US20060088744A1 - Electrochemical cells - Google Patents
Electrochemical cells Download PDFInfo
- Publication number
- US20060088744A1 US20060088744A1 US11/228,453 US22845305A US2006088744A1 US 20060088744 A1 US20060088744 A1 US 20060088744A1 US 22845305 A US22845305 A US 22845305A US 2006088744 A1 US2006088744 A1 US 2006088744A1
- Authority
- US
- United States
- Prior art keywords
- electrode
- fuel
- channel
- porous separator
- electrochemical cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1007—Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/026—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/08—Fuel cells with aqueous electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1009—Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
- H01M8/1011—Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to electrochemical devices for electrochemical energy conversion (e.g., fuel cells and batteries). More specifically, the present invention teaches a variety of electrochemical devices utilizing channels contiguous to a porous separator, gas diffusion electrodes, and laminar flow.
- Fuel cell technology shows great promise as an alternative energy source for numerous applications.
- Several types of fuel cells have been constructed, including: polymer electrolyte membrane fuel cells, direct methanol fuel cells, alkaline fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, and solid oxide fuel cells.
- polymer electrolyte membrane fuel cells direct methanol fuel cells
- alkaline fuel cells alkaline fuel cells
- phosphoric acid fuel cells molten carbonate fuel cells
- solid oxide fuel cells solid oxide fuel cells.
- operating temperatures can vary from room temperature to about 1000° C.
- mobile applications for example, vehicular and/or portable microelectronic power sources
- a fast-starting, low weight, and low cost fuel cell capable of high power density is required.
- PEFCs polymer electrolyte fuel cells
- FIG. 1 shows a cross-sectional schematic illustration of a polymer electrolyte fuel cell 2 .
- PEFC 2 includes a high surface area anode 4 that acts as a conductor, an anode catalyst 6 (typically platinum), a high surface area cathode 8 that acts as a conductor, a cathode catalyst 10 (typically platinum), and a polymer electrolyte membrane (PEM) 12 that serves as a solid electrolyte for the cell.
- the PEM 12 physically separates anode 4 and cathode 8 .
- Fuel in the gas and/or liquid phase (typically hydrogen or an alcohol) is brought over the anode catalyst 6 where it is oxidized to produce protons and electrons in the case of hydrogen fuel, and protons, electrons, and carbon dioxide in the case of an alcohol fuel.
- the electrons flow through an external circuit 16 to the cathode 8 where air, oxygen, or an aqueous oxidant (e.g., peroxide) is being constantly fed.
- Protons produced at the anode 4 selectively diffuse through PEM 12 to cathode 8 , where oxygen is reduced in the presence of protons and electrons at cathode catalyst 10 to produce water.
- GDE gas diffusion electrode
- a GDE typically includes a porous conductor (such as carbon), allowing the gas to reach the electrode as well as the catalyst. Often, the catalyst is bound to the PEM, which is in contact with the GDE. Examples of GDEs and fuel cell systems which include GDEs, are describe in U.S. Patent Application Publication 2004/0209154, published 21 Oct. 2004, to Ren et al.
- FIG. 2 shows a cross-sectional schematic illustration of a direct methanol fuel cell (DMFC) 18 .
- DMFC direct methanol fuel cell
- the cell utilizes methanol fuel directly, and does not require a preliminary reformation step.
- DMFCs are of increasing interest for producing electrical energy in mobile power (low energy) applications.
- several fundamental limitations have impeded the development and commercialization of DMFCs.
- methanol liquid fuel feed
- gaseous oxidant feed i.e., oxygen
- PEM stationary polymer electrolyte membrane
- methanol crossover takes place, whereby methanol travels from the anode to the cathode catalyst through the membrane where it reacts directly in the presence of oxygen to produce heat, water, carbon dioxide and no useable electric current.
- methanol crossover also causes depolarization losses (mixed potential) at the cathode and, in general, leads to decreased cell performance.
- LFFC laminar flow fuel cell
- IDCI dynamic conducting interface
- a fuel cell 20 embodying features of this type of flow cell design is shown in Prior Art FIG. 3 .
- both the fuel input 22 e.g. an aqueous solution containing MeOH and a proton electrolyte source
- the oxidant input 24 e.g., a solution containing dissolved oxygen, potassium permanganate or hydrogen peroxide and a proton electrolyte source
- the fuel input 22 e.g. an aqueous solution containing MeOH and a proton electrolyte source
- the oxidant input 24 e.g., a solution containing dissolved oxygen, potassium permanganate or hydrogen peroxide and a proton electrolyte source
- the IDCI is established between anode 30 and cathode 32 and thus completes the electric circuit while keeping the fuel and oxidant streams from touching the wrong electrode.
- the electrodes are in a side-by-side configuration.
- a fuel cell may have a face to face LFFC design.
- both the fuel input e.g. an aqueous solution containing a fuel and a proton electrolyte source
- the oxidant input e.g., a solution containing dissolved oxygen, potassium permanganate or hydrogen peroxide, and a proton electrolyte source
- the two solutions are in liquid form.
- parallel laminar flow induces a dynamic conducting interface that is maintained during fluid flow between the anode and the cathode and thus completes the electric circuit while keeping the flowing fuel and oxidant streams from touching the wrong electrode. If the fuel and oxidant flow rates are the same, the IDCI will be established directly in the middle of the flow channel.
- the face to face LFFC offers significant operational flexibility as a result of the ability to position the IDCI flexibly between the electrodes without experiencing significant cross-over effects and offers significant performance capabilities due the potential for lower internal cell resistance because of the relatively short and uniform electrode to electrode distances not afforded with the side by side design.
- This face to face design there exist a number of potential flow geometries that could be used.
- LFFCs with identical cross-sectional areas, but having different channel widths and heights and electrode-electrode distances are possible, however the best choice in design has the lowest electrode to electrode distance and the highest active area to volume ratio. In general a relatively short height and broad width is preferred and will provide the best overall performance under cell operation when positioned orthogonal to the gravitational field.
- the present invention teaches a variety of electrochemical devices for electrochemical energy conversion.
- the present invention teaches an electrochemical cell, comprising a first electrode, a second electrode, a porous separator, between the first and second electrodes, a first channel, having an inlet and an outlet, and a second channel, having an inlet and an outlet.
- the first channel is contiguous with the first electrode and the porous separator
- the second channel is contiguous with the second electrode and the porous separator.
- the present invention teaches a method of generating electricity, comprising flowing a first liquid through a first channel; and flowing a second liquid through a second channel.
- the first channel is contiguous with a first electrode and a porous separator
- the second channel is contiguous with a second electrode and the porous separator
- the first liquid is in contact with the first electrode and the porous separator
- the second liquid is in contact with the second electrode and the porous separator
- complementary half cell reactions take place at the first and second electrodes.
- the present invention teaches an electrochemical cell, comprising a first electrode, a second electrode, a first channel, contiguous with the first and second electrodes.
- the first electrode is a gas diffusion electrode, such that when a first liquid flows through the channel in contact with the first electrode and a second liquid flows through the channel in contact with the second electrode, laminar flow is established in both the first and second liquids.
- the present invention teaches a method of generating electricity, comprising flowing a first liquid through a channel; and flowing a second liquid through the channel.
- the channel is contiguous with a first electrode and a second electrode, the first liquid is in contact with the first electrode, the second liquid is in contact with the second electrode, the first electrode is a gas diffusion electrode, and complementary half cell reactions take place at the first and second electrodes.
- the present invention is an electrochemical cell, comprising a first electrode, and a second electrode.
- the first electrode is a gas diffusion electrode, and ions travel from the first electrode to the second electrode without traversing a membrane.
- FIG. 1 shows a cross-sectional schematic illustration of a polymer electrolyte fuel cell.
- FIG. 2 shows a cross-sectional schematic illustration of a direct methanol fuel cell.
- FIG. 3 shows a schematic illustration of a direct methanol fuel cell containing a laminar flow induced dynamic interface in a side by side electrode configuration
- FIG. 3A shows a schematic illustration of a direct liquid fuel cell containing a laminar flow induced dynamic interface in a face to face electrode configuration.
- FIG. 4 illustrates an embodiment of a fuel cell including a porous separator.
- FIGS. 5 and 5 A illustrate an embodiment of a fuel cell including a porous separator.
- FIGS. 6 and 6 A illustrate an embodiment of a fuel cell using gaseous oxygen.
- FIG. 7 illustrates an embodiment of a system including a fuel cell.
- FIG. 8 is a graph of transport limited load curves for individual LFFCs with recycle capability.
- FIG. 9 is a graph of cell potential versus current density for a 1 ⁇ 5 LFFC array.
- FIG. 10 is a graph of polarization curves for a LFFC operated at room temperature at different fuel concentrations.
- FIG. 11 is a graph comparing performance of a commercially available DMFC and a 1 ⁇ 5 LFFC array, both operated at 50° C.
- the present invention teaches that inclusion of a porous separator (also referred to as a porous plate) between the flowing streams of a laminar flow fuel cell (hereinafter “LFFC”) allows the stream position to be stabilized, defined, and maintained under most conditions. This stabilization also provides a reliable mechanism so that individual streams can be separated and recycled.
- the porous separator does not significantly impede ion conduction between the streams.
- inclusion of a porous separator reduces fuel crossover, even allowing for turbulent flow and even two-phase gas/liquid plug flow within the individual streams.
- inclusion of an electrolyte stream, between the fuel stream and the cathode, or between the oxidant stream and the anode allows for incorporation of a gas diffusion electrode as the cathode or anode, respectively.
- electrochemical cell is to be understood in the very general sense of any seat of electromotive force (as defined in Fundamentals of Physics, Extended Third Edition by David Halliday and Robert Resnick, John Wiley & Sons, New York, 1988, 662 ff.).
- electrochemical cell refers to both galvanic (i.e., voltaic) cells and electrolytic cells, and subsumes the definitions of batteries, fuel cells, photocells (photovoltaic cells), thermopiles, electric generators, electrostatic generators, solar cells, and the like.
- the phrase “complementary half cell reactions” is to be understood in the very general sense of oxidation and reduction reactions occurring in an electrochemical cell.
- FIG. 4 illustrates an embodiment of a fuel cell including a porous separator.
- the fuel cell includes a track etch separator 1625 (the porous separator), allowing for separation of the fuel stream 1670 and oxidant stream 1660 flowing into the fuel cell.
- the fuel stream 1670 flows past anode 1620 and the oxidant stream 1660 flows past cathode 1610 , allowing for diffusion of ions between the streams (especially across diffusion zone 1640 ) and depletion of fuel and oxidant (especially along depletion zones 1650 ).
- Depleted oxidant stream 1680 and depleted fuel stream 1690 then exit the fuel cell.
- the porous separator separates different streams, allowing them to be easily directed in different direction, and is particularly useful for keeping oxidant, fuel, and/or electrolyte streams separate for subsequent recycling.
- the porous separator achieves this goal without interfering significantly with ion transport between the streams.
- the porous separator is hydrophilic, so the fluid within the streams is drawn into the pores by capillary action, and therefore the two streams of fluid on either side of the separator are in contact, allowing ion transport between the two streams.
- the thickness of the porous separator, diameter of the pore size, pore density and porosity can be any measurement suitable for implementation, an example of some possible ranges is useful.
- the porous separator can have a thickness of 0.5 to 1000 microns, 1 to 100 microns, or 6 to 25 microns.
- the average diameter of the pores (pore size) of the porous separator can be, for example, 1 nm to 100 microns, 5 nm to 5 microns, or 10 to 100 nm.
- the diameter of any individual pore is the diameter of a circle having the same area as the pore, as directly observed under a microscope.
- the pore density can be, for example, 10 4 to 10 12 pores/cm 2 , 10 6 to 10 11 pores/cm 2 , or 10 7 to 10 10 pores/cm 2 .
- Pore density can be determined by counting the number of pores in a sample portion of the porous separator, as directly observed under a microscope.
- the porous separator can be made of any suitable material, such as a material which is inert to the fluids it will come into contact with during operation within the electrochemical cell, at the temperature at which it will operate.
- a material which is inert to the fluids it will come into contact with during operation within the electrochemical cell at the temperature at which it will operate.
- metals, ceramics, semiconductors including silicon, organic materials including polymers, plastics and combinations, as well as natural materials and composites may be used. Polymers, plastics and combinations are particularly preferred.
- commercially available track etched filters which are polymers films that have been bombarded with ions, and then chemically etched to form thru-pores along the track traveled by the ions.
- FIGS. 5 and 5 A illustrate an embodiment of a fuel cell including a porous separator.
- a layer or film 1745 for example, Kapton or etched glass
- a second film 1755 for example, Kapton, etched glass or platinum
- catalyst 1740 for example, platinum foils, or a conductor such as graphite or highly doped silicon with a catalyst on the surface.
- porous separator 1775 Between the two films 1745 and 1755 is porous separator 1775 , which together help define the oxidant stream channel 1760 and fuel stream channel 1750 .
- a film permeable to ions such as NAFION
- the porous separator 1775 defines the channels for the two streams 1750 and 1760 , and still allows for ion transport through the pores.
- Contact pads (not illustrated), such as gold, may be formed on the outside of the electrodes to aid in electrically connecting the electrochemical cell to other devices. Also shown in FIG. 5A is the catalyst layer 1735 .
- FIGS. 6 and 6 A illustrates an embodiment of an electrochemical cell using a gaseous oxidant, such as O 2 or air.
- the fuel cell includes an optional porous separator 1825 , allowing for separation of the fuel 1870 and electrolyte 1835 flowing into the fuel cell.
- Electrolyte 1835 flows along an optional film permeable to ions 1845 , or when the film permeable to ions is absent, along the cathode 1810 , which is a GDE.
- Gaseous oxidant 1860 flows along the GDE 1810 which receives oxygen molecules.
- gaseous oxidant 1860 is provided at a pressure such that the same type of laminar flow may be observed between gaseous oxidant 1860 and electrolyte 1835 as is observed in the fuel and electrolyte streams along porous separator 1825 . While pressure drop-off varies differently in a channel for liquids and gases, maintaining an adequate pressure where the depleted oxidant 1880 exits will result in sufficient pressure of gaseous oxidant 1860 to cause essentially one-way diffusion of oxidant through the GDE (cathode) 1810 . Thus, under such conditions, the electrolyte 1835 may only minimally diffuse into the gaseous oxidant 1835 creating a three-phase interface within the catalyst layer.
- the channel through which the oxidant flows may be closed off or having a dead end near the bottom of the cathode 1810 .
- the electrodes with catalyst 1840 for example, a graphite plate with catalyst
- a layer or film 1845 for example, Kapton
- another electrode 1830 for example, graphite
- Depleted gaseous oxidant 1880 , electrolyte 1835 and depleted fuel 1890 then exit the fuel cell.
- the electrolyte 1835 may be recycled and returned to the fuel cell, and any fuel remaining in the depleted fuel 1890 may also be recycled and returned to the fuel cell.
- GDEs include a porous conductor and, preferably a catalyst, so that a complementary half cell reaction may take place on the conductor, between gaseous oxidant and ions in a liquid (for example, H + ions in the electrolyte).
- a porous hydrophobic layer is present on the GDE, on which the catalyst is present.
- the GDE is a porous conductor with catalyst on the conductor, and has a hydrophilic surface, allowing liquid to wet the porous conductor and water produced at the GDE to spread out along the surface of the GDE and evaporate into the gaseous oxidant or flow into the circulating electrolyte.
- the GDE may include a porous carbon substrate, such as teflonized (0-50%) Torray paper of 50-250 micron thickness (a porous conductor available from SGL Carbon AG, Wiesbaden, Germany) onto which is bonded the catalyzed (e.g. 4 mg/cm 2 Pt black) surface of a film permeable to ions or porous layer, such as NAFION 112 or expanded polyethylene, having a total thickness of 50 microns or less.
- the circulating electrolyte may be, for example, 0.5-2.0 M sulfuric acid.
- the film used with a GDE in the present invention typically will not have catalyst on both sides of the film; rather catalyst will only be present on one side of the film.
- the fuels cells can produce, for example, at least 50 mA/cm 2 . In an alternate embodiment, the fuels cells can produce, for example, at least 400 mA/cm 2 . Further, in other embodiments, the fuel cells can produce, for example, at least 1000 mA/cm 2 , including 100-1000 mA/cm 2 , 200-800 mA/cm 2 , and 400-600 mA/cm 2 .
- Each fuel cell is likely to be incorporated into a module or component along with support technology to provide a power supply. As a result, it may be useful to provide a power supply implementation using such fuel cells.
- FIG. 7 illustrates an embodiment of a power system including a fuel cell.
- the power system uses a fuel cell and supporting components to produce power.
- Those supporting components include fuel and electrolytes, a pump and a blower, a power regulator, a battery power supply and various control components.
- a power system includes fuel cell stack 1910 , which may be a stack of fuel cells such as those of the present invention. Coupled to fuel cell stack 1910 is dual pump 1920 , which provides fuel from fuel mixing chamber 1950 and electrolyte from electrolyte reservoir 1940 . Dual pump 1920 may be replaced with two single pumps in alternate embodiments.
- Mixing chamber 1950 receives depleted fuel from fuel cell stack 1910 (through its output) and fuel from fuel reservoir 1930 through control valve 1960 .
- electrolyte reservoir 1940 receives electrolyte fluid from fuel cell stack 1910 and may also receive depleted oxidant (e.g. air depleted of oxygen) from fuel cell stack 1910 .
- the depleted oxidant may also enter the electrolyte reservoir 1940 and then exit.
- Fuel reservoir 1930 may be filled as required to provide fuel to the system.
- carbon dioxide may fill an empty mixing chamber 1950 , and be forced into fuel reservoir 1930 as fuel fills mixing chamber 1950 . Excess carbon dioxide may be bled out of the system.
- blower 1970 blows gaseous oxygen into fuel cell stack 1910 .
- Blower 1970 , pump 1920 and control valve 1960 may all be powered by DC-DC converter 1980 , which in turn draws power primarily from fuel cell stack 1910 .
- Converter 1980 potentially operates as a voltage or power regulator to provide an 18 W output in some embodiments.
- an 18 W output may be predicated on a 20 W output from fuel cell 1910 , for example. This allows 2 W for overhead, namely running the blower 1970 , pump 1920 and control valve 1960 , which is a reasonable amount of power for such components.
- battery 1990 is provided to power the system at startup and provide small amounts of power in undersupply situations. Battery 1990 may be rechargeable or non-rechargeable, and preferably will not need replacement except at rare intervals.
- the electrochemical cell technology described herein is applicable to numerous systems including batteries, fuel cells, and photoelectric cells. It is contemplated that this technology will be especially useful in portable and mobile fuel cell systems and other electronic devices, such as in cellular phones, laptop computers, DVD players, televisions, palm pilots, calculators, pagers, hand-held video games, remote controls, tape cassettes, CD players, AM and FM radios, audio recorders, video recorders, cameras, digital cameras, navigation systems, wristwatches and other electronics requiring a power supply. It is also contemplated that this technology will also be useful in automotive and aviation systems, including systems used in aerospace vehicles.
- a 25 um Pt layer provided the channel height for the anode and the Pt layer also served as the current collector for the catalyst layer above.
- the catalyst layer was 4.0 mg/cm 2 Pt/Ru catalyst bonded to the surface of a NAFION 117 film.
- a 25 um Kapton layer provided the channel height for the cathode and the 25 um Pt layer served as the cathode catalyst and current collector.
- the electrode to electrode distance was 56 um and the porous layer used to separate the anode from the cathode was a 6 um thick polycarbonate track etched layer with 100 nm pores and 6 ⁇ 10 8 pores/cm 2 . This equates to approximately 2-4% porosity.
- An externally manifold 1 ⁇ 5 LFFC array was fabricated.
- a 25 um Kapton spacer layer plus a 25 um Pt layer provided the channel height for the anode and the Pt layer also served as the current collector (edge collection) for the catalyst layer above.
- the anode catalyst layer was 4.0 mg/cm 2 Pt/Ru on a NAFION 117 film that was then thermally bonded (hot pressed) with a 3M thermal setting epoxy-type adhesive layer to a 125 um Kapton film to provide rigidity and mechanically integrity (flatness) to the catalyst layer.
- a 50 um Kapton layer provided the channel height for the cathode and the 25 um Pt layer served as the cathode catalyst and current collector.
- the electrode to electrode distance was 112 um and the porous layer used to separate the anode from the cathode was a 12 um thick Kapton film track etched with 100 nm pores and 1 ⁇ 10 9 pores/cm 2 . This equates to approximately 8% porosity. 50, 75, and 100 nm pore sizes with 1-15% porosity in film thickness of 7, 12 and 25 um were evaluated in order to optimize the track etch performance. Channel dimensions were 1.5 mm width, 112 micron height, and 30 mm length. If all of the Kapton layers, track etch layer, and current collectors were very flat and aligned, no external leak points were observed while held under an external compression field (100-500 lbs). Near even flow distribution was also observed with these un-bonded layers.
- An externally manifold 1 ⁇ 5 LFFC array was fabricated.
- a catalyzed graphite sheet (1 mm) was the anode.
- a 50 um Kapton layer provided the channel height for the anode.
- a 50 um Kapton layer provided the channel height for the electrolyte.
- the porous layer separating the anode from the electrolyte was composed of a 6 um thick polycarbonate track etched layer with 100 nm pores and 6 ⁇ 10 8 pores/cm 2 . This equates to approximately 2-4% porosity.
- Liquid channel dimensions were 1.5 mm width, 50 micron height, and 30 mm length.
- the electrode to electrode distance was 130 um.
- the cathode was composed of a 25 um NAFION 111 bonded to a pre-catalyzed 250 um GDE with the gas porous side exposed to 0.5 mm graphite gas flow channels and the NAFION side exposed to the electrolyte. If all of the Kapton layers, track etch layer, GDE, and current collectors were very flat and aligned, no external leak points were observed while held under an external compression field (100-500 lbs). Near even fluid distribution between the channels was also observed with these un-bonded layers.
- FIG. 10 illustrates the room temperature performance improvements that occurred as a result of increasing fuel concentration of methanol in 1.0 M sulfuric acid for the fuel stream (4 mL/min total), 1.0 M sulfuric acid for the electrolyte stream (4 mL/min total), and ambient oxygen (1000 mL/min total).
- the anode was 5 mg/cm 2 50/50 Pt/Ru black deposited onto a graphite plate, and the cathode was 2 mg/cm 2 50% Pt/C and 4 mg/cm 2 Pt black deposited onto a GDE.
- high current densities were still achieved with multiple channels in parallel and CO 2 bubble formation could be observed only in the fuel effluent around and above 150 mA/cm 2 .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Fuel Cell (AREA)
- Hybrid Cells (AREA)
- Inert Electrodes (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/228,453 US20060088744A1 (en) | 2004-09-15 | 2005-09-15 | Electrochemical cells |
| US12/813,432 US8119305B2 (en) | 2004-09-15 | 2010-06-10 | Electrochemical cells |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US61028104P | 2004-09-15 | 2004-09-15 | |
| US11/228,453 US20060088744A1 (en) | 2004-09-15 | 2005-09-15 | Electrochemical cells |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/813,432 Continuation US8119305B2 (en) | 2004-09-15 | 2010-06-10 | Electrochemical cells |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060088744A1 true US20060088744A1 (en) | 2006-04-27 |
Family
ID=37683766
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/228,453 Abandoned US20060088744A1 (en) | 2004-09-15 | 2005-09-15 | Electrochemical cells |
| US12/813,432 Expired - Fee Related US8119305B2 (en) | 2004-09-15 | 2010-06-10 | Electrochemical cells |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/813,432 Expired - Fee Related US8119305B2 (en) | 2004-09-15 | 2010-06-10 | Electrochemical cells |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US20060088744A1 (fr) |
| JP (1) | JP2008513962A (fr) |
| KR (1) | KR20070064610A (fr) |
| WO (1) | WO2007013880A2 (fr) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050202305A1 (en) * | 2004-02-24 | 2005-09-15 | Markoski Larry J. | Fuel cell apparatus and method of fabrication |
| US20050252281A1 (en) * | 2003-12-17 | 2005-11-17 | Worsley Ralph S | System and method for treating process fluids delivered to an electrochemical cell stack |
| US20070190393A1 (en) * | 2006-02-14 | 2007-08-16 | Markoski Larry J | System for flexible in situ control of water in fuel cells |
| US7306641B2 (en) * | 2003-09-12 | 2007-12-11 | Hewlett-Packard Development Company, L.P. | Integral fuel cartridge and filter |
| US20080070076A1 (en) * | 2006-09-19 | 2008-03-20 | Sony Corporation | Fuel cell and fuel cell system, and electronic device |
| US20080070083A1 (en) * | 2006-09-19 | 2008-03-20 | Markoski Larry J | Permselective composite membrane for electrochemical cells |
| WO2008122042A1 (fr) * | 2007-04-02 | 2008-10-09 | Ini Power Systems, Inc. | Piles à combustible microfluidiques |
| US20080274393A1 (en) * | 2007-04-17 | 2008-11-06 | Markoski Larry J | Hydrogel barrier for fuel cells |
| US20090035644A1 (en) * | 2007-07-31 | 2009-02-05 | Markoski Larry J | Microfluidic Fuel Cell Electrode System |
| US20090092882A1 (en) * | 2007-10-09 | 2009-04-09 | University Of Victoria Innovation And Development Corporation | Fuel cell with flow-through porous electrodes |
| US20100196800A1 (en) * | 2009-02-05 | 2010-08-05 | Markoski Larry J | High efficiency fuel cell system |
| US20110008713A1 (en) * | 2004-09-15 | 2011-01-13 | Markoski Larry J | Electrochemical cells |
| US20110070469A1 (en) * | 2008-05-27 | 2011-03-24 | Koninklijke Philips Electronics N.V. | Supplying power for a micro system |
| WO2012039977A1 (fr) | 2010-09-21 | 2012-03-29 | Massachusetts Institute Of Technology | Pile à combustible à écoulement laminaire incorporant un oxydant liquide concentré |
| US8783304B2 (en) | 2010-12-03 | 2014-07-22 | Ini Power Systems, Inc. | Liquid containers and apparatus for use with power producing devices |
| US9065095B2 (en) | 2011-01-05 | 2015-06-23 | Ini Power Systems, Inc. | Method and apparatus for enhancing power density of direct liquid fuel cells |
| CN109898095A (zh) * | 2017-12-07 | 2019-06-18 | 中国科学院大连化学物理研究所 | 一种电极与隔膜零间距的电化学制备过氧化氢装置及其使用方法 |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7597815B2 (en) * | 2003-05-29 | 2009-10-06 | Dressel Pte. Ltd. | Process for producing a porous track membrane |
| US8083821B2 (en) * | 2007-04-13 | 2011-12-27 | Giner, Inc. | System for modifying the atmosphere within an enclosed space and incubator system including the same |
| BRPI0907609A2 (pt) * | 2008-02-25 | 2016-06-07 | Nanomaterials Discovery Corp | célula de combustível direta livre de membrana permseletiva e seus componentes |
| JP6388347B2 (ja) * | 2013-03-15 | 2018-09-12 | ホロジック, インコーポレイテッドHologic, Inc. | 腹臥位におけるトモシンセシス誘導生検 |
| WO2015021278A2 (fr) * | 2013-08-09 | 2015-02-12 | Junhang Dong | Membranes d'échange ionique microporeuses inorganiques pour batteries à écoulement redox |
| CN105226323B (zh) * | 2014-06-09 | 2017-12-01 | 宁德新能源科技有限公司 | 电芯及其制备方法 |
Citations (91)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3849275A (en) * | 1972-06-16 | 1974-11-19 | J Candor | Method and apparatus for removing and/or separating particles from fluid containing the same |
| US3902916A (en) * | 1971-07-20 | 1975-09-02 | Alsthom Cgee | Rechargeable electrochemical generator |
| US3992223A (en) * | 1967-01-04 | 1976-11-16 | Siemens Aktiengesellschaft | Method and apparatus for removing reaction water from fuel cells |
| US4066526A (en) * | 1974-08-19 | 1978-01-03 | Yeh George C | Method and apparatus for electrostatic separating dispersed matter from a fluid medium |
| US4311594A (en) * | 1975-12-01 | 1982-01-19 | Monsanto Company | Membrane separation of organics from aqueous solutions |
| US4652504A (en) * | 1983-06-17 | 1987-03-24 | Kabushiki Kaisha Meidensha | Secondary battery having a separator |
| US4722773A (en) * | 1984-10-17 | 1988-02-02 | The Dow Chemical Company | Electrochemical cell having gas pressurized contact between laminar, gas diffusion electrode and current collector |
| US4732823A (en) * | 1984-12-10 | 1988-03-22 | Kabushiki Kaisha Meidensha | Electrolyte flowing construction for electrolyte circulation-type cell stack secondary battery |
| US4783381A (en) * | 1986-07-09 | 1988-11-08 | Interox (Societe Anonyme) | Process for the production of electricity in a fuel cell, and fuel cell |
| US5185218A (en) * | 1990-12-31 | 1993-02-09 | Luz Electric Fuel Israel Ltd | Electrodes for metal/air batteries and fuel cells and metal/air batteries incorporating the same |
| US5290414A (en) * | 1992-05-15 | 1994-03-01 | Eveready Battery Company, Inc. | Separator/electrolyte combination for a nonaqueous cell |
| US5316629A (en) * | 1991-09-20 | 1994-05-31 | H-D Tech Inc. | Process for maintaining electrolyte flow rate through a microporous diaphragm during electrochemical production of hydrogen peroxide |
| US5413881A (en) * | 1993-01-04 | 1995-05-09 | Clark University | Aluminum and sulfur electrochemical batteries and cells |
| US5534120A (en) * | 1995-07-03 | 1996-07-09 | Toto Ltd. | Membraneless water electrolyzer |
| US5858567A (en) * | 1994-10-12 | 1999-01-12 | H Power Corporation | Fuel cells employing integrated fluid management platelet technology |
| US5863671A (en) * | 1994-10-12 | 1999-01-26 | H Power Corporation | Plastic platelet fuel cells employing integrated fluid management |
| US5952118A (en) * | 1994-12-09 | 1999-09-14 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten | PEM fuel cell with structured plates |
| US6013385A (en) * | 1997-07-25 | 2000-01-11 | Emprise Corporation | Fuel cell gas management system |
| US6054427A (en) * | 1997-02-28 | 2000-04-25 | The Regents Of The University Of California | Methods and compositions for optimization of oxygen transport by cell-free systems |
| US6110613A (en) * | 1998-07-23 | 2000-08-29 | International Fuel Cells Corporation | Alcohol and water recovery system for a direct aqueous alcohol fuel cell power plant |
| US6136272A (en) * | 1997-09-26 | 2000-10-24 | University Of Washington | Device for rapidly joining and splitting fluid layers |
| US6242123B1 (en) * | 1997-09-30 | 2001-06-05 | Aisin Seiki Kabushiki Kaisha | Solid polyelectrolyte membrane for fuel cells, and method for producing it |
| US6312846B1 (en) * | 1999-11-24 | 2001-11-06 | Integrated Fuel Cell Technologies, Inc. | Fuel cell and power chip technology |
| US20020015868A1 (en) * | 1993-10-12 | 2002-02-07 | California Institute Of Technology | Organic fuel cell methods and apparatus |
| US20020028372A1 (en) * | 1999-11-17 | 2002-03-07 | Ohlsen Leroy J. | Hydrodynamic transport and flow channel passageways associated with fuel cell electrode structures and fuel cell electrode stack assemblies |
| US20020031695A1 (en) * | 2000-07-31 | 2002-03-14 | Smotkin Eugene S. | Hydrogen permeable membrane for use in fuel cells, and partial reformate fuel cell system having reforming catalysts in the anode fuel cell compartment |
| US20020041991A1 (en) * | 1999-11-17 | 2002-04-11 | Chan Chung M. | Sol-gel derived fuel cell electrode structures and fuel cell electrode stack assemblies |
| US20020091225A1 (en) * | 2000-09-20 | 2002-07-11 | Mcgrath James E. | Ion-conducting sulfonated polymeric materials |
| US6437011B2 (en) * | 1993-09-21 | 2002-08-20 | Ballard Power Systems Inc. | α,β, β-trifluorostyrene-based composite membranes |
| US6447943B1 (en) * | 2000-01-18 | 2002-09-10 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Fuel cell with proton conducting membrane with a pore size less than 30 nm |
| US20020127454A1 (en) * | 2000-06-02 | 2002-09-12 | Subhash Narang | Polymer composition |
| US6472091B1 (en) * | 1999-05-22 | 2002-10-29 | Daimlerchrysler Ag | Fuel cell system and method for supplying electric power in a motor vehicle |
| US20030003336A1 (en) * | 2001-06-28 | 2003-01-02 | Colbow Kevin Michael | Method and apparatus for adjusting the temperature of a fuel cell by facilitating methanol crossover and combustion |
| US20030091883A1 (en) * | 2000-01-18 | 2003-05-15 | Emanuel Peled | Fuel cell with proton conducting membrane |
| US20030096151A1 (en) * | 2001-11-20 | 2003-05-22 | Blunk Richard H. | Low contact resistance PEM fuel cell |
| US20030134163A1 (en) * | 2002-01-14 | 2003-07-17 | The Board Of Trustees Of University Of Illinois. | Electrochemical cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same |
| US20030148159A1 (en) * | 2001-12-19 | 2003-08-07 | Philip Cox | Printing of catalyst on the membrane of fuel cells |
| US6607655B1 (en) * | 1998-09-10 | 2003-08-19 | Institut Fur Mikrotechnik Mainz Gmbh | Reactor and method for carrying out electrochemical reactions |
| US20030170524A1 (en) * | 1999-11-23 | 2003-09-11 | Karl Kordesch | Direct methanol cell with circulating electrolyte |
| US20030175581A1 (en) * | 2000-07-25 | 2003-09-18 | Karl Kordesch | Additives to the gas supply of fuel cells with circulating electrolytes and means to regenerate used stacks |
| US20030194598A1 (en) * | 2002-01-03 | 2003-10-16 | Chan Chung M. | Porous fuel cell electrode structures having conformal electrically conductive layers thereon |
| US20030198852A1 (en) * | 2002-04-04 | 2003-10-23 | The Board Of Trustees Of The University Of Illinoi | Fuel cells and fuel cell catalysts |
| US6638654B2 (en) * | 1999-02-01 | 2003-10-28 | The Regents Of The University Of California | MEMS-based thin-film fuel cells |
| US6641948B1 (en) * | 1999-11-17 | 2003-11-04 | Neah Power Systems Inc | Fuel cells having silicon substrates and/or sol-gel derived support structures |
| US20030219640A1 (en) * | 2002-01-23 | 2003-11-27 | Polyfuel, Inc. | Acid-base proton conducting polymer blend membrane |
| US20040039148A1 (en) * | 2002-05-13 | 2004-02-26 | Shuguang Cao | Sulfonated copolymer |
| US20040045816A1 (en) * | 2002-09-11 | 2004-03-11 | The Board Of Trustees Of The University Of Illinois | Solids supporting mass transfer for fuel cells and other applications and solutions and methods for forming |
| US20040058217A1 (en) * | 2002-09-20 | 2004-03-25 | Ohlsen Leroy J. | Fuel cell systems having internal multistream laminar flow |
| US20040062965A1 (en) * | 2002-09-30 | 2004-04-01 | The Regents Of The University Of California | Bonded polyimide fuel cell package and method thereof |
| US6715899B1 (en) * | 2002-09-17 | 2004-04-06 | Wen-Chang Wu | Easily assembled and detached wall lamp mounting device |
| US6720105B2 (en) * | 1999-11-17 | 2004-04-13 | Neah Power Systems, Inc. | Metallic blocking layers integrally associated with fuel cell electrode structures and fuel cell electrode stack assemblies |
| US20040072047A1 (en) * | 2002-01-14 | 2004-04-15 | Markoski Larry J. | Fuel cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same |
| US6727016B2 (en) * | 2001-08-09 | 2004-04-27 | Motorola, Inc. | Direct methanol fuel cell including a water recovery and re-circulation system and method of fabrication |
| US20040096721A1 (en) * | 2002-07-03 | 2004-05-20 | Ohlsen Leroy J. | Closed liquid feed fuel cell systems and reactant supply and effluent storage cartridges adapted for use with the same |
| US20040101740A1 (en) * | 2002-09-17 | 2004-05-27 | Diffusion Sciences, Inc. | Electrochemical generation, storage and reaction of hydrogen and oxygen |
| US20040115518A1 (en) * | 2002-04-04 | 2004-06-17 | Masel Richard I. | Organic fuel cells and fuel cell conducting sheets |
| US20040121208A1 (en) * | 2002-12-23 | 2004-06-24 | Doug James | Tubular direct methanol fuel cell |
| US20040126666A1 (en) * | 2002-05-13 | 2004-07-01 | Shuguang Cao | Ion conductive block copolymers |
| US20040151965A1 (en) * | 2001-07-20 | 2004-08-05 | Forte Jameson R. | Water vapor transfer device for a fuel cell power plant |
| US20040209154A1 (en) * | 2003-04-15 | 2004-10-21 | Xiaoming Ren | Passive water management techniques in direct methanol fuel cells |
| US20040209153A1 (en) * | 2001-07-18 | 2004-10-21 | Emanuel Peled | Fuel cell with proton conducting membrane and with improved water and fuel management |
| US6808840B2 (en) * | 1999-11-17 | 2004-10-26 | Neah Power Systems, Inc. | Silicon-based fuel cell electrode structures and fuel cell electrode stack assemblies |
| US6811916B2 (en) * | 2001-05-15 | 2004-11-02 | Neah Power Systems, Inc. | Fuel cell electrode pair assemblies and related methods |
| US20050008923A1 (en) * | 2003-06-20 | 2005-01-13 | Sanjiv Malhotra | Water management in a direct methanol fuel cell system |
| US6852443B1 (en) * | 1999-11-17 | 2005-02-08 | Neah Power Systems, Inc. | Fuel cells having silicon substrates and/or sol-gel derived support structures |
| US20050074657A1 (en) * | 2002-05-01 | 2005-04-07 | Hydrogenics Corporation | Hydrogen production and water recovery system for a fuel cell |
| US20050084737A1 (en) * | 2003-10-20 | 2005-04-21 | Wine David W. | Fuel cells having cross directional laminar flowstreams |
| US20050084738A1 (en) * | 2003-10-17 | 2005-04-21 | Ohlsen Leroy J. | Nitric acid regeneration fuel cell systems |
| US6890680B2 (en) * | 2002-02-19 | 2005-05-10 | Mti Microfuel Cells Inc. | Modified diffusion layer for use in a fuel cell system |
| US6893763B2 (en) * | 2002-04-16 | 2005-05-17 | Gas Technology Institute | Composite polymer electrolyte membrane for polymer electrolyte membrane fuel cells |
| US20050136309A1 (en) * | 2002-04-04 | 2005-06-23 | The Board Of Trustees Of The University Of Illinois | Palladium-based electrocatalysts and fuel cells employing such electrocatalysts |
| US6911411B2 (en) * | 2001-11-21 | 2005-06-28 | Polyfuel, Inc. | Catalyst agglomerates for membrane electrode assemblies |
| US20050161342A1 (en) * | 2002-04-26 | 2005-07-28 | Roger W. Carson And Bruce W. Bremer | Mediated electrochemical oxidation process used as a hydrogen fuel generator |
| US20050191541A1 (en) * | 2004-02-04 | 2005-09-01 | Vladimir Gurau | Fuel cell system with flow field capable of removing liquid water from the high-pressure channels |
| US20050202305A1 (en) * | 2004-02-24 | 2005-09-15 | Markoski Larry J. | Fuel cell apparatus and method of fabrication |
| US6960285B2 (en) * | 1999-06-18 | 2005-11-01 | Sandia Naitonal Laboratories | Electrokinetically pumped high pressure sprays |
| US20050252784A1 (en) * | 2004-05-11 | 2005-11-17 | Choban Eric R | Microfluid device and synthetic methods |
| US20060003217A1 (en) * | 2004-06-10 | 2006-01-05 | Cornell Research Foundation, Inc. | Planar membraneless microchannel fuel cell |
| US20060035136A1 (en) * | 2002-01-14 | 2006-02-16 | Markoski Larry J | Electrochemical cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same |
| US20060040146A1 (en) * | 2004-08-19 | 2006-02-23 | Fujitsu Limited | Liquid circulation type fuel cell and control method therefor |
| US20060040147A1 (en) * | 2004-08-19 | 2006-02-23 | Fujitsu Limited | Liquid circulation type fuel cell |
| US7014944B2 (en) * | 2000-07-25 | 2006-03-21 | Apollo Energy Systems, Incorporated | Electrodes for alkaline fuel cells with circulating electrolyte |
| US20060059769A1 (en) * | 2004-09-21 | 2006-03-23 | The Board Of Trustees Of The University Of Illinois | Low contaminant formic acid fuel for direct liquid fuel cell |
| US20060078785A1 (en) * | 2004-10-07 | 2006-04-13 | Masel Richard I | Liquid feed fuel cell with nested sealing configuration |
| US20060210867A1 (en) * | 2005-03-21 | 2006-09-21 | Kenis Paul J | Membraneless electrochemical cell and microfluidic device without pH constraint |
| US20060228622A1 (en) * | 2004-06-10 | 2006-10-12 | Cohen Jamie L | Dual electrolyte membraneless microchannel fuel cells |
| US7205064B2 (en) * | 2003-06-27 | 2007-04-17 | The Board Of Trustees Of The University Of Illinois | Emulsions for fuel cells |
| US20070190393A1 (en) * | 2006-02-14 | 2007-08-16 | Markoski Larry J | System for flexible in situ control of water in fuel cells |
| US20080070083A1 (en) * | 2006-09-19 | 2008-03-20 | Markoski Larry J | Permselective composite membrane for electrochemical cells |
| US20080248343A1 (en) * | 2007-04-02 | 2008-10-09 | Markoski Larry J | Microfluidic fuel cells |
| US20090035644A1 (en) * | 2007-07-31 | 2009-02-05 | Markoski Larry J | Microfluidic Fuel Cell Electrode System |
Family Cites Families (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1162433B (de) | 1961-08-11 | 1964-02-06 | Varta Ag | Verfahren zum Betrieb von Brennstoffelementen und ein dafuer geeignetes Brennstoffelement |
| US3357861A (en) | 1963-05-06 | 1967-12-12 | Herbert F Hunger | Barriers for fuel cells |
| JPS4914939A (fr) | 1972-03-28 | 1974-02-08 | ||
| US4614575A (en) | 1984-11-19 | 1986-09-30 | Prototech Company | Polymeric hydrogel-containing gas diffusion electrodes and methods of using the same in electrochemical systems |
| US4732822A (en) * | 1986-12-10 | 1988-03-22 | The United States Of America As Represented By The United States Department Of Energy | Internal electrolyte supply system for reliable transport throughout fuel cell stacks |
| US5846670A (en) | 1992-02-21 | 1998-12-08 | Tanaka Kikinzoku Kogyo K.K. | Gas diffusion electrode for electrochemical cell and process of preparing same |
| US5545492A (en) | 1992-10-14 | 1996-08-13 | National Power Plc | Electrochemical apparatus for power delivery utilizing an air electrode |
| JP3584612B2 (ja) * | 1996-05-30 | 2004-11-04 | 旭硝子株式会社 | 固体高分子型燃料電池およびその電極の製造方法 |
| US6444343B1 (en) | 1996-11-18 | 2002-09-03 | University Of Southern California | Polymer electrolyte membranes for use in fuel cells |
| DE19715429A1 (de) * | 1997-04-14 | 1998-10-15 | Bayer Ag | Elektrochemische Halbzelle |
| US6024848A (en) * | 1998-04-15 | 2000-02-15 | International Fuel Cells, Corporation | Electrochemical cell with a porous support plate |
| US6103413A (en) * | 1998-05-21 | 2000-08-15 | The Dow Chemical Company | Bipolar plates for electrochemical cells |
| US6007931A (en) | 1998-06-24 | 1999-12-28 | International Fuel Cells Corporation | Mass and heat recovery system for a fuel cell power plant |
| CA2256829A1 (fr) * | 1998-12-18 | 2000-06-18 | Universite Laval | Membranes electrolytes composites pour piles a combustible |
| US6255012B1 (en) * | 1999-11-19 | 2001-07-03 | The Regents Of The University Of California | Pleated metal bipolar assembly |
| JP2001345106A (ja) | 2000-03-31 | 2001-12-14 | Japan Storage Battery Co Ltd | 燃料電池用電極およびその製造方法 |
| EP1290747B1 (fr) | 2000-06-01 | 2009-02-18 | IdaTech, LLC. | Piles a combustible et systemes de piles a combustible contenant des electrolytes non aqueux |
| JP4616452B2 (ja) | 2000-09-26 | 2011-01-19 | 三ツ星ベルト株式会社 | ベルトスリーブ脱型装置及び脱型方法 |
| US6497975B2 (en) | 2000-12-15 | 2002-12-24 | Motorola, Inc. | Direct methanol fuel cell including integrated flow field and method of fabrication |
| US6554877B2 (en) * | 2001-01-03 | 2003-04-29 | More Energy Ltd. | Liquid fuel compositions for electrochemical fuel cells |
| JP4284889B2 (ja) | 2001-05-28 | 2009-06-24 | パナソニック電工株式会社 | 光導波路、光配線板、電気・光混載回路基板及び光導波路の製造方法 |
| US20030003341A1 (en) * | 2001-06-29 | 2003-01-02 | Kinkelaar Mark R. | Liquid fuel cell reservoir for water and/or fuel management |
| WO2003002247A1 (fr) | 2001-06-29 | 2003-01-09 | The Penn State Research Foundation | Couches sacrificielles utilisees dans la fabrication de structures de reacteurs chimiques, applications de ces structures |
| JP4140253B2 (ja) * | 2002-03-15 | 2008-08-27 | 日産自動車株式会社 | 燃料改質システム |
| JP2003297701A (ja) | 2002-03-29 | 2003-10-17 | Tdk Corp | 電気化学デバイスおよび電気化学デバイスの製造方法 |
| US7368190B2 (en) | 2002-05-02 | 2008-05-06 | Abbott Diabetes Care Inc. | Miniature biological fuel cell that is operational under physiological conditions, and associated devices and methods |
| US20030003348A1 (en) * | 2002-07-17 | 2003-01-02 | Hanket Gregory M. | Fuel cell |
| TW557601B (en) * | 2002-07-25 | 2003-10-11 | Ind Tech Res Inst | Planar type fuel cell monomer and the cell set |
| TW551623U (en) * | 2002-10-31 | 2003-09-01 | Ind Tech Res Inst | Humidifier |
| TW571458B (en) * | 2002-12-20 | 2004-01-11 | Ind Tech Res Inst | Gas humidification apparatus for a fuel cell bi-polar plate |
| TWI221039B (en) * | 2003-07-02 | 2004-09-11 | Univ Tsinghua | Preparation of fuel cell composite bipolar plate |
| TWI251954B (en) | 2003-07-29 | 2006-03-21 | Ind Tech Res Inst | Flat fuel cell assembly and fabrication thereof |
| US7351444B2 (en) * | 2003-09-08 | 2008-04-01 | Intematix Corporation | Low platinum fuel cell catalysts and method for preparing the same |
| US7909971B2 (en) | 2004-03-08 | 2011-03-22 | The Board Of Trustees Of The University Of Illinois | Microfluidic electrochemical reactors |
| KR20070064610A (ko) | 2004-09-15 | 2007-06-21 | 아이엔아이 파워 시스템즈, 인크 | 전기화학 전지 |
| JP5013675B2 (ja) | 2004-11-25 | 2012-08-29 | 株式会社リコー | 電極触媒の製造方法及び電極触媒 |
| US7862956B2 (en) * | 2004-12-29 | 2011-01-04 | 3M Innovative Properties Company | Z-axis electrically conducting flow field separator |
| TW200623497A (en) * | 2004-12-30 | 2006-07-01 | Ind Tech Res Inst | Fuel cell |
| KR100748356B1 (ko) | 2006-02-10 | 2007-08-09 | 삼성에스디아이 주식회사 | 연료전지 시스템에 사용하는 액체저장용기 및 액위검지장치 |
| US8551667B2 (en) | 2007-04-17 | 2013-10-08 | Ini Power Systems, Inc. | Hydrogel barrier for fuel cells |
| US8163429B2 (en) * | 2009-02-05 | 2012-04-24 | Ini Power Systems, Inc. | High efficiency fuel cell system |
-
2005
- 2005-09-15 KR KR1020077007212A patent/KR20070064610A/ko not_active Withdrawn
- 2005-09-15 JP JP2007532469A patent/JP2008513962A/ja active Pending
- 2005-09-15 WO PCT/US2005/032990 patent/WO2007013880A2/fr not_active Ceased
- 2005-09-15 US US11/228,453 patent/US20060088744A1/en not_active Abandoned
-
2010
- 2010-06-10 US US12/813,432 patent/US8119305B2/en not_active Expired - Fee Related
Patent Citations (98)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3992223A (en) * | 1967-01-04 | 1976-11-16 | Siemens Aktiengesellschaft | Method and apparatus for removing reaction water from fuel cells |
| US3902916A (en) * | 1971-07-20 | 1975-09-02 | Alsthom Cgee | Rechargeable electrochemical generator |
| US3849275A (en) * | 1972-06-16 | 1974-11-19 | J Candor | Method and apparatus for removing and/or separating particles from fluid containing the same |
| US4066526A (en) * | 1974-08-19 | 1978-01-03 | Yeh George C | Method and apparatus for electrostatic separating dispersed matter from a fluid medium |
| US4311594A (en) * | 1975-12-01 | 1982-01-19 | Monsanto Company | Membrane separation of organics from aqueous solutions |
| US4652504A (en) * | 1983-06-17 | 1987-03-24 | Kabushiki Kaisha Meidensha | Secondary battery having a separator |
| US4722773A (en) * | 1984-10-17 | 1988-02-02 | The Dow Chemical Company | Electrochemical cell having gas pressurized contact between laminar, gas diffusion electrode and current collector |
| US4732823A (en) * | 1984-12-10 | 1988-03-22 | Kabushiki Kaisha Meidensha | Electrolyte flowing construction for electrolyte circulation-type cell stack secondary battery |
| US4783381A (en) * | 1986-07-09 | 1988-11-08 | Interox (Societe Anonyme) | Process for the production of electricity in a fuel cell, and fuel cell |
| US5185218A (en) * | 1990-12-31 | 1993-02-09 | Luz Electric Fuel Israel Ltd | Electrodes for metal/air batteries and fuel cells and metal/air batteries incorporating the same |
| US5316629A (en) * | 1991-09-20 | 1994-05-31 | H-D Tech Inc. | Process for maintaining electrolyte flow rate through a microporous diaphragm during electrochemical production of hydrogen peroxide |
| US5290414A (en) * | 1992-05-15 | 1994-03-01 | Eveready Battery Company, Inc. | Separator/electrolyte combination for a nonaqueous cell |
| US5413881A (en) * | 1993-01-04 | 1995-05-09 | Clark University | Aluminum and sulfur electrochemical batteries and cells |
| US5648183A (en) * | 1993-01-04 | 1997-07-15 | Clark University | Aluminum and sulfur electrochemical batteries and cells |
| US6437011B2 (en) * | 1993-09-21 | 2002-08-20 | Ballard Power Systems Inc. | α,β, β-trifluorostyrene-based composite membranes |
| US20020015868A1 (en) * | 1993-10-12 | 2002-02-07 | California Institute Of Technology | Organic fuel cell methods and apparatus |
| US5858567A (en) * | 1994-10-12 | 1999-01-12 | H Power Corporation | Fuel cells employing integrated fluid management platelet technology |
| US5863671A (en) * | 1994-10-12 | 1999-01-26 | H Power Corporation | Plastic platelet fuel cells employing integrated fluid management |
| US5952118A (en) * | 1994-12-09 | 1999-09-14 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten | PEM fuel cell with structured plates |
| US5534120A (en) * | 1995-07-03 | 1996-07-09 | Toto Ltd. | Membraneless water electrolyzer |
| US6432918B1 (en) * | 1997-02-28 | 2002-08-13 | The Regents Of The University Of California | Methods and compositions for optimization of oxygen transport by cell-free systems |
| US6054427A (en) * | 1997-02-28 | 2000-04-25 | The Regents Of The University Of California | Methods and compositions for optimization of oxygen transport by cell-free systems |
| US6013385A (en) * | 1997-07-25 | 2000-01-11 | Emprise Corporation | Fuel cell gas management system |
| US6136272A (en) * | 1997-09-26 | 2000-10-24 | University Of Washington | Device for rapidly joining and splitting fluid layers |
| US6242123B1 (en) * | 1997-09-30 | 2001-06-05 | Aisin Seiki Kabushiki Kaisha | Solid polyelectrolyte membrane for fuel cells, and method for producing it |
| US6110613A (en) * | 1998-07-23 | 2000-08-29 | International Fuel Cells Corporation | Alcohol and water recovery system for a direct aqueous alcohol fuel cell power plant |
| US6607655B1 (en) * | 1998-09-10 | 2003-08-19 | Institut Fur Mikrotechnik Mainz Gmbh | Reactor and method for carrying out electrochemical reactions |
| US6638654B2 (en) * | 1999-02-01 | 2003-10-28 | The Regents Of The University Of California | MEMS-based thin-film fuel cells |
| US6472091B1 (en) * | 1999-05-22 | 2002-10-29 | Daimlerchrysler Ag | Fuel cell system and method for supplying electric power in a motor vehicle |
| US6960285B2 (en) * | 1999-06-18 | 2005-11-01 | Sandia Naitonal Laboratories | Electrokinetically pumped high pressure sprays |
| US20020028372A1 (en) * | 1999-11-17 | 2002-03-07 | Ohlsen Leroy J. | Hydrodynamic transport and flow channel passageways associated with fuel cell electrode structures and fuel cell electrode stack assemblies |
| US20050089748A1 (en) * | 1999-11-17 | 2005-04-28 | Ohlsen Leroy J. | Fuel cells having silicon substrates and/or sol-gel derived support structures |
| US6852443B1 (en) * | 1999-11-17 | 2005-02-08 | Neah Power Systems, Inc. | Fuel cells having silicon substrates and/or sol-gel derived support structures |
| US20020041991A1 (en) * | 1999-11-17 | 2002-04-11 | Chan Chung M. | Sol-gel derived fuel cell electrode structures and fuel cell electrode stack assemblies |
| US6720105B2 (en) * | 1999-11-17 | 2004-04-13 | Neah Power Systems, Inc. | Metallic blocking layers integrally associated with fuel cell electrode structures and fuel cell electrode stack assemblies |
| US6924058B2 (en) * | 1999-11-17 | 2005-08-02 | Leroy J. Ohlsen | Hydrodynamic transport and flow channel passageways associated with fuel cell electrode structures and fuel cell electrode stack assemblies |
| US6808840B2 (en) * | 1999-11-17 | 2004-10-26 | Neah Power Systems, Inc. | Silicon-based fuel cell electrode structures and fuel cell electrode stack assemblies |
| US6641948B1 (en) * | 1999-11-17 | 2003-11-04 | Neah Power Systems Inc | Fuel cells having silicon substrates and/or sol-gel derived support structures |
| US20030170524A1 (en) * | 1999-11-23 | 2003-09-11 | Karl Kordesch | Direct methanol cell with circulating electrolyte |
| US6312846B1 (en) * | 1999-11-24 | 2001-11-06 | Integrated Fuel Cell Technologies, Inc. | Fuel cell and power chip technology |
| US6447943B1 (en) * | 2000-01-18 | 2002-09-10 | Ramot University Authority For Applied Research & Industrial Development Ltd. | Fuel cell with proton conducting membrane with a pore size less than 30 nm |
| US20030091883A1 (en) * | 2000-01-18 | 2003-05-15 | Emanuel Peled | Fuel cell with proton conducting membrane |
| US20020127454A1 (en) * | 2000-06-02 | 2002-09-12 | Subhash Narang | Polymer composition |
| US20030175581A1 (en) * | 2000-07-25 | 2003-09-18 | Karl Kordesch | Additives to the gas supply of fuel cells with circulating electrolytes and means to regenerate used stacks |
| US7014944B2 (en) * | 2000-07-25 | 2006-03-21 | Apollo Energy Systems, Incorporated | Electrodes for alkaline fuel cells with circulating electrolyte |
| US20020031695A1 (en) * | 2000-07-31 | 2002-03-14 | Smotkin Eugene S. | Hydrogen permeable membrane for use in fuel cells, and partial reformate fuel cell system having reforming catalysts in the anode fuel cell compartment |
| US20020091225A1 (en) * | 2000-09-20 | 2002-07-11 | Mcgrath James E. | Ion-conducting sulfonated polymeric materials |
| US6811916B2 (en) * | 2001-05-15 | 2004-11-02 | Neah Power Systems, Inc. | Fuel cell electrode pair assemblies and related methods |
| US20050003263A1 (en) * | 2001-05-15 | 2005-01-06 | Mallari Jonathan C. | Fuel cell electrode pair assemblies and related methods |
| US20030003336A1 (en) * | 2001-06-28 | 2003-01-02 | Colbow Kevin Michael | Method and apparatus for adjusting the temperature of a fuel cell by facilitating methanol crossover and combustion |
| US20040209153A1 (en) * | 2001-07-18 | 2004-10-21 | Emanuel Peled | Fuel cell with proton conducting membrane and with improved water and fuel management |
| US20040151965A1 (en) * | 2001-07-20 | 2004-08-05 | Forte Jameson R. | Water vapor transfer device for a fuel cell power plant |
| US6727016B2 (en) * | 2001-08-09 | 2004-04-27 | Motorola, Inc. | Direct methanol fuel cell including a water recovery and re-circulation system and method of fabrication |
| US20030096151A1 (en) * | 2001-11-20 | 2003-05-22 | Blunk Richard H. | Low contact resistance PEM fuel cell |
| US6911411B2 (en) * | 2001-11-21 | 2005-06-28 | Polyfuel, Inc. | Catalyst agglomerates for membrane electrode assemblies |
| US20030148159A1 (en) * | 2001-12-19 | 2003-08-07 | Philip Cox | Printing of catalyst on the membrane of fuel cells |
| US20030194598A1 (en) * | 2002-01-03 | 2003-10-16 | Chan Chung M. | Porous fuel cell electrode structures having conformal electrically conductive layers thereon |
| US20040072047A1 (en) * | 2002-01-14 | 2004-04-15 | Markoski Larry J. | Fuel cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same |
| US20060035136A1 (en) * | 2002-01-14 | 2006-02-16 | Markoski Larry J | Electrochemical cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same |
| US20030134163A1 (en) * | 2002-01-14 | 2003-07-17 | The Board Of Trustees Of University Of Illinois. | Electrochemical cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same |
| US6713206B2 (en) * | 2002-01-14 | 2004-03-30 | Board Of Trustees Of University Of Illinois | Electrochemical cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same |
| US7252898B2 (en) * | 2002-01-14 | 2007-08-07 | The Board Of Trustees Of The University Of Illinois | Fuel cells comprising laminar flow induced dynamic conducting interfaces, electronic devices comprising such cells, and methods employing same |
| US20030219640A1 (en) * | 2002-01-23 | 2003-11-27 | Polyfuel, Inc. | Acid-base proton conducting polymer blend membrane |
| US6890680B2 (en) * | 2002-02-19 | 2005-05-10 | Mti Microfuel Cells Inc. | Modified diffusion layer for use in a fuel cell system |
| US20030198852A1 (en) * | 2002-04-04 | 2003-10-23 | The Board Of Trustees Of The University Of Illinoi | Fuel cells and fuel cell catalysts |
| US20050136309A1 (en) * | 2002-04-04 | 2005-06-23 | The Board Of Trustees Of The University Of Illinois | Palladium-based electrocatalysts and fuel cells employing such electrocatalysts |
| US20040115518A1 (en) * | 2002-04-04 | 2004-06-17 | Masel Richard I. | Organic fuel cells and fuel cell conducting sheets |
| US6893763B2 (en) * | 2002-04-16 | 2005-05-17 | Gas Technology Institute | Composite polymer electrolyte membrane for polymer electrolyte membrane fuel cells |
| US20050161342A1 (en) * | 2002-04-26 | 2005-07-28 | Roger W. Carson And Bruce W. Bremer | Mediated electrochemical oxidation process used as a hydrogen fuel generator |
| US20050074657A1 (en) * | 2002-05-01 | 2005-04-07 | Hydrogenics Corporation | Hydrogen production and water recovery system for a fuel cell |
| US20040039148A1 (en) * | 2002-05-13 | 2004-02-26 | Shuguang Cao | Sulfonated copolymer |
| US20040126666A1 (en) * | 2002-05-13 | 2004-07-01 | Shuguang Cao | Ion conductive block copolymers |
| US20040096721A1 (en) * | 2002-07-03 | 2004-05-20 | Ohlsen Leroy J. | Closed liquid feed fuel cell systems and reactant supply and effluent storage cartridges adapted for use with the same |
| US20040045816A1 (en) * | 2002-09-11 | 2004-03-11 | The Board Of Trustees Of The University Of Illinois | Solids supporting mass transfer for fuel cells and other applications and solutions and methods for forming |
| US6715899B1 (en) * | 2002-09-17 | 2004-04-06 | Wen-Chang Wu | Easily assembled and detached wall lamp mounting device |
| US20040101740A1 (en) * | 2002-09-17 | 2004-05-27 | Diffusion Sciences, Inc. | Electrochemical generation, storage and reaction of hydrogen and oxygen |
| US20040058217A1 (en) * | 2002-09-20 | 2004-03-25 | Ohlsen Leroy J. | Fuel cell systems having internal multistream laminar flow |
| US20040062965A1 (en) * | 2002-09-30 | 2004-04-01 | The Regents Of The University Of California | Bonded polyimide fuel cell package and method thereof |
| US20040121208A1 (en) * | 2002-12-23 | 2004-06-24 | Doug James | Tubular direct methanol fuel cell |
| US20040209154A1 (en) * | 2003-04-15 | 2004-10-21 | Xiaoming Ren | Passive water management techniques in direct methanol fuel cells |
| US20050008923A1 (en) * | 2003-06-20 | 2005-01-13 | Sanjiv Malhotra | Water management in a direct methanol fuel cell system |
| US7205064B2 (en) * | 2003-06-27 | 2007-04-17 | The Board Of Trustees Of The University Of Illinois | Emulsions for fuel cells |
| US20050084738A1 (en) * | 2003-10-17 | 2005-04-21 | Ohlsen Leroy J. | Nitric acid regeneration fuel cell systems |
| US20050084737A1 (en) * | 2003-10-20 | 2005-04-21 | Wine David W. | Fuel cells having cross directional laminar flowstreams |
| US20050191541A1 (en) * | 2004-02-04 | 2005-09-01 | Vladimir Gurau | Fuel cell system with flow field capable of removing liquid water from the high-pressure channels |
| US20050202305A1 (en) * | 2004-02-24 | 2005-09-15 | Markoski Larry J. | Fuel cell apparatus and method of fabrication |
| US20050252784A1 (en) * | 2004-05-11 | 2005-11-17 | Choban Eric R | Microfluid device and synthetic methods |
| US20060228622A1 (en) * | 2004-06-10 | 2006-10-12 | Cohen Jamie L | Dual electrolyte membraneless microchannel fuel cells |
| US20060003217A1 (en) * | 2004-06-10 | 2006-01-05 | Cornell Research Foundation, Inc. | Planar membraneless microchannel fuel cell |
| US20060040147A1 (en) * | 2004-08-19 | 2006-02-23 | Fujitsu Limited | Liquid circulation type fuel cell |
| US20060040146A1 (en) * | 2004-08-19 | 2006-02-23 | Fujitsu Limited | Liquid circulation type fuel cell and control method therefor |
| US20060059769A1 (en) * | 2004-09-21 | 2006-03-23 | The Board Of Trustees Of The University Of Illinois | Low contaminant formic acid fuel for direct liquid fuel cell |
| US20060078785A1 (en) * | 2004-10-07 | 2006-04-13 | Masel Richard I | Liquid feed fuel cell with nested sealing configuration |
| US20060210867A1 (en) * | 2005-03-21 | 2006-09-21 | Kenis Paul J | Membraneless electrochemical cell and microfluidic device without pH constraint |
| US20070190393A1 (en) * | 2006-02-14 | 2007-08-16 | Markoski Larry J | System for flexible in situ control of water in fuel cells |
| US20080070083A1 (en) * | 2006-09-19 | 2008-03-20 | Markoski Larry J | Permselective composite membrane for electrochemical cells |
| US20080248343A1 (en) * | 2007-04-02 | 2008-10-09 | Markoski Larry J | Microfluidic fuel cells |
| US20090035644A1 (en) * | 2007-07-31 | 2009-02-05 | Markoski Larry J | Microfluidic Fuel Cell Electrode System |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7306641B2 (en) * | 2003-09-12 | 2007-12-11 | Hewlett-Packard Development Company, L.P. | Integral fuel cartridge and filter |
| US20050252281A1 (en) * | 2003-12-17 | 2005-11-17 | Worsley Ralph S | System and method for treating process fluids delivered to an electrochemical cell stack |
| US20110003226A1 (en) * | 2004-02-24 | 2011-01-06 | Markoski Larry J | Fuel cell apparatus and method of fabrication |
| US20050202305A1 (en) * | 2004-02-24 | 2005-09-15 | Markoski Larry J. | Fuel cell apparatus and method of fabrication |
| US8119305B2 (en) | 2004-09-15 | 2012-02-21 | Ini Power Systems, Inc. | Electrochemical cells |
| US20110008713A1 (en) * | 2004-09-15 | 2011-01-13 | Markoski Larry J | Electrochemical cells |
| US20070190393A1 (en) * | 2006-02-14 | 2007-08-16 | Markoski Larry J | System for flexible in situ control of water in fuel cells |
| US7901817B2 (en) | 2006-02-14 | 2011-03-08 | Ini Power Systems, Inc. | System for flexible in situ control of water in fuel cells |
| US8158300B2 (en) | 2006-09-19 | 2012-04-17 | Ini Power Systems, Inc. | Permselective composite membrane for electrochemical cells |
| US20080070083A1 (en) * | 2006-09-19 | 2008-03-20 | Markoski Larry J | Permselective composite membrane for electrochemical cells |
| US20080070076A1 (en) * | 2006-09-19 | 2008-03-20 | Sony Corporation | Fuel cell and fuel cell system, and electronic device |
| WO2008122042A1 (fr) * | 2007-04-02 | 2008-10-09 | Ini Power Systems, Inc. | Piles à combustible microfluidiques |
| US20080274393A1 (en) * | 2007-04-17 | 2008-11-06 | Markoski Larry J | Hydrogel barrier for fuel cells |
| US8551667B2 (en) | 2007-04-17 | 2013-10-08 | Ini Power Systems, Inc. | Hydrogel barrier for fuel cells |
| US20090035644A1 (en) * | 2007-07-31 | 2009-02-05 | Markoski Larry J | Microfluidic Fuel Cell Electrode System |
| US10079391B2 (en) * | 2007-10-09 | 2018-09-18 | Uvic Industry Partnerships Inc. | Fuel cell with flow-through porous electrodes |
| US20090092882A1 (en) * | 2007-10-09 | 2009-04-09 | University Of Victoria Innovation And Development Corporation | Fuel cell with flow-through porous electrodes |
| US20110070469A1 (en) * | 2008-05-27 | 2011-03-24 | Koninklijke Philips Electronics N.V. | Supplying power for a micro system |
| US20100196800A1 (en) * | 2009-02-05 | 2010-08-05 | Markoski Larry J | High efficiency fuel cell system |
| EP2237355A1 (fr) * | 2009-02-05 | 2010-10-06 | Ini Power Systems, Inc. | Système de pile à combustible haute efficacité |
| US8163429B2 (en) | 2009-02-05 | 2012-04-24 | Ini Power Systems, Inc. | High efficiency fuel cell system |
| WO2012039977A1 (fr) | 2010-09-21 | 2012-03-29 | Massachusetts Institute Of Technology | Pile à combustible à écoulement laminaire incorporant un oxydant liquide concentré |
| US8783304B2 (en) | 2010-12-03 | 2014-07-22 | Ini Power Systems, Inc. | Liquid containers and apparatus for use with power producing devices |
| US9065095B2 (en) | 2011-01-05 | 2015-06-23 | Ini Power Systems, Inc. | Method and apparatus for enhancing power density of direct liquid fuel cells |
| CN109898095A (zh) * | 2017-12-07 | 2019-06-18 | 中国科学院大连化学物理研究所 | 一种电极与隔膜零间距的电化学制备过氧化氢装置及其使用方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20070064610A (ko) | 2007-06-21 |
| JP2008513962A (ja) | 2008-05-01 |
| WO2007013880A9 (fr) | 2007-03-15 |
| US8119305B2 (en) | 2012-02-21 |
| WO2007013880A3 (fr) | 2007-05-18 |
| WO2007013880A2 (fr) | 2007-02-01 |
| US20110008713A1 (en) | 2011-01-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8119305B2 (en) | Electrochemical cells | |
| US7901817B2 (en) | System for flexible in situ control of water in fuel cells | |
| US7807317B2 (en) | Anode electrodes for direct oxidation fuel cells and systems operating with concentrated liquid fuel | |
| US20080063909A1 (en) | Mixed reactant fuel cells | |
| US20040058203A1 (en) | Mixed reactant fuel cells | |
| US8785070B2 (en) | Direct oxidation fuel cells with improved cathode gas diffusion media for low air stoichiometry operation | |
| AU2001242584A1 (en) | Mixed reactant fuel cells | |
| AU2001242590A1 (en) | Mixed reactant fuel cells with flow through porous electrodes | |
| US20080070076A1 (en) | Fuel cell and fuel cell system, and electronic device | |
| JP5253814B2 (ja) | 高濃度燃料および低酸化剤化学量論比で作動する直接酸化型燃料電池および直接酸化型燃料電池システム | |
| US8283089B2 (en) | Direct oxidation fuel cell | |
| US20070264552A1 (en) | Fuel cell | |
| US20070178367A1 (en) | Direct oxidation fuel cell and method for operating direct oxidation fuel cell system | |
| US20070141448A1 (en) | Direct-type fuel cell and direct-type fuel cell system | |
| US8703359B2 (en) | Fuel cell and electronic device | |
| JP2006049115A (ja) | 燃料電池 | |
| JP2002056856A (ja) | 液体燃料を用いる燃料電池 | |
| US7655343B2 (en) | Liquid fuel supply type fuel cell | |
| CN100448079C (zh) | 直接液体供给燃料电池 | |
| JP5182476B2 (ja) | 燃料電池および電子機器 | |
| KAMO | Development trends of direct methanol fuel cells | |
| JP2006210357A (ja) | 液体燃料直接供給型燃料電池 | |
| WO2005078846A1 (fr) | Pile a combustible et electroreformeur jumeles | |
| KR20050121910A (ko) | 연료전지 시스템, 스택, 및 세퍼레이터 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: INI POWER SYSTEMS, INC., NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARKOSKI, LARRY J.;NATARAJAN, DILIP;PRIMAK, ALEX;REEL/FRAME:017497/0773 Effective date: 20060329 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |