[go: up one dir, main page]

US20030223960A1 - Use of (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4'-trifluoromethylphenyl)-amide for treating multiple sclerosis - Google Patents

Use of (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4'-trifluoromethylphenyl)-amide for treating multiple sclerosis Download PDF

Info

Publication number
US20030223960A1
US20030223960A1 US10/413,976 US41397603A US2003223960A1 US 20030223960 A1 US20030223960 A1 US 20030223960A1 US 41397603 A US41397603 A US 41397603A US 2003223960 A1 US2003223960 A1 US 2003223960A1
Authority
US
United States
Prior art keywords
compound
composition
multiple sclerosis
treatment
trifluoromethylphenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/413,976
Inventor
Joseph Wettstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aventis Pharmaceuticals Inc
Original Assignee
Aventis Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23078354&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20030223960(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Aventis Pharmaceuticals Inc filed Critical Aventis Pharmaceuticals Inc
Priority to US10/413,976 priority Critical patent/US20030223960A1/en
Publication of US20030223960A1 publication Critical patent/US20030223960A1/en
Assigned to AVENTIS PHARMACEUTICALS INC. reassignment AVENTIS PHARMACEUTICALS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WETTSTEIN, JOSEPH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/275Nitriles; Isonitriles
    • A61K31/277Nitriles; Isonitriles having a ring, e.g. verapamil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system

Definitions

  • the present invention relates to methods of treating multiple sclerosis.
  • the present invention relates to the treatment of multiple sclerosis with (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide, commonly known as teriflunomide.
  • lefunomide 5-methylisoxazole-4-carboxylic-(4-trifluoromethyl)-anilide
  • Lefunomide was first disclosed generically in U.S. Pat. No. 4,087,535, issued on May 2, 1978 and specifically in U.S. Pat. No. 4,284,786, issued on Aug. 18, 1981, wherein it was disclosed that the compound could be used for the treatment of multiple sclerosis.
  • the aforementioned patents are both incorporated herein by reference.
  • Teriflunomide has been shown to produce antiproliferative effects on a wide variety of immune cells and cell lines (Cherwinski H. M., et al., J Pharmacol. Exp. Ther. 1995;272:460-8; Prakash A., et al., Drugs 1999;58(6):1137-66; Bartlett R. R. et al., Agent Action 1991;32(1-2):10-21). Additionally, it inhibits the enzyme dihydrooate dehydrogenase, an enzyme essential for the synthesis of pyrimidines (Bruneau J-M, et al., Biochem. J. 1998; 336:299-303).
  • MS Multiple sclerosis
  • the disease primarily affects young adults with a higher incidence in females. Symptoms of the disease include fatigue, numbness, tremor, tingling, dysesthesias, visual disturbances, dizziness, cognitive impairment, urologic dysfunction, decreased mobility, and depression.
  • Four types classify the clinical patterns of the disease: relapsing-remitting, secondary progressive, primary-progressive and progressive-relapsing (S. L. Hauser and D. E. Goodkin, Multiple Sclerosis and Other Demyelinating Diseases in Harrison's Principles of Internal Medicine 14 th Edition, vol. 2, Mc Graw-Hill, 1998, pp.2409-2419).
  • MS myelin basic protein
  • T-cell proliferation and other cellular events such as activation of B cells and macrophages and secretion of cytokines accompanied by a breakdown of the blood-brain barrier can cause destruction of myelin and oligodendrocytes (R. A. Adams, M. V. Victor and A. H. Ropper eds, Principles of Neurology, Mc Graw-Hill, New York, 1997, pp.903-921).
  • the present invention is a method of treating multiple sclerosis in patients by administering a compound of Formula I or a pharmaceutically acceptable salt thereof, in a therapeutically effective amount to treat the disease.
  • the present invention also comprises a method of treating multiple sclerosis in patients by administering a combination of a compound of Formula I or a pharmaceutically acceptable salt thereof, with another compound known to be effective for the treatment of multiple sclerosis in therapeutically effective amounts to treat the disease.
  • “Pharmaceutically acceptable salts” means either an acid addition salt or a basic addition salt, whichever is possible to make with the compounds of the present invention.
  • “Pharmaceutically acceptable acid addition salt” is any non-toxic organic or inorganic acid addition salt of the base compounds represented by Formula I.
  • Illustrative inorganic acids which form suitable salts include hydrochloric, hydrobromic, sulfuric and phosphoric acid and acid metal salts such as sodium monohydrogen orthophosphate and potassium hydrogen sulfate.
  • Illustrative organic acids, which form suitable salts include the mono-, di- and tri-carboxylic acids.
  • Illustrative of such acids are, for example, acetic, glycolic, lactic, pyruvic, malonic, succinic, glutaric, fumaric, malic, tartaric, citric, ascorbic, maleic, hydroxymaleic, benzoic, hydroxybenzoic, phenylacetic, cinnamic, salicyclic, 2-phenoxybenzoic, p-toluenesulfonic acid and sulfonic acids such as methanesulfonic acid and 2-hydroxyethanesulfonic acid.
  • Either the mono- or di-acid salts can be formed, and such salts can exist in either a hydrated or substantially anhydrous form.
  • the acid addition salts of these compounds are more soluble in water and various hydrophilic organic solvents and which in comparison to their free base forms, generally demonstrate higher melting points.
  • “Pharmaceutically acceptable basic addition salts” means non-toxic organic or inorganic basic addition salts of the compounds of Formula I. Examples are alkali metal or alkaline-earth metal hydroxides such as sodium, potassium, calcium, magnesium or barium hydroxides; ammonia, and aliphatic, alicyclic, or aromatic organic amines such as methylamine, trimethylamine and picoline. The selection of the appropriate salt may be important so that the ester is not hydrolyzed. The selection criteria for the appropriate salt will be known to one skilled in the art.
  • “Patient” means a warm blooded animal, such as for example rat, mice, dogs, cats, guinea pigs, and primates such as humans.
  • Treat” or “treating” means to alleviate symptoms, eliminate the causation of the symptoms either on a temporary or permanent basis, or to prevent or slow the appearance of symptoms of the named disorder or condition.
  • “Therapeutically effective amount” means an amount of the compound, which is effective in treating the named disorder or condition.
  • “Pharmaceutically acceptable carrier” is a non-toxic solvent, dispersant, excipient, adjuvant or other material which is mixed with the compound of the present invention in order to permit the formation of a pharmaceutical composition, i.e., a dosage form capable of administration to the patient.
  • a pharmaceutical composition i.e., a dosage form capable of administration to the patient.
  • a carrier is pharmaceutically acceptable oil typically used for parenteral administration.
  • Stepoisomers is a general term for all isomers of the individual molecules that differ only in the orientation of their atoms in space. It includes mirror image isomers (enantiomers), geometric (cis/trans) isomers, and isomers of compounds with more than one chiral center that are not mirror images of one another (diastereoisomers).
  • Lefunomide is the generic name for 5-methylisoxazole-4-carboxylic-(4-trifluoromethyl)-anilide.
  • Teiflunomide is the generic name for (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide.
  • step A commercially available cyanoacetic acid ethyl ester is reacted with commercially available 4-trifluoromethylaniline neat at elevated temperature to give cyanoacet-(4-trifluoromethyl)anilide.
  • step B the product from step A is dissolved in tetrahydrofuran and reacted with NaH in acetonitrile followed by reaction with acetyl chloride to produce the compound of Formula I.
  • One method of showing the utility of the present compound as a pharmaceutical that may be useful for the treatment of various conditions associated with the MS is its antiproliferative effects on a wide variety of immune cells, which is supported by its ability to inhibit the inflammatory effects of experimental allergic encephalomyelitis in laboratory animals.
  • EAE Experimental allergic encephalomyelitis
  • a compound of Formula (I) can be administered in any form or mode which makes the compound bioavailable in therapeutically effective amounts, including orally, sublingually, buccally, subcutaneously, intramuscularly, intravenously, transdermally, intranasally, rectally, topically, and the like.
  • One skilled in the art of preparing formulations can determine the proper form and mode of administration depending upon the particular characteristics of the compound selected for the condition or disease to be treated, the stage of the disease, the condition of the patient and other relevant circumstances. For example, see Remington's Pharmaceutical Sciences, 18th Edition, Mack Publishing Co. (1990), incorporated herein by reference.
  • the compound of the present invention may be administered orally, for example, in the form of tablets, troches, capsules, elixirs, suspensions, solutions, syrups, wafers, chewing gums and the like and may contain one or more of the following adjuvants: binders such as microcrystalline cellulose, gum tragacanth or gelatin; excipients such as starch or lactose, disintegrating agents such as alginic acid, Primogel, corn starch and the like; lubricants such as magnesium stearate or Sterotex; glidants such as colloidal silicon dioxide; and sweetening agents such as sucrose or saccharin may be added or a flavoring agent such as peppermint, methyl salicylate or orange flavoring.
  • binders such as microcrystalline cellulose, gum tragacanth or gelatin
  • excipients such as starch or lactose, disintegrating agents such as alginic acid, Primogel, corn starch and the like
  • lubricants such as
  • the dosage unit form When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as polyethylene glycol or a fatty oil.
  • a liquid carrier such as polyethylene glycol or a fatty oil.
  • Other dosage unit forms may contain other various materials, which modify the physical form of the dosage unit, for example, as coatings.
  • tablets or pills may be coated with sugar, shellac, or other enteric coating agents.
  • a syrup may contain, in addition to the present compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.
  • the compound of Formula I of this invention may also be administered topically, and when done so the carrier may suitably comprise a solution, ointment or gel base.
  • the base for example, may comprise one or more of petrolatum, lanolin, polyethylene glycols, bee wax, mineral oil, diluents such as water and alcohol, and emulsifiers and stabilizers.
  • the solutions or suspensions may also include one or more of the following adjuvants: sterile diluents such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylene diaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose.
  • the parenteral preparation can be enclosed in ampules, disposable syringes or multiple dose vials.
  • the dosage range at which the compound of Formula I exhibits its ability to act therapeutically can vary depending upon its severity, the patient, the formulation, other underlying disease states that the patient is suffering from, and other medications that may be concurrently administered to the patient.
  • the compound of Formula I will exhibit their therapeutic activities at dosages of between about 0.001 mg/kg of patient body weight/day to about 100 mg/kg of patient body weight/day.
  • EAE Experimental allergic encephalomyelitis
  • the EAE rodent model is an appropriate tool for studying the inflammation of the brain and spinal cord observed in MS patients.
  • injection of whole spinal cord or spinal cord components such as myelin basic protein induces an autoimmune response based on the activation of T-lymphocytes.
  • Clinical disease typically becomes manifest around day 10 after inoculation, observed as a broad spectrum of behavioral anomalies ranging from mild gait disturbances and tail atony to complete paralysis and death. Weight loss typically occurs.
  • animals that survive spontaneous recovery occurs, accompanied by the recovery of most motor function.
  • animals tested by the EAE model may experience a single (acute EAE) or several (chronic relapsing EAE) attacks.
  • treatment paradigms may be used: the drug or treatment of choice may be administered before immunization, during the nonsymptomatic period or during the clinical disease.
  • Antigen preparation (for approximately 720 animals)
  • Rats weighing 160 and 220 grams are initially induced with 5% isoflurane (Aerrane, Fort Dodge), 30% O 2 , 70% N 2 O for 2-5 minutes.
  • the rat is then placed onto a circulating water heating blanket (Gaymar) (dorsal surface up) and into the nose cone for spontaneous respiration of anesthetic gases.
  • the isoflurane is reduced to 2%.
  • FIG. 1 The effect of teriflunomide on symptoms of EAE in rat at various doses is illustrated in FIG. 1. Dexamethasone is included in the figure for comparison.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The invention relates to a method of treating multiple sclerosis by the use of (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide in combination with another compound, which is effective in the treatment of multiple sclerosis.

Description

  • This application is a continuation of U.S. application Ser. No. 10/113,078 filed Apr. 1, 2002, now allowed, which claims the benefit of U.S. provisional application Ser. No. 60/281,685 filed Apr. 5, 2001 and Great Britain application No. 0123571.2 filed Oct. 2, 2001.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates to methods of treating multiple sclerosis. In particular, the present invention relates to the treatment of multiple sclerosis with (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide, commonly known as teriflunomide. [0002]
  • BACKROUND OF THE INVENTION
  • (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide (teriflunomide) has the structure illustrated in Formula I: [0003]
    Figure US20030223960A1-20031204-C00001
  • Formula I
  • It is an active metabolite of the disease-modifying, antirheumatic drug 5-methylisoxazole-4-carboxylic-(4-trifluoromethyl)-anilide commonly known as lefunomide, the structure of which is shown in Formula II. Lefunomide was first disclosed generically in U.S. Pat. No. 4,087,535, issued on May 2, 1978 and specifically in U.S. Pat. No. 4,284,786, issued on Aug. 18, 1981, wherein it was disclosed that the compound could be used for the treatment of multiple sclerosis. The aforementioned patents are both incorporated herein by reference. [0004]
    Figure US20030223960A1-20031204-C00002
  • (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide (teriflunomide, Formula 1) use in treating chronic graft-versus-host disease has been disclosed in U.S. Pat. No. 4,965,276 issued on Oct. 23, 1990, incorporated herein by reference. U.S. Pat. No. 5,459,163 issued on Oct. 21, 1997 and U.S. Pat. No. 5,679,709 issued on Oct. 21, 1997 disclose compositions useful for treating autoimmune diseases in particular lupus erythematosus. Both of the aforementioned patents are incorporated herein by reference. Teriflunomide has been shown to produce antiproliferative effects on a wide variety of immune cells and cell lines (Cherwinski H. M., et al., J Pharmacol. Exp. Ther. 1995;272:460-8; Prakash A., et al., Drugs 1999;58(6):1137-66; Bartlett R. R. et al., Agent Action 1991;32(1-2):10-21). Additionally, it inhibits the enzyme dihydrooate dehydrogenase, an enzyme essential for the synthesis of pyrimidines (Bruneau J-M, et al., Biochem. J. 1998; 336:299-303). [0005]
  • Multiple sclerosis (MS) is a debilitating, inflammatory, neurological illness characterized by demyelination of the central nervous system. The disease primarily affects young adults with a higher incidence in females. Symptoms of the disease include fatigue, numbness, tremor, tingling, dysesthesias, visual disturbances, dizziness, cognitive impairment, urologic dysfunction, decreased mobility, and depression. Four types classify the clinical patterns of the disease: relapsing-remitting, secondary progressive, primary-progressive and progressive-relapsing (S. L. Hauser and D. E. Goodkin, Multiple Sclerosis and Other Demyelinating Diseases in Harrison's Principles of Internal Medicine 14[0006] th Edition, vol. 2, Mc Graw-Hill, 1998, pp.2409-2419).
  • The exact etiology of MS is unknown; however, it is strongly suspected that the demyelination characteristic of the disease is the result of an autoimmune response perhaps triggered by an environmental insult, e.g. a viral infection. Specifically, it is hypothesized that MS is caused by a T-cell-mediated, autoimmune inflammatory reaction. The autoimmune basis is strongly supported by the fact that antibodies specific to myelin basic protein (MBP) have been found in the serum and cerebrospinal fluid of MS patients and these antibodies along with T-cells that are reactive to MBP and other myelin proteolipids increase with disease activity. Furthermore, at the cellular level it is speculated that T-cell proliferation and other cellular events, such as activation of B cells and macrophages and secretion of cytokines accompanied by a breakdown of the blood-brain barrier can cause destruction of myelin and oligodendrocytes (R. A. Adams, M. V. Victor and A. H. Ropper eds, Principles of Neurology, Mc Graw-Hill, New York, 1997, pp.903-921). [0007]
  • At the present time there is no cure for MS. Current therapies are aimed at alleviating the symptoms of the disease and arresting its progress, as much as possible. Depending upon the type, drug treatment usually entails the use of disease-modifying agents such as the interferons (interferon beta 1-a, beta 1-b and alpha 2), glatiramer acetate or coritcosteroids such as methylprednisolone and prednisone. Also, chemotherapeutic agents such as methotrexate, azathioprine, cladribine, cyclophosphamide and cyclosporine have been used. All the above treatments have side-effect liabilities, little or no effect on fatigue and depression, limited effects on relapse rates and on ability to prevent exacerbation of the disease. Therefore, there still exists a strong need for new drugs, which can be used alone or in combination with other drugs to combat the progression and symptoms of MS. [0008]
  • SUMMARY OF THE PRESENT INVENTION
  • The present invention is a method of treating multiple sclerosis in patients by administering a compound of Formula I or a pharmaceutically acceptable salt thereof, in a therapeutically effective amount to treat the disease. The present invention also comprises a method of treating multiple sclerosis in patients by administering a combination of a compound of Formula I or a pharmaceutically acceptable salt thereof, with another compound known to be effective for the treatment of multiple sclerosis in therapeutically effective amounts to treat the disease. [0009]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Terms used herein have the meanings defined in this specification. [0010]
  • a) “Pharmaceutically acceptable salts” means either an acid addition salt or a basic addition salt, whichever is possible to make with the compounds of the present invention. [0011]
  • “Pharmaceutically acceptable acid addition salt” is any non-toxic organic or inorganic acid addition salt of the base compounds represented by Formula I. Illustrative inorganic acids which form suitable salts include hydrochloric, hydrobromic, sulfuric and phosphoric acid and acid metal salts such as sodium monohydrogen orthophosphate and potassium hydrogen sulfate. Illustrative organic acids, which form suitable salts include the mono-, di- and tri-carboxylic acids. Illustrative of such acids are, for example, acetic, glycolic, lactic, pyruvic, malonic, succinic, glutaric, fumaric, malic, tartaric, citric, ascorbic, maleic, hydroxymaleic, benzoic, hydroxybenzoic, phenylacetic, cinnamic, salicyclic, 2-phenoxybenzoic, p-toluenesulfonic acid and sulfonic acids such as methanesulfonic acid and 2-hydroxyethanesulfonic acid. Either the mono- or di-acid salts can be formed, and such salts can exist in either a hydrated or substantially anhydrous form. In general, the acid addition salts of these compounds are more soluble in water and various hydrophilic organic solvents and which in comparison to their free base forms, generally demonstrate higher melting points. [0012]
  • “Pharmaceutically acceptable basic addition salts” means non-toxic organic or inorganic basic addition salts of the compounds of Formula I. Examples are alkali metal or alkaline-earth metal hydroxides such as sodium, potassium, calcium, magnesium or barium hydroxides; ammonia, and aliphatic, alicyclic, or aromatic organic amines such as methylamine, trimethylamine and picoline. The selection of the appropriate salt may be important so that the ester is not hydrolyzed. The selection criteria for the appropriate salt will be known to one skilled in the art. [0013]
  • b) “Patient” means a warm blooded animal, such as for example rat, mice, dogs, cats, guinea pigs, and primates such as humans. [0014]
  • c) “Treat” or “treating” means to alleviate symptoms, eliminate the causation of the symptoms either on a temporary or permanent basis, or to prevent or slow the appearance of symptoms of the named disorder or condition. [0015]
  • d) “Therapeutically effective amount” means an amount of the compound, which is effective in treating the named disorder or condition. [0016]
  • e) “Pharmaceutically acceptable carrier” is a non-toxic solvent, dispersant, excipient, adjuvant or other material which is mixed with the compound of the present invention in order to permit the formation of a pharmaceutical composition, i.e., a dosage form capable of administration to the patient. One example of such a carrier is pharmaceutically acceptable oil typically used for parenteral administration. [0017]
  • f) “Stereoisomers” is a general term for all isomers of the individual molecules that differ only in the orientation of their atoms in space. It includes mirror image isomers (enantiomers), geometric (cis/trans) isomers, and isomers of compounds with more than one chiral center that are not mirror images of one another (diastereoisomers). [0018]
  • g) “Lefunomide” is the generic name for 5-methylisoxazole-4-carboxylic-(4-trifluoromethyl)-anilide. [0019]
  • h) “Teriflunomide” is the generic name for (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide. [0020]
  • The synthesis of the compound of [0021] Formula 1 has been disclosed, and is accomplished by methods that are well known to those skilled in the art. For example, U.S. Pat. No. 5,504,084, issued on Apr. 2, 1996, and U.S. Pat. No. 5,990,141, issued on Nov. 23, 1999 disclose methods of synthesis. The aforementioned patents are incorporated herein by reference. One synthesis as disclosed in U.S. Pat. No. 5,990,141 is illustrated in Scheme 1.
    Figure US20030223960A1-20031204-C00003
  • In [0022] Scheme 1, step A commercially available cyanoacetic acid ethyl ester is reacted with commercially available 4-trifluoromethylaniline neat at elevated temperature to give cyanoacet-(4-trifluoromethyl)anilide. In step B, the product from step A is dissolved in tetrahydrofuran and reacted with NaH in acetonitrile followed by reaction with acetyl chloride to produce the compound of Formula I.
  • One method of showing the utility of the present compound as a pharmaceutical that may be useful for the treatment of various conditions associated with the MS is its antiproliferative effects on a wide variety of immune cells, which is supported by its ability to inhibit the inflammatory effects of experimental allergic encephalomyelitis in laboratory animals. [0023]
  • Experimental allergic encephalomyelitis (EAE) is an animal model for MS, which entails inducing a T-cell-mediated autoimmune disease against myelin basic protein in certain susceptible mammalian species. The EAE model is an appropriate method for studying the inflammation of the brain and spinal cord associated with MS (see Bolton, C. Mult. Scler. 1995;1(3);143-9). [0024]
  • In treating a patient afflicted with a condition described above, a compound of Formula (I) can be administered in any form or mode which makes the compound bioavailable in therapeutically effective amounts, including orally, sublingually, buccally, subcutaneously, intramuscularly, intravenously, transdermally, intranasally, rectally, topically, and the like. One skilled in the art of preparing formulations can determine the proper form and mode of administration depending upon the particular characteristics of the compound selected for the condition or disease to be treated, the stage of the disease, the condition of the patient and other relevant circumstances. For example, see Remington's Pharmaceutical Sciences, 18th Edition, Mack Publishing Co. (1990), incorporated herein by reference. [0025]
  • The compound of the present invention may be administered orally, for example, in the form of tablets, troches, capsules, elixirs, suspensions, solutions, syrups, wafers, chewing gums and the like and may contain one or more of the following adjuvants: binders such as microcrystalline cellulose, gum tragacanth or gelatin; excipients such as starch or lactose, disintegrating agents such as alginic acid, Primogel, corn starch and the like; lubricants such as magnesium stearate or Sterotex; glidants such as colloidal silicon dioxide; and sweetening agents such as sucrose or saccharin may be added or a flavoring agent such as peppermint, methyl salicylate or orange flavoring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as polyethylene glycol or a fatty oil. Other dosage unit forms may contain other various materials, which modify the physical form of the dosage unit, for example, as coatings. Thus, tablets or pills may be coated with sugar, shellac, or other enteric coating agents. A syrup may contain, in addition to the present compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors. [0026]
  • The compound of Formula I of this invention may also be administered topically, and when done so the carrier may suitably comprise a solution, ointment or gel base. The base, for example, may comprise one or more of petrolatum, lanolin, polyethylene glycols, bee wax, mineral oil, diluents such as water and alcohol, and emulsifiers and stabilizers. [0027]
  • The solutions or suspensions may also include one or more of the following adjuvants: sterile diluents such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylene diaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parenteral preparation can be enclosed in ampules, disposable syringes or multiple dose vials. [0028]
  • The dosage range at which the compound of Formula I exhibits its ability to act therapeutically can vary depending upon its severity, the patient, the formulation, other underlying disease states that the patient is suffering from, and other medications that may be concurrently administered to the patient. Generally, the compound of Formula I will exhibit their therapeutic activities at dosages of between about 0.001 mg/kg of patient body weight/day to about 100 mg/kg of patient body weight/day. [0029]
  • All cites to publications and patents herein are hereby incorporated by reference. [0030]
  • The following example is being presented to further illustrate the invention. However, it should not be construed as limiting the invention in any manner.[0031]
  • EXAMPLE Rat Experimental Allergic Encephalomyelitis (Rat EAE)
  • Experimental allergic encephalomyelitis (EAE) is a T-cell-mediated autoimmune disease of the nervous system that develops in susceptible animals following sensitization with either whole spinal cord homogenate or a component (myelin basic protein). The EAE rodent model is an appropriate tool for studying the inflammation of the brain and spinal cord observed in MS patients. In rodents, injection of whole spinal cord or spinal cord components such as myelin basic protein induces an autoimmune response based on the activation of T-lymphocytes. Clinical disease typically becomes manifest around [0032] day 10 after inoculation, observed as a broad spectrum of behavioral anomalies ranging from mild gait disturbances and tail atony to complete paralysis and death. Weight loss typically occurs. In animals that survive, spontaneous recovery occurs, accompanied by the recovery of most motor function. Depending on the species, allergen, and methodology used, animals tested by the EAE model may experience a single (acute EAE) or several (chronic relapsing EAE) attacks. Several treatment paradigms may be used: the drug or treatment of choice may be administered before immunization, during the nonsymptomatic period or during the clinical disease.
  • Animals: [0033]
  • Female Lewis rats, 160-220 g (Charles River) [0034]
  • Antigen: [0035]
  • Whole Guinea Pig spinal cord (Harlan Biosciences). [0036]
  • Complete Freund's adjuvant H37 Ra [1 mg/ml [0037] Mycobacterium Tuberculosis H37 Ra] (Difco).
  • Additional Antigen: [0038]
  • [0039] Mycobacterium Tuberculosis (Difco).
  • [0040] Bordetella Pertussis [Heat Killed] (Difco).
  • Antigen preparation: (for approximately 720 animals) [0041]
  • 1. Weigh 5 grams of frozen guinea pig spinal cord. [0042]
  • 2. Add 5 g spinal cord to 5 ml 0.9% saline (1 g/ml) in a round bottom centrifuge tube [0043]
  • 3. Homogenize on ice with the Tissue-tech until the tissue is completely disrupted (approximately 5 minutes). [0044]
  • 4. Add 10 ml Complete Freund's adjuvant H37 Ra supplemented with 200 mg [0045] Mycobacterium Tuberculosis (20 mg/ml Complete Freund's adjuvant H37 Ra).
  • 5. Extract homogenate/adjuvant from tube by sucking it into a 10 ml syringe fitted with an 18 gauge emulsifying needle. [0046]
  • 6. Emulsify between two 30 ml glass syringes until it becomes difficult to continue passing the material through the needle. (Approximately 5 minutes {there must be no separation between the oil phase and the aqueous phase}). [0047]
  • 7. Use immediately or keep on ice until needed (not more than 30 min) (do not freeze). [0048]
  • Protocol
  • 1. Female Lewis rats (Charles River) are given free access to food and water and should be acclimated a minimum of 3 days before use in experiments. [0049]
  • 2. Rats weighing 160 and 220 grams are initially induced with 5% isoflurane (Aerrane, Fort Dodge), 30% O[0050] 2, 70% N2O for 2-5 minutes.
  • 3. The rat is then placed onto a circulating water heating blanket (Gaymar) (dorsal surface up) and into the nose cone for spontaneous respiration of anesthetic gases. The isoflurane is reduced to 2%. [0051]
  • 4. Two subcutaneous injections (0.1 ml each) of either antigen or normal saline are made into ventral surface of the hind paws. [0052]
  • 5. The animals are removed from the nose cone, weighed and numbered. [0053]
  • 6. The rats are allowed to awake from anesthesia and are placed into individual cages. [0054]
  • 7. The animals are observed daily for signs of EAE induction (see criteria below) [0055]
    STAGE: 0 NORMAL
    STAGE
    1 Abnormal gate and tail atony
    STAGE 2 Mild but definite weakness of one or both hind legs
    STAGE: 3 Severe weakness of one or both hind legs or mild ataxia
    STAGE: 4 Severe papraparesis and minimal hind leg movement
    STAGE: 5 No hind leg movement and paraplegia
    STAGE: 6 Moribund state with no spontaneous movement and impaired
    respiration.
    Increasing degree of front leg involvement and urinary and
    fecal incontinence may also occur
    STAGE: 7 DEATH
  • Treatment was begun on [0056] day 10 after immunization. Since the disease symptoms in this model typically appear 10-11 days after inoculation, this time point may be considered to represent the initial phase of an acute episode of MS. It is judged that this delay of the start of treatment mimicks the clinical situation more closely than the traditionally used protocols where drugs are administered at the time of, or even before, inoculation (Teitelbaum D. et al., Proc Natl Acad Sci USA 1999; 96: 3842-3847 and Brod S. A., et al., Ann Neurol 2000; 47:127-131)
  • The effect of teriflunomide on symptoms of EAE in rat at various doses is illustrated in FIG. 1. Dexamethasone is included in the figure for comparison. [0057]

Claims (32)

What is claimed is:
1. A method of treating multiple sclerosis comprising administering to a patient in need of said treatment an effective amount of (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide or a pharmaceutically acceptable salt thereof in combination with an effective amount of a compound known to be effective in the treatment of multiple sclerosis.
2. The method of claim 1, wherein said compound known to be effective in the treatment of multiple sclerosis is selected from the group consisting of interferon beta 1-a, interferon beta 1-b, interferon alpha 2, glatrimer acetate, dexamethasone, methyl prednisone, prednisone, methotrexate, azathioprine, cladribine, cyclophosphamide and cyclosporine.
3. The method of claim 2, wherein said compound is interferon beta 1-a.
4. The method of claim 2, wherein said compound is interferon beta 1-b.
5. The method of claim 2, wherein said compound is interferon alpha 2.
6. The method of claim 2, wherein said compound is glatrimer acetate.
7. The method of claim 2, wherein said compound is dexamethasone.
8. The method of claim 2, wherein said compound is methyl prednisone.
9. The method of claim 2, wherein said compound is prednisone.
10. The method of claim 2, wherein said compound is methotrexate.
11. The method of claim 2, wherein said is azathioprine.
12. The method of claim 2, wherein said compound is cladribine.
13. The method of claim 2, wherein said compound is cyclophosphamide.
14. The method of claim 2, wherein said compound is cyclosporine.
15. A pharmaceutical composition comprising a combination of (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide or a pharmaceutically acceptable salt thereof and a compound known to be effective in the treatment of multiple sclerosis.
16. The composition of claim 15, wherein said compound known to be effective in the treatment of multiple sclerosis is selected from the group consisting of interferon beta 1-a, interferon beta 1-b, interferon alpha 2, glatrimer acetate, dexamethasone, methyl prednisone, prednisone, methotrexate, azathioprine, cladribine, cyclophosphamide and cyclosporine
17. The composition of claim 16, wherein said compound is interferon beta 1-a.
18. The composition of claim 16, wherein said compound is interferon beta 1-b.
19. The composition of claim 16, wherein said compound is interferon alpha 2.
20. The composition of claim 16, wherein said compound is glatrimer acetate.
21. The composition of claim 16, wherein said compound is dexamethasone.
22. The composition of claim 16, wherein said compound is methyl prednisone.
23. The composition of claim 16, wherein said compound is prednisone.
24. The composition of claim 16, wherein said compound is methotrexate.
25. The composition of claim 16, wherein said compound is azathioprine.
26. The composition of claim 16, wherein said compound is cladribine.
27. The composition of claim 16, wherein said compound is cyclophosphamide.
28. The composition of claim 16, wherein said compound is cyclosporine.
29. The composition of claim 15 wherein the combination is with or without a pharmaceutically acceptable carrier or adjuvant.
30. A process for producing a pharmaceutical composition comprising combining (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide or a pharmaceutically acceptable salt thereof and a compound known to be effective in the treatment of multiple sclerosis.
31. The process of claim 30, wherein the pharmaceutical composition prepared is useful for the treatment of multiple sclerosis.
32. A pharmaceutical composition for the treatment of multiple sclerosis comprising (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide and a pharmaceutically acceptable carrier.
US10/413,976 2001-04-05 2003-04-15 Use of (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4'-trifluoromethylphenyl)-amide for treating multiple sclerosis Abandoned US20030223960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/413,976 US20030223960A1 (en) 2001-04-05 2003-04-15 Use of (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4'-trifluoromethylphenyl)-amide for treating multiple sclerosis

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28168501P 2001-04-05 2001-04-05
US10/113,078 US6794410B2 (en) 2001-04-05 2002-04-01 Use of (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide for treating multiple sclerosis
US10/413,976 US20030223960A1 (en) 2001-04-05 2003-04-15 Use of (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4'-trifluoromethylphenyl)-amide for treating multiple sclerosis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/113,078 Continuation US6794410B2 (en) 2001-04-05 2002-04-01 Use of (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide for treating multiple sclerosis

Publications (1)

Publication Number Publication Date
US20030223960A1 true US20030223960A1 (en) 2003-12-04

Family

ID=23078354

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/113,078 Active 2026-09-26 US6794410B2 (en) 2001-04-05 2002-04-01 Use of (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide for treating multiple sclerosis
US10/413,976 Abandoned US20030223960A1 (en) 2001-04-05 2003-04-15 Use of (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4'-trifluoromethylphenyl)-amide for treating multiple sclerosis

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/113,078 Active 2026-09-26 US6794410B2 (en) 2001-04-05 2002-04-01 Use of (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide for treating multiple sclerosis

Country Status (6)

Country Link
US (2) US6794410B2 (en)
BE (1) BE2014C008I2 (en)
CY (1) CY1110446T1 (en)
EC (1) ECSP024244A (en)
GB (1) GB0123571D0 (en)
HN (1) HN2002000110A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012025217A1 (en) * 2010-08-24 2012-03-01 Algiax Pharmaceuticals Gmbh Novel use of leflunomide and malononitrilamides
WO2012055567A3 (en) * 2010-10-29 2012-07-05 Algiax Pharmaceuticals Gmbh Use of malononitrilamides in neuropathic pain
RU2493845C1 (en) * 2012-06-07 2013-09-27 Общество с ограниченной ответственностью "ВАЛЕНТА ИНТЕЛЛЕКТ" Composition for treating multiple sclerosis (versions)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPR245601A0 (en) 2001-01-10 2001-02-01 Silverbrook Research Pty Ltd An apparatus (WSM09)
AU2007338771A1 (en) * 2006-12-19 2008-07-03 Merrimack Pharmaceuticals, Inc. Coadministration of alpha-fetoprotein and an immunomodulatory agent to treat multiple sclerosis
EP2277515A1 (en) 2009-07-10 2011-01-26 Sanofi-Aventis Use of the combination of teriflunomide and interferon beta for treating multiple sclerosis
SI2477611T1 (en) * 2009-09-18 2017-07-31 Sanofi (z)-2-cyano-3-hydroxy-but-2-enoic acid-(4'-trifluormethylphenyl)-amide tablet formulations with improved stability
EP2314291A1 (en) 2009-10-22 2011-04-27 Sanofi-Aventis Use of the combination of teriflunomide and glatiramer acetate for treating multiple sclerosis
WO2011049792A1 (en) 2009-10-22 2011-04-28 Sanofi-Aventis U.S. Llc Use of the combination of teriflunomide and glatiramer acetate for treating multiple sclerosis
AR081764A1 (en) 2010-05-26 2012-10-17 Sanofi Aventis Us Llc USE OF TERIFLUNOMIDE TO MAINTAIN THE FATIGUE LEVEL OF A PATIENT WHO HAS MULTIPLE SCLEROSIS, MANUFACTURING ARTICLE AND PACKAGING
AR081220A1 (en) 2010-05-26 2012-07-04 Sanofi Aventis Us Llc USE OF TERIFLUNOMIDE FOR THE TREATMENT OF BRAIN ATROPHY
EP2600861A1 (en) 2010-08-02 2013-06-12 Sanofi-Aventis U.S. LLC Use of teriflunomide for treating multiple sclerosis
WO2012061062A1 (en) * 2010-10-25 2012-05-10 Sanofi-Aventis U.S. Llc Use of teriflunomide for improving motor function
WO2012061060A1 (en) 2010-10-25 2012-05-10 Sanofi-Aventis U.S. Llc Use of teriflunomide for treating brain atrophy
AR085305A1 (en) 2011-02-24 2013-09-18 Sanofi Aventis Us Llc USE OF TERIFLUNOMIDE FOR THE TREATMENT OF COGNITIVE DETERIORATION
WO2012162339A1 (en) 2011-05-24 2012-11-29 Sanofi-Aventis U.S. Llc Use of teriflunomide for reducing occurrence of relapses requiring healthcare resources
RU2471482C1 (en) * 2011-10-27 2013-01-10 Общество с ограниченной ответственностью "ВАЛЕНТА ИНТЕЛЛЕКТ" Composition for treating multiple sclerosis (versions)
EP2762135A1 (en) 2013-02-04 2014-08-06 Sanofi Methods for reducing the risk of an adverse teriflunomide and rosuvastatin interaction in multiple sclerosis patients
JOP20190207A1 (en) 2017-03-14 2019-09-10 Actelion Pharmaceuticals Ltd Pharmaceutical combination comprising ponesimod

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780592A (en) * 1995-12-20 1998-07-14 Hoechst Aktiengesellschaft Compositions comprising lipoproteins and crotonamide derivatives

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL186239B (en) * 1975-06-05 Hoechst Ag PROCESS FOR THE PREPARATION OF A MEDICINAL PRODUCT WITH ANTIFLOGISTICAL AND / OR ANALGETICAL ACTION AND PROCEDURE FOR THE PREPARATION OF A 2-HYDROXYETHYLIDE ENCYANAACETIC ANILIDE SUITABLE FOR USE IN THIS PROCESS.
NL178596C (en) * 1975-06-05 1986-04-16 Hoechst Ag METHOD FOR PREPARING A MEDICINAL PRODUCT WITH ANTIFLOGISTIC AND / OR ANALGETIC ACTION, AND A METHOD FOR PREPARING THEIR PRODUCT TO BE USED AS MEDICINAL COMPOUNDS 5-METHYLISOXAZOLE-4-CARBONIC ACID.
DE2854439A1 (en) 1978-12-16 1980-07-03 Hoechst Ag AN ISOXAZOLE DERIVATIVE, METHOD FOR THE PRODUCTION THEREOF, AGENT AND USE THEREOF
US4284784A (en) * 1980-05-22 1981-08-18 Merck & Co., Inc. Process for the preparation of 4-methyl thiazole
US5268382A (en) 1985-09-27 1993-12-07 Hoechst Aktiengesellschaft Medicaments to combat autoimmune diseases, in particular systemic lupus erythematosus
DE3534440A1 (en) 1985-09-27 1987-04-02 Hoechst Ag DRUGS AGAINST CHRONIC GRAFT VERSUS HOST DISEASES AND AUTO AUTO DISEASES, IN PARTICULAR SYSTEMIC LUPUS ERYTHEMATODES
US4965278A (en) * 1989-04-21 1990-10-23 Warner-Lambert Company 7-(substituted)amino)-8-((substituted)carbonyl)-methylamino)-1-oxaspiro[4,5]decanes as diuretics antiiflammatory, and cerebrovascular agents
US6133301A (en) 1991-08-22 2000-10-17 Aventis Pharma Deutschland Gmbh Pharmaceuticals for the treatment of rejection reactions in organ transplantations
IT1254519B (en) 1992-03-16 1995-09-25 Chiesi Farma Spa ASSOCIATIONS OF ANTIVIRAL COMPOUNDS
WO1994024095A1 (en) 1993-04-16 1994-10-27 Abbott Laboratories Immunosuppressive agents
US5700823A (en) 1994-01-07 1997-12-23 Sugen, Inc. Treatment of platelet derived growth factor related disorders such as cancers
DE19534649A1 (en) 1995-09-19 1997-03-20 Hoechst Ag 2-cyano-3-mercaptocrotonic acid amides
DE19610955A1 (en) 1996-03-20 1997-09-25 Hoechst Ag Combination preparation containing 5-methylisoxazole-4-carboxylic acid- (4-trifluoromethyl) -anilide and N- (4-trifluoromethylphenyl) -2-cyano-3-hydroxycrotonic acid amide
US6011051A (en) 1996-07-31 2000-01-04 Hoechst Aktiengesellschaft Use of isoxazole and crotonamide derivatives for the modulation of apoptosis
US5856330A (en) 1996-07-31 1999-01-05 Hoechst Aktiengesellschaft Use of xanthine derivatives for the inhibition of dephosphorylation of cofilin
US5981536A (en) 1996-07-31 1999-11-09 Hoechst Aktiengesellschaft Use of xanthine derivatives for the modulation of apoptosis
PT903345E (en) 1997-08-08 2001-01-31 Aventis Pharma Gmbh CRYSTALLINE FORM OF N- (4-TRIFLUOROMETHYLPHENYL) -5-METHYL ISOXAZOLE-4-CARBOXAMIDE
DE19857009A1 (en) 1998-12-10 2000-06-15 Aventis Pharma Gmbh Preparation with improved therapeutic range, containing nucleotide synthesis inhibitors
US6723855B2 (en) * 2000-02-15 2004-04-20 Teva Pharmaceutical Industries Ltd. Method for synthesizing leflunomide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780592A (en) * 1995-12-20 1998-07-14 Hoechst Aktiengesellschaft Compositions comprising lipoproteins and crotonamide derivatives

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012025217A1 (en) * 2010-08-24 2012-03-01 Algiax Pharmaceuticals Gmbh Novel use of leflunomide and malononitrilamides
CN103153295A (en) * 2010-08-24 2013-06-12 艾格埃克斯制药有限公司 Novel use of leflunomide and malononitrilamides
JP2013536209A (en) * 2010-08-24 2013-09-19 アルギアックス ファルマコウティカルス ゲーエムベーハー New use of leflunomide and malononitrile trilamide
US8957098B2 (en) 2010-08-24 2015-02-17 Algiax Pharmaceuticals Gmbh Use of leflunomide and malononitrilamides
WO2012055567A3 (en) * 2010-10-29 2012-07-05 Algiax Pharmaceuticals Gmbh Use of malononitrilamides in neuropathic pain
US9468615B2 (en) 2010-10-29 2016-10-18 Algiax Pharmaceuticals Gmbh Use of malononitrilamides in neuropathic pain
RU2493845C1 (en) * 2012-06-07 2013-09-27 Общество с ограниченной ответственностью "ВАЛЕНТА ИНТЕЛЛЕКТ" Composition for treating multiple sclerosis (versions)
WO2013184023A1 (en) * 2012-06-07 2013-12-12 Общество С Ограниченной Ответственностью "Валента-Интеллект" Composition for treating multiple sclerosis (variants)
EA028308B1 (en) * 2012-06-07 2017-11-30 Общество С Ограниченной Ответственностью "Валента-Интеллект" Composition for treating multiple sclerosis

Also Published As

Publication number Publication date
US20020177623A1 (en) 2002-11-28
GB0123571D0 (en) 2001-11-21
US6794410B2 (en) 2004-09-21
ECSP024244A (en) 2002-08-01
HN2002000110A (en) 2002-07-04
CY1110446T1 (en) 2015-04-29
BE2014C008I2 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
CA2443285C (en) Use of (z)-2-cyano-3-hydroxy-but-2-enoic acid-(4'-trifluoromethylphenyl)-amide for treating multiple sclerosis
US6794410B2 (en) Use of (Z)-2-cyano-3-hydroxy-but-2-enoic acid-(4′-trifluoromethylphenyl)-amide for treating multiple sclerosis
US20070197643A1 (en) Use of (z)-2-cyano-3-hydroxy-but-2-enoic acid-(4'-trifluoromethylphenyl)-amide for treating inflammatory bowel disease
WO1999027949A1 (en) METHOD OF SUPPRESSING β-AMYLOID-RELATED CHANGES IN ALZHEIMER'S DISEASE
US20130039905A1 (en) Diazoxide For Use In The Treatment Or Prevention Of A Central Nervous System (CNS) Autoimmune Demyelinating Disease
CA2224119A1 (en) Method for treating multiple sclerosis
Piccolo et al. Myasthenia gravis in a patient with chronic active hepatitis C during interferon-alpha treatment
US7259170B2 (en) Macrolides containing pharmaceutical compositions
EP3621628B1 (en) Method for treating multiple sclerosis using arsenic trioxide
EP1585525B1 (en) Use of thiazolobenzoheterocycles for treating multiple sclerosis
CA2400236C (en) Use of indoloquinoxaline derivatives for preparing a drug for the treatment of multiple sclerosis
US6333327B2 (en) Method for the treatment of Multiple Sclerosis
US20120107277A1 (en) Use of the combination of teriflunomide and interferon beta for treating multiple sclerosis
KR20080046202A (en) 2-amino alcohol for the treatment of neurodegenerative diseases
US20120244106A1 (en) Use of the combination of teriflunomide and glatiramer acetate for treating multiple sclerosis
WO1994028893A1 (en) Remedy for systemic autoimmune disease or inflammatory nervous disease

Legal Events

Date Code Title Description
AS Assignment

Owner name: AVENTIS PHARMACEUTICALS INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WETTSTEIN, JOSEPH;REEL/FRAME:015634/0996

Effective date: 20010608

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION