US20050016714A1 - Thermal paste for improving thermal contacts - Google Patents
Thermal paste for improving thermal contacts Download PDFInfo
- Publication number
- US20050016714A1 US20050016714A1 US10/807,487 US80748704A US2005016714A1 US 20050016714 A1 US20050016714 A1 US 20050016714A1 US 80748704 A US80748704 A US 80748704A US 2005016714 A1 US2005016714 A1 US 2005016714A1
- Authority
- US
- United States
- Prior art keywords
- paste
- vol
- carbon particles
- amount
- ethyl cellulose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 111
- 239000002245 particle Substances 0.000 claims abstract description 109
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 88
- 238000000034 method Methods 0.000 claims abstract description 54
- 239000000463 material Substances 0.000 claims abstract description 29
- 239000001856 Ethyl cellulose Substances 0.000 claims description 105
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 105
- 229920001249 ethyl cellulose Polymers 0.000 claims description 105
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 105
- 229920001223 polyethylene glycol Polymers 0.000 claims description 100
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 96
- 239000002202 Polyethylene glycol Substances 0.000 claims description 90
- 239000006229 carbon black Substances 0.000 claims description 85
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 claims description 45
- 239000002904 solvent Substances 0.000 claims description 29
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 24
- -1 glycol ethers Chemical class 0.000 claims description 22
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 18
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 18
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 18
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 12
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 claims description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 claims description 12
- QHZOMAXECYYXGP-UHFFFAOYSA-N ethene;prop-2-enoic acid Chemical compound C=C.OC(=O)C=C QHZOMAXECYYXGP-UHFFFAOYSA-N 0.000 claims description 12
- 229920006226 ethylene-acrylic acid Polymers 0.000 claims description 12
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 claims description 12
- YKYONYBAUNKHLG-UHFFFAOYSA-N propyl acetate Chemical compound CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 claims description 12
- 235000013772 propylene glycol Nutrition 0.000 claims description 12
- 229920005989 resin Polymers 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 12
- 229920002554 vinyl polymer Polymers 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 claims description 8
- 229920005862 polyol Polymers 0.000 claims description 7
- 150000003077 polyols Chemical class 0.000 claims description 7
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 claims description 6
- SLBOQBILGNEPEB-UHFFFAOYSA-N 1-chloroprop-2-enylbenzene Chemical compound C=CC(Cl)C1=CC=CC=C1 SLBOQBILGNEPEB-UHFFFAOYSA-N 0.000 claims description 6
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 claims description 6
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 claims description 6
- IWTYTFSSTWXZFU-UHFFFAOYSA-N 3-chloroprop-1-enylbenzene Chemical compound ClCC=CC1=CC=CC=C1 IWTYTFSSTWXZFU-UHFFFAOYSA-N 0.000 claims description 6
- QZPSOSOOLFHYRR-UHFFFAOYSA-N 3-hydroxypropyl prop-2-enoate Chemical compound OCCCOC(=O)C=C QZPSOSOOLFHYRR-UHFFFAOYSA-N 0.000 claims description 6
- WVYWICLMDOOCFB-UHFFFAOYSA-N 4-methyl-2-pentanol Chemical compound CC(C)CC(C)O WVYWICLMDOOCFB-UHFFFAOYSA-N 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 6
- HXQPUEQDBSPXTE-UHFFFAOYSA-N Diisobutylcarbinol Chemical compound CC(C)CC(O)CC(C)C HXQPUEQDBSPXTE-UHFFFAOYSA-N 0.000 claims description 6
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 6
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 6
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 6
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims description 6
- 229920002472 Starch Polymers 0.000 claims description 6
- 239000002174 Styrene-butadiene Substances 0.000 claims description 6
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 6
- 150000001298 alcohols Chemical class 0.000 claims description 6
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 claims description 6
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 claims description 6
- BTMVHUNTONAYDX-UHFFFAOYSA-N butyl propionate Chemical compound CCCCOC(=O)CC BTMVHUNTONAYDX-UHFFFAOYSA-N 0.000 claims description 6
- 229920001577 copolymer Polymers 0.000 claims description 6
- DENRZWYUOJLTMF-UHFFFAOYSA-N diethyl sulfate Chemical compound CCOS(=O)(=O)OCC DENRZWYUOJLTMF-UHFFFAOYSA-N 0.000 claims description 6
- 229940008406 diethyl sulfate Drugs 0.000 claims description 6
- 239000003822 epoxy resin Substances 0.000 claims description 6
- 125000000524 functional group Chemical group 0.000 claims description 6
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 claims description 6
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 6
- 229940051250 hexylene glycol Drugs 0.000 claims description 6
- 125000004356 hydroxy functional group Chemical group O* 0.000 claims description 6
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 6
- GJRQTCIYDGXPES-UHFFFAOYSA-N iso-butyl acetate Natural products CC(C)COC(C)=O GJRQTCIYDGXPES-UHFFFAOYSA-N 0.000 claims description 6
- FGKJLKRYENPLQH-UHFFFAOYSA-M isocaproate Chemical compound CC(C)CCC([O-])=O FGKJLKRYENPLQH-UHFFFAOYSA-M 0.000 claims description 6
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 claims description 6
- 229940011051 isopropyl acetate Drugs 0.000 claims description 6
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 claims description 6
- OQAGVSWESNCJJT-UHFFFAOYSA-N isovaleric acid methyl ester Natural products COC(=O)CC(C)C OQAGVSWESNCJJT-UHFFFAOYSA-N 0.000 claims description 6
- 150000002576 ketones Chemical class 0.000 claims description 6
- 229920000609 methyl cellulose Polymers 0.000 claims description 6
- 239000001923 methylcellulose Substances 0.000 claims description 6
- 235000010981 methylcellulose Nutrition 0.000 claims description 6
- 239000000178 monomer Substances 0.000 claims description 6
- PGMYKACGEOXYJE-UHFFFAOYSA-N pentyl acetate Chemical compound CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 claims description 6
- TWSRVQVEYJNFKQ-UHFFFAOYSA-N pentyl propanoate Chemical compound CCCCCOC(=O)CC TWSRVQVEYJNFKQ-UHFFFAOYSA-N 0.000 claims description 6
- 229920000647 polyepoxide Polymers 0.000 claims description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 6
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 6
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 claims description 6
- MCSINKKTEDDPNK-UHFFFAOYSA-N propyl propionate Chemical compound CCCOC(=O)CC MCSINKKTEDDPNK-UHFFFAOYSA-N 0.000 claims description 6
- 150000004760 silicates Chemical class 0.000 claims description 6
- 239000008107 starch Substances 0.000 claims description 6
- 235000019698 starch Nutrition 0.000 claims description 6
- 239000011115 styrene butadiene Substances 0.000 claims description 6
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 6
- 229920001909 styrene-acrylic polymer Polymers 0.000 claims description 6
- 229920005992 thermoplastic resin Polymers 0.000 claims description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 6
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical group O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 claims description 6
- 239000003960 organic solvent Substances 0.000 claims 5
- 229910000679 solder Inorganic materials 0.000 description 26
- 229910052802 copper Inorganic materials 0.000 description 19
- 239000010949 copper Substances 0.000 description 19
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 17
- 229910002804 graphite Inorganic materials 0.000 description 15
- 239000010439 graphite Substances 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 14
- 238000007792 addition Methods 0.000 description 10
- 239000012530 fluid Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 239000007787 solid Substances 0.000 description 8
- 229910052582 BN Inorganic materials 0.000 description 7
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 7
- 239000000945 filler Substances 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 7
- 238000004090 dissolution Methods 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 229910003460 diamond Inorganic materials 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 238000004377 microelectronic Methods 0.000 description 5
- 239000000084 colloidal system Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229920001296 polysiloxane Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011231 conductive filler Substances 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 238000012876 topography Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- QPRQEDXDYOZYLA-UHFFFAOYSA-N 2-methylbutan-1-ol Chemical compound CCC(C)CO QPRQEDXDYOZYLA-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000006231 channel black Substances 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 239000002482 conductive additive Substances 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Chemical compound CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000006233 lamp black Substances 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 239000006234 thermal black Substances 0.000 description 2
- OBETXYAYXDNJHR-UHFFFAOYSA-N 2-Ethylhexanoic acid Chemical compound CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 101100481033 Arabidopsis thaliana TGA7 gene Proteins 0.000 description 1
- 229910011255 B2O3 Inorganic materials 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 101000960224 Clarkia breweri (Iso)eugenol O-methyltransferase Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- YNPNZTXNASCQKK-UHFFFAOYSA-N Phenanthrene Natural products C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 229920005372 Plexiglas® Polymers 0.000 description 1
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- PWBYCFJASNVELD-UHFFFAOYSA-N [Sn].[Sb].[Pb] Chemical compound [Sn].[Sb].[Pb] PWBYCFJASNVELD-UHFFFAOYSA-N 0.000 description 1
- 229920003232 aliphatic polyester Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- NPURPEXKKDAKIH-UHFFFAOYSA-N iodoimino(oxo)methane Chemical compound IN=C=O NPURPEXKKDAKIH-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- HSOHROOUHRUSJR-UHFFFAOYSA-N n-[2-(5-methoxy-1h-indol-3-yl)ethyl]cyclopropanecarboxamide Chemical compound C12=CC(OC)=CC=C2NC=C1CCNC(=O)C1CC1 HSOHROOUHRUSJR-UHFFFAOYSA-N 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000012430 stability testing Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000002411 thermogravimetry Methods 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F2013/005—Thermal joints
- F28F2013/006—Heat conductive materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
Definitions
- This invention relates to a thermally conductive paste for improving thermal contacts.
- Heat dissipation from microelectronics is most commonly performed by thermal conduction.
- a heat sink which is a material of high thermal conductivity, is commonly used.
- the thermal contact between the heat sink and the heat source e.g., a substrate with a semiconductor chip on it
- the thermal contact between the heat sink and the heat source should be good.
- a thermal fluid or paste is commonly applied at the interface to enhance the thermal contact.
- Vogel Proc. Int. Intersoc. Elec. Pkg. Conf, Adv. in Elec. Pkg., Am. Soc. Mech. Eng ., NY, N.Y. 10-2:989 (1995).
- the fluid or paste is a material that has high conformability so that it can conform to the surface topography of the mating surfaces, thereby avoiding air gaps (which are thermally insulating) at the interface.
- the fluid or paste must be highly spreadable, so that the thickness of the paste after application is very thin (just enough to fill the valleys in the surface topography of the mating surfaces).
- the fluid or paste is thermally conductive as well.
- the most common thermal fluid is mineral oil. As a fluid, it is highly conformable and spreadable, but it has a low thermal conductivity.
- the most common thermal paste is silicone filled with thermally conductive particles. Wilson et al., Nat. Elec. Pkg . & Prod. Conf, Proc. Tech. Prog., Reed Exh. Co ., Norwalk, Conn. 2:788-796 (1996); Peterson, Proc. 40 th Elec. Comp . & Tech. Conf., IEEE , Piscataway, N.J. 1:613-619 (1990); Lu et al., J Polym. Sci., Part B 36:2259-2265 (1998); Sasaski et al., Jap. IEMT Symp.
- boron nitride Due to its excellent heat transfer characteristics and as it is relatively inexpensive, boron nitride is commonly used as a filler for thermal interface materials. Unfortunately, however, it suffers from the disadvantage that it degrades when exposed to humidity. When placed in a humid environment, hygroscopic impurities (boric oxide) within the compound absorb atmospheric water, which then reacts with the boron nitride to form boric acid. Being hygroscopic, the boric acid absorbs further water, thereby accelerating the degradation of the boron nitride and diminishing its heat removing capabilities, which ultimately leads to failure of the device.
- thermoly conductive material that includes thermally conductive filler particles, preferably boron nitride, that are coated with a hydrophobic compound, preferably a silicone compound such as a siloxane.
- the hydrophobic compound-coated filler particles are joined together with a binder, and account for between 5 and 70 vol. % of the material.
- Organic vehicles are commonly used as the suspending medium for dispersed inorganic particles in pastes. Kumar, Active & Passive Elec. Comp. 25:169-179(2002); Chae et al., Mater. Lett. 55:211-216 (2002); Heller et al., Tenside, Surfactants, Detergents 29:315-319 (1992); Stanton, Int. J. Hybrid. Microelec. 6:419-432 (1983).
- An organic vehicle system may consist of a solvent (such as butyl ether) (Bernazzani et al., J. Chem. Therm. 33:629-641 (2001)) and a solute (such as ethyl cellulose) (Stanton, Int.
- PEG polyethylene glycol
- boron nitride particles a polymer of low molecular weight (400 amu), which is different from silicone in its low viscosity.
- Carbon black is a very fine particulate form of elemental carbon, consisting of typically spherical particles, which in turn come together to form porous agglomerates. Carbon black is produced either by incomplete combustion or thermal decomposition of a hydrocarbon feedstock. Types of carbon black include soot, lamp black (typical particle size 50-100 nm), channel black (typical particle size 10-30 nm), furnace black (typical particle size 10-80 nm), thermal black (typical particle size 150-500 nm), and acetylene black (typical particle size 35-70 nm).
- Carbon black is used as a low-cost electrically conductive filler in polymers. Nakamura et al., NEC Res . & Dev. 83:121-127 (1986); Saad et al., J. Appl. Polym. Sci. 73:2657:2670 (1999). Due to its relatively low thermal conductivity, however, carbon black has not been reported as a filler for thermally conductive pastes. Most commonly, it is used as a reinforcement in rubber. Takirio et al., Tire Sci . & Tech. 26:241-257 (1998); Haws et al., Rub. Div. Symp., ACS, Akron, Ohio 1:257-281 (1982); Hess et al., Rub.
- carbon black is used in electrochemical electrodes (Takei et al., J Power Sources 55:191-195 (1995); Van Deraerschot et al., Electrochem. Soc. Ext. Abst., Electrochem. Soc ., Pennington, N.J. 84:139 (1984)), inks (Erhan et al., J. Am. Oil Chem. Soc.
- the present invention is directed to overcoming these and other deficiencies in the art.
- One aspect of the present invention relates to, a thermally conductive paste formed from porous agglomerates of carbon particles dispersed in a paste-forming vehicle.
- Another aspect of the present invention is directed to a thermally conductive interface material in the form of a paste formed from porous agglomerates of carbon particles dispersed in a paste-forming vehicle.
- a further aspect of the present invention is an apparatus that includes a heat source, a heat sink proximate the heat source, and a layer of a thermally conductive paste made in accordance with the present invention disposed between and in contact with the heat source and the heat sink.
- Yet another aspect of the present invention is a method of removing heat from a heat source that involves providing a heat sink proximate the heat source and disposing a layer of a thermally conductive paste made in accordance with the present invention between and in contact with the heat source and the heat sink.
- the thermally conductive paste of the present invention is highly conformable and spreadable and is particularly useful as a thermally conductive interface material.
- porous agglomerates of carbon particles as the thermally conductive ingredient, thermal pastes that are superior to solder in providing high thermal contact conductance have been attained.
- Thermally conductive interface materials prepared in accordance with the present invention can provide thermal contact conductance between copper disks of 3 ⁇ 10 5 watts/meter 2 .° C. (W/m 2 .° C.), as compared to 2 ⁇ 10 5 W/m 2 .° C. for solder.
- the pastes are easy to use and apply, unlike solder, which requires the application of heat during use.
- Thermally conductive pastes of the present invention have many applications.
- Pastes prepared in accordance with the present invention may be used, for example, for microelectronic cooling, for heat pipes for tapping geothermal energy (Lockett, H . & V. Eng. 59:7-8; Lockett, Proc. Eur. Cong., 1:285-289 (1984)) and for thermal fluid heaters for providing indirect process heat (Dawes et al., Inst. Energy , London, UK Pap. KN/III/2 1:8 pp (1984)).
- Pastes prepared in accordance with the present invention may also be used, for example, for the cooling of machinery, boilers, cutting tools, oil drilling equipment components, spacecraft components and building components. Other applications may be in connection with foods, wound healing, therapeutics, etc.
- Thermally conductive pastes of the present invention may also be used to improve the thermal contact between a cold source and an object proximate the cold source, for the purpose of cooling the object or other objects connected to the object.
- the pastes may for example, be applied to improve the thermal contact between a fluid-cooled object (the cold source) and a cold plate or a cold finger, for the purpose of cooling an object connected to the cold plate or cold finger.
- Another aspect of the present invention is therefore, an apparatus that includes a cold source, an object proximate the cold source, and a layer of a thermally conductive paste made in accordance with the present invention disposed between and in contact with the cold source and the object.
- Yet another aspect of the present invention is a method of improving the thermal contact between a first object and a second object proximate the first object, that involves disposing a layer of a thermally conductive paste made in accordance with the present invention between and in contact with the first object and the second object.
- FIG. 1 is a partial, perspective view of a layer of a thermally conductive paste made in accordance with the present invention disposed between an integrated circuit chip and a heat sink.
- FIG. 2 is a schematic representation of thermal contact conductance measurement in accordance with the present invention.
- FIG. 3 is a graphic representation of thermogravimetric results obtained for (a) PEG by itself; and (b) PEG with 3 vol. % ethyl cellulose.
- FIG. 4 is a graphic representation of thermogravimetric results obtained for (a) butyl ether by itself; and (b) butyl ether with 40 vol. % ethyl cellulose.
- the present invention relates to a thermally conductive paste formed from porous agglomerates of carbon particles dispersed in a paste-forming vehicle.
- the paste is particularly useful as a thermally conductive interface material for improving thermal contacts, such as, for example, between a heat source and a heat sink or between a cold source and an object.
- the present invention further relates to a thermally conductive interface material in the form of a paste formed from porous agglomerates of carbon particles dispersed in a paste-forming vehicle.
- the porous agglomerates of carbon particles will preferably be a carbon black.
- the paste-forming vehicle may be a paste-forming vehicle system.
- a paste-forming vehicle system will include a paste-forming solvent and a solute.
- the system may, for example, be organic-based or inorganic based.
- solvents that may be used in a paste-forming vehicle system can include, but are not limited to, silicates (such as, for example, sodium silicate), glycol ethers (such as, for example, di(ethylene glycol) butyl ether (“BE”)), methoxypolyethylene glycol (“MPEG”), ethylene glycol, propylene glycol, ethylene oxide, propylene oxide, polyethylene glycol (“PEG”), PEG modified with various types of functional groups (such as, for example, —H, —CH 3 , etc.) at the ends of the macromolecular chain, oil, water, alcohols (such as, for example, 2-ethylhexanol, 2-ethylhexoic acid, 2-methyl butanol, propanol
- solvents that may be used in a paste-forming vehicle system can include, but are not limited to, cellulosic resin, thermoplastic resin, glycidyl methacrylate, hydroxy(meth)acrylate monomers, epsilon-caprolactone monomer, hydroxypropyl acrylate, hydroxyethyl acrylate, ethylene acrylic acid, divinylbenzene, styrene-butadiene latexes, acrylic latexes, vinyl acrylic latexes, styrene acrylic latexes, vinyl versatate latexes, vinyl chloride, vinylbenzyl chloride, chloromethylstyrene, vinyl acetate copolymers, epoxy resins, epoxy acrylate, aminoethylethanolamine, glycol ethers, propylene glycols, ethylene glycols, polyols (e.g., aliphatic polyester polyols), ethylene acrylic acid resins, methylcellulose, ethyl acryl
- An organic-based paste-forming vehicle system may include, for example, a solvent such as polyethylene glycol or di(ethylene glycol) butyl ether, and a solute, such as, for example, ethyl cellulose.
- a solvent such as polyethylene glycol or di(ethylene glycol) butyl ether
- a solute such as, for example, ethyl cellulose.
- the solvent evaporates, allowing the conductive units (i.e., carbon black agglomerates) to be in intimate contact after the paste has dried.
- conductive units i.e., carbon black agglomerates
- oil-based and some polymer-based pastes do not dry. Ether itself is volatile, but the dissolution of a solute such as ethyl cellulose in it results in a paste-forming vehicle that is not volatile, such that the resulting paste does not dry, as in the case of certain polymer-based pastes.
- a thermally conductive paste prepared in accordance with the present invention may, for example, incorporate a paste-forming vehicle system including PEG as a solvent and ethyl cellulose as a solute.
- the amount of ethyl cellulose present in the paste will preferably be within the range of about 3 to about 5 volume percent (vol. %). More preferably, the amount of ethyl cellulose present in the paste will be about 3 vol. %.
- the amount of carbon particles dispersed in the paste will preferably be less than about 2.0 vol. %, and more preferably, less than about 1.5 vol. %.
- a particularly useful thermally conductive paste of the present invention includes porous agglomerates of carbon particles dispersed in a paste-forming vehicle system including ethyl cellulose in PEG, where the amount of carbon particles dispersed in the paste is about 1.25 vol. % and the amount of ethyl cellulose present in the paste is about 3 vol. %.
- a thermally conductive paste prepared in accordance with the present invention may, for example, incorporate a paste-forming vehicle system including di(ethylene glycol) butyl ether as a solvent and ethyl cellulose as a solute.
- the amount of ethyl cellulose present in the paste will preferably be about 40 vol. %.
- the amount of carbon particles dispersed in the paste will preferably be less than about 0.40 vol. %, and more preferably, about 0.20 vol. %.
- Another particularly useful thermally conductive paste of the present invention includes porous agglomerates of carbon particles dispersed in a paste-forming vehicle system including ethyl cellulose in di(ethylene glycol) butyl ether, where the amount of carbon particles dispersed in the paste is about 0.20 vol. % and the amount of ethyl cellulose present in the paste is about 40 vol. %.
- the thermally conductive paste of the present invention is especially useful as a thermally conductive interface material to assist in heat transfer between a heat source and a heat sink, for example, between an integrated circuit chip and a heat sink for dissipation of heat from an electronic apparatus.
- a thermally conductive interface material is a paste of the present invention where the paste-forming vehicle is a paste-forming vehicle system including ethyl cellulose in PEG and the amount of carbon particles dispersed in the paste is about 1.25 vol. % and the amount of ethyl cellulose present in the paste is about 3 vol. %.
- the paste-forming vehicle is a paste-forming vehicle system including ethyl cellulose in PEG and the amount of carbon particles dispersed in the paste is about 1.25 vol. % and the amount of ethyl cellulose present in the paste is about 3 vol. %.
- a paste of the present invention where the paste-forming vehicle is a paste-forming vehicle system including ethyl cellulose in di(ethylene glycol) butyl ether, where the amount of carbon particles dispersed in the paste is about 0.20 vol. % and the amount of ethyl cellulose present in the paste is about 40 vol. %.
- the paste-forming vehicle is a paste-forming vehicle system including ethyl cellulose in di(ethylene glycol) butyl ether, where the amount of carbon particles dispersed in the paste is about 0.20 vol. % and the amount of ethyl cellulose present in the paste is about 40 vol. %.
- an electronic apparatus 10 made in accordance with the present invention includes a heat source 12 , such as, an integrated circuit chip, and a heat sink 14 .
- a layer 16 of a thermally conductive paste made in accordance with the present invention is disposed as an interface material between and in contact with the heat source 12 and the heat sink 14 . While the layer 16 of thermally conductive paste can be formed in a variety of shapes and sizes to fill particular needs, it is preferred in this context that it substantially cover the entire surfaces of the heat source/heat sink interface.
- the heat source 12 is mounted to a circuit board 18 .
- the heat source 12 is operably connected to an electrical source (not shown) and operates conventionally.
- the heat is conducted from a heat source outer surface 13 across the layer of thermally conductive paste of the present invention to a heat sink inner surface 15 .
- the heat is thereafter conventionally dissipated to the atmosphere through the heat sink 14 , as known in the art.
- the layer 16 of thermally conductive paste substantially covers both the heat source outer surface 13 and the heat sink inner surface 15 , thermal contact resistance is minimized.
- the present invention is also directed to an electronic apparatus that includes a heat source, a heat sink, and a layer of a thermally conductive paste of the present invention disposed between and in contact with the heat source and the heat sink.
- the present invention is yet further directed to a method of removing heat from a heat source which involves providing a heat sink proximate the heat source and disposing a layer of a thermally conductive paste of the present invention between and in contact with the heat source and the heat sink.
- the method is useful, for example, in aiding in the dissipation of heat from a microelectronic device or apparatus.
- thermally conductive fillers to organic vehicles for the purpose of providing a thermal paste which is conformable, spreadable and relatively high in thermal conductivity.
- the fillers evaluated here are carbons (such as, carbon black, 1 ⁇ m and 5 ⁇ m graphite particles, 0.1 ⁇ m diameter discontinuous carbon filaments and 25 ⁇ m diamond particles) and 1 ⁇ m and 3 ⁇ m nickel particles.
- the porosity of a carbon black particle allows penetration of the vehicle into a carbon black particle, thereby enabling the resulting paste to have high fluidity, as previously shown for the case of oil as the vehicle.
- the examples further provide a comparative study of various organic vehicles and vehicle systems, such as, PEG with 0-15 vol. % dissolved ethyl cellulose and di(ethylene glycol) butyl ether with 0-40 vol. % dissolved ethyl cellulose.
- the comparative evaluation pertains both to the effectiveness of the thermal paste and the temperature resistance, as both attributes are relevant to the thermal paste application.
- the polyethylene glycol, HO(CH 2 CH 2 O) 11 H, (“PEG”) used as an organic vehicle was PEG 400 (EM Science, Gibbstown, N.J.). It had a molecular weight of 400 amu. It was a liquid at room temperature and optionally contained ethyl cellulose (Sigma Chemical Co., St. Louis, Mo.) at either 3 or 5 vol. %. The ethyl cellulose was a white powder that was dissolved in the vehicle. It served to improve the dispersion and suspension of the solids in the pastes.
- the other organic vehicle used was di(ethylene glycol) butyl ether (Aldrich Chemical Co., Inc., Milwaukee, Wis.). It optionally contained ethyl cellulose (Sigma Chemical Co., St. Louis, Mo.) at 10, 20, 30 or 40 vol. %.
- the carbon black used was a type for electrical conductivity and easy dispersion (Vulcan XC72R GP-3820; Cabot Corp., Billerica, Mass.). It consisted of porous agglomerates of carbon particles of particle size 30 nm, density 1.7-1.9 g/cm 3 , nitrogen specific surface area 254 m 2 /g and maximum ash content 0.2%.
- the carbon black powder was mixed with a vehicle by hand, stirring to form a uniform paste.
- thermally conductive solids were graphite particles (Asbury Graphite Mills, Inc., Asbury, N.J., (i) artificial graphite, Grade Ultra Fine 440, 99.4% typical carbon content, 1 ⁇ m typical size, and (ii) natural crystalline flake, Grade Micro 850, 98.5% minimum carbon content, 5 ⁇ m typical size), carbon filaments (Applied Sciences Inc., Cedarville, Ohio, 0.1 ⁇ m diameter, >100 ⁇ m length, with intertwined morphology and fishbone texture),1 ⁇ m nickel particles (INCO, Inc., Missassauga, Ontario, Calif., Type 210), 3 ⁇ m nickel particles (Novamet Specialty Products Corp., Wyckoff, N.J., Type 525, 15 to 20 ⁇ m length), and 25 ⁇ m diamond particles (Warren Superabrasives, Olyphant, Pa., Type MB).
- graphite particles Alignite Mills, Inc., Asbury, N.J., (
- the pastes were prepared by first dissolving ethyl cellulose (if applicable) to the vehicle (either PEG or butyl ether). The dissolution was performed at room temperature for butyl ether, but at about 60° C. (with heat provided by a hot plate) for PEG. The heating for the case of PEG was to hasten the dissolution. After this, the thermally conductive solid ingredient was added. Mixing was conducted by using a ball mill and stainless steel balls. After mixing, the paste was placed in a vacuum chamber (which involved a mechanical vacuum pump) for the purpose of air bubble removal.
- a vacuum chamber which involved a mechanical vacuum pump
- a layer of a thermally conductive paste 16 (or solder) was sandwiched between the flat surfaces of two copper disks 20,22 (both surfaces of each disk having been mechanically polished by using 0.05 ⁇ m alumina particles), which had diameter 12.6 mm and thickness of 1.16 mm for one disk and 1.10 mm for the other disk.
- the thermal contact conductance between two copper disks with and without a layer of thermally conductive paste 16 (or solder) was measured using the transient laser flash method.
- the pressure on the sandwich was controlled at 0.46, 0.69 and 0.92 MPa (depicted in FIG. 2 as arrow A). This is because the pressure affects the thermal contact conductance, even for a material that is not resilient.
- the thickness of the thermally conductive paste was 25 ⁇ m or less. The uniform distribution of the paste in the plane of the sandwich was made possible by the fluidity of the paste and the use of pressure.
- the thermally conductive paste thickness was obtained by subtracting the thicknesses of the two copper disks from the thickness of the sandwich, such that all thicknesses were measured using a micrometer. The thermally conductive paste thickness for all cases was the same before and after the conductance measurement.
- solder (applied in the molten state) was also used as a thermal interface material (i.e., substituted for the layer of thermally conductive paste 16).
- the solder was tin-lead-antimony (63 Sn-36.65 Pb-0.35 Sb), with activated Rosin flux core (Solder Type 361A-20R by Measurements Group, Inc., Raleigh, N.C.).
- Molten solder at a temperature of 187° C., as measured by using a Type-T thermocouple was sandwiched between copper disks that had been preheated to this temperature also. This temperature was above the liquidus temperature of 183° C. The heat was provided by a hot plate.
- the copper-solder-copper sandwich was allowed to cool on the hot plate with the power off under slight pressure.
- the thickness of the solder was 25 ⁇ m or less.
- the finite element program ABAQUS® (Abaqus, Inc., Pawtucket, R1) was used to calculate the thermal contact conductance through temperature vs. time curves, which were experimentally obtained.
- ABAQUS® Abaqus, Inc., Pawtucket, R1
- the calculation assumed no thickness and no heat capacity for the interface between the two copper disks.
- it assumed no heat transfer between specimen and environment except for the absorption of laser energy by the specimen.
- the laser energy was uniformly absorbed on the surface of the specimen, that the heat flow was one-dimensional, and that the thermal contact conductance between the two copper disks was uniform. The validity of these assumptions is supported by the calibration result and error analysis given below.
- a Coherent General Everpulse Model 11 Nd glass laser (Coherent, Inc., Santa Clara Calif.) (depicted generally in FIG. 2 as 24) with a pulse duration of 0.4 ms, a wavelength of 1.06 ⁇ m and a pulse energy up to 15 J was used for impulse heating.
- the laser power was adjusted to allow the temperature rise of the specimen to be between 0.5 and 1.0° C.
- the upper surface of disk #1, 20, on which the laser beam (depicted as arrow B) would directly hit had been coated by carbon in order to increase the extent of laser energy absorption relative to the extent of reflection.
- a first E-type thermocouple (not shown) was attached to the back surface of disk #2, 22, for monitoring the temperature rise.
- a second thermocouple of the same type was put ⁇ 30 cm above the specimen holder to detect the initial time that the laser beam (arrow B) came out.
- a National Instruments DAQPad-MIO 16XE-50 data acquisition board (National Instruments, Austin, Tex.) with a data acquisition rate up to 20,000 data points per second at 16 bites resolution, along with NI-DAQ interface software coded in Visual Basic® (Microsoft® Corp., Redmond, Wash.) was used to monitor the response of both thermocouples simultaneously.
- a plexiglass sample holder 26 , bolt 28 and rubber insulator 30 were used to facilitate pressure application.
- a Sensotec Model 13 (Columbus, Ohio) load cell 32 was used for pressure measurement. Calibration using a standard graphite specimen was performed before testing each specimen in order to ensure measurement accuracy. The data acquisition rate used for each test was adjusted so that there were at least 100 temperature data points during the temperature rise.
- the experimental error in transient thermal contact conductance measurement consists of random error due to experimental data scatter, and systematic error mainly due to the lag of the thermocouple response and partly due to the method used to calculate the conductance from the temperature data.
- the thermal diffusivity of a standard NBS 8426 graphite disk (thickness 2.62 mm), which had a similar transient temperature rise time as the copper sandwich with the highest thermal contact conductance, was measured prior to testing each specimen in order to determine the systematic error, if any.
- the random error shown by the ⁇ value was determined by measurement of five specimens.
- the viscosity of the formulations was measured by using a viscometer (Brookfield Engineering Laboratories, Inc., Middleboro, Mass., Model LVT Dial-Reading Viscometer, with Model SSA-18/13R Small Sample Adaptor).
- thermogravimetry as conducted by heating in air from room temperature to 150° C. at a rate of 2° C./min.
- a Perkin Elmer(Newark, Conn.) TGA7 instrument was used.
- Table 1 gives thermal contact conductance for various thermal pastes (containing 0 to 3.20 vol. % carbon black) between copper disks at various contact pressures.
- the paste was below 25 ⁇ m in thickness.
- the optimum ethyl cellulose content for attaining high thermal contact conductance using PEG as the vehicle base was 5 vol. %.
- the conductance was less when the ethyl cellulose content was below or above this value. This is attributed to the increase in both conductivity and viscosity provided by the ethyl cellulose.
- the conductivity helped the contact conductance, thus causing the conductance to increase as the cellulose content increased from 0 to 5 vol. %.
- the viscosity was detrimental to the contact conductance, thus causing the conductance to decrease as the cellulose content increased from 5 to 15 vol. %.
- Table 2 gives thermal contact conductance for thermal pastes in the form of di(ethylene glycol) butyl ether containing 40 vol. % ethyl cellulose and 0.27 vol. % thermally conductive solids, as tested between copper disks at various contact pressures.
- the paste was below 25 ⁇ m in thickness.
- Table 2 shows that carbon black is a much more effective conductive additive than graphite, nickel and diamond particles and carbon filaments, for it provides a thermal paste that gives an exceptionally high thermal contact conductance.
- the superiority of carbon black occurs in spite of the relatively poor thermal conductivity of carbon black. It is attributed to the conformability and spreadability of the paste, as enhanced by the compressibility of the carbon black agglomerates.
- Carbon black is even superior to single-walled carbon nanotubes, pastes of which were tested using the methods and equipment described here.
- Xu et al. J Electron. Mater . (2004), which is hereby incorporated by reference in its entirety.
- these results are shown in Table 2. Conformability and spreadability are more important than thermal conductivity in governing thermal paste performance.
- Table 3 shows the viscosity of selected pastes, as measured at various appropriate shear rates.
- the addition of ethyl cellulose to either PEG or butyl ether monotonically increased the viscosity, as shown in the absence of carbon black.
- PEG alone was higher in viscosity than butyl ether alone.
- PEG with the optimum ethyl cellulose content of 3 vol. % was much lower in viscosity than butyl ether with the optimum ethyl cellulose content of 40 vol. %.
- the addition of carbon black monotonically increased the viscosity, as shown for PEG containing 3 vol. % ethyl cellulose and for butyl ether containing 40 vol. % ethyl cellulose.
- the PEG with 5 vol. % ethyl cellulose and the PEG-based paste containing 3 vol. % ethyl cellulose and 1.25 vol. % carbon black were similar in viscosity.
- the latter gave a higher contact conductance than the former, due to a decrease in the ethyl cellulose content and an increase in the carbon black content.
- adjustment of the contents of both ethyl cellulose and carbon black is needed in order to attain an optimized thermal paste formulation.
- the butyl ether-based paste with 40 vol. % ethyl cellulose and 0.20 vol. % carbon black and the PEG-based paste with 3 vol. % ethyl cellulose and 1.25 vol. % carbon black are the two thermal pastes of the present invention that gave the highest thermal contact conductance.
- Table 3 although the two pastes gave similarly high values of the contact conductance, the butyl ether-based paste exhibited a much higher viscosity than the PEG-based paste.
- Table 3 also shows that the viscosity of the butyl ether-based paste with 40 vol. % ethyl cellulose was lower when the paste contained 0.20 vol. % graphite particles (1 or 5 ⁇ m) or carbon filaments than when it contained 0.20 vol. % carbon black.
- the carbon black paste was much smoother than the graphite particle paste.
- the smoothness of the paste is apparently more important than the viscosity in governing thermal paste performance. Perhaps smoothness relates more closely to the conformability than a low viscosity.
- viscosity is a useful suggestive indicator of thermal paste performance, it is not the same as the conformability, which is the attribute that really governs thermal paste performance. Since there is no standardized method of conformability measurement, this work resorted to viscosity measurement.
- FIGS. 3 and 4 respectively, show the thermogravimetric results for PEG and butyl ether (with and without ethyl cellulose in each case, but without carbon black, which does not affect the thermal stability of the dispersion). Without ethyl cellulose, PEG is much more stable thermally than butyl ether. The dissolution of ethyl cellulose diminished the thermal stability of PEG, but increased that of butyl ether.
- Table 4 shows a comparison of thermogravimetric results of these thermal pastes at three temperatures. At 50° C. and 75° C., butyl ether containing ethyl cellulose is more stable thermally than PEG containing ethyl cellulose, but at 100° C., the reverse is true. Above about 100° C., the weight loss of butyl ether, whether with or without ethyl cellulose, is extensive (more than 50% weight loss at 150° C.). However, the weight loss remains less than 9% even at 150° C. for PEG, whether with or without ethyl cellulose.
- a PEG-based paste (containing 3 vol. % dissolved ethyl cellulose and dispersed carbon black in the optimum amount of 1.25 vol. %) as a thermal interface material between copper disks results in a thermal contact conductance of 30 ⁇ 10 4 W/m 2 .° C., compared to a value of 20 ⁇ 10 4 W/m 2 .° C. for tin/lead eutectic solder applied in the molten state.
- a butyl ether-based paste (containing 40 vol. % dissolved ethyl cellulose and dispersed carbon black in the optimum amount of 0.20 vol.
- the PEG-based paste is superior to the butyl ether-based paste in the thermal stability at 100° C. and above, though the reverse is true at 75° C. and below.
- the superiority of the formulations of the present invention to solder as thermal interface materials may presumably be due to the reaction between solder and copper and the consequent poor conformability of molten solder with copper.
- the addition of carbon black to PEG helps the conductance when the ethyl cellulose is at 3 vol. % and the carbon black content is at 1.25 vol. % or below.
- the addition of carbon black to PEG degrades the conductance when the ethyl cellulose is at 3 vol. % and carbon black is at 1.5 vol. %, or when the ethyl cellulose is at 5 vol. %.
- the optimum carbon black content is higher for PEG than butyl ether based, whereas the optimum ethyl cellulose content is higher for butyl ether than PEG.
- the thermal contact conductance is similar between the optimized PEG-based paste and the optimized butyl ether-based paste. Since carbon black is the ingredient in the paste that is most conductive thermally, this implies that the conformability and spreadability are more important than the thermal conductivity in governing thermal paste performance.
- carbon black is much more effective than graphite, nickel and diamond particles and carbon filaments, all evaluated at the same volume fraction, for providing thermal pastes. This is attributed to the compressibility of a carbon black agglomerate and the consequent conformability and spreadability of the paste.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Cosmetics (AREA)
- Conductive Materials (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
- This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/485,804, filed Jul. 9, 2003, which is hereby incorporated by reference in its entirety.
- This invention relates to a thermally conductive paste for improving thermal contacts.
- With the miniaturization and increasing power of microelectronics, heat dissipation has become critical to the performance, reliability and further miniaturization of microelectronics. Heat dissipation from microelectronics is most commonly performed by thermal conduction. For this purpose, a heat sink, which is a material of high thermal conductivity, is commonly used. In order for the heat sink to be well utilized, the thermal contact between the heat sink and the heat source (e.g., a substrate with a semiconductor chip on it) should be good. Wolff et al., Heat & Mass Transfer 41 :3469-3482.(1998); Ouellette et al., Proc. Power Elec. Des. Con., Power Sources Users Conf., Cerritos, Calif., pages 134-138 (1985).
- A thermal fluid or paste is commonly applied at the interface to enhance the thermal contact. Vogel, Proc. Int. Intersoc. Elec. Pkg. Conf, Adv. in Elec. Pkg., Am. Soc. Mech. Eng., NY, N.Y. 10-2:989 (1995). The fluid or paste is a material that has high conformability so that it can conform to the surface topography of the mating surfaces, thereby avoiding air gaps (which are thermally insulating) at the interface. The fluid or paste must be highly spreadable, so that the thickness of the paste after application is very thin (just enough to fill the valleys in the surface topography of the mating surfaces). Preferably the fluid or paste is thermally conductive as well. Although much attention has been given to the development of heat sink materials, relatively little attention has been given to the development of thermal fluids or pastes.
- The most common thermal fluid is mineral oil. As a fluid, it is highly conformable and spreadable, but it has a low thermal conductivity. The most common thermal paste is silicone filled with thermally conductive particles. Wilson et al., Nat. Elec. Pkg. & Prod. Conf, Proc. Tech. Prog., Reed Exh. Co., Norwalk, Conn. 2:788-796 (1996); Peterson, Proc. 40th Elec. Comp. & Tech. Conf., IEEE, Piscataway, N.J. 1:613-619 (1990); Lu et al., J Polym. Sci., Part B 36:2259-2265 (1998); Sasaski et al., Jap. IEMT Symp. Proc., IEEE/CPMT Int. Elec. Mfg. Tech. Symp., IEEE, Piscataway, N.J. 236-239(1995). Due to the filler, it is relatively high in thermal conductivity, but it suffers from poor conformability and poor spreadability. Thermal fluids and pastes of previous work are not as effective as solder (applied when it is molten), but they do not require heating, which is required for the use of solder. Xu et al., J. Electron. Pkg. 124:188-191 (2002); Xu et al., J. Electron. Pkg. 122:128-131 (2000).
- Due to its excellent heat transfer characteristics and as it is relatively inexpensive, boron nitride is commonly used as a filler for thermal interface materials. Unfortunately, however, it suffers from the disadvantage that it degrades when exposed to humidity. When placed in a humid environment, hygroscopic impurities (boric oxide) within the compound absorb atmospheric water, which then reacts with the boron nitride to form boric acid. Being hygroscopic, the boric acid absorbs further water, thereby accelerating the degradation of the boron nitride and diminishing its heat removing capabilities, which ultimately leads to failure of the device. Published PCT Application WO 01/21393 is specifically directed to this problem and describes a moisture resistant, thermally conductive material that includes thermally conductive filler particles, preferably boron nitride, that are coated with a hydrophobic compound, preferably a silicone compound such as a siloxane. The hydrophobic compound-coated filler particles are joined together with a binder, and account for between 5 and 70 vol. % of the material.
- Organic vehicles are commonly used as the suspending medium for dispersed inorganic particles in pastes. Kumar, Active & Passive Elec. Comp. 25:169-179(2002); Chae et al., Mater. Lett. 55:211-216 (2002); Heller et al., Tenside, Surfactants, Detergents 29:315-319 (1992); Stanton, Int. J. Hybrid. Microelec. 6:419-432 (1983). An organic vehicle system may consist of a solvent (such as butyl ether) (Bernazzani et al., J. Chem. Therm. 33:629-641 (2001)) and a solute (such as ethyl cellulose) (Stanton, Int. J. Hybrid Microelec. 6:419-432 (1983)), which serves to enhance the dispersion and suspension. Kumar, Active & Passive Elec. Comp. 25:169-179(2002). Ethyl cellulose has the further advantage of its slight conductivity. Khare et al., Polym. Int. 42:138-142 (1997); Khare et al., Polym. Int. 49:719-727 (2000).
- Another organic vehicle is polyethylene glycol (PEG), a polymer of low molecular weight (400 amu), which is different from silicone in its low viscosity. By using PEG in conjunction with boron nitride particles as a thermal paste between copper disks, a thermal contact conductance of 1.9×10 5 W/m2.° C. has been attained. This value is higher than that obtained by using a thermal paste involving silicone and boron nitride powder (1.1×105 W/m2.° C.), but is lower than that obtained by using solder, applied in the molten state (2.1×105/m2.° C.). Xu et al., J. Electron. Pkg. 124:188-191 (2002). In fact, all thermal pastes previously reported are inferior to solder in providing high thermal contact conductance.
- Carbon black is a very fine particulate form of elemental carbon, consisting of typically spherical particles, which in turn come together to form porous agglomerates. Carbon black is produced either by incomplete combustion or thermal decomposition of a hydrocarbon feedstock. Types of carbon black include soot, lamp black (typical particle size 50-100 nm), channel black (typical particle size 10-30 nm), furnace black (typical particle size 10-80 nm), thermal black (typical particle size 150-500 nm), and acetylene black (typical particle size 35-70 nm).
- Carbon black is used as a low-cost electrically conductive filler in polymers. Nakamura et al., NEC Res. & Dev. 83:121-127 (1986); Saad et al., J. Appl. Polym. Sci. 73:2657:2670 (1999). Due to its relatively low thermal conductivity, however, carbon black has not been reported as a filler for thermally conductive pastes. Most commonly, it is used as a reinforcement in rubber. Takirio et al., Tire Sci. & Tech. 26:241-257 (1998); Haws et al., Rub. Div. Symp., ACS, Akron, Ohio 1:257-281 (1982); Hess et al., Rub. Chem. & Tech. 56:390-417 (1983); Kundu et al., J. Appl. Polym. Sci. 84:256-260 (2002); Ramesan et al., Plas. Rub. & Comp. 30:355-362 (2001); Sridhar et al., J. Appl. Polym. Sci. 82:997-1005 (2001).
- In addition, carbon black is used in electrochemical electrodes (Takei et al., J Power Sources 55:191-195 (1995); Van Deraerschot et al., Electrochem. Soc. Ext. Abst., Electrochem. Soc., Pennington, N.J. 84:139 (1984)), inks (Erhan et al., J. Am. Oil Chem. Soc. 68:635-638 (1991); Bratkowska et al., Przemysl Chemiczny 66:393-395 (1987); Bratkowska et al., Przemysl Chemiczny 65:363-365(1986)), lubricants (Chinas-Castillo et al., Tribology Trans. 43:387-394 (2000); Shiao et al., J. Appl. Polym. Sci. 80:1514-1519 (2001); Kozlovtsev et al., Glass & Ceramics (English Translation of Steklo I Keramika) 154-157; Bakaleinikov et al., Chem. & Tech. Fuels & Oils 18:108-111 (1982)), fuels (Srivastava et al., Fuel 73:1911-1917 (1984); Steinberg, Preprints: Div. Pet. Chem., ACS 32:565-571 (1987); Smith, Automotive Eng. (London) 7:23-24, 27 (1982)), and pigments (Ueki et al., Ann. Conf Elec. Ins. & Dielec. Phen., Ann. Rpt., IEEE, Piscataway, N.J. 1: 170-176 (1997)).
- The present invention is directed to overcoming these and other deficiencies in the art.
- One aspect of the present invention relates to, a thermally conductive paste formed from porous agglomerates of carbon particles dispersed in a paste-forming vehicle.
- Another aspect of the present invention is directed to a thermally conductive interface material in the form of a paste formed from porous agglomerates of carbon particles dispersed in a paste-forming vehicle.
- A further aspect of the present invention is an apparatus that includes a heat source, a heat sink proximate the heat source, and a layer of a thermally conductive paste made in accordance with the present invention disposed between and in contact with the heat source and the heat sink.
- Yet another aspect of the present invention is a method of removing heat from a heat source that involves providing a heat sink proximate the heat source and disposing a layer of a thermally conductive paste made in accordance with the present invention between and in contact with the heat source and the heat sink.
- The thermally conductive paste of the present invention is highly conformable and spreadable and is particularly useful as a thermally conductive interface material. By using porous agglomerates of carbon particles as the thermally conductive ingredient, thermal pastes that are superior to solder in providing high thermal contact conductance have been attained. Thermally conductive interface materials prepared in accordance with the present invention can provide thermal contact conductance between copper disks of 3×105 watts/meter2.° C. (W/m2.° C.), as compared to 2×105 W/m2.° C. for solder. Moreover, the pastes are easy to use and apply, unlike solder, which requires the application of heat during use.
- Thermally conductive pastes of the present invention have many applications. Pastes prepared in accordance with the present invention may be used, for example, for microelectronic cooling, for heat pipes for tapping geothermal energy (Lockett, H. & V. Eng. 59:7-8; Lockett, Proc. Eur. Cong., 1:285-289 (1984)) and for thermal fluid heaters for providing indirect process heat (Dawes et al., Inst. Energy, London, UK Pap. KN/III/2 1:8 pp (1984)). Pastes prepared in accordance with the present invention may also be used, for example, for the cooling of machinery, boilers, cutting tools, oil drilling equipment components, spacecraft components and building components. Other applications may be in connection with foods, wound healing, therapeutics, etc.
- Thermally conductive pastes of the present invention may also be used to improve the thermal contact between a cold source and an object proximate the cold source, for the purpose of cooling the object or other objects connected to the object. The pastes, may for example, be applied to improve the thermal contact between a fluid-cooled object (the cold source) and a cold plate or a cold finger, for the purpose of cooling an object connected to the cold plate or cold finger.
- Another aspect of the present invention is therefore, an apparatus that includes a cold source, an object proximate the cold source, and a layer of a thermally conductive paste made in accordance with the present invention disposed between and in contact with the cold source and the object.
- Yet another aspect of the present invention is a method of improving the thermal contact between a first object and a second object proximate the first object, that involves disposing a layer of a thermally conductive paste made in accordance with the present invention between and in contact with the first object and the second object.
-
FIG. 1 is a partial, perspective view of a layer of a thermally conductive paste made in accordance with the present invention disposed between an integrated circuit chip and a heat sink. -
FIG. 2 is a schematic representation of thermal contact conductance measurement in accordance with the present invention. -
FIG. 3 is a graphic representation of thermogravimetric results obtained for (a) PEG by itself; and (b) PEG with 3 vol. % ethyl cellulose. -
FIG. 4 is a graphic representation of thermogravimetric results obtained for (a) butyl ether by itself; and (b) butyl ether with 40 vol. % ethyl cellulose. - The present invention relates to a thermally conductive paste formed from porous agglomerates of carbon particles dispersed in a paste-forming vehicle. The paste is particularly useful as a thermally conductive interface material for improving thermal contacts, such as, for example, between a heat source and a heat sink or between a cold source and an object. Thus, the present invention further relates to a thermally conductive interface material in the form of a paste formed from porous agglomerates of carbon particles dispersed in a paste-forming vehicle.
- The porous agglomerates of carbon particles will preferably be a carbon black. Types of carbon black include soot, lamp black (typical particle size 50-100 nm), channel black (typical particle size 10-30 nm), furnace black (typical particle size 10-80 nm), thermal black (typical particle size 150-500 nm), and acetylene black (typical particle size 35-70=m), for example.
- In one aspect, the paste-forming vehicle may be a paste-forming vehicle system. Typically, a paste-forming vehicle system will include a paste-forming solvent and a solute. The system may, for example, be organic-based or inorganic based. Examples of solvents that may be used in a paste-forming vehicle system can include, but are not limited to, silicates (such as, for example, sodium silicate), glycol ethers (such as, for example, di(ethylene glycol) butyl ether (“BE”)), methoxypolyethylene glycol (“MPEG”), ethylene glycol, propylene glycol, ethylene oxide, propylene oxide, polyethylene glycol (“PEG”), PEG modified with various types of functional groups (such as, for example, —H, —CH3, etc.) at the ends of the macromolecular chain, oil, water, alcohols (such as, for example, 2-ethylhexanol, 2-ethylhexoic acid, 2-methyl butanol, propanol, ethanol, diacetone alcohol, isobutanol, isopropanol, n-butanol, n-pentanol, n-propanol, etc.), diethyl sulfate, diisobutyl carbinol, diisobutyl ketone, hexylene glycol, isobutyl acetate, isophorone, isopropyl acetate, methyl isobutyl carbinol, ketone (such as, for example, methyl isobutyl ketone), n-butyl acetate, n-propyl acetate, primary amyl acetate mixed isomers, primary amyl alcohol mixed isomers, n-propyl propionate, n-butyl propionate, n-pentyl propionate, methylene chloride, perchloroethylene, trichloroethylene, xylene, acetone, ethyl acetate, and chemically related substances.
- Examples of solvents that may be used in a paste-forming vehicle system can include, but are not limited to, cellulosic resin, thermoplastic resin, glycidyl methacrylate, hydroxy(meth)acrylate monomers, epsilon-caprolactone monomer, hydroxypropyl acrylate, hydroxyethyl acrylate, ethylene acrylic acid, divinylbenzene, styrene-butadiene latexes, acrylic latexes, vinyl acrylic latexes, styrene acrylic latexes, vinyl versatate latexes, vinyl chloride, vinylbenzyl chloride, chloromethylstyrene, vinyl acetate copolymers, epoxy resins, epoxy acrylate, aminoethylethanolamine, glycol ethers, propylene glycols, ethylene glycols, polyols (e.g., aliphatic polyester polyols), ethylene acrylic acid resins, methylcellulose, ethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol, starch, and chemically related substances. The choice of solute will typically depend on the choice of solvent. At least the last four solutes, for example, are soluble in water.
- An organic-based paste-forming vehicle system may include, for example, a solvent such as polyethylene glycol or di(ethylene glycol) butyl ether, and a solute, such as, for example, ethyl cellulose.
- In some instances, such as with water-based and alcohol-based pastes, the solvent evaporates, allowing the conductive units (i.e., carbon black agglomerates) to be in intimate contact after the paste has dried. In contrast, oil-based and some polymer-based pastes do not dry. Ether itself is volatile, but the dissolution of a solute such as ethyl cellulose in it results in a paste-forming vehicle that is not volatile, such that the resulting paste does not dry, as in the case of certain polymer-based pastes.
- In one aspect, a thermally conductive paste prepared in accordance with the present invention may, for example, incorporate a paste-forming vehicle system including PEG as a solvent and ethyl cellulose as a solute. In this aspect, the amount of ethyl cellulose present in the paste will preferably be within the range of about 3 to about 5 volume percent (vol. %). More preferably, the amount of ethyl cellulose present in the paste will be about 3 vol. %. Furthermore, the amount of carbon particles dispersed in the paste will preferably be less than about 2.0 vol. %, and more preferably, less than about 1.5 vol. %.
- A particularly useful thermally conductive paste of the present invention includes porous agglomerates of carbon particles dispersed in a paste-forming vehicle system including ethyl cellulose in PEG, where the amount of carbon particles dispersed in the paste is about 1.25 vol. % and the amount of ethyl cellulose present in the paste is about 3 vol. %.
- In another aspect, a thermally conductive paste prepared in accordance with the present invention may, for example, incorporate a paste-forming vehicle system including di(ethylene glycol) butyl ether as a solvent and ethyl cellulose as a solute. In this aspect, the amount of ethyl cellulose present in the paste will preferably be about 40 vol. %. In addition, the amount of carbon particles dispersed in the paste will preferably be less than about 0.40 vol. %, and more preferably, about 0.20 vol. %.
- Another particularly useful thermally conductive paste of the present invention includes porous agglomerates of carbon particles dispersed in a paste-forming vehicle system including ethyl cellulose in di(ethylene glycol) butyl ether, where the amount of carbon particles dispersed in the paste is about 0.20 vol. % and the amount of ethyl cellulose present in the paste is about 40 vol. %.
- Due to its high conformability and spreadability, the thermally conductive paste of the present invention is especially useful as a thermally conductive interface material to assist in heat transfer between a heat source and a heat sink, for example, between an integrated circuit chip and a heat sink for dissipation of heat from an electronic apparatus.
- Particularly useful as a thermally conductive interface material is a paste of the present invention where the paste-forming vehicle is a paste-forming vehicle system including ethyl cellulose in PEG and the amount of carbon particles dispersed in the paste is about 1.25 vol. % and the amount of ethyl cellulose present in the paste is about 3 vol. %.
- Also useful as a thermally conductive interface material is a paste of the present invention where the paste-forming vehicle is a paste-forming vehicle system including ethyl cellulose in di(ethylene glycol) butyl ether, where the amount of carbon particles dispersed in the paste is about 0.20 vol. % and the amount of ethyl cellulose present in the paste is about 40 vol. %.
- Referring now to
FIG. 1 , anelectronic apparatus 10 made in accordance with the present invention includes a heat source 12, such as, an integrated circuit chip, and aheat sink 14. Alayer 16 of a thermally conductive paste made in accordance with the present invention is disposed as an interface material between and in contact with the heat source 12 and theheat sink 14. While thelayer 16 of thermally conductive paste can be formed in a variety of shapes and sizes to fill particular needs, it is preferred in this context that it substantially cover the entire surfaces of the heat source/heat sink interface. - As illustrated, the heat source 12 is mounted to a
circuit board 18. The heat source 12 is operably connected to an electrical source (not shown) and operates conventionally. As heat is generated by the heat source 12, the heat is conducted from a heat sourceouter surface 13 across the layer of thermally conductive paste of the present invention to a heat sinkinner surface 15. The heat is thereafter conventionally dissipated to the atmosphere through theheat sink 14, as known in the art. Additionally, because thelayer 16 of thermally conductive paste substantially covers both the heat sourceouter surface 13 and the heat sinkinner surface 15, thermal contact resistance is minimized. - Accordingly, the present invention is also directed to an electronic apparatus that includes a heat source, a heat sink, and a layer of a thermally conductive paste of the present invention disposed between and in contact with the heat source and the heat sink.
- The present invention is yet further directed to a method of removing heat from a heat source which involves providing a heat sink proximate the heat source and disposing a layer of a thermally conductive paste of the present invention between and in contact with the heat source and the heat sink. The method is useful, for example, in aiding in the dissipation of heat from a microelectronic device or apparatus.
- The examples that follow are focused on the addition of various thermally conductive fillers to organic vehicles for the purpose of providing a thermal paste which is conformable, spreadable and relatively high in thermal conductivity. The fillers evaluated here are carbons (such as, carbon black, 1 μm and 5 μm graphite particles, 0.1 μm diameter discontinuous carbon filaments and 25 μm diamond particles) and 1 μm and 3 μm nickel particles.
- Of all these fillers, carbon black, which is porous, is the only type that is itself spreadable (compressible). Galli, Plastics Compounding 5:22-32 (1982), which is hereby incorporated by reference in its entirety. The spreadability is believed to be the reason behind the superior performance of carbon black compared to all the other fillers investigated. Helsen et al., Colloid. & Polym. Sci. 264:619-622 (1986); Mewis et al., Colloids & Surfaces 22:271-289 (1987); Genz et al., J. Colloid & Interface Sci. 165:212-220 (1994), which are hereby incorporated by reference in their entirety.
- Furthermore, the porosity of a carbon black particle allows penetration of the vehicle into a carbon black particle, thereby enabling the resulting paste to have high fluidity, as previously shown for the case of oil as the vehicle. Ishii et al., Carbon 39:2384-2386 (2001); Trappe et al., Phys. Rev. Lett. 85:449-452 (2000); Kratohvil et al., Colloids & Surfaces 5:179-186 (1982); Fitzgerald et al., Rubber Chem. & Tech. 55:1569-1577 (1982); Amari, Progress in Organic Coatings 31:11-19 (1997), which are hereby incorporated by reference in their entirety.
- The examples further provide a comparative study of various organic vehicles and vehicle systems, such as, PEG with 0-15 vol. % dissolved ethyl cellulose and di(ethylene glycol) butyl ether with 0-40 vol. % dissolved ethyl cellulose. The comparative evaluation pertains both to the effectiveness of the thermal paste and the temperature resistance, as both attributes are relevant to the thermal paste application.
- The polyethylene glycol, HO(CH2CH2O)11H, (“PEG”) used as an organic vehicle was PEG 400 (EM Science, Gibbstown, N.J.). It had a molecular weight of 400 amu. It was a liquid at room temperature and optionally contained ethyl cellulose (Sigma Chemical Co., St. Louis, Mo.) at either 3 or 5 vol. %. The ethyl cellulose was a white powder that was dissolved in the vehicle. It served to improve the dispersion and suspension of the solids in the pastes.
- The other organic vehicle used was di(ethylene glycol) butyl ether (Aldrich Chemical Co., Inc., Milwaukee, Wis.). It optionally contained ethyl cellulose (Sigma Chemical Co., St. Louis, Mo.) at 10, 20, 30 or 40 vol. %.
- The carbon black used was a type for electrical conductivity and easy dispersion (Vulcan XC72R GP-3820; Cabot Corp., Billerica, Mass.). It consisted of porous agglomerates of carbon particles of
particle size 30 nm, density 1.7-1.9 g/cm3, nitrogen specific surface area 254 m2/g and maximum ash content 0.2%. The carbon black powder was mixed with a vehicle by hand, stirring to form a uniform paste. - Other thermally conductive solids, all used at 0.27 vol. % for the sake of comparison, were graphite particles (Asbury Graphite Mills, Inc., Asbury, N.J., (i) artificial graphite, Grade Ultra Fine 440, 99.4% typical carbon content, 1 μm typical size, and (ii) natural crystalline flake, Grade Micro 850, 98.5% minimum carbon content, 5 μm typical size), carbon filaments (Applied Sciences Inc., Cedarville, Ohio, 0.1 μm diameter, >100 μm length, with intertwined morphology and fishbone texture),1 μm nickel particles (INCO, Inc., Missassauga, Ontario, Calif., Type 210), 3 μm nickel particles (Novamet Specialty Products Corp., Wyckoff, N.J.,
Type 525, 15 to 20 μm length), and 25 μm diamond particles (Warren Superabrasives, Olyphant, Pa., Type MB). - The pastes were prepared by first dissolving ethyl cellulose (if applicable) to the vehicle (either PEG or butyl ether). The dissolution was performed at room temperature for butyl ether, but at about 60° C. (with heat provided by a hot plate) for PEG. The heating for the case of PEG was to hasten the dissolution. After this, the thermally conductive solid ingredient was added. Mixing was conducted by using a ball mill and stainless steel balls. After mixing, the paste was placed in a vacuum chamber (which involved a mechanical vacuum pump) for the purpose of air bubble removal.
- As generally depicted in
FIG. 2 , a layer of a thermally conductive paste 16 (or solder) was sandwiched between the flat surfaces of twocopper disks 20,22 (both surfaces of each disk having been mechanically polished by using 0.05 μm alumina particles), which had diameter 12.6 mm and thickness of 1.16 mm for one disk and 1.10 mm for the other disk. The thermal contact conductance between two copper disks with and without a layer of thermally conductive paste 16 (or solder) was measured using the transient laser flash method. Xu et al., J. Electron. Pkg. 124:188-191 (2002); Xu et al., J Electron. Pkg. 122:128-131 (2000); Parker et al., J. Appl. Phys. 32:1679-1683 (1961); Inoue et al., Yosetsu Gakkai Ronbunshu/Quarterly J Jap. Welding Soc., 6:130-134 (1988), which are hereby incorporated by reference in their entirety. - The pressure on the sandwich was controlled at 0.46, 0.69 and 0.92 MPa (depicted in
FIG. 2 as arrow A). This is because the pressure affects the thermal contact conductance, even for a material that is not resilient. Xu et al., J. Electron. Pkg. 122:128-131 (2000), which is hereby incorporated by reference in its entirety. The thickness of the thermally conductive paste was 25 μm or less. The uniform distribution of the paste in the plane of the sandwich was made possible by the fluidity of the paste and the use of pressure. The thermally conductive paste thickness was obtained by subtracting the thicknesses of the two copper disks from the thickness of the sandwich, such that all thicknesses were measured using a micrometer. The thermally conductive paste thickness for all cases was the same before and after the conductance measurement. - For the sake of comparison, solder (applied in the molten state) was also used as a thermal interface material (i.e., substituted for the layer of thermally conductive paste 16). The solder was tin-lead-antimony (63 Sn-36.65 Pb-0.35 Sb), with activated Rosin flux core (Solder Type 361A-20R by Measurements Group, Inc., Raleigh, N.C.). Molten solder at a temperature of 187° C., as measured by using a Type-T thermocouple, was sandwiched between copper disks that had been preheated to this temperature also. This temperature was above the liquidus temperature of 183° C. The heat was provided by a hot plate. The copper-solder-copper sandwich was allowed to cool on the hot plate with the power off under slight pressure. The thickness of the solder was 25 μm or less.
- The finite element program ABAQUS® (Abaqus, Inc., Pawtucket, R1) was used to calculate the thermal contact conductance through temperature vs. time curves, which were experimentally obtained. Xu et al., J Electron. Pkg. 122:128-131 (2000), which is hereby incorporated by reference in its entirety. The calculation assumed no thickness and no heat capacity for the interface between the two copper disks. In addition, it assumed no heat transfer between specimen and environment except for the absorption of laser energy by the specimen. Moreover, it assumed that the laser energy was uniformly absorbed on the surface of the specimen, that the heat flow was one-dimensional, and that the thermal contact conductance between the two copper disks was uniform. The validity of these assumptions is supported by the calibration result and error analysis given below.
- Referring again to
FIG. 2 , a Coherent General Everpulse Model 11 Nd glass laser (Coherent, Inc., Santa Clara Calif.) (depicted generally inFIG. 2 as 24) with a pulse duration of 0.4 ms, a wavelength of 1.06 μm and a pulse energy up to 15 J was used for impulse heating. The laser power was adjusted to allow the temperature rise of the specimen to be between 0.5 and 1.0° C. The upper surface of 1, 20, on which the laser beam (depicted as arrow B) would directly hit had been coated by carbon in order to increase the extent of laser energy absorption relative to the extent of reflection. A first E-type thermocouple (not shown) was attached to the back surface ofdisk # 2, 22, for monitoring the temperature rise. A second thermocouple of the same type (not shown) was put ˜30 cm above the specimen holder to detect the initial time that the laser beam (arrow B) came out.disk # - A National Instruments DAQPad-MIO 16XE-50 data acquisition board (National Instruments, Austin, Tex.) with a data acquisition rate up to 20,000 data points per second at 16 bites resolution, along with NI-DAQ interface software coded in Visual Basic® (Microsoft® Corp., Redmond, Wash.) was used to monitor the response of both thermocouples simultaneously. A
plexiglass sample holder 26,bolt 28 andrubber insulator 30, were used to facilitate pressure application. A Sensotec Model 13 (Columbus, Ohio)load cell 32 was used for pressure measurement. Calibration using a standard graphite specimen was performed before testing each specimen in order to ensure measurement accuracy. The data acquisition rate used for each test was adjusted so that there were at least 100 temperature data points during the temperature rise. - The experimental error in transient thermal contact conductance measurement consists of random error due to experimental data scatter, and systematic error mainly due to the lag of the thermocouple response and partly due to the method used to calculate the conductance from the temperature data. The higher the thermal contact conductance, the greater is the error. The thermal diffusivity of a standard NBS 8426 graphite disk (thickness =2.62 mm), which had a similar transient temperature rise time as the copper sandwich with the highest thermal contact conductance, was measured prior to testing each specimen in order to determine the systematic error, if any. The random error shown by the ± value was determined by measurement of five specimens.
- The viscosity of the formulations was measured by using a viscometer (Brookfield Engineering Laboratories, Inc., Middleboro, Mass., Model LVT Dial-Reading Viscometer, with Model SSA-18/13R Small Sample Adaptor).
- The thermal stability of the formulations was tested by thermogravimetry, as conducted by heating in air from room temperature to 150° C. at a rate of 2° C./min. A Perkin Elmer(Newark, Conn.) TGA7 instrument was used.
- Table 1 gives thermal contact conductance for various thermal pastes (containing 0 to 3.20 vol. % carbon black) between copper disks at various contact pressures. The paste was below 25 μm in thickness. As seen in Table 1, without carbon black, the optimum ethyl cellulose content for attaining high thermal contact conductance using PEG as the vehicle base was 5 vol. %. The conductance was less when the ethyl cellulose content was below or above this value. This is attributed to the increase in both conductivity and viscosity provided by the ethyl cellulose. The conductivity helped the contact conductance, thus causing the conductance to increase as the cellulose content increased from 0 to 5 vol. %. On the other hand, the viscosity was detrimental to the contact conductance, thus causing the conductance to decrease as the cellulose content increased from 5 to 15 vol. %.
- The addition of carbon black to PEG containing 3 vol. % ethyl cellulose increased the contact conductance, provided that the carbon black content was 1.25 vol. % or below (Table 1). Exceeding this content caused the contact conductance to drop, as shown for a carbon black content of 1.5 vol. %, which gave even lower conductance than the case without carbon black. In the case of PEG containing 5 vol. % ethyl cellulose, the conductance was diminished greatly by the carbon black addition (even just 0.5 vol. % carbon black). This is attributed to the resulting high viscosity when ethyl cellulose was present at 5 vol. % and the further increase in viscosity upon the carbon black addition. The viscosity results are described in Example 6. Among the PEG based pastes, the highest contact conductance of 30×104 W/m2.° C. was attained by using 3 vol. % ethyl cellulose and 1.25 vol. % carbon black.
- Referring again to Table 1, it is seen that for butyl ether without carbon black, the optimum ethyl cellulose content for attaining high contact conductance was 30 vol. % when the contact pressure was 0.46 MPa and was 20 vol. % when the pressure was 0.69 or 0.92 MPa. Due to its low viscosity, butyl ether dissolved ethyl cellulose powder more easily than did PEG. However, the conductance attained by butyl ether, whether with or without ethyl cellulose, is lower than that attained by PEG, whether with or without carbon black.
- The addition of carbon black to butyl ether had little effect on the contact conductance, unless the ethyl cellulose content was high (40 vol. %). In this case, the conductance increased with carbon black content from 0 to 0.20 vol. % and decreased with carbon black content from 0.20 to 0.53 vol. %. The optimum carbon black content 0.20 vol. %, at which conductance reached 28×104 W/m2.° C.
- For pastes based on PEG (with 3 vol. % ethyl cellulose) and butyl ether (with 40 vol. % ethyl cellulose), the conductance was maximum at an intermediate content of carbon black. This trend had been previously reported for boron nitride particle pastes based on lithium doped PEG. Xu et al., J Electron. Pkg., 124: 188-191 (2002), which are hereby incorporated by reference in their entirety. It is attributed to the required compromise between thermal conductivity and viscosity, both of which increase with increasing solid content. The viscosity results are described in Example 6.
- The highest conductance attained by PEG-based and butyl ether-based pastes is similar. However, the optimum carbon black content is much higher for the PEG-based paste and the optimum ethyl cellulose content is much lower for the PEG-based paste. Due to the importance of a low viscosity, the use of a high ethyl cellulose content requires that of a low carbon black content, and the use of a high carbon black content requires that of a low ethyl cellulose content.
TABLE 1 Thermal Interface Material Vol. % Vol. % Conductance (104 W/m2 · ° C.) Vehicle EC CB 0.46 MPa 0.69 MPa 0.92 MPa PEG 0 0 11.00 ± 0.30 — — PEG 3 0 12.02 ± 0.86 13.98 ± 1.06 15.57 ± 1.03 PEG 5 0 18.51 ± 0.83 18.92 ± 0.91 20.74 ± 1.52 PEG 7.5 0 17.61 ± 0.11 17.60 ± 0.75 19.21 ± 0.79 PEG 10 0 12.31 ± 0.52 12.29 ± 0.61 14.69 ± 0.80 PEG 15 0 4.14 ± 0.25 4.41 ± 0.07 4.59 ± 0.33 PEG 3 0 12.02 ± 0.86 13.98 ± 1.06 15.57 ± 1.03 PEG 3 0.50 15.45 ± 0.94 17.67 ± 1.09 19.10 ± 0.43 PEG 3 1.00 18.83 ± 1.08 19.41 ± 1.38 22.81 ± 1.12 PEG 3 1.25 29.90 ± 0.79 28.98 ± 2.11 29.63 ± 1.92 PEG 3 1.50 9.92 ± 0.57 11.50 ± 0.90 12.29 ± 1.06 PEG 5 0 18.51 ± 0.83 18.92 ± 0.91 20.74 ± 1.52 PEG 5 0.50 9.00 ± 0.14 13.16 ± 0.19 13.28 ± 0.07 PEG 5 0.75 11.71 ± 0.44 12.90 ± 0.31 14.83 ± 0.63 PEG 5 1.00 10.61 ± 0.20 11.45 ± 0.33 11.61 ± 0.50 BE 0 0 2.89 ± 0.10 — 3.86 ± 0.08 BE 10 0 3.65 ± 0.13 4.55 ± 0.21 5.68 ± 0.06 BE 20 0 3.70 ± 0.08 5.11 ± 0.05 6.40 ± 0.11 BE 30 0 4.60 ± 0.28 5.08 ± 0.15 5.54 ± 0.21 BE 40 0 3.67 ± 0.13 4.37 ± 0.12 4.61 ± 0.06 BE 0 0 2.89 ± 0.10 — 3.86 ± 0.08 BE 0 1.34 2.14 ± 0.08 — 3.75 ± 0.06 BE 0 2.14 2.85 ± 0.04 — 3.08 ± 0.08 BE 0 2.67 1.64 ± 0.10 — 2.37 ± 0.0+ BE 0 3.20 1.62 ± 0.07 — 2.32 ± 0.06 BE 10 0 3.65 ± 0.13 4.55 ± 0.21 5.68 ± 0.06 BE 10 0.53 1.10 ± 0.06 2.99 ± 0.06 4.42 ± 0.06 BE 10 1.34 4.53 ± 0.15 5.35 ± 0.19 5.43 ± 0.31 BE 10 2.14 3.75 ± 0.11 4.64 ± 0.22 4.75 ± 0.17 BE 10 2.67 1.75 ± 0.05 2.75 ± 0.06 4.05 ± 0.18 BE 20 0 3.70 ± 0.08 5.11 ± 0.05 6.40 ± 0.01 BE 20 0.53 4.02 ± 0.13 5.17 ± 0.09 5.47 ± 0.28 BE 20 1.34 4.13 ± 0.13 5.25 ± 0.16 5.52 ± 0.11 BE 20 2.14 5.00 ± 0.17 5.39 ± 0.13 5.64 ± 0.20 BE 20 2.67 1.08 ± 0.07 1.13 ± 0.03 1.45 ± 0.03 BE 30 0 4.60 ± 0.28 5.08 ± 0.15 5.54 ± 0.21 BE 30 0.27 3.41 ± 0.14 3.94 ± 0.10 4.17 ± 0.05 BE 30 0.53 4.23 ± 0.16 5.60 ± 0.22 6.62 ± 0.32 BE 30 1.07 1.65 ± 0.02 2.13 ± 0.05 2.88 ± 0.07 BE 40 0 3.67 ± 0.13 4.37 ± 0.12 4.61 ± 0.06 BE 40 0.10 10.90 ± 1.10 16.19 ± 1.02 16.93 ± 0.12 BE 40 0.20 27.43 ± 2.75 28.41 ± 2.12 28.03 ± 1.57 BE 40 0.27 18.94 ± 0.60 24.87 ± 1.00 25.74 ± 1.20 BE 40 0.30 13.62 ± 1.32 17.05 ± 1.26 18.54 ± 1.53 BE 40 0.40 6.02 ± 0.58 7.68 ± 0.10 9.56 ± 0.62 BE 40 0.53 4.95 ± 0.15 5.58 ± 0.17 5.55 ± 0.11
EC = ethyl cellulose
CB = carbon black
PEG = polyethylene glycol
BE = di(ethylene glycol) butyl ether
- Table 2 gives thermal contact conductance for thermal pastes in the form of di(ethylene glycol) butyl ether containing 40 vol. % ethyl cellulose and 0.27 vol. % thermally conductive solids, as tested between copper disks at various contact pressures. The paste was below 25 μm in thickness.
- Table 2 shows that carbon black is a much more effective conductive additive than graphite, nickel and diamond particles and carbon filaments, for it provides a thermal paste that gives an exceptionally high thermal contact conductance. The superiority of carbon black occurs in spite of the relatively poor thermal conductivity of carbon black. It is attributed to the conformability and spreadability of the paste, as enhanced by the compressibility of the carbon black agglomerates.
- The compressibility of carbon black and the consequent electrical connectivity attained upon squeezing, have been previously reported. In particular, as an electrically conductive additive to a non-conductive Mn02 particle cathode of an electrochemical cell, carbon black resulted in a lower resistivity than carbon filament without graphitization (same as the carbon filament used in this work), due to the squeezing of the carbon black between adjacent Mn02 particles. Frysz et al., J. Power Sources 58:41-54 (1996); Lu et al., Carbon 40:447-449 (2000), which are hereby incorporated by reference in their entirety. In contrast, the other conductive solids investigated are not compressible. Carbon black is even superior to single-walled carbon nanotubes, pastes of which were tested using the methods and equipment described here. Xu et al., J Electron. Mater. (2004), which is hereby incorporated by reference in its entirety. For comparison, these results are shown in Table 2. Conformability and spreadability are more important than thermal conductivity in governing thermal paste performance.
- The use of solder in place of a thermal paste gave a thermal contact conductance of (20.08±0.60)×104 W/m2.° C. (not shown in Tables). This value is consistent with that previously reported in the literature for the same testing method and configuration. Xu et al., J. Electron. Pkg. 124: 188-191 (2002), which is hereby incorporated by reference in its entirety. Thus, the optimized carbon black pastes of the present invention are significantly superior to solder as thermally conductive interface materials.
- The limited effectiveness of solder occurs in spite of the high thermal conductivity of solder. This is partly due to the reaction between solder and the copper disks. This reaction results in copper-tin intermetallic compounds at the solder-copper interface. Grivas et al., J Electron Mater. 15:355-359 (1986); Tu, Mater. Chem. Phys. 46:217-223 (1996); Tsutsumi et al., Int. J. Hybrid Microelec. 7:38-43 (1984), which are hereby incorporated by reference in their entirety. The compound formation causes the solder to not wet the copper surface. Kim et al., Mat. Res. Soc. 183-188 (1995), which is hereby incorporated by reference in its entirety. This leads to increased difficulty of the solder to conform to the surface topography of the copper. Conformability and spreadability are more important than thermal conductivity in governing the performance of a thermal interface material.
- The thermal contact conductance values reported herein for the paste formulations (Tables 1 and 2) and solder as thermal interface materials were all obtained using the same specimen configuration, testing method and data analysis algorithm, and the values are reliable on a relative scale. However, the values deviate from the true values, due to the fact that the data analysis algorithm neglects the thickness of the thermal interface material. Luo et al., Int. J. Microcircuits Electron. Pkg. 24:141-147 (2001), which is hereby incorporated by reference in its entirety.
TABLE 2 THERMALLY CONDUCTIVE CONDUCTANCE (104 W/m2 · ° C.) SOLID 0.46 MPa 0.69 MPa 0.92 MPa Carbon Black 18.94 ± 0.60 24.87 ± 1.00 25.74 ± 1.20 Graphite (5 μm) 3.03 ± 0.09 3.67 ± 0.08 4.02 ± 0.12 Graphite (1 μm) 1.52 ± 0.03 1.77 ± 0.04 2.04 ± 0.05 Nickel (3 μm) 1.85 ± 0.05 2.14 ± 0.02 2.84 ± 0.04 Nickel (1 μm) 0.91 ± 0.07 2.03 ± 0.10 2.66 ± 0.03 Diamond (25 μm) 1.15 ± 0.02 1.21 ± 0.09 1.54 ± 0.03 Carbon Filaments 1.09 ± 0.03 1.32 ± 0.02 1.51 ± 0.03 (0.1 μm diameter) Single-walled carbon 13.5 ± 0.2 13.8 ± 0.3 14.1 ± 0.4 nanotubes - Table 3 shows the viscosity of selected pastes, as measured at various appropriate shear rates. The addition of ethyl cellulose to either PEG or butyl ether monotonically increased the viscosity, as shown in the absence of carbon black. PEG alone was higher in viscosity than butyl ether alone. However, PEG with the optimum ethyl cellulose content of 3 vol. % was much lower in viscosity than butyl ether with the optimum ethyl cellulose content of 40 vol. %. The addition of carbon black monotonically increased the viscosity, as shown for PEG containing 3 vol. % ethyl cellulose and for butyl ether containing 40 vol. % ethyl cellulose.
- The PEG with 5 vol. % ethyl cellulose and the PEG-based paste containing 3 vol. % ethyl cellulose and 1.25 vol. % carbon black were similar in viscosity. The latter gave a higher contact conductance than the former, due to a decrease in the ethyl cellulose content and an increase in the carbon black content. Thus, adjustment of the contents of both ethyl cellulose and carbon black is needed in order to attain an optimized thermal paste formulation.
- As shown in Table 1, the butyl ether-based paste with 40 vol. % ethyl cellulose and 0.20 vol. % carbon black and the PEG-based paste with 3 vol. % ethyl cellulose and 1.25 vol. % carbon black are the two thermal pastes of the present invention that gave the highest thermal contact conductance. As shown in Table 3, although the two pastes gave similarly high values of the contact conductance, the butyl ether-based paste exhibited a much higher viscosity than the PEG-based paste.
- Table 3 also shows that the viscosity of the butyl ether-based paste with 40 vol. % ethyl cellulose was lower when the paste contained 0.20 vol. % graphite particles (1 or 5 μm) or carbon filaments than when it contained 0.20 vol. % carbon black. However, it was noticed during paste mixing that the carbon black paste was much smoother than the graphite particle paste. The smoothness of the paste is apparently more important than the viscosity in governing thermal paste performance. Perhaps smoothness relates more closely to the conformability than a low viscosity.
- Referring again to Table 3, the viscosity of butyl ether-based paste with 40 vol. % ethyl cellulose and 0.20 vol. % solid increased in the order: 1 μm graphite particles, 5 μm graphite particles and carbon filaments. This trend is consistent with the notion that a larger particle size tends to result in a paste with a higher viscosity and that filaments tend to result in a higher viscosity than particles.
TABLE 3 Viscosity (cP) 0.79 2.0 2.6 4.0 6.6 7.9 16 40 Vehicle Vol. % EC Vol. % CB (s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (s−1) (s−1) PEG 0 0 — — — 125 — 120 120 — PEG 3.0 0 — — — 160 — 145 140 — PEG 5.0 0 — — — 190 — 190 195 — PEG 7.5 0 — — — 240 — 250 — — PEG 3.0 0.50 — — — 175 — 185 185 — PEG 3.0 1.25 — — — 200 — 195 200 — PEG 3.0 1.50 — — — 210 — 210 215 — BE 0 0 — — — — — — — <10 BE 10 0 — — — — — — 25 20 BE 30 0 580 520 — 540 — — — — BE 40 0 — — 4,000 — 3,900 — — — BE 40 0.10 — — 4,720 — 4,400 — — — BE 40 0.20 — — 5,200 — 4,800 — — — BE 40 0.30 — — 5,600 — 5,200 — — — BE 40 0.20a — — 4,000 — 3,900 — — — BE 40 0.20b — — 4,800 — 4,480 — — — BE 40 0.20c — — 5,000 — 4,720 — — —
EC = ethyl cellulose
CB = carbon black
BE = di(ethylene glycol) butyl ether
aGraphite particles (1 μm)
bGraphite particles (5 μm)
cCarbon filaments
- Although the viscosity is a useful suggestive indicator of thermal paste performance, it is not the same as the conformability, which is the attribute that really governs thermal paste performance. Since there is no standardized method of conformability measurement, this work resorted to viscosity measurement.
-
FIGS. 3 and 4 respectively, show the thermogravimetric results for PEG and butyl ether (with and without ethyl cellulose in each case, but without carbon black, which does not affect the thermal stability of the dispersion). Without ethyl cellulose, PEG is much more stable thermally than butyl ether. The dissolution of ethyl cellulose diminished the thermal stability of PEG, but increased that of butyl ether. - Table 4 shows a comparison of thermogravimetric results of these thermal pastes at three temperatures. At 50° C. and 75° C., butyl ether containing ethyl cellulose is more stable thermally than PEG containing ethyl cellulose, but at 100° C., the reverse is true. Above about 100° C., the weight loss of butyl ether, whether with or without ethyl cellulose, is extensive (more than 50% weight loss at 150° C.). However, the weight loss remains less than 9% even at 150° C. for PEG, whether with or without ethyl cellulose. Therefore, butyl ether-based pastes are not suitable for use above 100° C., whereas PEG-based pastes are suitable for use up to at least 150° C.
TABLE 4 Thermal Interface Material Residual Weight (%) Vehicle Vol. % EC 50° C. 75° C. 100° C. PEG 0 99.81 99.22 98.91 PEG 3 98.73 95.47 93.36 BE 0 98.98 96.11 84.67 BE 40 99.33 97.26 89.68
EC = ethyl cellulose
PEG = polyethylene glycol
BE = di(ethylene glycol) butyl ether
- The use of a PEG-based paste (containing 3 vol. % dissolved ethyl cellulose and dispersed carbon black in the optimum amount of 1.25 vol. %) as a thermal interface material between copper disks results in a thermal contact conductance of 30×104 W/m2.° C., compared to a value of 20×104 W/m2.° C. for tin/lead eutectic solder applied in the molten state. Almost as effective as the PEG-based paste is a butyl ether-based paste (containing 40 vol. % dissolved ethyl cellulose and dispersed carbon black in the optimum amount of 0.20 vol. %), which gives a thermal contact conductance of 28×104 W/m2.° C. The PEG-based paste is superior to the butyl ether-based paste in the thermal stability at 100° C. and above, though the reverse is true at 75° C. and below. The superiority of the formulations of the present invention to solder as thermal interface materials may presumably be due to the reaction between solder and copper and the consequent poor conformability of molten solder with copper.
- The use of PEG by itself gives a thermal contact conductance of 11×104 W/m2.° C. The dissolution of ethyl cellulose at an optimum concentration of 5 vol. % increases the conductance to 19×104 W/m2.° C. The use of butyl ether by itself gives a contact conductance of 3×104 W/m2.° C. The dissolution of ethyl cellulose at the optimum concentration of 20 to 30 vol. % gives a conductance ranging from 4×104 to 6×104 W/m2.° C.
- The addition of carbon black to PEG helps the conductance when the ethyl cellulose is at 3 vol. % and the carbon black content is at 1.25 vol. % or below. The addition of carbon black to PEG degrades the conductance when the ethyl cellulose is at 3 vol. % and carbon black is at 1.5 vol. %, or when the ethyl cellulose is at 5 vol. %. These effects are presumably due to the importance of conformability and spreadability to the thermal paste performance. Both carbon black and ethyl cellulose cause the viscosity of the paste to increase, so excessive amounts of these ingredients degrade the conductance.
- The optimum carbon black content is higher for PEG than butyl ether based, whereas the optimum ethyl cellulose content is higher for butyl ether than PEG. In spite of the difference in carbon black content, the thermal contact conductance is similar between the optimized PEG-based paste and the optimized butyl ether-based paste. Since carbon black is the ingredient in the paste that is most conductive thermally, this implies that the conformability and spreadability are more important than the thermal conductivity in governing thermal paste performance.
- Moreover, in spite of its own relatively low thermal conductivity, carbon black is much more effective than graphite, nickel and diamond particles and carbon filaments, all evaluated at the same volume fraction, for providing thermal pastes. This is attributed to the compressibility of a carbon black agglomerate and the consequent conformability and spreadability of the paste.
- Although preferred embodiments have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various additions, substitutions, modifications and the like can be made without departing from the spirit of the invention and these are therefore considered to be within the scope of the invention as defined in the claims which follow.
Claims (110)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/807,487 US20050016714A1 (en) | 2003-07-09 | 2004-03-23 | Thermal paste for improving thermal contacts |
| CN2004800194590A CN101416304B (en) | 2003-07-09 | 2004-07-07 | Thermally conductive paste for improving thermal contact and method and device for providing thermally conductive interface using same |
| PCT/US2004/021734 WO2005006403A2 (en) | 2003-07-09 | 2004-07-07 | Thermal paste for improving thermal contacts |
| US11/427,150 US7535715B2 (en) | 2003-07-09 | 2006-06-28 | Conformable interface materials for improving thermal contacts |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US48580403P | 2003-07-09 | 2003-07-09 | |
| US10/807,487 US20050016714A1 (en) | 2003-07-09 | 2004-03-23 | Thermal paste for improving thermal contacts |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/427,150 Continuation-In-Part US7535715B2 (en) | 2003-07-09 | 2006-06-28 | Conformable interface materials for improving thermal contacts |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20050016714A1 true US20050016714A1 (en) | 2005-01-27 |
Family
ID=34068224
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/807,487 Abandoned US20050016714A1 (en) | 2003-07-09 | 2004-03-23 | Thermal paste for improving thermal contacts |
| US11/427,150 Expired - Fee Related US7535715B2 (en) | 2003-07-09 | 2006-06-28 | Conformable interface materials for improving thermal contacts |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/427,150 Expired - Fee Related US7535715B2 (en) | 2003-07-09 | 2006-06-28 | Conformable interface materials for improving thermal contacts |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US20050016714A1 (en) |
| CN (1) | CN101416304B (en) |
| WO (1) | WO2005006403A2 (en) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060070720A1 (en) * | 2004-09-17 | 2006-04-06 | Capp Joseph P | Heat riser |
| US20060135655A1 (en) * | 2004-12-16 | 2006-06-22 | Cool Options, Inc. | Method for improving filler dispersal and reducing tensile modulus in a thermally conductive polymer composition |
| US20060286712A1 (en) * | 2005-05-20 | 2006-12-21 | International Business Machines Corporation | Thermal interface with a patterned structure |
| US20070004091A1 (en) * | 2005-06-30 | 2007-01-04 | Fujitsu Limited | Semiconductor device and manufacturing method thereof |
| US20070031684A1 (en) * | 2005-08-03 | 2007-02-08 | Anderson Jeffrey T | Thermally conductive grease |
| DE102005045767A1 (en) * | 2005-09-23 | 2007-05-24 | Infineon Technologies Ag | Semiconductor component with plastic housing composition and method for producing the same |
| US20080061267A1 (en) * | 2006-09-08 | 2008-03-13 | Kuo-Len Lin | Thermal Interface Material Compound and Method of Fabricating the same |
| WO2008111757A1 (en) * | 2007-03-09 | 2008-09-18 | Dongjin Semichem Co., Ltd | Black paste composition having conductivity property, filter for shielding electromagnetic interference and display device comprising the same} |
| US20080246130A1 (en) * | 2004-12-20 | 2008-10-09 | Semiconductor Components Industries, L.L.C. | Semiconductor Package Structure Having Enhanced Thermal Dissipation Characteristics |
| US20080261077A1 (en) * | 2007-04-18 | 2008-10-23 | Sang Hee Park | Paste composition, display device including the same, and associated methods |
| US20100116938A1 (en) * | 2008-11-13 | 2010-05-13 | Kline William T | Method and apparatus for joining composite structural members and structural members made thereby |
| US20100170613A1 (en) * | 2008-11-13 | 2010-07-08 | The Boeing Company | Method and apparatus for joining composite structural members using thermal spreader |
| US20130016479A1 (en) * | 2004-11-12 | 2013-01-17 | International Business Machines Corporation | Self orienting micro plates of thermally conducting material as component in thermal paste or adhesive |
| US8384210B1 (en) * | 2005-06-07 | 2013-02-26 | Advanced Micro Devices, Inc. | Thermal interface material and semiconductor component including the thermal interface material |
| EP2710628A4 (en) * | 2011-05-19 | 2015-04-08 | Laird Technologies Inc | THERMAL INTERFACE MATERIALS AND PROCESSES FOR THEIR TRANSFORMATION |
| US9669579B2 (en) | 2008-11-13 | 2017-06-06 | The Boeing Company | Aircraft skin attachment system |
| US20230103241A1 (en) * | 2021-09-28 | 2023-03-30 | The Board Of Trustees Of The University Of Lllinois | Thermal coating of power electronics boards for thermal management |
Families Citing this family (49)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI388042B (en) * | 2004-11-04 | 2013-03-01 | 台灣積體電路製造股份有限公司 | Integrated circuit based on nanotube substrate |
| TW200633171A (en) * | 2004-11-04 | 2006-09-16 | Koninkl Philips Electronics Nv | Nanotube-based fluid interface material and approach |
| US8919428B2 (en) | 2007-10-17 | 2014-12-30 | Purdue Research Foundation | Methods for attaching carbon nanotubes to a carbon substrate |
| CN101423751B (en) * | 2007-11-02 | 2011-06-08 | 清华大学 | Thermal interfacial material and its preparation method |
| US8076773B2 (en) * | 2007-12-26 | 2011-12-13 | The Bergquist Company | Thermal interface with non-tacky surface |
| US20090184283A1 (en) * | 2008-01-18 | 2009-07-23 | Deborah Duen Ling Chung | Antioxidants for phase change ability and thermal stability enhancement |
| US7864534B2 (en) * | 2008-06-11 | 2011-01-04 | Adc Telecommunications, Inc. | Apparatus for mounting a module and enabling heat conduction from the module to the mounting surface |
| US7812254B2 (en) * | 2008-06-11 | 2010-10-12 | Adc Telecommunications, Inc. | Solar shields |
| US8254850B2 (en) * | 2008-06-11 | 2012-08-28 | Adc Telecommunications, Inc. | Communication module component assemblies |
| US8031470B2 (en) * | 2008-06-11 | 2011-10-04 | Adc Telecommunications, Inc. | Systems and methods for thermal management |
| US20100000441A1 (en) | 2008-07-01 | 2010-01-07 | Jang Bor Z | Nano graphene platelet-based conductive inks |
| JP4623167B2 (en) * | 2008-08-26 | 2011-02-02 | トヨタ自動車株式会社 | Heat dissipation structure and vehicle inverter |
| TWI347810B (en) * | 2008-10-03 | 2011-08-21 | Po Ju Chou | A method for manufacturing a flexible pcb and the structure of the flexible pcb |
| US8481103B1 (en) * | 2008-12-01 | 2013-07-09 | The Research Foundation Of State University Of New York | Method and pattern of dispensing thermal interface materials |
| US8357325B2 (en) * | 2008-12-10 | 2013-01-22 | General Electric Company | Moulds with integrated heating and methods of making the same |
| US8541058B2 (en) * | 2009-03-06 | 2013-09-24 | Timothy S. Fisher | Palladium thiolate bonding of carbon nanotubes |
| CN101906288B (en) * | 2009-06-02 | 2013-08-21 | 清华大学 | Thermal interface material, electronic device with same and preparation method |
| TWI421148B (en) * | 2009-06-02 | 2014-01-01 | 珍通能源技術股份有限公司 | Radiator with grinding and heating plane and grinding method and equipment thereof |
| US20100321897A1 (en) * | 2009-06-17 | 2010-12-23 | Laird Technologies, Inc. | Compliant multilayered thermally-conductive interface assemblies |
| US8081468B2 (en) | 2009-06-17 | 2011-12-20 | Laird Technologies, Inc. | Memory modules including compliant multilayered thermally-conductive interface assemblies |
| US9011570B2 (en) | 2009-07-30 | 2015-04-21 | Lockheed Martin Corporation | Articles containing copper nanoparticles and methods for production and use thereof |
| US9072185B2 (en) | 2009-07-30 | 2015-06-30 | Lockheed Martin Corporation | Copper nanoparticle application processes for low temperature printable, flexible/conformal electronics and antennas |
| DE102010028800A1 (en) | 2010-05-10 | 2011-11-10 | Freie Universität Berlin | Polymer compositions based on environmentally friendly vegetable and / or animal oils as thermally conductive materials |
| EP2585517B1 (en) * | 2010-06-28 | 2014-12-24 | DSM IP Assets B.V. | Thermally conductive polymer composition |
| US20120155029A1 (en) * | 2010-12-20 | 2012-06-21 | Raytheon Company | Adaptive thermal gap pad |
| US9069039B1 (en) * | 2011-09-30 | 2015-06-30 | Emc Corporation | Power measurement transducer |
| US8587945B1 (en) * | 2012-07-27 | 2013-11-19 | Outlast Technologies Llc | Systems structures and materials for electronic device cooling |
| WO2014131460A1 (en) * | 2013-02-28 | 2014-09-04 | Klondike Innovations Limited | Cooling heat generating components |
| JP5582553B1 (en) * | 2014-05-02 | 2014-09-03 | 清二 加川 | High thermal conductivity heat dissipation sheet and method for manufacturing the same |
| US9318450B1 (en) * | 2014-11-24 | 2016-04-19 | Raytheon Company | Patterned conductive epoxy heat-sink attachment in a monolithic microwave integrated circuit (MMIC) |
| US9791704B2 (en) | 2015-01-20 | 2017-10-17 | Microsoft Technology Licensing, Llc | Bonded multi-layer graphite heat pipe |
| US10444515B2 (en) | 2015-01-20 | 2019-10-15 | Microsoft Technology Licensing, Llc | Convective optical mount structure |
| US10028418B2 (en) | 2015-01-20 | 2018-07-17 | Microsoft Technology Licensing, Llc | Metal encased graphite layer heat pipe |
| US20160209661A1 (en) * | 2015-01-20 | 2016-07-21 | Michael Nikkhoo | Carbon infused frame with bonded graphite heatpipe |
| US10108017B2 (en) | 2015-01-20 | 2018-10-23 | Microsoft Technology Licensing, Llc | Carbon nanoparticle infused optical mount |
| WO2016121660A1 (en) * | 2015-01-29 | 2016-08-04 | 京セラ株式会社 | Circuit board and electronic device |
| EP3096351B1 (en) * | 2015-05-22 | 2017-12-13 | ABB Technology Oy | Thermal interface foil |
| US20170059635A1 (en) * | 2015-08-31 | 2017-03-02 | Teradyne Inc. | Conductive temperature control |
| NO20151457A1 (en) | 2015-10-27 | 2017-04-28 | Cealtech As | Graphene-reinforced polymer, additive for producing graphene-reinforced polymers, process for producing graphene-reinforced polymers and the use of said additive |
| US11417585B2 (en) | 2016-11-30 | 2022-08-16 | Whirlpool Corporation | System for cooling components in an electronic module |
| US12376202B2 (en) | 2016-12-27 | 2025-07-29 | Whirlpool Corporation | Nano-cooling in solid-state cooking microwave ovens |
| TWI896542B (en) | 2019-07-23 | 2025-09-11 | 德商漢高股份有限及兩合公司 | Thermal management of high heat flux multicomponent assembly |
| DE102019215957A1 (en) * | 2019-10-16 | 2021-04-22 | Volkswagen Aktiengesellschaft | Electronic system with heat transfer device |
| WO2022009555A1 (en) * | 2020-07-07 | 2022-01-13 | 正毅 千葉 | Heat-dissipating material and electronic device |
| CN112809241B (en) * | 2020-12-31 | 2022-04-26 | 南京力之兴焊接材料有限公司 | Aluminum soldering paste and preparation method thereof |
| DE102021112417A1 (en) | 2021-05-12 | 2022-11-17 | Erwin Quarder Systemtechnik Gmbh | Arrangement of refrigeration device and refrigerated object |
| KR102629074B1 (en) * | 2021-08-27 | 2024-01-24 | 주식회사 티에스이 | Test apparatus for semiconductor package |
| CN115003102B (en) * | 2021-10-27 | 2023-05-23 | 荣耀终端有限公司 | Manufacturing method of electronic element heat dissipation structure, heat dissipation structure and electronic equipment |
| WO2023091980A1 (en) * | 2021-11-18 | 2023-05-25 | Kuprion, Inc. | Heat spreaders featuring coefficient of thermal expansion matching and heat dissipation using same |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4823863A (en) * | 1986-03-20 | 1989-04-25 | Hitachi, Ltd. | Thermal conduction device |
| US4842911A (en) * | 1983-09-02 | 1989-06-27 | The Bergquist Company | Interfacing for heat sinks |
| US5098609A (en) * | 1989-11-03 | 1992-03-24 | The Research Foundation Of State Univ. Of N.Y. | Stable high solids, high thermal conductivity pastes |
| US5545679A (en) * | 1993-11-29 | 1996-08-13 | Eaton Corporation | Positive temperature coefficient conductive polymer made from thermosetting polyester resin and conductive fillers |
| US5825087A (en) * | 1996-12-03 | 1998-10-20 | International Business Machines Corporation | Integral mesh flat plate cooling module |
| US6165612A (en) * | 1999-05-14 | 2000-12-26 | The Bergquist Company | Thermally conductive interface layers |
| US6758263B2 (en) * | 2001-12-13 | 2004-07-06 | Advanced Energy Technology Inc. | Heat dissipating component using high conducting inserts |
| US6830710B2 (en) * | 2000-11-20 | 2004-12-14 | Atofina | Microcomposite power based on an electrical conductor and a fluoropolymer, and objects manufactured with this powder |
| US6835453B2 (en) * | 2001-01-22 | 2004-12-28 | Parker-Hannifin Corporation | Clean release, phase change thermal interface |
| US6947285B2 (en) * | 2002-12-31 | 2005-09-20 | Hon Hai Precision Ind. Co., Ltd. | Thermal interface material |
Family Cites Families (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5964685A (en) * | 1982-10-05 | 1984-04-12 | Shin Etsu Polymer Co Ltd | Anisotropically conductive, heat-bondable film |
| US4852646A (en) * | 1987-06-16 | 1989-08-01 | Raychem Corporation | Thermally conductive gel materials |
| US4869954A (en) * | 1987-09-10 | 1989-09-26 | Chomerics, Inc. | Thermally conductive materials |
| US5523049A (en) * | 1992-12-09 | 1996-06-04 | Iowa State University Research Foundation, Inc. | Heat sink and method of fabricating |
| US5660917A (en) * | 1993-07-06 | 1997-08-26 | Kabushiki Kaisha Toshiba | Thermal conductivity sheet |
| US5591034A (en) * | 1994-02-14 | 1997-01-07 | W. L. Gore & Associates, Inc. | Thermally conductive adhesive interface |
| EP0956590A1 (en) | 1996-04-29 | 1999-11-17 | Parker-Hannifin Corporation | Conformal thermal interface material for electronic components |
| US5950066A (en) * | 1996-06-14 | 1999-09-07 | The Bergquist Company | Semisolid thermal interface with low flow resistance |
| US5738936A (en) * | 1996-06-27 | 1998-04-14 | W. L. Gore & Associates, Inc. | Thermally conductive polytetrafluoroethylene article |
| US5945217A (en) * | 1997-10-14 | 1999-08-31 | Gore Enterprise Holdings, Inc. | Thermally conductive polytrafluoroethylene article |
| DE10085011T1 (en) | 1999-09-21 | 2003-01-16 | Saint Gobain Ceramics | Thermally conductive materials in a hydrophobic compound for handling heat |
| US6472742B1 (en) * | 1999-09-30 | 2002-10-29 | Intel Corporation | Thermal gap control |
| US6610387B1 (en) * | 2000-04-19 | 2003-08-26 | Dai Nippon Printing Co., Ltd. | Thermal transfer film and image forming method |
| US6475962B1 (en) * | 2000-09-14 | 2002-11-05 | Aos Thermal Compounds, Llc | Dry thermal grease |
| US6610635B2 (en) * | 2000-09-14 | 2003-08-26 | Aos Thermal Compounds | Dry thermal interface material |
| US6651736B2 (en) * | 2001-06-28 | 2003-11-25 | Intel Corporation | Short carbon fiber enhanced thermal grease |
| US20050175838A1 (en) * | 2001-12-26 | 2005-08-11 | Greinke Ronald A. | Thermal interface material |
| US20030171487A1 (en) * | 2002-03-11 | 2003-09-11 | Tyco Electronics Corporation | Curable silicone gum thermal interface material |
| US6891724B2 (en) * | 2002-06-12 | 2005-05-10 | Intel Corporation | Increasing thermal conductivity of thermal interface using carbon nanotubes and CVD |
| US6956739B2 (en) * | 2002-10-29 | 2005-10-18 | Parker-Hannifin Corporation | High temperature stable thermal interface material |
| CN1296994C (en) * | 2002-11-14 | 2007-01-24 | 清华大学 | A thermal interfacial material and method for manufacturing same |
| CN1266246C (en) | 2003-01-18 | 2006-07-26 | 鸿富锦精密工业(深圳)有限公司 | Thermal interface material |
| US7229683B2 (en) * | 2003-05-30 | 2007-06-12 | 3M Innovative Properties Company | Thermal interface materials and method of making thermal interface materials |
| US20050061496A1 (en) | 2003-09-24 | 2005-03-24 | Matabayas James Christopher | Thermal interface material with aligned carbon nanotubes |
| US20050155752A1 (en) | 2003-11-19 | 2005-07-21 | Larson Ralph I. | Thermal interface and method of making the same |
| US7186020B2 (en) * | 2003-12-12 | 2007-03-06 | University Of Washington | Thermal interface material (TIM) with carbon nanotubes (CNT) and low thermal impedance |
| CN1266247C (en) | 2003-12-24 | 2006-07-26 | 鸿富锦精密工业(深圳)有限公司 | Thermal interface material and its production method |
| TWI299358B (en) * | 2004-03-12 | 2008-08-01 | Hon Hai Prec Ind Co Ltd | Thermal interface material and method for making same |
| CN100356556C (en) | 2004-03-13 | 2007-12-19 | 鸿富锦精密工业(深圳)有限公司 | Thermal interfacial material and method of manufacture |
| CN100345472C (en) * | 2004-04-10 | 2007-10-24 | 清华大学 | Thermal-interface material and production thereof |
| US20050255304A1 (en) * | 2004-05-14 | 2005-11-17 | Damon Brink | Aligned nanostructure thermal interface material |
| CN100376655C (en) | 2004-06-30 | 2008-03-26 | 鸿富锦精密工业(深圳)有限公司 | Thermal Interface Material |
| TW200633171A (en) | 2004-11-04 | 2006-09-16 | Koninkl Philips Electronics Nv | Nanotube-based fluid interface material and approach |
-
2004
- 2004-03-23 US US10/807,487 patent/US20050016714A1/en not_active Abandoned
- 2004-07-07 CN CN2004800194590A patent/CN101416304B/en not_active Expired - Fee Related
- 2004-07-07 WO PCT/US2004/021734 patent/WO2005006403A2/en not_active Ceased
-
2006
- 2006-06-28 US US11/427,150 patent/US7535715B2/en not_active Expired - Fee Related
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4842911A (en) * | 1983-09-02 | 1989-06-27 | The Bergquist Company | Interfacing for heat sinks |
| US4823863A (en) * | 1986-03-20 | 1989-04-25 | Hitachi, Ltd. | Thermal conduction device |
| US5098609A (en) * | 1989-11-03 | 1992-03-24 | The Research Foundation Of State Univ. Of N.Y. | Stable high solids, high thermal conductivity pastes |
| US5545679A (en) * | 1993-11-29 | 1996-08-13 | Eaton Corporation | Positive temperature coefficient conductive polymer made from thermosetting polyester resin and conductive fillers |
| US5825087A (en) * | 1996-12-03 | 1998-10-20 | International Business Machines Corporation | Integral mesh flat plate cooling module |
| US6165612A (en) * | 1999-05-14 | 2000-12-26 | The Bergquist Company | Thermally conductive interface layers |
| US6830710B2 (en) * | 2000-11-20 | 2004-12-14 | Atofina | Microcomposite power based on an electrical conductor and a fluoropolymer, and objects manufactured with this powder |
| US6835453B2 (en) * | 2001-01-22 | 2004-12-28 | Parker-Hannifin Corporation | Clean release, phase change thermal interface |
| US6758263B2 (en) * | 2001-12-13 | 2004-07-06 | Advanced Energy Technology Inc. | Heat dissipating component using high conducting inserts |
| US6947285B2 (en) * | 2002-12-31 | 2005-09-20 | Hon Hai Precision Ind. Co., Ltd. | Thermal interface material |
Cited By (36)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060070720A1 (en) * | 2004-09-17 | 2006-04-06 | Capp Joseph P | Heat riser |
| US9263363B2 (en) | 2004-11-12 | 2016-02-16 | Globalfoundries Inc. | Self orienting micro plates of thermally conducting material as component in thermal paste or adhesive |
| US20130016479A1 (en) * | 2004-11-12 | 2013-01-17 | International Business Machines Corporation | Self orienting micro plates of thermally conducting material as component in thermal paste or adhesive |
| US8604623B2 (en) * | 2004-11-12 | 2013-12-10 | International Business Machines Corporation | Self orienting micro plates of thermally conducting material as component in thermal paste or adhesive |
| US20060135655A1 (en) * | 2004-12-16 | 2006-06-22 | Cool Options, Inc. | Method for improving filler dispersal and reducing tensile modulus in a thermally conductive polymer composition |
| US20080246130A1 (en) * | 2004-12-20 | 2008-10-09 | Semiconductor Components Industries, L.L.C. | Semiconductor Package Structure Having Enhanced Thermal Dissipation Characteristics |
| US7755179B2 (en) * | 2004-12-20 | 2010-07-13 | Semiconductor Components Industries, Llc | Semiconductor package structure having enhanced thermal dissipation characteristics |
| US7282799B2 (en) * | 2005-05-20 | 2007-10-16 | International Business Machines Corporation | Thermal interface with a patterned structure |
| US20060286712A1 (en) * | 2005-05-20 | 2006-12-21 | International Business Machines Corporation | Thermal interface with a patterned structure |
| US8384210B1 (en) * | 2005-06-07 | 2013-02-26 | Advanced Micro Devices, Inc. | Thermal interface material and semiconductor component including the thermal interface material |
| US20070004091A1 (en) * | 2005-06-30 | 2007-01-04 | Fujitsu Limited | Semiconductor device and manufacturing method thereof |
| US20070031686A1 (en) * | 2005-08-03 | 2007-02-08 | 3M Innovative Properties Company | Thermally conductive grease |
| US20070031684A1 (en) * | 2005-08-03 | 2007-02-08 | Anderson Jeffrey T | Thermally conductive grease |
| US7404853B2 (en) | 2005-08-03 | 2008-07-29 | 3M Innovative Properties Company | Thermally conductive grease |
| US7643298B2 (en) | 2005-08-03 | 2010-01-05 | 3M Innovative Properties Company | Thermally conductive grease |
| US20080266804A1 (en) * | 2005-08-03 | 2008-10-30 | 3M Innovative Properties Company | Thermally conductive grease |
| US20080142932A1 (en) * | 2005-09-23 | 2008-06-19 | Infineon Technologies Ag | Semiconductor Device with Plastic Housing Composition and Method for Producing the Same |
| DE102005045767B4 (en) * | 2005-09-23 | 2012-03-29 | Infineon Technologies Ag | Method for producing a semiconductor device with plastic housing composition |
| DE102005045767A1 (en) * | 2005-09-23 | 2007-05-24 | Infineon Technologies Ag | Semiconductor component with plastic housing composition and method for producing the same |
| US7759805B2 (en) | 2005-09-23 | 2010-07-20 | Infineon Technologies Ag | Semiconductor device encapsulated by an electrically conductive plastic housing composition with conductive particles |
| US7830026B2 (en) | 2005-09-23 | 2010-11-09 | Infineon Technologies Ag | Semiconductor device with a plastic housing composition that includes filler particles and that at least partially embeds a semiconductor chip |
| US7445727B2 (en) * | 2006-09-08 | 2008-11-04 | Cpumate Inc. | Thermal interface material compound and method of fabricating the same |
| US20080061267A1 (en) * | 2006-09-08 | 2008-03-13 | Kuo-Len Lin | Thermal Interface Material Compound and Method of Fabricating the same |
| WO2008111757A1 (en) * | 2007-03-09 | 2008-09-18 | Dongjin Semichem Co., Ltd | Black paste composition having conductivity property, filter for shielding electromagnetic interference and display device comprising the same} |
| US7794627B2 (en) * | 2007-04-18 | 2010-09-14 | Cheil Industries, Inc. | Paste composition, display device including the same, and associated methods |
| US20080261077A1 (en) * | 2007-04-18 | 2008-10-23 | Sang Hee Park | Paste composition, display device including the same, and associated methods |
| US8307872B2 (en) * | 2008-11-13 | 2012-11-13 | The Boeing Company | Apparatus for curing a composite structural member |
| US20100116938A1 (en) * | 2008-11-13 | 2010-05-13 | Kline William T | Method and apparatus for joining composite structural members and structural members made thereby |
| US20100170613A1 (en) * | 2008-11-13 | 2010-07-08 | The Boeing Company | Method and apparatus for joining composite structural members using thermal spreader |
| US9475230B2 (en) | 2008-11-13 | 2016-10-25 | The Boeing Company | Heated tool assembly for forming a structural member |
| US9669579B2 (en) | 2008-11-13 | 2017-06-06 | The Boeing Company | Aircraft skin attachment system |
| JP2011189740A (en) * | 2010-03-16 | 2011-09-29 | Boeing Co:The | Method and apparatus for joining composite structural member using thermal spreader |
| US8580071B2 (en) | 2010-03-16 | 2013-11-12 | The Boeing Company | Method for joining composite structural members using thermal spreader |
| EP2710628A4 (en) * | 2011-05-19 | 2015-04-08 | Laird Technologies Inc | THERMAL INTERFACE MATERIALS AND PROCESSES FOR THEIR TRANSFORMATION |
| US20230103241A1 (en) * | 2021-09-28 | 2023-03-30 | The Board Of Trustees Of The University Of Lllinois | Thermal coating of power electronics boards for thermal management |
| US12342449B2 (en) * | 2021-09-28 | 2025-06-24 | The Board Of Trustees Of The University Of Illinois | Multilayered nonpolar, chromium, copper material coatings of power electronics boards for thermal management |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101416304A (en) | 2009-04-22 |
| US20060246276A1 (en) | 2006-11-02 |
| WO2005006403A9 (en) | 2005-03-17 |
| WO2005006403A2 (en) | 2005-01-20 |
| CN101416304B (en) | 2011-06-15 |
| WO2005006403A3 (en) | 2005-07-21 |
| US7535715B2 (en) | 2009-05-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20050016714A1 (en) | Thermal paste for improving thermal contacts | |
| Leong et al. | Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance | |
| Yang et al. | Thermally conductive, dielectric PCM–boron nitride nanosheet composites for efficient electronic system thermal management | |
| US10736237B2 (en) | Heat sink, preparation method therefor, and communications device | |
| CN104592950B (en) | Graphene-based polymer bond's film of high heat conduction and preparation method thereof | |
| CN105754348A (en) | Low-filling high-heat-conductivity organic-inorganic compound | |
| CN112521754B (en) | MXene nanosheet compounded heat-conducting gel with thermal self-repairing performance and preparation method thereof | |
| Xing et al. | Gallium‐based liquid metal composites with enhanced thermal and electrical performance enabled by structural engineering of filler | |
| US20210024766A1 (en) | Silver paste composition for configurable sintered interconnect and associated method of preparation | |
| Hwang et al. | Effect of Al 2 O 3 coverage on SiC particles for electrically insulated polymer composites with high thermal conductivity | |
| CN112724677A (en) | Dopamine modified boron nitride heat-conducting silicone grease and preparation method thereof | |
| CN111394056B (en) | High-thermal-conductivity organic silicon gap filler | |
| CN114316497B (en) | A low contact thermal resistance phase change triggered thermal interface material and preparation method thereof | |
| Russo et al. | Thermal conductivity and dielectric properties of polypropylene‐based hybrid compounds containing multiwalled carbon nanotubes | |
| WO2019031458A1 (en) | Low-dielectric-constant thermally-conductive heat dissipation member | |
| CN110804269B (en) | Heat-conducting and electric-conducting film based on liquid metal and preparation method and application thereof | |
| Xu et al. | Carbon nanotube thermal pastes for improving thermal contacts | |
| Du et al. | Efficient preparation of polydimethylsiloxane-based phase change composites by forced network assembly with outstanding thermal management capability | |
| CN105225722A (en) | A kind of crystal silicon solar batteries aluminium paste of high conduction performance | |
| Lu et al. | A hierarchically encapsulated phase-change film with multi-stage heat management properties and conformable self-interfacing contacts for enhanced interface heat dissipation | |
| CN108148558A (en) | A kind of thermally conductive gel of graphene-containing and its preparation method and application | |
| Jeon et al. | Engineering oxide ceramic fillers for thermal interface materials: Enhanced thermal conductivity and thixotropy through hydrophobated MgO/PDMS composite materials | |
| Liu et al. | Studies on 8.4 W/m· K thermally conductive silicone rubber with high compressibility, high electrical insulation, high thermal reliability, and low cost | |
| CN115417676A (en) | High-thermal-conductivity hexagonal boron nitride/cubic boron nitride composite sintered body and preparation method thereof | |
| Cui et al. | 3D Printing of Ultrahigh Filler Content Composites Enabled by Granular Hydrogels |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YOR Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHUNG, DEBORAH D.L.;REEL/FRAME:015650/0037 Effective date: 20040428 |
|
| AS | Assignment |
Owner name: CHUNG, DEBORAH D.L., NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RESEARCH FOUNDATION OF THE STATE UNIVERSITY OF NEW YORK;REEL/FRAME:017854/0767 Effective date: 20060627 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |