US20060065518A1 - Method and apparatus for polishing an internal surface of an aluminum extrusion hollow shape - Google Patents
Method and apparatus for polishing an internal surface of an aluminum extrusion hollow shape Download PDFInfo
- Publication number
- US20060065518A1 US20060065518A1 US11/274,441 US27444105A US2006065518A1 US 20060065518 A1 US20060065518 A1 US 20060065518A1 US 27444105 A US27444105 A US 27444105A US 2006065518 A1 US2006065518 A1 US 2006065518A1
- Authority
- US
- United States
- Prior art keywords
- cylindrical portion
- polishing
- internal surface
- long sized
- cylindrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H5/00—Combined machining
- B23H5/06—Electrochemical machining combined with mechanical working, e.g. grinding or honing
- B23H5/08—Electrolytic grinding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H5/00—Combined machining
- B23H5/04—Electrical discharge machining combined with mechanical working
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H9/00—Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
- B23H9/005—Machining elongated bodies, e.g. rods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B5/00—Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
- B24B5/02—Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work
- B24B5/06—Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding cylindrical surfaces internally
- B24B5/08—Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor involving centres or chucks for holding work for grinding cylindrical surfaces internally involving a vertical tool spindle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B5/00—Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
- B24B5/36—Single-purpose machines or devices
- B24B5/40—Single-purpose machines or devices for grinding tubes internally
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F7/00—Constructional parts, or assemblies thereof, of cells for electrolytic removal of material from objects; Servicing or operating
Definitions
- the present invention relates to a polishing method and apparatus for mirror processing of the internal surface of a long sized cylindrical workpiece such as a metallic tube, shape or the like, including an aluminum extrusion hollow shape with a cylindrical portion, using electrolytic integrated polishing technology, and to a long sized cylindrical workpiece such as an aluminum extrusion hollow shape polished by electrolytic integrated polishing according to the method.
- Cylindrical portions of fluid pressure cylinders such as hydraulic cylinders, air cylinders or the like are required to have roundness of 25 ⁇ m for hydraulic cylinders and 150 ⁇ m for air cylinders.
- fluid pressure cylinders such as hydraulic cylinders, air cylinders or the like are required to have roundness of 25 ⁇ m for hydraulic cylinders and 150 ⁇ m for air cylinders.
- roundness or dimensional precision of cylindrical portions of most products thereof are improved by machining such as cutting or by post-machining burnishing.
- a material, the cylindrical portion of which has a small bore or a longitudinal size larger than the bore can not be machined. Therefore, the current situation has been such that, for example, yield is declining for not achieving required roundness, or productivity is staying low for having to machine the pieces, one by one, of a long sized material which must be cut into product length beforehand.
- electrolytic integrated polishing technology a hybrid of elution by electrolyte and abrasion by abrasives, is known as a method for polishing the surface of metal with a high precision.
- the electrolytic integrated polishing technology applied to mirror finishing of the internal surface of metallic tubes, generally inserts a rotation shaft, to the tip of which a tool electrode is attached, into a metallic tube, rotates the metallic tube about the rotation shaft, then supplies electrolyte inside the metallic tube and passes current, and polishes the internal surface of the metallic tube by a grindstone attached to the tool electrode, withdrawing the rotation shaft slowly.
- the above mentioned method is mainly applied to processing of the internal surface of pipes made from steel or stainless steel.
- Most apparatuses are horizontal types that can easily perform processing of long sized products, while there are few vertical types. (See Japanese Patent Laid-Open Publication No. Hei 3-98758.)
- Machining (cutting, for example) of the internal surface of the cylindrical portion of an aluminum extrusion hollow shape is more difficult than processing of external surface.
- long materials, with difficulties in processing due to problems with rigidity of the tool must be cut short for processing in order to preserve a certain processing precision. Therefore, other than increase in cost, ultra high precision mirror finishing of aluminum alloy by cutting has been difficult because aluminum alloy, having a low rigidity which is about one-third of steel and a coefficient of thermal expansion twice as large as steel, is easy to be deformed by cutting resistance or cutting heat.
- electrolytic integrated polishing which is an ultra high precision finishing technology with a roundness of finished surface equal to or smaller than lO ⁇ m and a surface roughness equal to or smaller than 1 ⁇ m, can be applied to long sized pipes.
- electrolytic integrated polishing methods and apparatuses that have been mainly used for polishing of the internal surface of steel or stainless steel tubes to polishing of the internal surface of a cylindrical portion of an aluminum extrusion hollow shape will not result in processing with a high precision.
- the inventors of the present invention failed to obtain the desired processing precision by electrolytic integrated polishing of the internal surface of an aluminum extrusion tube using a conventional electrolytic integrated polishing apparatus (a type in which axial directions of a long sized metallic tube and a tool electrode are horizontally oriented, and the metallic tube and the tool electrode are rotated in opposite directions with each other.)
- a conventional electrolytic integrated polishing apparatus a type in which axial directions of a long sized metallic tube and a tool electrode are horizontally oriented, and the metallic tube and the tool electrode are rotated in opposite directions with each other.
- the method according to the present invention is an electrolytic integrated polishing method for polishing the internal surface of the cylindrical portion of a long sized cylindrical workpiece such as an aluminum extrusion hollow shape by integrating elution by electrolyte and abrasion by a grindstone attached to a tool electrode inserted into the cylindrical portion, characterized by disposing the long sized cylindrical workpiece so that the axial center of its cylindrical portion is aligned with the vertical direction, inserting the tool electrode attached to the tip of a rotation shaft supported downward similarly along the vertical direction into the cylindrical portion, and rotating as well as relatively moving the tool electrode vertically.
- the apparatus according to the present invention is an electrolytic integrated polishing apparatus for polishing the internal surface of the cylindrical portion of a long sized cylindrical workpiece such as an aluminum extrusion hollow shape by integrating elution by electrolyte and abrasion by a grindstone attached to a tool electrode inserted into the cylindrical portion, characterized by comprising a work supporting unit for disposing the long sized cylindrical workpiece so that the axial center of its cylindrical portion is aligned with the vertical direction, a rotation shaft supported downward along the vertical direction and inserted into the cylindrical portion of the above mentioned long sized cylindrical workpiece, the tool electrode attached to the tip of the rotation shaft, and a transportation unit for moving the above mentioned shaft and/or the work supporting unit along the axial direction.
- a work supporting unit for disposing the long sized cylindrical workpiece so that the axial center of its cylindrical portion is aligned with the vertical direction
- a rotation shaft supported downward along the vertical direction and inserted into the cylindrical portion of the above mentioned long sized cylindrical workpiece
- the tool electrode attached to the tip
- the present method and apparatus because the rotation shaft is supported downward along the vertical direction and the tool electrode is attached to the tip thereof, influence of the weight of the tool electrode and the rotation shaft themselves is eliminated to suppress deflection of the tool electrode, which improves the precision of processing.
- the present method and apparatus can be similarly applied to a variety of metallic shapes such as aluminum extrusion hollow shape or the like having a variety of external shapes, because only the tool electrode is rotated without rotating the long sized cylindrical workpiece.
- the above mentioned transportation unit may be disposed at either one or both sides of the rotation shaft and the work supporting unit. That is, any disposition will do if the long sized cylindrical workpiece and the tool electrode move along the axial direction relatively to each other.
- the above mentioned rotation shaft is free-rotatably supported inside an external tube supported downward along the vertical direction.
- the external tube does not rotate, preferably covers almost throughout the whole length of the rotation shaft except for the tool electrode at the tip thereof, and is moved along the axial direction simultaneously with the rotation axis.
- the rotation shaft is free-rotatably supported at the center of the external tube, deflection of the tool electrode when rapidly rotating is suppressed to improve the precision of processing.
- the above external tube it is preferable to wind a plastic tube spirally around the periphery thereof and to enable pressurization inside the plastic tube.
- the external tube When the external tube is inserted, for example, into the cylindrical portion of a long sized cylindrical workpiece, such as an aluminum extrusion hollow shape, and pressure is applied onto the plastic tube at the state, the plastic tube expands and is pressed against the internal surface of the cylindrical portion.
- the effect preventing minute deflections caused by rotation of the rotation axis and the tool electrode and maintaining the external tube always at the center of the cylindrical portion, results in further improvement of the precision of processing.
- a pressure tube composed of silicon tube or the like, inside of which can be pressurized, is provided in the above mentioned hollow portion.
- the electrolytic integrated polishing method and apparatus it becomes possible to perform finish polishing, without machining, of a long sized metallic shape such as an aluminum extrusion hollow shape, the length of the cylindrical portion of which is ten times as large as the diameter, or more, with a roundness of the internal surface of the cylindrical portion equal to or smaller than lO ⁇ m and a surface roughness Rmax along the axial and circular directions equal to or smaller than 1 ⁇ m.
- FIG. 1 is a general view of an electrolytic integrated polishing apparatus according to the present invention
- FIG. 2 is a view illustrating the major portion thereof
- FIG. 3 is a vertical cross sectional view of the tool electrode
- FIG. 4 is a horizontal cross sectional view of the electrode at plane A-A in FIG. 3 ;
- FIG. 5 is a cross sectional view of an aluminum extrusion hollow shape used in the example.
- the electrolytic integrated polishing apparatus includes a platform 1 , a frame 2 disposed on the platform, an external tube 3 vertically disposed, a rotation shaft 4 vertically and free-rotatably disposed via a plurality of bearings (not shown) inside the external tube 3 , a tool electrode 5 attached to the tip of the rotation shaft 4 at the lower portion of the external tube 3 , a plastic tube 6 , inside of which can be pressurized by a mechanism (not shown), comprising a silicon tube or the like and being spirally wound around the periphery of the external tube 3 , a guide 7 attached to the frame 2 , a sliding member 8 freely and vertically slidable along the guide 7 , a supporting member 9 fixed to the sliding member 8 for supporting the upper end of the external tube 3 , a bearing member 10 fixed to the sliding member 8 for supporting nearby the upper portion of the rotation shaft 4 , a transportation motor 11 for sliding the sliding member 8 vertically along the guide 7 thus moving the external tube 3 and the
- the rotation shaft 4 is a hollow shaft (see FIG. 3 ) the top of which enabling introduction of air into a hollow bore 4 a via a rotary joint 15 .
- the present apparatus also includes a free ring mechanism 16 , which is located above the fixed chuck 13 , freely slidable along the guide 7 and can be fixed to any appropriate position, a guide sleeve 17 disposed on the free ring mechanism 16 , a liquid receiver 18 for receiving electrolyte flowing out from an opening of the guide sleeve 17 , a free ring mechanism 19 fixed at a lower position of the fixed chuck 13 , and a negative pole energizing brush 20 contacting the rotation shaft 4 .
- the free ring mechanisms 16 and 19 have approximately the same structure, wherein free rings 23 , 24 , 25 and 26 are free-rotatably supported, in two layers within fixed sleeves 21 and 22 , independent of each other, via a mechanical seal. Then, the free ring mechanisms 16 and 19 are kept in contact, via seal packings 27 and 28 with the upper and the lower openings of the cylindrical portion of the aluminum extrusion hollow shape W attached to the fixed chuck 13 .
- the free rings 23 to 26 have the same or slightly larger bore than the finished bore of the cylindrical portion of the aluminum extrusion hollow shape W, and approximately the same length as that of an elastic grindstone, described hereafter, of the tool electrode 5 .
- the free rings 23 to 26 are rotated freely and synchronously by the pressing force of the elastic grindstone, and prevent the end surface of the cylindrical portion of the aluminum extrusion hollow shape W from deforming into a bell-mouth shape because of the polishing.
- the guide sleeve 17 successively disposed on the free ring mechanism 16 , has approximately the same bore as those of the free rings 23 and 24 .
- the rotation shaft 4 is free-rotatably supported in the external tube 3 by the bearing 30 .
- a felt-like seal 33 intermediates between a seal holder 31 screwed into the lower end of the external tube 3 and a seal holder 32 fixed to the rotation shaft 4 to prevent electrolyte from flowing in between the external tube 3 and the rotation shaft 4 which are rotating relatively to each other.
- the tool electrode 5 is attached, via a mounting member 34 , to the tip of the rotation shaft 4 projecting from the lower end of the external tube 3 .
- hollow electrodes 35 and 36 are attached to the upper and the lower sections of the tool electrode 5 , apart from each other by a predetermined interval. Openings are provided to each of the electrodes 35 and 36 , in a radial manner, 180 degrees apart from each other. The openings of each of the electrodes 35 and 36 are faced to directions 90 degrees apart. In each opening, as abrasives, elastic grindstones 37 and 38 for coarse polishing and finishing, respectively, are supported as well as a holder 39 along radial directions to be freely slidable.
- a pressure tube 41 Disposed in the hollow of the tool electrode 5 is a pressure tube 41 , composed of a silicon tube or the like, one end of which communicates with the hollow bore 4 a of the rotation shaft 4 while the other end thereof is sealed by a plug 40 .
- the pressure tube 41 expands by air introduced into the hollow bore 4 a via the rotary joint 15 , and presses the elastic grindstones 37 and 38 , toward radial directions, against the internal surface of the cylindrical portion of the aluminum extrusion hollow shape W with a constant pressure according to the air pressure.
- a hard glass 42 is attached to the side walls of the openings of the electrodes 35 and 36 to reduce the friction between the electrodes and the holder 39 .
- the external surface of the external tube 3 is insulated by sheathing.
- the metallic portions of the tool electrode 5 are insulated by sheathing except that the sides of the external surface of the electrode 35 sandwiching the elastic grindstone 37 are exposed.
- the exposed surface the front side of the direction of rotation of the elastic grindstone 37 is an exposed surface 35 a for passivation coating generation, and the rear side thereof is an exposed surface 35 b for intensive elution.
- the plastic tube 6 wound around the external tube 3 is, as shown in FIG. 2 , located between the external surface of the external tube 3 and the internal surface of the cylindrical portion of the aluminum extrusion hollow shape W, the free rings 23 and 24 , and the guide sleeve 17 , respectively. Applying pressure inside of the plastic tube 6 expands and presses the plastic tube 6 against the internal surface of the above mentioned elements, which prevents minute deflections of the external tube 3 caused by rapid rotation of the rotation shaft 4 and the tool electrode 5 .
- the aluminum extrusion hollow shape W to be processed is grasped by the fixed chuck 13 and fixed on the free ring mechanism 19 via the seal packing 28 , and the free ring mechanism 16 is fixed on the aluminum extrusion hollow shape W via the seal packing 27 .
- the axial center of the internal surfaces of the cylindrical portion of the aluminum extrusion hollow shape W, each of the free rings 23 to 26 and the guide sleeve 17 must be aligned on the same axial line, and, at the same time, they must be aligned on the same axial line of the external tube 3 , the rotation shaft 4 and the tool electrode 5 . (see FIG.
- the electrolyte rises through the gap between the tool electrode 5 and the internal surfaces of the free rings 25 and 26 , and passes through the gap between the internal surface of the cylindrical portion of the aluminum extrusion hollow shape W and the external surface of the external tube 3 , the gap between the internal surfaces of the free rings 24 and 23 and the external surface of the external tube 3 , and the gap between the internal surface of the guide sleeve 17 and the external surface of the external tube 3 . Then the electrolyte is discharged to the liquid receiver 18 , recovered and, after having the polishing sludge separated by precipitation and filtered, forcedly fed again to the electrolyte injection opening.
- the elastic grindstones 37 and 38 are pressed against the internal surfaces of the free rings 25 and 26 , however the free rings 25 and 26 will not be polished because they are rotating in synchronization with the rotation of the elastic grindstones 37 and 38 .
- inertia weight of each becomes small, which results in better response to the rotation of the elastic grindstones 37 and 38 .
- the elastic grindstone 37 is pressed against its internal surface and polishing is performed based on the following principle. That is, while the electrode 35 is rapidly rotating, a thin passivation coating is generated on the internal surface of the cylindrical portion via the exposed surface 35 a for passivation coating generation before the elastic grindstone 37 begins polishing. Then the elastic grindstone 37 abrades the internal surface of the cylindrical portion, which results in removing the passivation coating which lacks viscosity and exposing the metallic base. Immediately after that, electrolytic current concentrates on the height of the metallic base via the exposed surface 35 b for intensive elution and performs selective electrolysis. Following the above, the tool electrode 5 gradually rises and the electrolytic integrated polishing is performed on the internal surface of the cylindrical portion until the elastic grindstones 37 and 38 are withdrawn from the cylindrical portion of the aluminum extrusion hollow shape W, smoothing the internal surface.
- the free rings 25 and 26 prevent the end surface of the cylindrical portion of the aluminum extrusion hollow shape W from being polished into a bell-mouth shape. That is, with regard to the elastic grindstone 37 for example, on its way entering the cylindrical portion, a portion of the elastic grindstone 37 is pressed against the internal surface of the cylindrical portion while the rest of the portions thereof are pressed against the free ring 25 . However, because the bores of the cylindrical portion and the free ring 25 are the same, the pressed surface of the elastic grindstone 37 being pressed does not tilt, therefore the end surface of the cylindrical portion will not be polished into a bell-mouth shape.
- the free ring 24 prevents the end surface of the cylindrical portion from being polished into a bell-mouth shape.
- the plastic tube 6 While the polishing process is being performed, the plastic tube 6 is pressurized and pressed against the internal surfaces of the cylindrical portion of the aluminum extrusion hollow shape W, the free rings 23 and 24 , and the guide sleeve 17 , respectively preventing minute deflections of the external tube 3 caused by rapid rotation of the rotation shaft 4 and the tool electrode 5 , which eventually prevents deflection of the tool electrode 5 in the cylindrical portion.
- the plastic tube 6 can provide a contacting internal surface until the elastic grindstones 37 and 38 are completely withdrawn from the cylindrical portion of the aluminum extrusion hollow shape W and stopped rotating, which can prevent deflection of the external tube 3 .
- metallic tubes or shapes made from steel, stainless steel, aluminum, aluminum alloy or the like may be exemplified, although not limited to them, for the long sized cylindrical workpiece to which the method according to the present invention is applied.
- the length of the cylindrical portion is ten times as large as the diameter, or more.
- the long sized cylindrical workpiece is finished to have a roundness of the internal surface of the cylindrical portion thereof equal to or smaller than 10 ⁇ m and a surface roughness Rmax equal to or smaller than 1 ⁇ m, by the electrolytic integrated polishing.
- a 600 mm long aluminum extrusion hollow shape, having a cross section shown in FIG. 5 was disposed in a vertical type electrolytic integrated polishing apparatus shown in FIG. 1 for polishing its central cylindrical portion (32 mm of finishing bore). Polishing was performed with the tool electrode having two-layered electrodes and elastic grindstones for coarse polishing and finishing, and under a condition that the electrolyte was sodium nitrate aqueous solution (20%), applied voltage was 8V, rotation speed of the tool electrode was 2.5 m, rising speed was 1 m per minute.
- a 600 mm long stainless steel cold-finished tube was disposed in a vertical type electrolytic integrated polishing apparatus shown in FIG. 1 for polishing its internal surface (32 mm of finishing bore). Polishing was performed with the tool electrode having two-layered electrodes and elastic grindstones for coarse polishing and finishing, and under a condition that the electrolyte was sodium nitrate aqueous solution (20%), applied voltage was 8V, rotation speed of the tool electrode was 3.0 m, rising speed was 0.4 m per minute.
- polishing of the internal surface of the cylindrical portion of a long sized cylindrical workpiece with a high precision in terms of roundness and surface roughness becomes possible, without machining. Therefore, for example, a process, wherein a workpiece still in the form of a long sized material is polished and afterwards cut into pieces with a length of a fluid pressure cylinder, can be performed, improving the efficiency of the high-precision polishing and the productivity. Additionally, the present invention can be applied to high-precision polishing of the internal surfaces of the cylindrical portions of metallic shapes having a variety of external shapes.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
There is provided an electrolytic integrated polishing apparatus which enables high precision polishing of the internal surface of a long sized cylindrical workpiece such as a metallic tube. The apparatus includes a work supporting unit for disposing the cylindrical workpiece, so that the axial center of the cylindrical portion is aligned with the vertical direction, a rotation shaft supported downward along the vertical direction and free-rotatably supported in an external tube which is freely movable along the vertical direction, a tool electrode including a grindstone directed to radial directions, attached to the tip of the rotation shaft, and a plastic tube wound around the external surface of the external tube for pressurization.
Description
- This application is a divisional application under §1.53(b) of prior application Ser. No. 09/341,339 filed Aug. 30, 1999; which was a §371 filing of PCT/JP98/04494 filed Oct. 5, 1998, entitled: METHOD AND APPARATUS FOR POLISHING INNER SURFACE OF CYLINDRICAL PORTION OF ELONGATED CYLINDRICAL WORK AND ELONGATED CYLINDRICAL WORK; which claimed priority under 35 USC §119(a)-(d) to Japanese Application No. 9/325215 filed Nov. 10, 1997.
- The present invention relates to a polishing method and apparatus for mirror processing of the internal surface of a long sized cylindrical workpiece such as a metallic tube, shape or the like, including an aluminum extrusion hollow shape with a cylindrical portion, using electrolytic integrated polishing technology, and to a long sized cylindrical workpiece such as an aluminum extrusion hollow shape polished by electrolytic integrated polishing according to the method.
- Cylindrical portions of fluid pressure cylinders such as hydraulic cylinders, air cylinders or the like are required to have roundness of 25 μm for hydraulic cylinders and 150 μm for air cylinders. For example, because aluminum extrusion hollow shapes used for these cylinders have inadequate precision by normal extrusion only, roundness or dimensional precision of cylindrical portions of most products thereof are improved by machining such as cutting or by post-machining burnishing. However, a material, the cylindrical portion of which has a small bore or a longitudinal size larger than the bore, can not be machined. Therefore, the current situation has been such that, for example, yield is declining for not achieving required roundness, or productivity is staying low for having to machine the pieces, one by one, of a long sized material which must be cut into product length beforehand.
- On the other hand, electrolytic integrated polishing technology, a hybrid of elution by electrolyte and abrasion by abrasives, is known as a method for polishing the surface of metal with a high precision. The electrolytic integrated polishing technology, applied to mirror finishing of the internal surface of metallic tubes, generally inserts a rotation shaft, to the tip of which a tool electrode is attached, into a metallic tube, rotates the metallic tube about the rotation shaft, then supplies electrolyte inside the metallic tube and passes current, and polishes the internal surface of the metallic tube by a grindstone attached to the tool electrode, withdrawing the rotation shaft slowly.
- With such electrolytic integrated polishing methods for the internal surface of metallic tubes, abrasion of the grindstone prevents high precision mirror finishing due to inappropriate polishing of the internal surface. Therefore, apparatuses coping with abrasion of the grindstone by applying pressing force onto the grindstone via a leaf, a diaphragm or the like are conventionally known. (See Japanese utility Model Laid-Open Publication No. Hei 4-130120, 5-86429 and so on.) The above mentioned conventional method using a leaf cannot preserve the desired polishing performance because pressing force decreases as the grindstone abrades, especially in narrow places such as the internal surface of a long sized metallic tube. Besides, there have been shortcomings such as the necessity of a specific insertion guide for inserting the polishing tool into the metallic tube because the leaf generates force by being bent to a predetermined extent.
- On the other hand, although a method using a diaphragm can resolve the above mentioned problem caused by the leaf, a plurality of diaphragms corresponding to a plurality of grindstones must be individually disposed, which makes processing of the installation sections, and installation work complicated. Besides pressing force applied to individual grindstones is not uniform due to variations in the plurality of diaphragms, which makes mirror finishing with a high precision impossible.
- The above mentioned method is mainly applied to processing of the internal surface of pipes made from steel or stainless steel. Most apparatuses are horizontal types that can easily perform processing of long sized products, while there are few vertical types. (See Japanese Patent Laid-Open Publication No. Hei 3-98758.) Furthermore, there is no concrete example of application to aluminum extrusion shapes having a variety of external shapes.
- Machining (cutting, for example) of the internal surface of the cylindrical portion of an aluminum extrusion hollow shape is more difficult than processing of external surface. Besides, long materials, with difficulties in processing due to problems with rigidity of the tool, must be cut short for processing in order to preserve a certain processing precision. Therefore, other than increase in cost, ultra high precision mirror finishing of aluminum alloy by cutting has been difficult because aluminum alloy, having a low rigidity which is about one-third of steel and a coefficient of thermal expansion twice as large as steel, is easy to be deformed by cutting resistance or cutting heat.
- On the other hand, electrolytic integrated polishing which is an ultra high precision finishing technology with a roundness of finished surface equal to or smaller than lO μm and a surface roughness equal to or smaller than 1 μm, can be applied to long sized pipes. However, a problem remains in that directly applying electrolytic integrated polishing methods and apparatuses that have been mainly used for polishing of the internal surface of steel or stainless steel tubes to polishing of the internal surface of a cylindrical portion of an aluminum extrusion hollow shape will not result in processing with a high precision.
- For example, the inventors of the present invention failed to obtain the desired processing precision by electrolytic integrated polishing of the internal surface of an aluminum extrusion tube using a conventional electrolytic integrated polishing apparatus (a type in which axial directions of a long sized metallic tube and a tool electrode are horizontally oriented, and the metallic tube and the tool electrode are rotated in opposite directions with each other.) This is because processing was performed with the pressing force of the grindstone controlled at a low pressure due to softness and easiness to deformation of aluminum, having a low strength and a low rigidity which are about one-third of steel or stainless steel, and because precision of processing degrades by deflection of the axial center due to influence of weight of the tool electrode supported horizontally by the rotation axis.
- Besides, since rotating metallic shapes having a variety of external shapes is virtually impossible, long sized cylindrical workpieces to which the above mentioned electrolytic integrated polishing apparatus can be applied are limited to cylinder pipes.
- It is an object of the present invention, having been made considering the above mentioned problems in the prior art, to provide an electrolytic integrated polishing method and apparatus which enables high precision polishing of the internal surfaces of the cylindrical portions of metallic shapes having a variety of external shapes such as aluminum extrusion hollow shapes or the like, and to provide long sized cylindrical workpieces such as aluminum extrusion hollow shapes having internal surfaces of the cylindrical portions polished with a high precision.
- The method according to the present invention is an electrolytic integrated polishing method for polishing the internal surface of the cylindrical portion of a long sized cylindrical workpiece such as an aluminum extrusion hollow shape by integrating elution by electrolyte and abrasion by a grindstone attached to a tool electrode inserted into the cylindrical portion, characterized by disposing the long sized cylindrical workpiece so that the axial center of its cylindrical portion is aligned with the vertical direction, inserting the tool electrode attached to the tip of a rotation shaft supported downward similarly along the vertical direction into the cylindrical portion, and rotating as well as relatively moving the tool electrode vertically.
- Besides, the apparatus according to the present invention is an electrolytic integrated polishing apparatus for polishing the internal surface of the cylindrical portion of a long sized cylindrical workpiece such as an aluminum extrusion hollow shape by integrating elution by electrolyte and abrasion by a grindstone attached to a tool electrode inserted into the cylindrical portion, characterized by comprising a work supporting unit for disposing the long sized cylindrical workpiece so that the axial center of its cylindrical portion is aligned with the vertical direction, a rotation shaft supported downward along the vertical direction and inserted into the cylindrical portion of the above mentioned long sized cylindrical workpiece, the tool electrode attached to the tip of the rotation shaft, and a transportation unit for moving the above mentioned shaft and/or the work supporting unit along the axial direction.
- In the present method and apparatus, because the rotation shaft is supported downward along the vertical direction and the tool electrode is attached to the tip thereof, influence of the weight of the tool electrode and the rotation shaft themselves is eliminated to suppress deflection of the tool electrode, which improves the precision of processing. Besides, the present method and apparatus can be similarly applied to a variety of metallic shapes such as aluminum extrusion hollow shape or the like having a variety of external shapes, because only the tool electrode is rotated without rotating the long sized cylindrical workpiece.
- Here, the above mentioned transportation unit may be disposed at either one or both sides of the rotation shaft and the work supporting unit. That is, any disposition will do if the long sized cylindrical workpiece and the tool electrode move along the axial direction relatively to each other.
- Note that as an embodiment of the above mentioned polishing apparatus, the above mentioned rotation shaft is free-rotatably supported inside an external tube supported downward along the vertical direction. The external tube does not rotate, preferably covers almost throughout the whole length of the rotation shaft except for the tool electrode at the tip thereof, and is moved along the axial direction simultaneously with the rotation axis. In this case, since the rotation shaft is free-rotatably supported at the center of the external tube, deflection of the tool electrode when rapidly rotating is suppressed to improve the precision of processing.
- Besides, when the above external tube is provided, it is preferable to wind a plastic tube spirally around the periphery thereof and to enable pressurization inside the plastic tube. When the external tube is inserted, for example, into the cylindrical portion of a long sized cylindrical workpiece, such as an aluminum extrusion hollow shape, and pressure is applied onto the plastic tube at the state, the plastic tube expands and is pressed against the internal surface of the cylindrical portion. The effect, preventing minute deflections caused by rotation of the rotation axis and the tool electrode and maintaining the external tube always at the center of the cylindrical portion, results in further improvement of the precision of processing.
- Furthermore, preferably a hollow portion is provided inside the tool electrode, a pressure tube composed of silicon tube or the like, inside of which can be pressurized, is provided in the above mentioned hollow portion. By pressurizing inside the pressure tube, elastic grindstones can be pressed with a constant pressure toward radial directions. Besides, a constant pressing force is always maintained when the grindstones are worn out.
- Moreover, by the electrolytic integrated polishing method and apparatus, it becomes possible to perform finish polishing, without machining, of a long sized metallic shape such as an aluminum extrusion hollow shape, the length of the cylindrical portion of which is ten times as large as the diameter, or more, with a roundness of the internal surface of the cylindrical portion equal to or smaller than lO μm and a surface roughness Rmax along the axial and circular directions equal to or smaller than 1 μm.
- Other characteristics of the present invention will be described in detail in the following sections about preferred embodiments of the invention.
-
FIG. 1 is a general view of an electrolytic integrated polishing apparatus according to the present invention; -
FIG. 2 is a view illustrating the major portion thereof; -
FIG. 3 is a vertical cross sectional view of the tool electrode; -
FIG. 4 is a horizontal cross sectional view of the electrode at plane A-A inFIG. 3 ; and -
FIG. 5 is a cross sectional view of an aluminum extrusion hollow shape used in the example. - The electrolytic integrated polishing apparatus according to the present invention will be described in detail hereinafter with reference to FIGS. 1 to 5.
- As shown in
FIGS. 1 and 2 , the electrolytic integrated polishing apparatus includes a platform 1, aframe 2 disposed on the platform, anexternal tube 3 vertically disposed, arotation shaft 4 vertically and free-rotatably disposed via a plurality of bearings (not shown) inside theexternal tube 3, atool electrode 5 attached to the tip of therotation shaft 4 at the lower portion of theexternal tube 3, aplastic tube 6, inside of which can be pressurized by a mechanism (not shown), comprising a silicon tube or the like and being spirally wound around the periphery of theexternal tube 3, aguide 7 attached to theframe 2, a slidingmember 8 freely and vertically slidable along theguide 7, a supporting member 9 fixed to the slidingmember 8 for supporting the upper end of theexternal tube 3, abearing member 10 fixed to the slidingmember 8 for supporting nearby the upper portion of therotation shaft 4, a transportation motor 11 for sliding the slidingmember 8 vertically along theguide 7 thus moving theexternal tube 3 and therotation shaft 4 upward and downward, amotor 12 attached to the slidingmember 8 for rotating therotation shaft 4, and a fixed chuck 13 (positive pole energizing chuck) for fixing a long sized cylindrical workpiece, such as, for example, an aluminum extrusion hollow shape. - In the electrolytic integrated polishing apparatus, the
rotation shaft 4 is a hollow shaft (seeFIG. 3 ) the top of which enabling introduction of air into a hollow bore 4 a via arotary joint 15. Besides, the present apparatus also includes afree ring mechanism 16, which is located above the fixedchuck 13, freely slidable along theguide 7 and can be fixed to any appropriate position, aguide sleeve 17 disposed on thefree ring mechanism 16, aliquid receiver 18 for receiving electrolyte flowing out from an opening of theguide sleeve 17, afree ring mechanism 19 fixed at a lower position of thefixed chuck 13, and a negativepole energizing brush 20 contacting therotation shaft 4. - The
16 and 19 have approximately the same structure, whereinfree ring mechanisms 23, 24, 25 and 26 are free-rotatably supported, in two layers within fixedfree rings 21 and 22, independent of each other, via a mechanical seal. Then, thesleeves 16 and 19 are kept in contact, viafree ring mechanisms 27 and 28 with the upper and the lower openings of the cylindrical portion of the aluminum extrusion hollow shape W attached to theseal packings fixed chuck 13. The free rings 23 to 26 have the same or slightly larger bore than the finished bore of the cylindrical portion of the aluminum extrusion hollow shape W, and approximately the same length as that of an elastic grindstone, described hereafter, of thetool electrode 5. The free rings 23 to 26 are rotated freely and synchronously by the pressing force of the elastic grindstone, and prevent the end surface of the cylindrical portion of the aluminum extrusion hollow shape W from deforming into a bell-mouth shape because of the polishing. - Besides, the
guide sleeve 17, successively disposed on thefree ring mechanism 16, has approximately the same bore as those of the 23 and 24.free rings - As shown in
FIG. 3 , therotation shaft 4 is free-rotatably supported in theexternal tube 3 by thebearing 30. Besides, a felt-like seal 33 intermediates between aseal holder 31 screwed into the lower end of theexternal tube 3 and aseal holder 32 fixed to therotation shaft 4 to prevent electrolyte from flowing in between theexternal tube 3 and therotation shaft 4 which are rotating relatively to each other. - The
tool electrode 5 is attached, via a mountingmember 34, to the tip of therotation shaft 4 projecting from the lower end of theexternal tube 3. As also shown inFIG. 4 , 35 and 36 are attached to the upper and the lower sections of thehollow electrodes tool electrode 5, apart from each other by a predetermined interval. Openings are provided to each of the 35 and 36, in a radial manner, 180 degrees apart from each other. The openings of each of theelectrodes 35 and 36 are faced to directions 90 degrees apart. In each opening, as abrasives,electrodes 37 and 38 for coarse polishing and finishing, respectively, are supported as well as aelastic grindstones holder 39 along radial directions to be freely slidable. Disposed in the hollow of thetool electrode 5 is apressure tube 41, composed of a silicon tube or the like, one end of which communicates with the hollow bore 4 a of therotation shaft 4 while the other end thereof is sealed by aplug 40. Thepressure tube 41 expands by air introduced into the hollow bore 4 a via the rotary joint 15, and presses the 37 and 38, toward radial directions, against the internal surface of the cylindrical portion of the aluminum extrusion hollow shape W with a constant pressure according to the air pressure. Aelastic grindstones hard glass 42 is attached to the side walls of the openings of the 35 and 36 to reduce the friction between the electrodes and theelectrodes holder 39. - In order to prevent leakage current, insulation is provided between the supporting member 9 and the
external tube 3 and between the bearingmember 10 and therotation shaft 4, and the external surface of theexternal tube 3 is insulated by sheathing. Besides, the metallic portions of thetool electrode 5 are insulated by sheathing except that the sides of the external surface of theelectrode 35 sandwiching theelastic grindstone 37 are exposed. As for the exposed surface, the front side of the direction of rotation of theelastic grindstone 37 is an exposed surface 35 a for passivation coating generation, and the rear side thereof is an exposedsurface 35 b for intensive elution. - The
plastic tube 6 wound around theexternal tube 3 is, as shown inFIG. 2 , located between the external surface of theexternal tube 3 and the internal surface of the cylindrical portion of the aluminum extrusion hollow shape W, the 23 and 24, and thefree rings guide sleeve 17, respectively. Applying pressure inside of theplastic tube 6 expands and presses theplastic tube 6 against the internal surface of the above mentioned elements, which prevents minute deflections of theexternal tube 3 caused by rapid rotation of therotation shaft 4 and thetool electrode 5. - The polishing process using the electrolytic integrated polishing apparatus will be described next.
- Firstly, the aluminum extrusion hollow shape W to be processed is grasped by the fixed
chuck 13 and fixed on thefree ring mechanism 19 via the seal packing 28, and thefree ring mechanism 16 is fixed on the aluminum extrusion hollow shape W via the seal packing 27. Here, the axial center of the internal surfaces of the cylindrical portion of the aluminum extrusion hollow shape W, each of thefree rings 23 to 26 and theguide sleeve 17 must be aligned on the same axial line, and, at the same time, they must be aligned on the same axial line of theexternal tube 3, therotation shaft 4 and thetool electrode 5. (seeFIG. 1 ) Under this situation the transportation motor 11 is driven to bring down the slidingmember 8 and to insert thetool electrode 5 from theguide sleeve 17. Thus the bringing down is stopped at a position shown inFIG. 2 , that is, a position where theelastic grindstone 37 for coarse polishing meets the lower position, for example, being the location of thefree ring mechanism 19, of the cylindrical portion of the aluminum extrusion hollow shape W. Because no air is introduced into thepressure tube 41 and the inside of theplastic tube 6 is not pressurized, thetool electrode 5 and theexternal tube 3 can be smoothly inserted without resistance. - Next, air is introduced into the
plastic tube 6 and thepressure tube 41 for pressurization, and electrolyte is introduced from the electrolyte injection opening at the lower portion of thefree ring mechanism 19. Then themotor 12 is driven to rapidly rotate therotation shaft 4 and thetool electrode 5. Therotation shaft 4 and the fixedchuck 13 are energized, setting the 35 and 36 to be the negative pole and the aluminum extrusion hollow shape W to be the positive pole and driving the transportation motor 11 to bring up theelectrodes tool electrode 5 at a constant velocity. - Now, the electrolyte rises through the gap between the
tool electrode 5 and the internal surfaces of the 25 and 26, and passes through the gap between the internal surface of the cylindrical portion of the aluminum extrusion hollow shape W and the external surface of thefree rings external tube 3, the gap between the internal surfaces of the 24 and 23 and the external surface of thefree rings external tube 3, and the gap between the internal surface of theguide sleeve 17 and the external surface of theexternal tube 3. Then the electrolyte is discharged to theliquid receiver 18, recovered and, after having the polishing sludge separated by precipitation and filtered, forcedly fed again to the electrolyte injection opening. - At the beginning of the polishing process, the
37 and 38 are pressed against the internal surfaces of theelastic grindstones 25 and 26, however thefree rings 25 and 26 will not be polished because they are rotating in synchronization with the rotation of thefree rings 37 and 38. Here, by disposing theelastic grindstones 25 and 26 in two layers with approximately the same length as thefree rings 37 and 38, inertia weight of each becomes small, which results in better response to the rotation of theelastic grindstones 37 and 38.elastic grindstones - As the
tool electrode 5 rises and theelastic grindstone 37 comes into the cylindrical portion of the aluminum extrusion hollow shape W, theelastic grindstone 37 is pressed against its internal surface and polishing is performed based on the following principle. That is, while theelectrode 35 is rapidly rotating, a thin passivation coating is generated on the internal surface of the cylindrical portion via the exposed surface 35 a for passivation coating generation before theelastic grindstone 37 begins polishing. Then theelastic grindstone 37 abrades the internal surface of the cylindrical portion, which results in removing the passivation coating which lacks viscosity and exposing the metallic base. Immediately after that, electrolytic current concentrates on the height of the metallic base via the exposedsurface 35 b for intensive elution and performs selective electrolysis. Following the above, thetool electrode 5 gradually rises and the electrolytic integrated polishing is performed on the internal surface of the cylindrical portion until the 37 and 38 are withdrawn from the cylindrical portion of the aluminum extrusion hollow shape W, smoothing the internal surface.elastic grindstones - At the initial stage of the polishing process, the
25 and 26 prevent the end surface of the cylindrical portion of the aluminum extrusion hollow shape W from being polished into a bell-mouth shape. That is, with regard to thefree rings elastic grindstone 37 for example, on its way entering the cylindrical portion, a portion of theelastic grindstone 37 is pressed against the internal surface of the cylindrical portion while the rest of the portions thereof are pressed against thefree ring 25. However, because the bores of the cylindrical portion and thefree ring 25 are the same, the pressed surface of theelastic grindstone 37 being pressed does not tilt, therefore the end surface of the cylindrical portion will not be polished into a bell-mouth shape. - When the
37 or 38 are being withdrawn from the cylindrical portion of the aluminum extrusion hollow shape W at the final stage of the polishing process, theelastic grindstones free ring 24 prevents the end surface of the cylindrical portion from being polished into a bell-mouth shape. - While the polishing process is being performed, the
plastic tube 6 is pressurized and pressed against the internal surfaces of the cylindrical portion of the aluminum extrusion hollow shape W, the 23 and 24, and thefree rings guide sleeve 17, respectively preventing minute deflections of theexternal tube 3 caused by rapid rotation of therotation shaft 4 and thetool electrode 5, which eventually prevents deflection of thetool electrode 5 in the cylindrical portion. By disposing theguide sleeve 17 with a constant length successively above thefree ring mechanism 16, theplastic tube 6 can provide a contacting internal surface until the 37 and 38 are completely withdrawn from the cylindrical portion of the aluminum extrusion hollow shape W and stopped rotating, which can prevent deflection of theelastic grindstones external tube 3. - Here, metallic tubes or shapes made from steel, stainless steel, aluminum, aluminum alloy or the like may be exemplified, although not limited to them, for the long sized cylindrical workpiece to which the method according to the present invention is applied. Besides, the length of the cylindrical portion is ten times as large as the diameter, or more. The long sized cylindrical workpiece is finished to have a roundness of the internal surface of the cylindrical portion thereof equal to or smaller than 10 μm and a surface roughness Rmax equal to or smaller than 1 μm, by the electrolytic integrated polishing.
- A 600 mm long aluminum extrusion hollow shape, having a cross section shown in
FIG. 5 was disposed in a vertical type electrolytic integrated polishing apparatus shown inFIG. 1 for polishing its central cylindrical portion (32 mm of finishing bore). Polishing was performed with the tool electrode having two-layered electrodes and elastic grindstones for coarse polishing and finishing, and under a condition that the electrolyte was sodium nitrate aqueous solution (20%), applied voltage was 8V, rotation speed of the tool electrode was 2.5 m, rising speed was 1 m per minute. - As a result, roundness of the shape at the central cylindrical portion, which was 450 μm before polishing, became 9.2 μm after polishing, surface roughness (Rmax) along axial direction, which was 0.8 μm before polishing, became 0.5 μm after polishing, and surface roughness (Rmax) along circular direction, which was 1.98 μm before polishing, became 0.3 μm after polishing, all of which showed a largely improved precision.
- A 600 mm long stainless steel cold-finished tube was disposed in a vertical type electrolytic integrated polishing apparatus shown in
FIG. 1 for polishing its internal surface (32 mm of finishing bore). Polishing was performed with the tool electrode having two-layered electrodes and elastic grindstones for coarse polishing and finishing, and under a condition that the electrolyte was sodium nitrate aqueous solution (20%), applied voltage was 8V, rotation speed of the tool electrode was 3.0 m, rising speed was 0.4 m per minute. - As a result, surface roughness (Rmax) of the base tube, which was 10 μm before polishing, became after finishing, 0.2 μm with a grain size #1500 and 0.08 μm with a grain size #6000, all of which provided an excellent mirror finishing.
- According to the present invention, polishing of the internal surface of the cylindrical portion of a long sized cylindrical workpiece with a high precision in terms of roundness and surface roughness becomes possible, without machining. Therefore, for example, a process, wherein a workpiece still in the form of a long sized material is polished and afterwards cut into pieces with a length of a fluid pressure cylinder, can be performed, improving the efficiency of the high-precision polishing and the productivity. Additionally, the present invention can be applied to high-precision polishing of the internal surfaces of the cylindrical portions of metallic shapes having a variety of external shapes.
Claims (9)
1. An electrolytic integrated polishing apparatus for polishing an internal surface of a cylindrical portion of a long sized cylindrical workpiece by integrating elution by electrolyte and abrasion by a grindstone attached to a tool electrode inserted into the cylindrical portion, said apparatus comprising a work supporting unit for disposing the long sized cylindrical workpiece so that the axial center of its cylindrical portion is aligned with the vertical direction, a rotation shaft inserted into the cylindrical portion of said long sized cylindrical workpiece, a coaxial external tube supported downward along the vertical direction to free-rotatably support said rotation shaft and inserted together with said rotation shaft into the cylindrical portion of said long sized cylindrical workpiece, a tool electrode attached to the tip of said rotation shaft, and a transportation unit for moving said rotation shaft and/or the work supporting unit along the axial direction.
2. The electrolytic integrated polishing apparatus for polishing the internal surface of the cylindrical portion of a long sized cylindrical workpiece according to claim 1 , wherein a plastic tube, inside of which can be pressurized, is spirally wound around the periphery of said external tube.
3. The electrolytic integrated polishing apparatus for polishing the internal surface of the cylindrical portion of a long sized cylindrical workpiece according to claim 2 , wherein a free ring, having approximately the same bore as the finished bore of said cylindrical portion, is free-rotatably disposed to the upper and the lower positions of the cylindrical portion of the long sized cylindrical workpiece, and a guide sleeve with a predetermined length, having approximately the same bore as the bore of said free ring, is disposed further above the free ring disposed at the upper side.
4. An aluminum extrusion hollow shape finished by the electrolyte integrated polishing apparatus according to claim 1 , wherein a length of a cylindrical portion thereof being ten times as large as a diameter thereof, or more, and a roundness of an internal surface of the cylindrical portion equal to or smaller than 10 μm and a surface roughness Rmax equal to or small than 1 μm.
5. The electrolytic integrated polishing apparatus for polishing the internal surface of the cylindrical portion of a long sized cylindrical workpiece according to claim 1 , wherein a free ring, having approximately the same bore as a finished bore of said cylindrical portion, is free-rotatably disposed to the upper and the lower positions of the cylindrical portion of the long sized cylindrical workpiece.
6. The electrolytic integrated polishing apparatus for polishing the internal surface of the cylindrical portion of a long sized cylindrical workpiece according to claim 2 , wherein a free ring, having approximately the same bore as a finished bore of said cylindrical portion, is free-rotatably disposed to the upper and the lower positions of the cylindrical portion of the long sized cylindrical workpiece.
7. The electrolytic integrated polishing apparatus for polishing the internal surface of the cylindrical portion of a long sized cylindrical workpiece according to claim 1 , wherein a hollow portion is provided inside the tool electrode, and a plastic tube, inside of which can be pressurized, is provided in said hollow portion.
8. The electrolytic integrated polishing apparatus for polishing the internal surface of the cylindrical portion of a long sized cylindrical workpiece according to claim 2 , wherein a hollow portion is provided inside the tool electrode, and a plastic tube, inside of which can be pressurized, is provided in said hollow portion.
9. The internal surface of the cylindrical portion of a long sized cylindrical workpiece according to claim 3 , wherein a hollow portion is provided inside the tool electrode, and a plastic tube, inside of which can be pressurized, is provided in said hollow portion.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/274,441 US20060065518A1 (en) | 1997-11-10 | 2005-11-14 | Method and apparatus for polishing an internal surface of an aluminum extrusion hollow shape |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9325215A JPH11138350A (en) | 1997-11-10 | 1997-11-10 | Method and device for grinding of internal surface of cylindrical part in aluminum hollow extruding section and aluminum hollow extruding section |
| JP9-325215 | 1997-11-10 | ||
| US09/341,339 US6994610B1 (en) | 1997-11-10 | 1998-10-05 | Method and apparatus for polishing inner an internal surface of an aluminum extrusion hollow shape |
| PCT/JP1998/004494 WO1999024206A1 (en) | 1997-11-10 | 1998-10-05 | Method and apparatus for polishing inner surface of cylindrical portion of elongated cylindrical work and elongated cylindrical work |
| US11/274,441 US20060065518A1 (en) | 1997-11-10 | 2005-11-14 | Method and apparatus for polishing an internal surface of an aluminum extrusion hollow shape |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/341,339 Division US6994610B1 (en) | 1997-11-10 | 1998-10-05 | Method and apparatus for polishing inner an internal surface of an aluminum extrusion hollow shape |
| PCT/JP1998/004494 Division WO1999024206A1 (en) | 1997-11-10 | 1998-10-05 | Method and apparatus for polishing inner surface of cylindrical portion of elongated cylindrical work and elongated cylindrical work |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20060065518A1 true US20060065518A1 (en) | 2006-03-30 |
Family
ID=18174320
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/341,339 Expired - Fee Related US6994610B1 (en) | 1997-11-10 | 1998-10-05 | Method and apparatus for polishing inner an internal surface of an aluminum extrusion hollow shape |
| US11/274,441 Abandoned US20060065518A1 (en) | 1997-11-10 | 2005-11-14 | Method and apparatus for polishing an internal surface of an aluminum extrusion hollow shape |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/341,339 Expired - Fee Related US6994610B1 (en) | 1997-11-10 | 1998-10-05 | Method and apparatus for polishing inner an internal surface of an aluminum extrusion hollow shape |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US6994610B1 (en) |
| EP (1) | EP0951960A4 (en) |
| JP (1) | JPH11138350A (en) |
| AU (1) | AU9283898A (en) |
| WO (1) | WO1999024206A1 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8690450B2 (en) | 2008-12-15 | 2014-04-08 | Ntn Corporation | Machine component and super-finishing method therefor |
| CN104057374A (en) * | 2014-07-02 | 2014-09-24 | 苏州科博思流体科技有限公司 | Pipe fitting polishing device and pipe fitting polishing method |
| WO2017066420A1 (en) * | 2015-10-15 | 2017-04-20 | The University Of Florida Research Foundation , Inc. | Polishing technique for flexible tubes |
| CN106956206A (en) * | 2017-03-29 | 2017-07-18 | 施亮 | Cylinder burnishing device is used in a kind of water purifier production |
| CN111070073A (en) * | 2019-12-31 | 2020-04-28 | 中国计量大学 | Inner cylindrical surface hydrodynamic cavitation reinforcing abrasive flow polishing system |
| CN113118947A (en) * | 2021-04-21 | 2021-07-16 | 西安石油大学 | Pipe maintenance device capable of removing corrosion rust of gully on inner wall |
| US11590625B2 (en) * | 2018-05-31 | 2023-02-28 | University Of Florida Research Foundation, Incorporated | Deburring technique for stents |
Families Citing this family (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW530717U (en) * | 2001-12-13 | 2003-05-01 | Ind Tech Res Inst | An apparatus for electrolyzing polishing/grinding internal surface of long tube |
| CN1319698C (en) * | 2004-08-16 | 2007-06-06 | 苏州江城数控精密机械有限公司 | Small-modulus spiral bevel gear machining process |
| US7402097B2 (en) * | 2004-09-24 | 2008-07-22 | Bore Repair Systems, Inc. | Track supported bore finishing device |
| JP4868577B2 (en) * | 2006-03-28 | 2012-02-01 | 独立行政法人理化学研究所 | ELID honing apparatus and method |
| JP2008264929A (en) * | 2007-04-20 | 2008-11-06 | Tokyo Stainless Kenma Kogyo Kk | Electrolytic polishing device |
| CN102371526A (en) * | 2011-10-24 | 2012-03-14 | 广东鸿图科技股份有限公司 | Automatic rolling shaft polishing machine |
| DK2868779T3 (en) * | 2013-11-05 | 2016-05-02 | Lessmann Gmbh | Device and method for cleaning and / or polishing workpieces. |
| KR101683593B1 (en) * | 2015-09-21 | 2016-12-07 | 켄코아에어로스페이스(주) | Horizontal type honing working device |
| CN107538287B (en) * | 2017-09-12 | 2018-07-31 | 肇庆市科鸿机械有限公司 | A kind of high-end grinding apparatus of integral type |
| WO2019066566A1 (en) * | 2017-09-28 | 2019-04-04 | 주식회사 어썸리드 | Electrode frame for electropolishing, variable electrode frame for electropolishing and electropolishing apparatus comprising same |
| CN107617937B (en) * | 2017-10-18 | 2019-03-15 | 浙江乐鼎波纹管有限公司 | Pipe fitting inner wall grinding device after a kind of shearing of metal hose |
| CN108527029A (en) * | 2018-05-21 | 2018-09-14 | 无锡太湖学院 | Horizontal hyperfrequency Fine Feed deep hole machining electrochemical grinding lathe and its application method |
| CN110587403B (en) * | 2019-10-16 | 2024-11-12 | 中船动力研究院有限公司 | A grinding device for a pre-combustion chamber mounting hole of a cylinder head |
| CN110614411A (en) * | 2019-10-30 | 2019-12-27 | 安徽理工大学 | Pipe fitting drilling equipment based on electrolytic machining |
| CN112296818B (en) * | 2020-10-16 | 2021-09-21 | 东莞市群佳实业有限公司 | Polishing process of plastic extrusion molding plastic product |
| CN112872935A (en) * | 2021-01-15 | 2021-06-01 | 何天斌 | High-efficient equipment of polishing of nonrust steel pipe inner wall |
| CN113664304B (en) * | 2021-09-18 | 2022-08-05 | 上海交通大学 | Grinding and high-speed electric spark in-situ composite machining device and machining method |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2178448A (en) * | 1938-02-05 | 1939-10-31 | Norton Co | Method and apparatus for lapping bores |
| US2764540A (en) * | 1952-09-10 | 1956-09-25 | William G Farin | Method and means for electropolishing inner surfaces |
| US4601802A (en) * | 1984-07-31 | 1986-07-22 | The Upjohn Company | Apparatus for internally electropolishing tubes |
| US4772367A (en) * | 1986-05-20 | 1988-09-20 | Poligrat Gmbh | Apparatus for and a method of electrochemically polishing pipe inside surfaces |
| US5088237A (en) * | 1988-10-15 | 1992-02-18 | Nagel Maschinen-Und Werkzeugfabrik Gmbh | Method, machine and tool for the honing of workpieces |
| US5800252A (en) * | 1996-09-03 | 1998-09-01 | Makino Inc. | Fluid-activated variable honing tools and method of using the same |
| US6029714A (en) * | 1994-04-14 | 2000-02-29 | Sumitomo Metal Industries, Ltd. | Stainless steel pipe of bright annealing finish type, having highly-smoothed inner surface and method for producing the same |
| US6322424B1 (en) * | 1998-11-09 | 2001-11-27 | Nissin Unyu Kogyo Co., Ltd. | Electrolytic integrated polishing method for metal workpieces using special abrasive materials |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2521149A1 (en) * | 1975-05-13 | 1976-11-25 | Gehring Kg Maschf | Fine finishing of aluminium alloy parts of high silicon content - contg. insol. silicon particles by simultaneous honing and etching |
| JPS59227324A (en) | 1983-06-06 | 1984-12-20 | Hitachi Zosen Corp | How to finish the inner surface of the hole |
| JPS62157722A (en) | 1985-12-30 | 1987-07-13 | Nissho Asutetsuku Kk | Inside polishing method for metal tube |
| JPH0794090B2 (en) * | 1989-11-01 | 1995-10-11 | 工業技術院長 | Electro-abrasive grain super-mirror finishing method for inner surface of small diameter tube |
| JP2671558B2 (en) | 1990-05-02 | 1997-10-29 | 日産自動車株式会社 | High silicon aluminum bore surface processing and treatment method |
| JPH04341600A (en) * | 1991-01-22 | 1992-11-27 | Sumitomo Metal Ind Ltd | Polishing method for the inner surface of steel pipes |
| JPH0538629A (en) | 1991-07-31 | 1993-02-19 | Nec Corp | Metal pipe inner wall grinding device |
| JP2897949B2 (en) * | 1993-10-15 | 1999-05-31 | 日立造船株式会社 | Internal grinding machine for cylindrical workpiece |
| JPH09198758A (en) | 1996-01-23 | 1997-07-31 | Sony Corp | Disc chucking mechanism of disc player |
-
1997
- 1997-11-10 JP JP9325215A patent/JPH11138350A/en not_active Withdrawn
-
1998
- 1998-10-05 WO PCT/JP1998/004494 patent/WO1999024206A1/en not_active Ceased
- 1998-10-05 EP EP19980945618 patent/EP0951960A4/en not_active Withdrawn
- 1998-10-05 AU AU92838/98A patent/AU9283898A/en not_active Abandoned
- 1998-10-05 US US09/341,339 patent/US6994610B1/en not_active Expired - Fee Related
-
2005
- 2005-11-14 US US11/274,441 patent/US20060065518A1/en not_active Abandoned
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2178448A (en) * | 1938-02-05 | 1939-10-31 | Norton Co | Method and apparatus for lapping bores |
| US2764540A (en) * | 1952-09-10 | 1956-09-25 | William G Farin | Method and means for electropolishing inner surfaces |
| US4601802A (en) * | 1984-07-31 | 1986-07-22 | The Upjohn Company | Apparatus for internally electropolishing tubes |
| US4772367A (en) * | 1986-05-20 | 1988-09-20 | Poligrat Gmbh | Apparatus for and a method of electrochemically polishing pipe inside surfaces |
| US5088237A (en) * | 1988-10-15 | 1992-02-18 | Nagel Maschinen-Und Werkzeugfabrik Gmbh | Method, machine and tool for the honing of workpieces |
| US6029714A (en) * | 1994-04-14 | 2000-02-29 | Sumitomo Metal Industries, Ltd. | Stainless steel pipe of bright annealing finish type, having highly-smoothed inner surface and method for producing the same |
| US5800252A (en) * | 1996-09-03 | 1998-09-01 | Makino Inc. | Fluid-activated variable honing tools and method of using the same |
| US6322424B1 (en) * | 1998-11-09 | 2001-11-27 | Nissin Unyu Kogyo Co., Ltd. | Electrolytic integrated polishing method for metal workpieces using special abrasive materials |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8690450B2 (en) | 2008-12-15 | 2014-04-08 | Ntn Corporation | Machine component and super-finishing method therefor |
| CN104057374A (en) * | 2014-07-02 | 2014-09-24 | 苏州科博思流体科技有限公司 | Pipe fitting polishing device and pipe fitting polishing method |
| WO2017066420A1 (en) * | 2015-10-15 | 2017-04-20 | The University Of Florida Research Foundation , Inc. | Polishing technique for flexible tubes |
| US10946492B2 (en) | 2015-10-15 | 2021-03-16 | University Of Florida Research Foundation, Incorporated | Polishing technique for flexible tubes |
| CN106956206A (en) * | 2017-03-29 | 2017-07-18 | 施亮 | Cylinder burnishing device is used in a kind of water purifier production |
| US11590625B2 (en) * | 2018-05-31 | 2023-02-28 | University Of Florida Research Foundation, Incorporated | Deburring technique for stents |
| CN111070073A (en) * | 2019-12-31 | 2020-04-28 | 中国计量大学 | Inner cylindrical surface hydrodynamic cavitation reinforcing abrasive flow polishing system |
| CN113118947A (en) * | 2021-04-21 | 2021-07-16 | 西安石油大学 | Pipe maintenance device capable of removing corrosion rust of gully on inner wall |
Also Published As
| Publication number | Publication date |
|---|---|
| EP0951960A1 (en) | 1999-10-27 |
| EP0951960A4 (en) | 2002-10-30 |
| JPH11138350A (en) | 1999-05-25 |
| US6994610B1 (en) | 2006-02-07 |
| WO1999024206A1 (en) | 1999-05-20 |
| AU9283898A (en) | 1999-05-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6994610B1 (en) | Method and apparatus for polishing inner an internal surface of an aluminum extrusion hollow shape | |
| US5294309A (en) | Electro-abrasive polishing of the inner surface of pipes to extra-smooth mirror finish | |
| KR100820985B1 (en) | Center bearing grinding method and device of crankshaft | |
| US5339523A (en) | Method of machining sleeve bearing | |
| JP2627231B2 (en) | Electrophotographic photoreceptor substrate and method of manufacturing the same | |
| US3930396A (en) | Die system for can body press | |
| US20070246372A1 (en) | Electrochemical Machining Tool and Method for Machining a Product Using the Same | |
| US4333000A (en) | Apparatus for making hollow extrusion dies | |
| EP1118430B1 (en) | External hone and method of making and using the same | |
| US5865667A (en) | Grinding machine | |
| EP1877216B1 (en) | Method of electrolytically microfinishing a metallic workpiece | |
| US4805431A (en) | Contrivance for the cutting-deforming of cylindrical surfaces | |
| EP0153118A2 (en) | Setting-up of workpieces for machining | |
| JPH11244933A (en) | Wire drawing roller device | |
| JP2843156B2 (en) | Electrolytic buff compound polishing machine | |
| JP2000108005A (en) | Shoe assembly for film lapping device | |
| US20020096497A1 (en) | Continuous wire EDM for forming blind holes | |
| SU1638000A1 (en) | Combination burnishing tool | |
| KR0151754B1 (en) | Honing processing method and honing processing device | |
| JPS5953125A (en) | Electric discharge machining device | |
| RU2150365C1 (en) | Device for surface machining of round billets | |
| JP2000107947A (en) | Cylindrical surface processing device, bearing inner diameter processing device and cylindrical holed structure | |
| KR950015117B1 (en) | Electroerosion machine having cylindrical aspects works | |
| CN1101873A (en) | Electrolytic compound grinding method for the outer surface of a cylindrical or cylindrical workpiece | |
| JPH08192351A (en) | Honing tool |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |