Chemical group 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229960003552 other antineoplastic agent in atc Drugs 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229940085678 polyethylene glycol 8000 Drugs 0.000 description 1
- 235000019446 polyethylene glycol 8000 Nutrition 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000013391 scatchard analysis Methods 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 239000004017 serum-free culture medium Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C40—COMBINATORIAL TECHNOLOGY
- C40B—COMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
- C40B40/00—Libraries per se, e.g. arrays, mixtures
- C40B40/02—Libraries contained in or displayed by microorganisms, e.g. bacteria or animal cells; Libraries contained in or displayed by vectors, e.g. plasmids; Libraries containing only microorganisms or vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
- A61K47/6425—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the peptide or protein in the drug conjugate being a receptor, e.g. CD4, a cell surface antigen, i.e. not a peptide ligand targeting the antigen, or a cell surface determinant, i.e. a part of the surface of a cell
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
- A61K47/64—Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
- A61K47/644—Transferrin, e.g. a lactoferrin or ovotransferrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
- C12N15/1037—Screening libraries presented on the surface of microorganisms, e.g. phage display, E. coli display
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Definitions
- This invention relates to use of peptides which target the human transferrin receptor.
- Peptides of the invention can be used to direct other peptides, proteins and other diagnostic or therapeutic agents into cells for both diagnostic and therapeutic purposes.
- phage display has exploited the physical linkage between random peptide sequences expressing on phage and the DNA encoding that sequence. This linkage allows for rapid identification of peptide ligands.
- a random peptide sequence is expressed as a fusion with a bacteriophage coat protein and is available for testing as a ligand for various targets.
- Phage display has successfully been used to identify single chain antibodies with specificity for various biological molecules. Phage display strategies can be used to elucidate the amino acids responsible for protein-protein interactions, to find organ-specific phage, and to find substrate recognition sequences for enzymes. The process of using multiple rounds of phage display to enrich for a particular sequence is called biopanning.
- the human transferrin receptor has been studied extensively as a model system for receptor-mediated endocytosis, a marker for cellular proliferation, and a target for therapeutics.
- the hTfR is ubiquitously expressed and over-expressed at least 100 fold in oral, liver, pancreatic, prostate and other cancers. This increase in transferrin receptor (TfR) in cancers has been attributed to the increased metabolism of these transformed cells, making the hTfR a useful diagnostic marker. Because of its expression pattern and pathway characteristics, the hTfR is an attractive target for therapeutics.
- the TfR is a dimer composed of two identical 95 kDa subunits and is responsible for the majority of cellular iron uptake.
- the type II cell surface receptor binds 80 kDa transferrin (Tf) and the complex is internalized through clathrin-coated pits. Iron is released from transferrin in the acidic early endosome and the apotransferrin-receptor complex is recycled back to the cell surface where apotransferrin is recycled.
- Tf transferrin
- This invention relates to peptides which are capable of binding to and internalizing with the human transferrin receptor (hTfR).
- the sequences HAIYPRH (Seq. ID No. 1) and THRPPMWSPVWP (Seq. ID No. 2) are capable of binding to and internalizing with the human transferrin receptor.
- the fusion product was internalized in cells expressing hTfR.
- the sequences have use for targeting other peptides and proteins into cells expressing hTfR.
- the phage display system using whole cell selective biopanning could also be applied to find small ligands for other cell surface receptors. This sequence is not found in human transferrin protein. Furthermore, this sequence does not compete with transferrin itself for binding to the hTfR.
- peptides of the invention are useful for facilitating entry of diagnostically and therapeutically useful agents, including peptides and proteins. Since malignant cells produce increased expression of hTfR, the peptides, HAIYPRH (Seq. ID No. 1) and THRPPMWSPVWP (Seq. ID No. 2), are particularly useful for study and treatment of malignancies.
- a phage display selection strategy was utilized that resulted in identification of the peptides.
- This selection system is based on alternating rounds of negative selection on chicken embryo fibroblast (CEF) cells lacking hTfR and positive selection on chicken embryo fibroblast cells expressing hTfR (CEF+hTfR). Biopanning on whole cells was exploited to select the peptides HAIYPRH (Seq. ID No. 1) and THRPPMWSPVWP (Seq. ID No. 2).
- HAIYPRH Seq. ID No. 1
- THRPPMWSPVWP Seq. ID No. 2
- These peptides were able to target a macromolecule to and internalize through the hTfR, as was demonstrated by phage binding, competition and immunofluorescence studies. It was also shown that these two peptides bind sites that do not overlap with the native ligand, transferrin, indicating they could be used in vivo for targeting macromolecules to the
- biopanning procedure could be applied to find small peptide ligands for other cell surface receptors. There is a great need to find new epitopes on various cancer cell types for diagnostic purposes.
- the subtractive method of biopanning disclosed herein would be useful for finding new cell surface markers. Biopanning on whole cells can be especially useful in situations where the receptor can not be purified or does not maintain its native confirmation when isolated.
- CEF and CEF+hTfR The two chicken embryo fibroblast cell lines, used for selective biopanning, were described previously (Collawn, et al, Cell, 63, 1061-1072 (1990) and Odorizzi, et al., J. Cell Biol., 126, 317-330 (1994)).
- Chicken embryo fibroblasts have been used extensively for study of hTfR.
- the native cells express chicken transferrin receptors, but this receptor cannot bind human transferrin.
- Two cell lines were previously established through stable transduction with retroviral vectors to yield CEF and CEF+hTfR cells. CEF cells do not express the human transferrin receptor.
- CEF+hTfR cells constitutively express hTfR.
- hTfR Protein expression of hTfR by CEF cells was periodically checked by 125 I-Tf binding. Both cells are grown in monolayer cultures in Dulbecco's Modified Eagle Medium supplemented with 1% chicken serum, 1% bovine calf serum, 1% L-glutamine 200 nM, and 2% tryptose phosphate and maintained at 37° C. in 13% CO 2 .
- Monoclonal anti-GFP (green fluorescent protein) antibody (Clontech, Palo Alto, Calif.) was used for Western blot analysis and immunofluorescence at 1:5,000 and 1:250 dilution, respectively.
- Horse radish peroxidase conjugated goat anti-mouse antibody (Pierce, Rockford, Ill.), Oregon-Green and Texas-Red secondary antibodies (Molecular Probes, Eugene, Oreg.) were used at 1:10,000, 1:250, 1:250 dilution, respectively.
- Electrophoretic methods Samples were dissolved on SDS-PAGE gels by the methods of Laemmli and transferred to nitrocellulose membrane by electroblotting for Western blot analysis (Laemmli, U. K, Nature, 227, 680-685). The membranes were blocked with 5% milk in tris buffered saline with 1% Trition X-100 (TBS-TX) (50 mM Tris-HCL, pH 7.5, 0.2 M NaCl, 1% Triton X-100), and incubated with primary antibody in TBS-TX with 2.5% milk overnight at 4° C.
- TBS-TX Trition X-100
- the membranes were then washed in TBS-TX and incubated with peroxidase-conjugated secondary antibody and developed with the enhanced chemiluminescence (ECL) kit in accord with the manufacturer's instructions (Amersham Pharmacia Biotech, Buckinghamshire, England).
- ECL enhanced chemiluminescence
- Ph.D.-7TM or Ph.D.-12TM Phage Display Peptide Library Kit (New England Biolabs, Inc, Bevery, Mass.) was used for biopanning on CEF and CEF+hTfR cells.
- the Ph.D.TM phage display peptide library is based on a combinatorial library of random 7 or 12 amino acid peptides fused to a minor coat protein of the filamentous coliphage M13. In separate studies, two different phage display peptide libraries were used to select for 7-mer and 12 mer peptide sequences that could bind the hTfR expressed on the surface of CEF+hTfR cells.
- Eluted phage were amplified in 20 ml Luria-Bertani medium (LB) containing E. coli ER2537 (for 7-mer phage) and ER2783 (for 12-mer phage) at 37° C. Phage from liquid cultures were obtained by clearing the supernatant twice by centrifugation at 10,000 rpm for 15 minutes at 4° C., and precipitated with 1 ⁇ 6 volume of PEG/NaCl (10% polyethylene glycol-8000, 2.5M NaCl) at 4° C. overnight. Phage pellets were suspended in 1 ml TBS (50 mM Tris-HCl, 150 mM NaCl), and precipitated with PEG/NaCl for 1 hour.
- LB Luria-Bertani medium
- PEG/NaCl polyethylene glycol-8000, 2.5M NaCl
- Amplified phage were resuspended with 200 ⁇ l TBS, 0.02% NaN 3 , and these amplified phage were used for additional rounds of biopanning. After each round of biopanning, the final elutes were titrated, amplified in E. coli , and plated onto LB plates. The plates were incubated at 37° C. overnight. Individual plaques were subjected to plaque amplification, DNA purification, and DNA sequencing using a modified Sanger sequencing reaction (Sanger, et al., Pro Natl Acad Sci USA, 74, 5463-5467 (1977)) with the appropriate sequencing primers.
- peptides were purified by high pressure liquid chromatography, and the molecular weights were confirmed by mass spectrometry.
- Binding and Competition Studies Purified phage populations were amplified and were verified to be homogenous through DNA sequencing. Cells were prepared for binding as was described for biopanning procedures. Preparations of plaque-purified and titered phage (1 ⁇ 10 11 ) were incubated in serum-free Opti-MEM on either CEF or CEF+hTfR cells at 4° C. for 1 hour. The cells were washed repeatedly with Opti-MEM and bound phage were eluted with low pH buffer and subsequently titered.
- holo-transferrin Calbiochem, La Jolla, Calif.
- synthesized peptides were added to CEF+hTfR cells prior to addition of the phage for 1 hour at 4° C. Multiple trials were completed and average titers and standard deviations determined. The titers determined on CEF+hTfR cells were divided by the titers determined on CEF cells and multiplied by 100 to yield fold over control data points.
- GFP Constructs Transferrin from human serum, bovine serum albumin (BSA), and purified wild-type GFP (wtGFP) were obtained from Sigma (St. Louis, Mo.) and Clontech (Palo Alto, Calif.), respectively.
- the tagged GFP genes were generated by the PCR with template DNA Clontech's GFP vector.
- the PCR reactions were carried out in a Perkin Elmer Cetus DNA Thermal Cycler for 30 cycles of 95° C., 1 minute; 55° C., 1 minute; and 72° C., 1 minute.
- HAIYPRH Seq. ID No. 1-tagged GFP PCR oligonucleotides were: Upstream: (Seq. No.
- THRPPMWSPVWP (Seq. ID No. 2)-tagged GFP PCR oligonucleotides were: Upstream: (Seq. No. 7) 5′-TCTAGATCTGATGAGTAAAGGAGAAGAA-3′ Downstream: (Seq. No.
- IPTG isopropyl- ⁇ -D-thioglactopyranoside
- the purified protein was assayed by SDS-PAGE followed by Coomassie staining and Western blot analysis with a GFP monoclonal antibody (Clontech). ECL development was carried out as per the manufacturer's instructions (Amersham Pharmacia Biotech). Protein concentrations were determined with the Bio-Rad Protein Assay kit (Bio-Rad Laboratories, Hercules, Calif.). Immunofluorescence: CEF+hTfR cells were grown on glass coverslips to 50% to 75% confluence. The coverslips were washed and incubated in serum-free Opti-MEM media at 37° C. for 1 hour. Then 2 ⁇ g of wild-type GFP (Clontech), HAIYPRH (Seq.
- the biopanning procedure with chicken embryo fibroblast cells was performed as described above.
- the procedure used both negative and positive binding steps to isolate specific peptide sequences that bind the hTfR.
- Phage that did not bind the CEF cells were applied to CEF+hTfR cells and the bound phage were eluted with low pH buffer. The eluted phage were amplified for additional rounds of biopanning. Between each round, the phage were titered and sequenced to monitor convergence of sequence.
- phage binding study was performed. Homogeneous pools of five different isolates from the 7-mer phage and five isolates from the 12-mer phage were each amplified, purified and verified by DNA sequencing. Individually, 109 phage were applied to CEF or CEF+hTfR cells. Phage were bound to CEF or CEF+hTfR cells for 1 hour at 4° C., then washed extensively with Opti-MEM to remove unbound phage. Bound phage were eluted with low pH buffer, neutralized, and titered on a lawn of E. coli .
- HAIYPRH HAIYPRH
- THRPPMWSPVWP THRPPMWSPVWP
- GFP fusion proteins were prepared. Immunofluorescence was used to determine if the GFP-peptides fusion constructs were internalized using the following assay. GFP-peptide constructs were cloned with a C-terminal peptide addition of either HAIYPRH (Seq. ID No. 1) (GFP-HAIYPRH) or THRPPMWSPVWP (Seq. ID No. 2) (GFP-THRPPMWSPVWP). These constructs were expressed and purified to greater than 95% by Coomassie staining. Purified proteins were applied to CEF+hTfR cells at 4° C.
- Cells were washed with Opti-MEM, fixed and processed as described under the Materials and Methods section above. Alternatively, the cells were washed with low pH buffer prior to fixation. This acid wash determined whether the protein was endocytosed by removing proteins bound at the cell surface.
- the cells that had undergone a low pH buffer wash to enable identification of proteins that had been endocytosed were evaluated. While wtGFP was unable to be endocytosed into CEF+hTfR cells, both GFP-HAIYPRH (Seq. ID No. 1) and GFP-THRPPMWSPVWP (Sea. ID No. 2) showed a speckled pattern of fluorescence typical of endocytosed ligands. The Texas-Red Tf was readily endocytosed into the CEF+hTfR cells and produced a spotted pattern similar to that seen with the two GFP fusion proteins.
- CEF cells were used for immunofluorescence binding assays and neither of the GFP fusion proteins or transferrin bound or internalized these cells, as was expected, since these CEF cells lack the hTfR. Immunofluorescent internalization studies were also performed with Hela cells and yielded identical result to CEF+hTfR cells.
- GFP-THRPPMWSPVWP (Seq. ID No. 2) was shown to have 2.3 ⁇ 10 ⁇ 8 M affinity for CEF+hTfR cells, indicating that its affinity was only 10-fold lower than the native Tf ligand.
- Peptides containing the sequences HAIYPRH (Seq. ID No. 1) and THRPPMWSPVWP (Seq. ID No. 2) can be used to target viral vectors, as well as proteins, to the endocytic pathway via the hTfR.
- Competition studies suggest that transferrin, the 7-mer sequence and the 12-mer sequence all bind unique sites on the hTfR, since they each failed to significantly compete with each other for hTfR binding. This finding suggests further advantages for use of these peptides for transduction of therapeutic ligands, since there is no disruption of transferrin's delivery of iron to cells.
- ligands specific for this receptor may be used as targeting agents with antigen as well as diagnostic agents such as imaging agents or radioisotopes. It has been shown that early endosomes are essential for the proper endocytosis, sorting and presentation of antigen by major histocompatibility class II. The targeting of antigens to the hTfR enhances antigen entry into the endocytic pathway and boosts antigen presentation.
- chemotherapeutics may be conjugated directly with the peptides of the invention for targeting agents to transferrin receptor-rich cells.
- peptides of the invention do not interfere with binding of human transferrin to the hTfR
- different agents may be administered wherein one conjugate targets the hTfR uses transferrin as the targeting agent and another conjugate targets the hTfR using a peptide of the invention as a targeting agent.
- Transferrin receptor binding peptide sequences to adenovirus proteins in accord with the teachings of U.S. Pat. No. 6,312,699, which is incorporated herein by reference in its entirety.
- short peptide ligands such as HAIYPRH (Seq. ID No. 1) and THRPPMWSPVWP (Seq. ID No. 2) are fused onto the carboxyl-terminus of the adenovirus fiber protein.
- Oligonucleotides encoding these amino acid sequences are designed and synthesized and annealed together for cloning into the unique BamHI restriction endonuclease cleavage site in plasmid pTKgpt-3S (cited in example 2 of U.S. Pat. No. 6,312,699). Examples of such oligonucleotides are:
- HAIYPRH (Seq. ID No. 1): Sense: (Seq. ID No. 10) 5′ GA TCC CAT GCG ATC TAT CCG CGC CAT TAA 3′ Antisense: (Seq. ID No. 11) 5′ G ATC TTA ATG GCG CGG ATA GAT CGC ATG G 3′
- THRPPMWSPVWP (Seq. ID No. 2): Sense: (Seq. ID No. 12) 5′ GA TCC ACC CAC CGC CCG CCG ATG TGG AGC CCG GTG TGG CCG TAA 3′ Antisense: (Seq. ID No. 13) 5′ G ATC TTA CGG CCA CAC CGG GCT CCA CAT CGG CGG GCG GTG GGT G 3′
- These oligonucleotides are designed with BamHI cohesive ends that can be cloned into the BamHI cleavage site developed in Example 2 of U.S. Pat. No. 6,312,699.
- Example 2 The specific amino acid sequence added to fiber in Example 2 was designed to extend the new transferrin receptor-binding ligand away from the bulk of the fiber protein, increasing its accessibility to the new receptor molecule.
- the non-viral ligands can be attached to the carboxyl terminus of the fiber protein via a peptide linker by expression of a genetically engineered nucleic acid sequence encoding the fiber protein, linker, and ligand.
- a genetically engineered nucleic acid sequence encoding the fiber protein, linker, and ligand.
- the Tf receptor binding peptides can be used to enhance antigen delivery in antigen-presenting cells. These peptide sequences are applied to increase the potency of vaccines, since antigen-presenting cells often take up the antigens contained in vaccines poorly. To enhance antigen delivery and, therefore, antibody and cytotoxic T cell responses, these peptides are chemically coupled to the antigen of interest or prepared as a recombinant protein that contains these Tf receptor-binding peptides. For preparation of the recombinant antigen containing the Tf receptor binding peptide, coupling is accomplished using standard recombinant DNA techniques as in other examples provided (for example, fusions of HAIYPRH (Seq. ID No.
- the recombinant proteins can be expressed in any number of protein expression systems including bacterial, baculoviral, and mammalian expression systems.
- the peptides are coupled using chemical crosslinkers such as succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC; Piece Chem. Co., Rockford, Ill.). Obviously, any chemical crosslinker could be used for this purpose. In our applications, we have coupled 10 mg of antigen to a 5 to 30-fold molar excess of SMCC in 50 mM Hepes buffer (pH 7.4) for 1 h at room temperature.
- chemical crosslinkers such as succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC; Piece Chem. Co., Rockford, Ill.).
- SMCC succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate
- SMCC-modified antigen is purified by gel filtration to remove the unbound crosslinker.
- peptides are prepared with an amino-terminal linker sequence with a cysteine residue followed by a nonspecific linker sequence (glycine-proline-glycine) to facilitate the coupling reaction.
- the leader sequence can change depending on the nature of the crosslinker.
- the 7- or 12-residue Tf receptor binding peptide is attached.
- the peptides are added to SMCC-modified antigens at same molar ratio as is used with the cross-linker. The reactions are incubated overnight at room temperature.
- Reaction products are separated by gel filtration and the number of cross-linkers and/or peptides coupled to the antigen is determined by MALDI-TOF mass spectrometry. These Tf receptor binding peptide-modified antigens can then be used as a vaccine using standard vaccination protocols.
- the advantage of the peptide-coupled antigens is that substantially less antigen will be required for inducing antibody-based responses. Since a number of peptides can be coupled to each antigen molecule, antigenic responses should be dramatically enhanced.
- the peptides of the invention may also be coupled with chemotherapeutic agents.
- chemotherapeutic agents Using 2 equivalents of either peptide HAIYPRH (Seq. ID No. 1) or THRPPMWSPVWP (Seq. ID No. 2) or a combination of the two, to one equivalent of methotrexate the peptides of the invention are coupled to methotrexate using the methods of examples 8 and 9.
- the resulting product is formulated in buffered saline and administered to the patient in sufficient amount to provide a concentration of 0.3 to 5 ⁇ M in the serum when administred intravenously.
- methotrexate bound to the peptides of the invention is prepared as in example 10. However, the methotrexate bound to the peptides is then formulated in liposomal form for intravenous administration. Liposomal compositions may also be administred by mouth or directly to the affected tissue.
- antineoplastic agents that might be conjugated to the peptides of the invention, either directly or through conjugation to or incorporation in liposomes containing the sequences of the invention, such liposomes containing antineoplastic agents which may be bound to the peptides of the invention, to target cells rich in human transferrin receptors include (but are not limited to) cisplatin, nitrogen mustards (including chlorambucil), ethylenimines, methylmelamines, nitrosoureas (including carmustin, lomustine, etc.) and doxorubicin.
- the antineoplastic agents would be administered in accord with the methods usually used for the particular agent and disease.
- the active agent can be administered for a longer period of time and more frequently than when the non-targetting agent is employed.
- compositions with the peptides bound to antigens or antineoplastic agents may be administered directly to the involved tissues.
- the agents may be administred by inhalation.
- the agents may be administered intrathecally.
- the peptide-bound agents may be administred in enteric coated dosage forms to prevent destruction in the stomach.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Zoology (AREA)
- Microbiology (AREA)
- Epidemiology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Virology (AREA)
- Immunology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Peptides have been discovered which are capable of binding to and internalizing with the human transferrin receptor (hTfR). The sequences HAIYPRH (Seq. ID No. 1) and THRPPMWSPVWP (Seq. ID No. 2) are capable of binding to and internalizing with the human transferrin receptor. When these molecules were fused with other molecules, the fusion product was internalized in cells expressing hTfR. The sequences have use for targeting other peptides and proteins into cells expressing hTfR.
Description
- This application is a continuation of U.S. patent application is a continuation in part of U.S. patent application Ser. No. 09/995,804 filed Nov. 29, 2001, now pending, which takes priority from U.S. Provisional patent application 60/253,940.
- This work was supported by USPHS grants R01 HL58339 and IP50 DE/CA 11910 and by NCI grant CA-13148. Hence, the United States Government has certain rights in this invention.
- This invention relates to use of peptides which target the human transferrin receptor. Peptides of the invention can be used to direct other peptides, proteins and other diagnostic or therapeutic agents into cells for both diagnostic and therapeutic purposes.
- Previous work relating to redirecting viral vectors in gene therapy by using short peptide ligands to redirect virus particles to specific cell types are known. One of the limitations of this strategy is that short peptide sequences that bind efficiently to cell surface receptors on specific cell types must be identified. One experimental approach to identify such short peptides that holds promise is bacteriophage display.
- For more than a decade, phage display has exploited the physical linkage between random peptide sequences expressing on phage and the DNA encoding that sequence. This linkage allows for rapid identification of peptide ligands. A random peptide sequence is expressed as a fusion with a bacteriophage coat protein and is available for testing as a ligand for various targets. Phage display has successfully been used to identify single chain antibodies with specificity for various biological molecules. Phage display strategies can be used to elucidate the amino acids responsible for protein-protein interactions, to find organ-specific phage, and to find substrate recognition sequences for enzymes. The process of using multiple rounds of phage display to enrich for a particular sequence is called biopanning.
- The human transferrin receptor (hTfR) has been studied extensively as a model system for receptor-mediated endocytosis, a marker for cellular proliferation, and a target for therapeutics. The hTfR is ubiquitously expressed and over-expressed at least 100 fold in oral, liver, pancreatic, prostate and other cancers. This increase in transferrin receptor (TfR) in cancers has been attributed to the increased metabolism of these transformed cells, making the hTfR a useful diagnostic marker. Because of its expression pattern and pathway characteristics, the hTfR is an attractive target for therapeutics. The TfR is a dimer composed of two identical 95 kDa subunits and is responsible for the majority of cellular iron uptake. The type II cell surface receptor binds 80 kDa transferrin (Tf) and the complex is internalized through clathrin-coated pits. Iron is released from transferrin in the acidic early endosome and the apotransferrin-receptor complex is recycled back to the cell surface where apotransferrin is recycled.
- A blast search failed to yield any significant homologies between either HAIYPRH (Seq. ID No. 1) or THRPPMWSPVWP (Seq. ID No. 2) to known proteins, including Tf.
- This invention relates to peptides which are capable of binding to and internalizing with the human transferrin receptor (hTfR). The sequences HAIYPRH (Seq. ID No. 1) and THRPPMWSPVWP (Seq. ID No. 2) are capable of binding to and internalizing with the human transferrin receptor. When these molecules were fused with other molecules, the fusion product was internalized in cells expressing hTfR. The sequences have use for targeting other peptides and proteins into cells expressing hTfR. The phage display system using whole cell selective biopanning could also be applied to find small ligands for other cell surface receptors. This sequence is not found in human transferrin protein. Furthermore, this sequence does not compete with transferrin itself for binding to the hTfR.
- It is important that easily produced peptides that can facilitate entry of diagnostically and therapeutically useful peptides and proteins into cells having particular characteristics be available. The identification of peptides that will facilitate entry of such peptides into cells which are more likely to be aberrant has particular use. The peptides of the invention are useful for facilitating entry of diagnostically and therapeutically useful agents, including peptides and proteins. Since malignant cells produce increased expression of hTfR, the peptides, HAIYPRH (Seq. ID No. 1) and THRPPMWSPVWP (Seq. ID No. 2), are particularly useful for study and treatment of malignancies.
- A phage display selection strategy was utilized that resulted in identification of the peptides. This selection system is based on alternating rounds of negative selection on chicken embryo fibroblast (CEF) cells lacking hTfR and positive selection on chicken embryo fibroblast cells expressing hTfR (CEF+hTfR). Biopanning on whole cells was exploited to select the peptides HAIYPRH (Seq. ID No. 1) and THRPPMWSPVWP (Seq. ID No. 2). These peptides were able to target a macromolecule to and internalize through the hTfR, as was demonstrated by phage binding, competition and immunofluorescence studies. It was also shown that these two peptides bind sites that do not overlap with the native ligand, transferrin, indicating they could be used in vivo for targeting macromolecules to the endocytic pathway in hTfR-positive cells.
- The biopanning procedure could be applied to find small peptide ligands for other cell surface receptors. There is a great need to find new epitopes on various cancer cell types for diagnostic purposes. The subtractive method of biopanning disclosed herein would be useful for finding new cell surface markers. Biopanning on whole cells can be especially useful in situations where the receptor can not be purified or does not maintain its native confirmation when isolated.
- Materials and Methods:
- Cell lines: The two chicken embryo fibroblast cell lines, CEF and CEF+hTfR, used for selective biopanning, were described previously (Collawn, et al, Cell, 63, 1061-1072 (1990) and Odorizzi, et al., J. Cell Biol., 126, 317-330 (1994)). Chicken embryo fibroblasts have been used extensively for study of hTfR. The native cells express chicken transferrin receptors, but this receptor cannot bind human transferrin. Two cell lines were previously established through stable transduction with retroviral vectors to yield CEF and CEF+hTfR cells. CEF cells do not express the human transferrin receptor. CEF+hTfR cells constitutively express hTfR. Protein expression of hTfR by CEF cells was periodically checked by 125I-Tf binding. Both cells are grown in monolayer cultures in Dulbecco's Modified Eagle Medium supplemented with 1% chicken serum, 1% bovine calf serum, 1% L-glutamine 200 nM, and 2% tryptose phosphate and maintained at 37° C. in 13% CO2.
- Antibodies: Monoclonal anti-GFP (green fluorescent protein) antibody (Clontech, Palo Alto, Calif.) was used for Western blot analysis and immunofluorescence at 1:5,000 and 1:250 dilution, respectively. Horse radish peroxidase conjugated goat anti-mouse antibody (Pierce, Rockford, Ill.), Oregon-Green and Texas-Red secondary antibodies (Molecular Probes, Eugene, Oreg.) were used at 1:10,000, 1:250, 1:250 dilution, respectively.
- Electrophoretic methods: Samples were dissolved on SDS-PAGE gels by the methods of Laemmli and transferred to nitrocellulose membrane by electroblotting for Western blot analysis (Laemmli, U. K, Nature, 227, 680-685). The membranes were blocked with 5% milk in tris buffered saline with 1% Trition X-100 (TBS-TX) (50 mM Tris-HCL, pH 7.5, 0.2 M NaCl, 1% Triton X-100), and incubated with primary antibody in TBS-TX with 2.5% milk overnight at 4° C. The membranes were then washed in TBS-TX and incubated with peroxidase-conjugated secondary antibody and developed with the enhanced chemiluminescence (ECL) kit in accord with the manufacturer's instructions (Amersham Pharmacia Biotech, Buckinghamshire, England).
- Biopanning: Ph.D.-7™ or Ph.D.-12™ Phage Display Peptide Library Kit (New England Biolabs, Inc, Bevery, Mass.) was used for biopanning on CEF and CEF+hTfR cells. The Ph.D.™ phage display peptide library is based on a combinatorial library of random 7 or 12 amino acid peptides fused to a minor coat protein of the filamentous coliphage M13. In separate studies, two different phage display peptide libraries were used to select for 7-mer and 12 mer peptide sequences that could bind the hTfR expressed on the surface of CEF+hTfR cells. Cells were washed and incubated in serum-free Opti-MEM (Gibco BRL Life Technologies, Gaithersburg, Md.) at 37° C. for 1 hour prior to all biopanning procedures. Phage binding was carried out at 4° C. in serum-free Opti-MEM with 1×106 cell/3.5 cm well. Initial biopanning procedures applied 2×1011 phage to CEF cells for two hours; unbound phage were transferred to CEF+hTfR cells for 1 hour. Cells were washed 10 times with Opti-MEM, and bound phage was quickly eluted with low pH buffer (0.2M glycine-HCL, pH 2.2) and neutralized with 1M Tris-HCl, pH 9.1. Eluted phage were amplified in 20 ml Luria-Bertani medium (LB) containing E. coli ER2537 (for 7-mer phage) and ER2783 (for 12-mer phage) at 37° C. Phage from liquid cultures were obtained by clearing the supernatant twice by centrifugation at 10,000 rpm for 15 minutes at 4° C., and precipitated with ⅙ volume of PEG/NaCl (10% polyethylene glycol-8000, 2.5M NaCl) at 4° C. overnight. Phage pellets were suspended in 1 ml TBS (50 mM Tris-HCl, 150 mM NaCl), and precipitated with PEG/NaCl for 1 hour. Amplified phage were resuspended with 200 μl TBS, 0.02% NaN3, and these amplified phage were used for additional rounds of biopanning. After each round of biopanning, the final elutes were titrated, amplified in E. coli, and plated onto LB plates. The plates were incubated at 37° C. overnight. Individual plaques were subjected to plaque amplification, DNA purification, and DNA sequencing using a modified Sanger sequencing reaction (Sanger, et al., Pro Natl Acad Sci USA, 74, 5463-5467 (1977)) with the appropriate sequencing primers.
7-mer sequencing primer: 5′-TGGGATTTTGCTAAAAAC-3′ (Seq. ID No. 5) 12-mer sequencing primer: 5′-GTATGGGATTTTGCTAAACAAC-3′ (Seq. ID No. 6)
Peptide Synthesis: The peptides HAIYPRH (Seq. ID No. 1), IRHPHYA (Seq. ID No. 3), THRPPMWSPVWP (Seq. ID No. 2), and PWRPSHPVWMPT (Seq. ID No. 4) were synthesized on an Applied Biosystems Model 440 by means of the solid phase peptide synthesis procedure at the Peptide Synthesis Core Facility of the University of Alabama at Birmingham (UAB) Comprehensive Cancer Center. These peptides were purified by high pressure liquid chromatography, and the molecular weights were confirmed by mass spectrometry.
Binding and Competition Studies: Purified phage populations were amplified and were verified to be homogenous through DNA sequencing. Cells were prepared for binding as was described for biopanning procedures. Preparations of plaque-purified and titered phage (1×1011) were incubated in serum-free Opti-MEM on either CEF or CEF+hTfR cells at 4° C. for 1 hour. The cells were washed repeatedly with Opti-MEM and bound phage were eluted with low pH buffer and subsequently titered. In competition studies, holo-transferrin (Calbiochem, La Jolla, Calif.) or synthesized peptides were added to CEF+hTfR cells prior to addition of the phage for 1 hour at 4° C. Multiple trials were completed and average titers and standard deviations determined. The titers determined on CEF+hTfR cells were divided by the titers determined on CEF cells and multiplied by 100 to yield fold over control data points. - Modified GFP Constructs: Transferrin from human serum, bovine serum albumin (BSA), and purified wild-type GFP (wtGFP) were obtained from Sigma (St. Louis, Mo.) and Clontech (Palo Alto, Calif.), respectively. The tagged GFP genes were generated by the PCR with template DNA Clontech's GFP vector. The PCR reactions were carried out in a Perkin Elmer Cetus DNA Thermal Cycler for 30 cycles of 95° C., 1 minute; 55° C., 1 minute; and 72° C., 1 minute. HAIYPRH (Seq. ID No. 1)-tagged GFP PCR oligonucleotides were:
Upstream: (Seq. No. 7) 5′-TCTAGATCTGATGAGTAAAGGAGAAGAA-3′ Downstream: (Seq. No. 8) 5′-TTAAAGCTTTTAATGGCGCGGATAGATCGCATGTTTGTAGAGCTCAT CCATGCC-3′ - THRPPMWSPVWP (Seq. ID No. 2)-tagged GFP PCR oligonucleotides were:
Upstream: (Seq. No. 7) 5′-TCTAGATCTGATGAGTAAAGGAGAAGAA-3′ Downstream: (Seq. No. 9) 5′-TAAAGCTTTTACGGCCACACCGGGCTCCACATCGGCGGGCGGTGGGT TTTGTAGAGCTCATCCATGCC-3′
The PCR products were purified with the Qiagen Gel Extraction Kit (Qiagen, Valencia, Calif.), and cut with BglII and HindIII restriction enzymes (Roche, Nutley, N.J.), and subcloned into the pET-32a(+) bacterial expression vector (Novagen, Madison, Wis.). The resulting expression vector was verified using a modified Sanger sequencing method. The tagged GFP expression plasmids were transformed into BL21/DE3 E. coli and expression was induced for 3-4 hours with 1 mM isopropyl-β-D-thioglactopyranoside (IPTG) when the culture O.D,600=0.5. Cells were pelleted, then resuspended in phosphate buffer with 20 mM imidazole followed by passage through a French press at 10,000-15,000 psi. Cell lysates were passed over a PisTrap nickel column (Amersham Pharmacia Biotech, Piscataway, N.Y.). The column was washed and finally eluted using an imidazole gradient. The purified protein was assayed by SDS-PAGE followed by Coomassie staining and Western blot analysis with a GFP monoclonal antibody (Clontech). ECL development was carried out as per the manufacturer's instructions (Amersham Pharmacia Biotech). Protein concentrations were determined with the Bio-Rad Protein Assay kit (Bio-Rad Laboratories, Hercules, Calif.).
Immunofluorescence: CEF+hTfR cells were grown on glass coverslips to 50% to 75% confluence. The coverslips were washed and incubated in serum-free Opti-MEM media at 37° C. for 1 hour. Then 2 μg of wild-type GFP (Clontech), HAIYPRH (Seq. ID No. 1)-tagged GFP, THRPPMWSPVWP (Seq. ID No. 2)-tagged GFP, or Texas-Red Tf (Molecular Probes) was applied to cells in serum-free Opti-MEM media for 1 hour at 4° C. or 37° C. Cells were washed with Opti-MEM, then fixed in 3% formaldehyde for 30 minutes at 4° C. Alternatively, the cells were acid-washed with 0.2 M glycine-HCl, Ph 2.2, prior to fixation. A GFP monoclonal antibody (Clontech) was used in conjunction with an Oregon-Green Goat Anti-Mouse (Molecular Probes) to augment GFP fluorescence. All slides were counterstained with DAPI (2(4Amidinophenyl)-6indole carbamidinedihydrochloride) (Sigma). The microscopic slides were mounted in Prolong™ antifade medium (Molecular Probes). Images were captured on an AX70 microscope with Olympus Camera (Olympus, Melville, N.Y.) and analyzed with ESPRIT software (Life Science Resources, Cambridge, England). Final figures were assembled using Microsoft Power Point (Microsoft Corp., Redmond, Wash.). For colocalization studies, CEF+hTfR were incubated with 2 μg/ml GFP fusion protein and 2 μg/ml of Texas-Red Tf for 1 hour and processed as described above.
Standard Analysis: Purified proteins (transferrin, wtGFP, GFP-HAIYPRH (Seq. ID No. 1) and GFP-THRPPMWSPVWP (Seq. ID No. 2) were labelled with 125I to a specific activity of 1-2 μCi/μg with CPM/μg determined by a gamma counter and Bradford assay. CEF+hTfR cells were plated in duplicate at a density of 7.5×104 cells/well in 24 well dishes and grown overnight. Cells were washed and incubated in serum-free Opti-MEM for 1 hour at 37° C. Cells were placed on ice with the various amounts of labelled protein in a total of 200 μl of cold 0.1% BSP in phosphate buffered saline (PBS). After 1 hour, the unbound protein was removed and cells were washed 4 times with 0.1% BSA in PBS. 1 M NaOH was added to lyse the cells for determining the bound fraction. Both unbound and bound fractions were counted in a gamma counter and binding affinities were determined using Scatchard analysis. Studies were repeated 3 times and yielded comparable binding affinities for all proteins tested. - The biopanning procedure with chicken embryo fibroblast cells was performed as described above. The procedure used both negative and positive binding steps to isolate specific peptide sequences that bind the hTfR.
- After the cells were incubated in serum-free media Opti-MEM at 37° C. for 1 hour to remove Tf found in the serum, ice-cold serum-free Opti-MEM media was applied and the cells were held at 4° C. throughout the selected process to prevent internalization of the receptor. The original phage library containing 2×1011 phage was applied to CEF cells for 2 hours. Unbound phage were transferred to another well of CEF cells for an additional hour, before transferring the unbound phage to a well of CEF+hTfR cells. After extensive washing, the bound phage were removed with low pH buffer and subsequently neutralized. The eluted phage were titered and amplified in E. coli. After each amplification step multiple plaques were selected for sequencing. The amplified eluted phage were applied to CEF cells to begin the biopanning process again. This cycle was carried out 10 rounds for the 7-mer peptide library and 7 rounds for the 12-mer peptide library to achieve significant enrichment of a single sequence above all others. Sequencing of individual phage plaques allowed for the monitoring of sequence convergence during multiple rounds of biopanning. Phage titers of total phage eluted were determined and were noticed to increase after each round of biopanning. The most prominent sequence selected from the 7-mer library was HAIYPRH (Seq. ID No. 1) (7-mer) while the 12-mer library converged to the sequence of THRPPMWSPVWP (Seq. ID No. 2) (12-mer). There were no other sequences that arose consistently throughout the biopanning procedure.
- Phage that did not bind the CEF cells were applied to CEF+hTfR cells and the bound phage were eluted with low pH buffer. The eluted phage were amplified for additional rounds of biopanning. Between each round, the phage were titered and sequenced to monitor convergence of sequence.
- As an initial test to determine whether the isolated phage bound to hTfR, a phage binding study was performed. Homogeneous pools of five different isolates from the 7-mer phage and five isolates from the 12-mer phage were each amplified, purified and verified by DNA sequencing. Individually, 109 phage were applied to CEF or CEF+hTfR cells. Phage were bound to CEF or CEF+hTfR cells for 1 hour at 4° C., then washed extensively with Opti-MEM to remove unbound phage. Bound phage were eluted with low pH buffer, neutralized, and titered on a lawn of E. coli. Titering each phage on both cell types was repeated three times, and average titers and standard deviations were determined. Considering the 7-mer sequences, it was found that significantly higher titers were obtained only with HAIYPRH (Seq. ID No. 1) phage bound to CEF+hTfR cells when compared to other phage tested. In studies relating to the 12-mer sequences, it was found that the THRPPMWSPVWP (Seq. ID No. 2) phage had higher titers on CEF+hTfR cells than the other 12 amino acid phage tested. On CEF cells, which do not express hTfR, all phage tested bound at the same low efficiency. A low level of non-hTfR dependent binding is expected, due to interactions between phage coat proteins and the various proteins on the surface of chicken embryo fibroblast cells. Titering studies demonstrated that phage containing either peptide sequence HAIYPRH (Seq. ID No. 1) or THRPPMWSPVWP (Seq. ID No. 2) bound CEF+hTfR cells more efficiently than any other phage tested and that this higher binding depends on the presence of human transferrin receptor.
- Competition studies were conducted to determine whether the two phages bound the same region of the hTfR as serum Tf itself. It was found that the titers of HAIYPRH (Seq. ID No. 1) or THRPPMWSPVWP (Seq. ID No. 2) phage bound to CEF+hTfR cells in the presence of various added peptides or Tf were significant. The HAIYPRH (Seq. ID No. 1) phage was competed away to background levels only by the HAIYPRH (Seq. ID No. 1) peptide and not by the scrambled sequence of IRHPHYA (Seq. ID No. 3). The 12-mer THRPPMWSPVWP (Seq. ID No. 2) phage was only competed by the THRPPMWSPVWP (Seq. ID No. 2) peptide and not by the scrambled 12-mer sequence PWRPSHPVWMPT (Seq. ID No. 4). Other peptides tested failed to compete away the phage from binding the cells. Interestingly, the binding of either phage was unaffected by the presence of Tf, suggesting that each phage sequence has a different binding site on the hTfR. Due to a synthesis error, a peptide with the sequence HAIYPNH (Seq. ID No.14) was also synthesized. Competition studies were completed with this peptide which disclosed no effect on the HAIYPRH (Seq. ID No. 1) phage binding. The result suggests that the 7-mer phage binding depended on the arginine in the original HAIYPRH (Seq. ID No. 1).
- To evaluate the sufficiency of capacity of the peptides to mediate uptake of carrier protein, GFP fusion proteins were prepared. Immunofluorescence was used to determine if the GFP-peptides fusion constructs were internalized using the following assay. GFP-peptide constructs were cloned with a C-terminal peptide addition of either HAIYPRH (Seq. ID No. 1) (GFP-HAIYPRH) or THRPPMWSPVWP (Seq. ID No. 2) (GFP-THRPPMWSPVWP). These constructs were expressed and purified to greater than 95% by Coomassie staining. Purified proteins were applied to CEF+hTfR cells at 4° C. (which prevents endocytosis) or at 37° C. Cells were washed with Opti-MEM, fixed and processed as described under the Materials and Methods section above. Alternatively, the cells were washed with low pH buffer prior to fixation. This acid wash determined whether the protein was endocytosed by removing proteins bound at the cell surface.
- Immunofluorescence microscopy was used to follow binding and internalization of the wtGFP, GFP fusion proteins and transferrin to CEF+hTfR cells. Wild-type GFP was used as a negative control, while Tf conjugated to the Texas-Red fluorochrome was used as a positive control. The conjugation of Texas-Red to Tf has been shown previously not to diminish interaction with the hTfR. In all studies, cell nuclei were counterstained with DAPI.
- Immunofluorescence images of the localization of various proteins applied to CEF+hTfR cells at either 4° C. or 370 were studied. At 4° C., endocytosis was blocked so that all proteins remain at the cell surface, and an acid wash removes all cell surface bound proteins. When immunofluorescence of the various proteins was studied on CEF+hTfR cells which had been incubated at 37° C. for one hour, localization of GFP-HAIYPRH (Seq. ID No. 1), GFP-THRPPMWSPVWP (Seq. ID No. 2) or Texas-Red Tf was found on cells that had not been exposed to acid wash. The total fluorescence shown could result from both cell surface and endocytosed proteins. There was minimal binding of wtGFP even without an acid wash.
- The cells that had undergone a low pH buffer wash to enable identification of proteins that had been endocytosed were evaluated. While wtGFP was unable to be endocytosed into CEF+hTfR cells, both GFP-HAIYPRH (Seq. ID No. 1) and GFP-THRPPMWSPVWP (Sea. ID No. 2) showed a speckled pattern of fluorescence typical of endocytosed ligands. The Texas-Red Tf was readily endocytosed into the CEF+hTfR cells and produced a spotted pattern similar to that seen with the two GFP fusion proteins.
- In separate studies at 4° C. or 37° C., CEF cells were used for immunofluorescence binding assays and neither of the GFP fusion proteins or transferrin bound or internalized these cells, as was expected, since these CEF cells lack the hTfR. Immunofluorescent internalization studies were also performed with Hela cells and yielded identical result to CEF+hTfR cells.
- The phage titering experiments demonstrated that neither peptide sequence competed with Tf or hTfR binding. Co-localization studies were conducted with both GFP-Peptide and Texas-Red Tf constructs. Cells were incubated at 37° C. for 1 hour with Texas-Red Tf and either GFP-HAIYPRH (Seq. ID No. 1) or GFP-THRPPMWSPVWP (Seq. ID No. 2). Cells were acid washed immediately, fixed and stained with DAPI. Images were captured using the appropriate filter and overlaid with images captured with the DAPI filter. Merging GFP, Texas-Red Tf and DAPI images yielded the co-localization images. The fluorescent patterns of the GFP fusion proteins and Tf were identical after acid wash. This result indicated that the GFP-peptides were internalized and bound in the same intracellular compartment as Tf.
- Purified transferrin, wtGFP, GFP-HAIYPRH (Seq. ID No. 1) and GFP-THRPPMWSPVWP (Seq. ID No. 2) were labelled with 125I on tyrosine residues to a specific activity of 1-2 μCi/μg. Serial dilutions of labelled proteins were incubated with CEF+hTfR cells on ice in PBS-0.1%BSA in duplicate wells. After 1 hour, the unbound fraction was removed and cells were washed four times. Cells were removed from the well with 1N NaOH. The unbound and bound fractions were counted in a gamma counter and fmoles of bound and unbound were calculated. Scatchard plots were derived by plotting bound versus bound/free of an average value generated by the duplicate wells. A best of fit line was generated using the Excel program (Microsoft Corp.) and the binding affinities were determined by the slope of the plotted lines. Repetitive trials produced comparable binding affinities. The affinity of Tf was found to be 2.7×10−9, similar to previous reports. The affinity for wtGFP and GFP-HAIYPRH (Seq. ID No. 1) were determined to be nominal at 2.4×10−4M and 3.6×10−4M, respectively. This low affinity of GFP-HAIYPRH (Seq. ID No. 1) was attributed to the 125I labelling of the tyrosine residue in the peptide, which could block this peptide's interaction with the hTfR. However, GFP-THRPPMWSPVWP (Seq. ID No. 2) was shown to have 2.3×10−8M affinity for CEF+hTfR cells, indicating that its affinity was only 10-fold lower than the native Tf ligand.
- Peptides containing the sequences HAIYPRH (Seq. ID No. 1) and THRPPMWSPVWP (Seq. ID No. 2) can be used to target viral vectors, as well as proteins, to the endocytic pathway via the hTfR. Competition studies suggest that transferrin, the 7-mer sequence and the 12-mer sequence all bind unique sites on the hTfR, since they each failed to significantly compete with each other for hTfR binding. This finding suggests further advantages for use of these peptides for transduction of therapeutic ligands, since there is no disruption of transferrin's delivery of iron to cells.
- Due to the characteristics and expression pattern of the hTfR, ligands specific for this receptor may be used as targeting agents with antigen as well as diagnostic agents such as imaging agents or radioisotopes. It has been shown that early endosomes are essential for the proper endocytosis, sorting and presentation of antigen by major histocompatibility class II. The targeting of antigens to the hTfR enhances antigen entry into the endocytic pathway and boosts antigen presentation.
- It is possible to conjugate the peptides of the invention to liposomes or viral vectors containing active agents such as chemotherapeutics. (See Eavarone, et al, “Targeted Drug Delivery to C6 Glioma by Transferrin-coupled Liposomes”, Proceedings of the World Biomaterials Congress 2000, (John Wiley and Sons, Inc.) (2000)). Alternatively, chemotherapeutics may be conjugated directly with the peptides of the invention for targeting agents to transferrin receptor-rich cells. Because the peptides of the invention do not interfere with binding of human transferrin to the hTfR, different agents may be administered wherein one conjugate targets the hTfR uses transferrin as the targeting agent and another conjugate targets the hTfR using a peptide of the invention as a targeting agent.
- Transferrin receptor binding peptide sequences to adenovirus proteins in accord with the teachings of U.S. Pat. No. 6,312,699, which is incorporated herein by reference in its entirety. As described in example 2 of U.S. Pat. No. 6,312,699, short peptide ligands such as HAIYPRH (Seq. ID No. 1) and THRPPMWSPVWP (Seq. ID No. 2) are fused onto the carboxyl-terminus of the adenovirus fiber protein. Oligonucleotides encoding these amino acid sequences are designed and synthesized and annealed together for cloning into the unique BamHI restriction endonuclease cleavage site in plasmid pTKgpt-3S (cited in example 2 of U.S. Pat. No. 6,312,699). Examples of such oligonucleotides are:
- For HAIYPRH (Seq. ID No. 1):
Sense: (Seq. ID No. 10) 5′ GA TCC CAT GCG ATC TAT CCG CGC CAT TAA 3′ Antisense: (Seq. ID No. 11) 5′ G ATC TTA ATG GCG CGG ATA GAT CGC ATG G 3′ - For THRPPMWSPVWP (Seq. ID No. 2):
Sense: (Seq. ID No. 12) 5′ GA TCC ACC CAC CGC CCG CCG ATG TGG AGC CCG GTG TGG CCG TAA 3′ Antisense: (Seq. ID No. 13) 5′ G ATC TTA CGG CCA CAC CGG GCT CCA CAT CGG CGG GCG GTG GGT G 3′
These oligonucleotides are designed with BamHI cohesive ends that can be cloned into the BamHI cleavage site developed in Example 2 of U.S. Pat. No. 6,312,699. The specific amino acid sequence added to fiber in Example 2 was designed to extend the new transferrin receptor-binding ligand away from the bulk of the fiber protein, increasing its accessibility to the new receptor molecule. The fiber protein, modified to include a linker and a ligand, could still form a trimer. - The non-viral ligands can be attached to the carboxyl terminus of the fiber protein via a peptide linker by expression of a genetically engineered nucleic acid sequence encoding the fiber protein, linker, and ligand. Alternatively, one could use PCR mutagenesis to introduce these two sequences into plasmid pTKgpt-3S, using synthetic oligonucleotides as in example 4 of the cited patent.
- The Tf receptor binding peptides can be used to enhance antigen delivery in antigen-presenting cells. These peptide sequences are applied to increase the potency of vaccines, since antigen-presenting cells often take up the antigens contained in vaccines poorly. To enhance antigen delivery and, therefore, antibody and cytotoxic T cell responses, these peptides are chemically coupled to the antigen of interest or prepared as a recombinant protein that contains these Tf receptor-binding peptides. For preparation of the recombinant antigen containing the Tf receptor binding peptide, coupling is accomplished using standard recombinant DNA techniques as in other examples provided (for example, fusions of HAIYPRH (Seq. ID No. 1) and THRPPMWSPVWP (Seq. ID No. 2) to GFP or adenovirus fiber proteins.) The recombinant proteins can be expressed in any number of protein expression systems including bacterial, baculoviral, and mammalian expression systems.
- For chemical conjugation of the Tf receptor binding peptides, the peptides are coupled using chemical crosslinkers such as succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC; Piece Chem. Co., Rockford, Ill.). Obviously, any chemical crosslinker could be used for this purpose. In our applications, we have coupled 10 mg of antigen to a 5 to 30-fold molar excess of SMCC in 50 mM Hepes buffer (pH 7.4) for 1 h at room temperature.
- SMCC-modified antigen is purified by gel filtration to remove the unbound crosslinker. Using this particular crosslinker, peptides are prepared with an amino-terminal linker sequence with a cysteine residue followed by a nonspecific linker sequence (glycine-proline-glycine) to facilitate the coupling reaction. (The leader sequence can change depending on the nature of the crosslinker.) After the leader sequence, the 7- or 12-residue Tf receptor binding peptide is attached. The peptides are added to SMCC-modified antigens at same molar ratio as is used with the cross-linker. The reactions are incubated overnight at room temperature.
- Reaction products are separated by gel filtration and the number of cross-linkers and/or peptides coupled to the antigen is determined by MALDI-TOF mass spectrometry. These Tf receptor binding peptide-modified antigens can then be used as a vaccine using standard vaccination protocols.
- The advantage of the peptide-coupled antigens is that substantially less antigen will be required for inducing antibody-based responses. Since a number of peptides can be coupled to each antigen molecule, antigenic responses should be dramatically enhanced.
- The peptides of the invention may also be coupled with chemotherapeutic agents. Using 2 equivalents of either peptide HAIYPRH (Seq. ID No. 1) or THRPPMWSPVWP (Seq. ID No. 2) or a combination of the two, to one equivalent of methotrexate the peptides of the invention are coupled to methotrexate using the methods of examples 8 and 9. The resulting product is formulated in buffered saline and administered to the patient in sufficient amount to provide a concentration of 0.3 to 5 μM in the serum when administred intravenously.
- The methotrexate bound to the peptides of the invention is prepared as in example 10. However, the methotrexate bound to the peptides is then formulated in liposomal form for intravenous administration. Liposomal compositions may also be administred by mouth or directly to the affected tissue.
- Examples of other antineoplastic agents that might be conjugated to the peptides of the invention, either directly or through conjugation to or incorporation in liposomes containing the sequences of the invention, such liposomes containing antineoplastic agents which may be bound to the peptides of the invention, to target cells rich in human transferrin receptors include (but are not limited to) cisplatin, nitrogen mustards (including chlorambucil), ethylenimines, methylmelamines, nitrosoureas (including carmustin, lomustine, etc.) and doxorubicin. The antineoplastic agents would be administered in accord with the methods usually used for the particular agent and disease. However, because of the selective targetting of the agent by the peptides, lower dosage is required. (The lowering of dosage of the antineoplastic agent can be as much as 80%.) Furthermore, because the over-all dosage of the neoplastic agent can be decreased, the active agent can be administered for a longer period of time and more frequently than when the non-targetting agent is employed.
- The compositions with the peptides bound to antigens or antineoplastic agents may be administered directly to the involved tissues. For example, in cases of maligancy of the respiratory tract, the agents may be administred by inhalation. In treating maligancies of the brain or spinal cord, the agents may be administered intrathecally. For oral administration, the peptide-bound agents may be administred in enteric coated dosage forms to prevent destruction in the stomach.
Claims (7)
1. A composition of matter comprising a purified peptide containing the sequence which is HAIYPRH (Seq. ID No. 1).
2. A composition comprising at least one peptide containing within its sequence at least one sequence which is HAIYPRH (Seq. ID No. 1), wherein said peptide is fused to a protein or another peptide.
3. A composition of claim 2 wherein said sequence containing at least one sequence HAIYPRH (Seq. ID No. 1) is fused to a chemotherapeutic agent.
4. A composition of claim 2 wherein said sequence containing at least one sequence which is HAIYPRH (Seq. ID No. 1) is fused to an imaging agent.
5. A composition of claim 4 wherein said sequence containing at the sequence HAIYPRH (Seq. ID No. 1) is fused to a fluorescing agent.
6. A composition of claim 2 wherein said sequence containing the sequence HAIYPRH (Seq. ID No. 1) is fused to an antigen.
7. A composition of matter comprising a construct containing a DNA sequence which encodes at least one of the peptide of the formula HAIYPRH (Seq. ID No. 1) which is also bound to a nucleotide sequence which encodes a peptide other than HAIYPRH (Seq. ID No. 1).
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/806,477 US20060193778A1 (en) | 2000-11-30 | 2004-03-23 | Receptor-mediated uptake of peptides that bind the human transferrin receptor |
| US12/032,812 US20080166293A1 (en) | 2000-11-30 | 2008-02-18 | Receptor-mediated uptake of peptides that bind the human transferrin receptor |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US25394000P | 2000-11-30 | 2000-11-30 | |
| US09/995,804 US6743893B2 (en) | 2000-11-30 | 2001-11-29 | Receptor-mediated uptake of peptides that bind the human transferrin receptor |
| US10/806,477 US20060193778A1 (en) | 2000-11-30 | 2004-03-23 | Receptor-mediated uptake of peptides that bind the human transferrin receptor |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/995,804 Continuation US6743893B2 (en) | 2000-11-30 | 2001-11-29 | Receptor-mediated uptake of peptides that bind the human transferrin receptor |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/032,812 Continuation US20080166293A1 (en) | 2000-11-30 | 2008-02-18 | Receptor-mediated uptake of peptides that bind the human transferrin receptor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060193778A1 true US20060193778A1 (en) | 2006-08-31 |
Family
ID=22962287
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/995,804 Expired - Fee Related US6743893B2 (en) | 2000-11-30 | 2001-11-29 | Receptor-mediated uptake of peptides that bind the human transferrin receptor |
| US10/806,477 Abandoned US20060193778A1 (en) | 2000-11-30 | 2004-03-23 | Receptor-mediated uptake of peptides that bind the human transferrin receptor |
| US12/032,812 Abandoned US20080166293A1 (en) | 2000-11-30 | 2008-02-18 | Receptor-mediated uptake of peptides that bind the human transferrin receptor |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/995,804 Expired - Fee Related US6743893B2 (en) | 2000-11-30 | 2001-11-29 | Receptor-mediated uptake of peptides that bind the human transferrin receptor |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/032,812 Abandoned US20080166293A1 (en) | 2000-11-30 | 2008-02-18 | Receptor-mediated uptake of peptides that bind the human transferrin receptor |
Country Status (4)
| Country | Link |
|---|---|
| US (3) | US6743893B2 (en) |
| AU (2) | AU2002236499A8 (en) |
| CA (1) | CA2449412C (en) |
| WO (1) | WO2002044329A2 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070231300A1 (en) * | 2006-03-28 | 2007-10-04 | Washington, University Of | Covalent conjugates between endoperoxides and transferrin and lactoferrin receptor-binding agents |
| US20080103192A1 (en) * | 2006-10-13 | 2008-05-01 | Washington, University Of | Conjugates of artemisinin-related endoperoxides and hydrazone derivatives for the treatment of cancer |
| WO2020206189A1 (en) | 2019-04-04 | 2020-10-08 | Regenxbio Inc. | Recombinant adeno-associated viruses and uses thereof |
Families Citing this family (60)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2002236499A8 (en) * | 2000-11-30 | 2009-12-03 | Uab Research Foundation | Receptor-mediated uptake of peptides that bind the human transferrin receptor |
| AU2002342850A1 (en) * | 2002-10-23 | 2004-05-13 | Centre For Research And Technology Hellas/Institute Of Agrobiotechnology In.A | Prion protein-binding peptide sequences |
| KR101188292B1 (en) * | 2002-11-27 | 2012-10-09 | 디엠아이 바이오사이언시스, 인크 | Treatment of diseases and conditions mediated by increased phosphorylation |
| AU2003225410A1 (en) | 2003-03-21 | 2004-10-11 | Academisch Ziekenhuis Leiden | Modulation of exon recognition in pre-mrna by interfering with the secondary rna structure |
| JP2007508030A (en) * | 2003-10-14 | 2007-04-05 | カーネル・バイオファーマ・インコーポレイテッド | Two-phase PNA conjugate for delivering PNA across the blood brain barrier |
| US20050180922A1 (en) * | 2004-02-12 | 2005-08-18 | Discher Dennis E. | Block co-polymer worm micelles and methods of use therefor |
| US20060030003A1 (en) * | 2004-05-12 | 2006-02-09 | Simon Michael R | Composition and method for introduction of RNA interference sequences into targeted cells and tissues |
| US20110110937A1 (en) * | 2004-05-12 | 2011-05-12 | Simon Michael R | Composition and method for introduction of rna interference sequences into targeted cells and tissues |
| US20050260214A1 (en) * | 2004-05-12 | 2005-11-24 | Simon Michael R | Composition and method for introduction of RNA interference sequences into targeted cells and tissues |
| US20050255120A1 (en) * | 2004-05-12 | 2005-11-17 | Simon Michael R | Composition and method for introduction of DNA directed RNA interference sequences into targeted cells and tissues |
| WO2006022690A1 (en) * | 2004-08-06 | 2006-03-02 | Applera Corporation | Method and compositions for treating diseases targeting cd71 |
| AU2006237727B2 (en) * | 2005-04-22 | 2012-06-28 | Academisch Ziekenhuis Leiden | Modulation of exon recognition in pre-mRNA by interfering with the binding of SR proteins and by interfering with secondary RNA structure. |
| WO2007010525A2 (en) * | 2005-07-21 | 2007-01-25 | Aebi Ltd. | Methods and compositions for identifying a peptide having an intermolecular interaction with a target of interest |
| WO2007123391A1 (en) * | 2006-04-20 | 2007-11-01 | Academisch Ziekenhuis Leiden | Therapeutic intervention in a genetic disease in an individual by modifying expression of an aberrantly expressed gene. |
| EP1857548A1 (en) * | 2006-05-19 | 2007-11-21 | Academisch Ziekenhuis Leiden | Means and method for inducing exon-skipping |
| SI2049664T1 (en) | 2006-08-11 | 2012-04-30 | Prosensa Technologies Bv | Single stranded oligonucleotides complementary to repetitive elements for treating DNA repeat instability associated genetic disorders |
| US20080124355A1 (en) | 2006-09-22 | 2008-05-29 | David Gordon Bermudes | Live bacterial vaccines for viral infection prophylaxis or treatment |
| EP2167136B1 (en) * | 2007-07-12 | 2016-04-20 | BioMarin Technologies B.V. | Molecules for targeting compounds to various selected organs or tissues |
| CN101790385A (en) * | 2007-07-12 | 2010-07-28 | 普罗森那技术公司 | Molecules for targeting compounds to various selected organs, tissues or tumor cells |
| EP2203173B1 (en) | 2007-10-26 | 2015-12-23 | Academisch Ziekenhuis Leiden | Means and methods for counteracting muscle disorders |
| USRE48468E1 (en) | 2007-10-26 | 2021-03-16 | Biomarin Technologies B.V. | Means and methods for counteracting muscle disorders |
| JP2011510678A (en) * | 2008-02-08 | 2011-04-07 | プロセンサ ホールディング ビーブイ | Methods and means for treating DNA repeat instability related genetic disorders |
| EP2119783A1 (en) | 2008-05-14 | 2009-11-18 | Prosensa Technologies B.V. | Method for efficient exon (44) skipping in Duchenne Muscular Dystrophy and associated means |
| JP2010154842A (en) * | 2008-12-03 | 2010-07-15 | Koji Kawakami | New anticancer chimeric peptide with egfr as target |
| US8241623B1 (en) | 2009-02-09 | 2012-08-14 | David Bermudes | Protease sensitivity expression system |
| NZ595955A (en) | 2009-04-24 | 2012-10-26 | Prosensa Technologies Bv | Oligonucleotide comprising an inosine for treating dmd |
| EP2456470A1 (en) | 2009-07-22 | 2012-05-30 | Cenix Bioscience GmbH | Delivery system and conjugates for compound delivery via naturally occurring intracellular transport routes |
| CN102048694B (en) * | 2009-11-06 | 2013-03-13 | 复旦大学 | Polypeptide-modified liver tumor-targeted nano medicine delivery system and preparation method thereof |
| AU2010335039B2 (en) | 2009-12-24 | 2015-03-26 | Academisch Ziekenhuis Leiden H.O.D.N. Lumc | Molecule for treating an inflammatory disorder |
| US8524220B1 (en) | 2010-02-09 | 2013-09-03 | David Gordon Bermudes | Protease inhibitor: protease sensitivity expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
| US8771669B1 (en) | 2010-02-09 | 2014-07-08 | David Gordon Bermudes | Immunization and/or treatment of parasites and infectious agents by live bacteria |
| US9597379B1 (en) | 2010-02-09 | 2017-03-21 | David Gordon Bermudes | Protease inhibitor combination with therapeutic proteins including antibodies |
| EP3208282A1 (en) | 2010-11-30 | 2017-08-23 | F. Hoffmann-La Roche AG | Low affinity anti transferrin receptor and their use to transfer therapeutic scfv across the blood brain barrier |
| US20140065172A1 (en) | 2011-01-26 | 2014-03-06 | Cenix Bioscience Gmbh | Delivery system and conjugates for compound delivery via naturally occurring intracellular transport routes |
| WO2012108863A1 (en) * | 2011-02-08 | 2012-08-16 | Empire Technology Development Llc | Compositions and methods for controllably delivering an agent |
| CN112251436A (en) | 2012-01-27 | 2021-01-22 | 比奥马林技术公司 | RNA-regulated oligonucleotides with improved properties for the treatment of duchenne muscular dystrophy and becker muscular dystrophy |
| WO2013127829A1 (en) | 2012-02-27 | 2013-09-06 | Universitat De Barcelona | Protease-resistant compounds useful as shuttles through the blood-brain barrier and shuttle-cargo constructs |
| CN103705464B (en) * | 2012-10-09 | 2015-10-07 | 复旦大学 | A kind of micro-acid environment controls tumor-targeting administration nano-drug administration system opened and preparation method thereof |
| US9593339B1 (en) | 2013-02-14 | 2017-03-14 | David Gordon Bermudes | Bacteria carrying bacteriophage and protease inhibitors for the treatment of disorders and methods of treatment |
| WO2015024931A1 (en) | 2013-08-19 | 2015-02-26 | Moghimi Seyed Moien | Peptidic nanodelivery composition targeting two receptors |
| US9737592B1 (en) | 2014-02-14 | 2017-08-22 | David Gordon Bermudes | Topical and orally administered protease inhibitors and bacterial vectors for the treatment of disorders and methods of treatment |
| US10676723B2 (en) | 2015-05-11 | 2020-06-09 | David Gordon Bermudes | Chimeric protein toxins for expression by therapeutic bacteria |
| CA3045797A1 (en) * | 2016-12-02 | 2018-06-07 | The Texas A&M University System | Fusion proteins for selectively depleting antigen-specific antibodies |
| US11180535B1 (en) | 2016-12-07 | 2021-11-23 | David Gordon Bermudes | Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria |
| US11129906B1 (en) | 2016-12-07 | 2021-09-28 | David Gordon Bermudes | Chimeric protein toxins for expression by therapeutic bacteria |
| KR20180071193A (en) * | 2016-12-19 | 2018-06-27 | 한미약품 주식회사 | Long-acting protein conjugates for brain targeting |
| US10143187B2 (en) | 2017-02-17 | 2018-12-04 | Denali Therapeutics Inc. | Transferrin receptor transgenic models |
| UA127985C2 (en) | 2017-02-17 | 2024-03-06 | Деналі Терап'Ютікс Інк. | ENGINEERED POLYPEPTIDE THAT BINDS THE TRANSFERRIN RECEPTOR |
| US10457717B2 (en) | 2017-02-17 | 2019-10-29 | Denali Therapeutics Inc. | Engineered polypeptides |
| WO2019161263A1 (en) * | 2018-02-16 | 2019-08-22 | Ohio State Innovation Foundation | Lipid-surfactant nanoparticles for drug delivery and methods of making and uses thereof |
| JP7664158B2 (en) * | 2018-12-14 | 2025-04-17 | フレッド ハッチンソン キャンサー センター | Transferrin Receptor Targeting Peptides |
| US12285437B2 (en) | 2019-10-30 | 2025-04-29 | The Research Foundation For The State University Of New York | Reversing the undesirable pH-profile of doxorubicin via activation of a disubstituted maleamic acid prodrug at tumor acidity |
| IL293994A (en) | 2019-12-23 | 2022-08-01 | Denali Therapeutics Inc | Variants of progranulin, preparations containing them and their uses |
| CN111450264B (en) * | 2020-05-03 | 2021-03-02 | 四川大学华西医院 | A dual-modality nanoprobe targeting glioblastoma and its preparation method |
| US20250228959A1 (en) * | 2022-03-22 | 2025-07-17 | Wisconsin Alumni Research Foundation | Transferrin-based lysosome targeting degraders |
| GB202206431D0 (en) * | 2022-05-03 | 2022-06-15 | Bicycletx Ltd | Bicyclic peptide ligands specific for transferrin receptor 1 (TfR1) |
| JP2025519433A (en) * | 2022-06-06 | 2025-06-26 | サンテック メディカル,インコーポレイティド | Central nervous system targeting complex |
| EP4626906A1 (en) * | 2022-11-29 | 2025-10-08 | Vacino Biotech Co., Ltd. | Transporter peptides and application thereof |
| WO2024165721A1 (en) | 2023-02-10 | 2024-08-15 | Coave Therapeutics | Squaramide-modified adeno-associated virus vectors |
| WO2025024334A1 (en) | 2023-07-21 | 2025-01-30 | Marrow Therapeutics, Inc. | Hematopoietic cell targeting conjugates and related methods |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6201104B1 (en) * | 1998-12-04 | 2001-03-13 | Entremed, Inc. | Angiogenesis—inhibiting protein binding peptides and proteins and methods of use |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6312699B1 (en) * | 1994-03-28 | 2001-11-06 | Uab Research Foundation | Ligands added to adenovirus fiber |
| US6329501B1 (en) * | 1997-05-29 | 2001-12-11 | Auburn University | Methods and compositions for targeting compounds to muscle |
| AU2002236499A8 (en) * | 2000-11-30 | 2009-12-03 | Uab Research Foundation | Receptor-mediated uptake of peptides that bind the human transferrin receptor |
-
2001
- 2001-11-29 AU AU2002236499A patent/AU2002236499A8/en not_active Abandoned
- 2001-11-29 CA CA2449412A patent/CA2449412C/en not_active Expired - Fee Related
- 2001-11-29 US US09/995,804 patent/US6743893B2/en not_active Expired - Fee Related
- 2001-11-29 AU AU2002236499A patent/AU2002236499A1/en not_active Abandoned
- 2001-11-29 WO PCT/US2001/044518 patent/WO2002044329A2/en not_active Ceased
-
2004
- 2004-03-23 US US10/806,477 patent/US20060193778A1/en not_active Abandoned
-
2008
- 2008-02-18 US US12/032,812 patent/US20080166293A1/en not_active Abandoned
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6201104B1 (en) * | 1998-12-04 | 2001-03-13 | Entremed, Inc. | Angiogenesis—inhibiting protein binding peptides and proteins and methods of use |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070231300A1 (en) * | 2006-03-28 | 2007-10-04 | Washington, University Of | Covalent conjugates between endoperoxides and transferrin and lactoferrin receptor-binding agents |
| US20110150830A1 (en) * | 2006-03-28 | 2011-06-23 | Washington, University Of | Covalent conjugates between endoperoxides and transferrin and lactoferrin receptor-binding agents |
| US9169291B2 (en) | 2006-03-28 | 2015-10-27 | University Of Washington | Covalent conjugates between endoperoxides and transferrin and lactoferrin receptor-binding agents |
| US20080103192A1 (en) * | 2006-10-13 | 2008-05-01 | Washington, University Of | Conjugates of artemisinin-related endoperoxides and hydrazone derivatives for the treatment of cancer |
| US7692030B2 (en) | 2006-10-13 | 2010-04-06 | University Of Washington | Conjugates of artemisinin-related endoperoxides and hydrazone derivatives for the treatment of cancer |
| WO2020206189A1 (en) | 2019-04-04 | 2020-10-08 | Regenxbio Inc. | Recombinant adeno-associated viruses and uses thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2002044329A9 (en) | 2009-10-22 |
| AU2002236499A8 (en) | 2009-12-03 |
| CA2449412A1 (en) | 2002-06-06 |
| US20020115824A1 (en) | 2002-08-22 |
| US6743893B2 (en) | 2004-06-01 |
| WO2002044329A2 (en) | 2002-06-06 |
| US20080166293A1 (en) | 2008-07-10 |
| CA2449412C (en) | 2013-04-02 |
| AU2002236499A1 (en) | 2002-06-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6743893B2 (en) | Receptor-mediated uptake of peptides that bind the human transferrin receptor | |
| AU2008296733B2 (en) | VEGFR-1/NRP-1 targeting peptides | |
| AU695196B2 (en) | Nucleic acid transfer system | |
| KR101216008B1 (en) | Bipodal Peptide Binder | |
| US20130017210A1 (en) | Display of antibody fragments on virus-like particles of rna bacteriophages | |
| AU2017293450B2 (en) | Humanized antibodies transmigrating the blood-brain barrier and uses thereof | |
| US20030170826A1 (en) | Peptides for facilitating composite receptor expression and translocation of macromolecules | |
| Garg | Filamentous bacteriophage: A prospective platform for targeting drugs in phage-mediated cancer therapy | |
| JP2003530360A (en) | Peptide conjugates for drug delivery | |
| JP2021533834A (en) | Target-specific extracellular vesicles | |
| US6497881B1 (en) | High efficiency tissue specific compound delivery system using streptavidin-protein a fusion protein | |
| US8415306B2 (en) | Insulin-like growth factor 1 receptor binding peptides | |
| CN117659194B (en) | EGFR-targeting nanobody, drug conjugate and application thereof | |
| CA2402327A1 (en) | Peptides targeting specifically tumor-derived endothelial cells | |
| US20130059793A1 (en) | Egf receptor mimicking peptides | |
| US20070264191A1 (en) | Materials and Methods Relating to the Treatment of Glioblastomas | |
| WO2002094318A1 (en) | Vector for targeted delivery to cells | |
| US10287572B2 (en) | Protein scaffolds and methods of use | |
| WO1999045020A1 (en) | Isolation of tissue specific peptide ligands and their use for targeting pharmaceuticals to organs | |
| CN112480262A (en) | Fusion protein and preparation and application thereof | |
| beloved Family | My mentor & My beloved Family |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: EXECUTIVE ORDER 9424, CONFIRMATORY LICENSE;ASSIGNOR:THE UNIVERSITY OF ALABAMA AT BIRMINGHAM;REEL/FRAME:020916/0562 Effective date: 20040922 |