US20030190372A1 - Cough depressant composition containing iron for angiotensin-converting enzyme inhibitor inducing cough - Google Patents
Cough depressant composition containing iron for angiotensin-converting enzyme inhibitor inducing cough Download PDFInfo
- Publication number
- US20030190372A1 US20030190372A1 US10/380,567 US38056703A US2003190372A1 US 20030190372 A1 US20030190372 A1 US 20030190372A1 US 38056703 A US38056703 A US 38056703A US 2003190372 A1 US2003190372 A1 US 2003190372A1
- Authority
- US
- United States
- Prior art keywords
- cough
- iron
- angiotensin
- depressant composition
- converting enzyme
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/24—Heavy metals; Compounds thereof
- A61K33/26—Iron; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/14—Antitussive agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the present invention relates to a cough depressant composition containing iron for inhibiting a dry cough, more specifically a cough depressant composition containing iron to treat a dry cough shown in patients who take an angiotensin-converting enzyme inhibitor.
- Angiotensin is a material causing blood vessel contraction and blood pressure elevation in the body and is synthesized from angiotensinogen.
- Angiotensinogen converts to angiotensin I by renin that is synthesized in the kidney
- angiotensin I converts to angiotensin II by an angiotensin converting enzyme (ACE)
- ACE angiotensin converting enzyme
- angiotensin II has a very strong blood vessel contraction effect so that it elevates blood pressure.
- Angiotensin II maintains high blood vessel resistance in essential hypertension as well as hypertension accompanying high blood serum renin activity shown in renal artery stenosis, partial endogenous kidney diseases, and malignant hypertension.
- angiotensin -converting- enzyme inhibitor (‘ACEI’) is used as a medication.
- ACEIs are widely used for the treatment of hypertension and after-treatment of congestive heart failure and myocardial infarction.
- ACEI use is limited due to its various side effects, of which the most troublesome and frequent is persistent dry cough (Sebastian J L, McKinney W P, Kaufman J, Young M J. Angiotensin-converting enzyme inhibitors and cough. Prevalence in an outpatient medical clinic population. Chest 1991;99:36-9; Israili Z H, Hall W D. Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. Ann Intern Med 1992;117:234-42; Simon S R, Black H R, Moser M, Berland W E. Cough and ACE inhibitors. Arch Intern Med 1992;152:1698-700).
- Dry cough has been reported to occur in 5 to 25% of patients that are subject to ACEI use and some of them have severe dry cough so that they stop taking the ACEIs (Sebastian J L, McKinney W P, Kaufman J, Young M J. Angiotensin-converting enzyme inhibitors and cough. Prevalence in an outpatient medical clinic population. Chest 1991 ;99:36-9).
- ACEI nitric oxide(NO) generation
- Nitric oxide is known to relax on the bronchial smooth muscle cells, but also has inflammatory effects on the bronchial epithelial cells (Flak T A, Goldman W E. Autotoxicity of nitric oxide in airway disease. Am J Respir Crit Care Med 1996;154(4 pt 2):202-6).
- Nitric oxide is synthesized by a nitrogen oxide synthase(NOS) and it was reported that the nitric oxide synthase can be deactivated by adding iron (Weiss G, Werner-Felmayer G, Werner E R, Gruenewald K, Wachter H, Hentze M W. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med 1994;180:969-76).
- the present invention provides a cough depressant composition containing iron.
- FIG. 1 is a graph showing the change in cough scores when taking ferrous sulphate, a dry cough depressant composition containing iron.
- FIG. 2 is a graph showing the change in cough scores in subjects who took placebo as a control group.
- Nitric oxide is generated by nitric oxide synthase and is known to have correlation with an iron concentration in the body.
- the activity of the nitric oxide synthase is inhibited by increases -of iron concentration in the body. Therefore, the present invention developed a cough depressant composition containing iron to reduce ACEI-induced dry cough.
- the cough depressant composition containing iron for inhibiting ACEI-induced cough is preferably medicine comprising iron agent or iron.
- the iron is preferably Fe 2+ (ferrous) or Fe 3+ (ferric), and the medicine containing iron is preferably iron medicine prescribed for iron deficiency anemia or other iron deficient symptoms.
- the research pertaining to the ACEI-induced cough depressant effect by the iron was carried out with nineteen patients taking ACEI. These subjects were patients who developed cough as a result of the side effect caused by taking ACEI. The experiment period was divided into the observation period and the treatment period. 10 of the patients took iron and 9 of the patients took placebo. As a result, 9 of the patients who had taken iron showed reduction in cough, but only one of the nine patients taking the placebo showed reduction in cough. Therefore, the cough depressant composition containing iron according to the present invention effectively decreases ACEI-induced cough.
- the cough depressant composition containing iron of the present invention can comprise only iron or further comprise other pharmaceutically acceptable medicine.
- the cough depressant composition further comprising other medicine preferably includes 0.01 ⁇ 100% by weight of iron.
- the cough depressant composition can be administered alone or in combination with ACEI.
- the cough depressant composition containing iron of the present invention for inhibiting cough caused by an ACEI can be formulated as any type comprising iron as an efficient ingredient.
- the formulation is for oral or syringe application.
- the oral formulation is preferably tablets, capsules, soft capsules, fluid, granular type, pills, etc.
- the syringe formulation is preferably solution, suspension, emulsion, etc.
- the cough depressant containing iron of the present invention preferably comprises carrier excipients to manufacture into the above formulation.
- the carrier excipients can be starch, water, saline solution, ringer's solution and dextrose solution, etc. Appropriate agents known in the technical fields are disclosed in the document of Remington's Pharmaceutical Science (recent version)[Mack Publishing Company, Easton Pa.].
- the effect of the cough depressant containing iron of the present invention was tested.
- the cough depressant composition used in the test was ferrous sulphate.
- the 19 tested patients had developed persistent dry cough while taking ACEI for various reasons. They include 6 men and 13 women, whose mean age was 59.9 ⁇ 12.2 years.
- the patients were divided into groups; the treatment group, which comprised 10 patients taking iron, and the control group, comprising 9 patients taking placebo.
- the characteristics of the patients are denoted in Table 1. All the patients gave informed consent, and the test was approved by the ethical committee of the Samsung Medical Center and Samsung Biomedical Research Center, Seoul, Korea.
- ACEI-induced cough was defined as dry cough that occurred with ACEI use that subsided in seven days after discontinuation of the drug, and reappeared within 48 hours after the re-introduction of the drug and with no abnormality in the lungs and the bronch i.
- Cough scores from the last week of the observation period and the last week of the treatment period were compared and evaluated.
- the total sum of the cough scores were calculated from cough scores during the daytime and the nighttime recorded from the range of 0 to 4 for the last week of the observation period and the treatment period, and mean daily cough scores were calculated by dividing the total amount by days.
- the cough score during the daytime and the nighttime was compared separately.
- the result was expressed as mean ⁇ standard deviation and analysis was performed using the SPSS software (SPSS Inc, II, USA).
- the two groups were compared using Wilcoxon's signed rank sum test.
- Table 2 shows the cough score during the observation and treatment period.
- the mean daily cough score in iron taking group was 6.14 ⁇ 1.41 at the last week of the observation period and 3.39 ⁇ 2.20 at the last week of the treatment period, showing a significant reduction of dry cough with iron supplementation.
- the reduction in cough scores was exhibited in both the daytime and nighttime period.
- No significant change in the mean daily cough scores was found in the placebo taking group( 5.14 ⁇ 1.61 and 4.70 ⁇ 2.44, at the end of the observation and treatment period).
- Individual changes in the mean cough scores are shown in FIGS. 1 and 2.
- FIG. 1 is a graph showing the change of cough scores when ferrous sulphate, which is the cough depressant composition containing iron.
- the cough score in the treatment period is significantly reduced. That is, 9 of 10 patients who took iron showed a decrease in the cough score and three patients showed an almost complete abolishment of cough in the iron taking group.
- FIG. 2 is a graph showing the change of cough scores when the control group has taken placebo. There was no significant reduction of cough scores in the placebo taking group and only one of the nine subjects showed improvement.
- the dry cough depressant composition containing iron of the present invention prevents the side effect of angiotensin-converting enzyme inhibitor by reducing angiotensin-converting enzyme inhibitor induced cough, and reduces the troubles experienced by patients taking the angiotensin-converting enzyme inhibitor.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Toxicology (AREA)
- Pulmonology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present invention relates to a cough depressant composition containing iron for angiotensin-converting enzyme inhibitor inducing cough. The cough depressant composition of the present invention comprises 0.01-100% by weight of Fe2+(ferrous) or Fe3+(ferric). Furthermore, the cough depressant composition of the present invention can comprise an angiotensin-converting enzyme inhibitor. The cough depressant composition of the present invention relieves the pain of the patient by reducing continuous dry cough.
Description
- (a) Field of the Invention
- The present invention relates to a cough depressant composition containing iron for inhibiting a dry cough, more specifically a cough depressant composition containing iron to treat a dry cough shown in patients who take an angiotensin-converting enzyme inhibitor.
- (b) Description of the Related Art
- Angiotensin is a material causing blood vessel contraction and blood pressure elevation in the body and is synthesized from angiotensinogen. Angiotensinogen converts to angiotensin I by renin that is synthesized in the kidney, angiotensin I converts to angiotensin II by an angiotensin converting enzyme (ACE) and angiotensin II has a very strong blood vessel contraction effect so that it elevates blood pressure. Angiotensin II maintains high blood vessel resistance in essential hypertension as well as hypertension accompanying high blood serum renin activity shown in renal artery stenosis, partial endogenous kidney diseases, and malignant hypertension. Thus, in order to treat hypertension, angiotensin -converting- enzyme inhibitor (‘ACEI’) is used as a medication. The ACEIs are widely used for the treatment of hypertension and after-treatment of congestive heart failure and myocardial infarction.
- However, ACEI use is limited due to its various side effects, of which the most troublesome and frequent is persistent dry cough (Sebastian J L, McKinney W P, Kaufman J, Young M J. Angiotensin-converting enzyme inhibitors and cough. Prevalence in an outpatient medical clinic population. Chest 1991;99:36-9; Israili Z H, Hall W D. Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. Ann Intern Med 1992;117:234-42; Simon S R, Black H R, Moser M, Berland W E. Cough and ACE inhibitors. Arch Intern Med 1992;152:1698-700). Dry cough has been reported to occur in 5 to 25% of patients that are subject to ACEI use and some of them have severe dry cough so that they stop taking the ACEIs (Sebastian J L, McKinney W P, Kaufman J, Young M J. Angiotensin-converting enzyme inhibitors and cough. Prevalence in an outpatient medical clinic population. Chest 1991 ;99:36-9).
- Although mechanisms involving this side effect have not yet been fully elucidated, there have been observations and trials reporting that increments of prostaglandin synthesis or bradykinin accumulation associated with ACEI use is responsible for this effect (Morice A H, Lowry R, Brown M J, Higenbottam T. Angiotensin-converting enzyme and the cough reflex. Lancet 1987;2:1116-8 Gilchrist N L, Richards A M, March M, Nicholls M G. Effect of sulindac on angiotensin-converting enzyme inhibitor-induced cough: randomized placebo-controlled double-blind cross-over study. J Hum Hypertens 1989;3:451-5; Fox A J. Lalloo U G, Belvisi M G, Bernareggi M, Chung K F, Barnes P J. Bradykinin-evoked sensitization of airway sensory nerves: a mechanism for ACE- inhibitor cough. Nat Med 1996;2:814-7). However, controlled trials of ACEI-induced cough suppression using prostaglandin or bradykinin antagonists have been proven to be inconclusive and there is no definite way to inhibit the dry cough caused by angiotensin to date.
- Meanwhile, ACEI is known to cause an increase in nitric oxide(NO) generation (Linz W, Wohlfart P, Schoelkens B A, Malinski T, Wiemer G. Interaction among ACE, kinins, and NO. Cardiovasc Res 1999;43:549-61). Nitric oxide is known to relax on the bronchial smooth muscle cells, but also has inflammatory effects on the bronchial epithelial cells (Flak T A, Goldman W E. Autotoxicity of nitric oxide in airway disease. Am J Respir Crit Care Med 1996;154(4 pt 2):202-6). Nitric oxide is synthesized by a nitrogen oxide synthase(NOS) and it was reported that the nitric oxide synthase can be deactivated by adding iron (Weiss G, Werner-Felmayer G, Werner E R, Gruenewald K, Wachter H, Hentze M W. Iron regulates nitric oxide synthase activity by controlling nuclear transcription. J Exp Med 1994;180:969-76).
- Thus, it is an object of the present invention to provide a cough depressant composition for angiotensin -converting enzyme inhibitor-induced cough.
- In order to accomplish the object, the present invention provides a cough depressant composition containing iron.
- FIG. 1 is a graph showing the change in cough scores when taking ferrous sulphate, a dry cough depressant composition containing iron.
- FIG. 2 is a graph showing the change in cough scores in subjects who took placebo as a control group.
- Hereinafter, the present invention will be explained in detail.
- As a result of research to inhibit dry cough shown in patients who take angiotensin-converting enzyme inhibitors (‘ACEIs’), the present inventors assumed nitrogen oxide induced by ACEIs to be a cause of the dry cough and completed the present invention by studying a method to inhibit generation of nitrogen oxide.
- Nitric oxide is generated by nitric oxide synthase and is known to have correlation with an iron concentration in the body. The activity of the nitric oxide synthase is inhibited by increases -of iron concentration in the body. Therefore, the present invention developed a cough depressant composition containing iron to reduce ACEI-induced dry cough.
- The cough depressant composition containing iron for inhibiting ACEI-induced cough is preferably medicine comprising iron agent or iron. The iron is preferably Fe 2+(ferrous) or Fe3+(ferric), and the medicine containing iron is preferably iron medicine prescribed for iron deficiency anemia or other iron deficient symptoms.
- The research pertaining to the ACEI-induced cough depressant effect by the iron was carried out with nineteen patients taking ACEI. These subjects were patients who developed cough as a result of the side effect caused by taking ACEI. The experiment period was divided into the observation period and the treatment period. 10 of the patients took iron and 9 of the patients took placebo. As a result, 9 of the patients who had taken iron showed reduction in cough, but only one of the nine patients taking the placebo showed reduction in cough. Therefore, the cough depressant composition containing iron according to the present invention effectively decreases ACEI-induced cough.
- The cough depressant composition containing iron of the present invention can comprise only iron or further comprise other pharmaceutically acceptable medicine. The cough depressant composition further comprising other medicine preferably includes 0.01˜100% by weight of iron. Also, the cough depressant composition can be administered alone or in combination with ACEI.
- The cough depressant composition containing iron of the present invention for inhibiting cough caused by an ACEI can be formulated as any type comprising iron as an efficient ingredient. Preferably, the formulation is for oral or syringe application. The oral formulation is preferably tablets, capsules, soft capsules, fluid, granular type, pills, etc. The syringe formulation is preferably solution, suspension, emulsion, etc. The cough depressant containing iron of the present invention preferably comprises carrier excipients to manufacture into the above formulation. The carrier excipients can be starch, water, saline solution, ringer's solution and dextrose solution, etc. Appropriate agents known in the technical fields are disclosed in the document of Remington's Pharmaceutical Science (recent version)[Mack Publishing Company, Easton Pa.].
- Hereinafter, preferable examples are presented for the sake of understanding. These examples, however, are provided to facilitate the understanding and the present invention is not limited to the following example.
- The effect of the cough depressant containing iron of the present invention was tested. The cough depressant composition used in the test was ferrous sulphate. Anemia medicine sold as Feroba (trademark), whose ferrous sulphate was removed, was used as the placebo. The 19 tested patients had developed persistent dry cough while taking ACEI for various reasons. They include 6 men and 13 women, whose mean age was 59.9±12.2 years. The patients were divided into groups; the treatment group, which comprised 10 patients taking iron, and the control group, comprising 9 patients taking placebo. The characteristics of the patients are denoted in Table 1. All the patients gave informed consent, and the test was approved by the ethical committee of the Samsung Medical Center and Samsung Biomedical Research Center, Seoul, Korea.
TABLE 1 Patient Age Gender Diagnosis ACEI Other drug Smoking Group 1 37 M Hypertension Lisinopril Atenolol − Iron intake 2 57 M Aortic regurgitation Enalapril − − Iron intake 3 59 M Hypertension Enalapril Diltiazem, Isorsobide − Iron intake mononitrate 4 36 F Mitral stenosis, Fosinopril Digoxin, − Iron intake Aortic regurgitation Hydrochlorthiazide 5 55 F Hypertension Enalapril Amlodipine − Iron intake 6 59 F Hypertension Cilazapril Amlodipine − Iron intake 7 70 F Left ventricle Captopril — − Iron intake dysfunction 8 72 F Hypertension Captopril Atenolol − Iron intake 9 73 F Left ventricle failure, Captopril Isorsobide mononitrate, − Iron intake Angina Nicorandil, Furosemie 10 73 F Hypertension Enalapril Betaxolol − Iron intake 11 44 M Aortic regurgitation Enalapril — + Placebo 12 59 M Left ventricle Enalapril Carvedilol − Placebo dysfunction 13 71 M Left ventricle Cilazapril Betaxolol, Isorsobide + Placebo dysfunction, Angina mononitrate 14 43 F Left ventricle Enalapril Betaxolol, Furosemide − Placebo dysfunction 15 61 F Aortic regurgitation Captopril — − Placebo 16 62 F Hypertension Enalapril Atenolol, Amlodipine − Placebo 17 64 F Left ventricle Fosinopril Digoxin, Atenolol − Placebo dysfunction 18 71 F Old myocardinal Captopril Metoprolol, Isorsobide − Placebo infarction mononitrate 19 72 F Left ventricle Captopril Isorsobide mononitrate, − placebo dysfunction, Angina Atenolol - 1. Observation Period
- ACEI-induced cough was defined as dry cough that occurred with ACEI use that subsided in seven days after discontinuation of the drug, and reappeared within 48 hours after the re-introduction of the drug and with no abnormality in the lungs and the bronch i.
- 19 patients completed a cough diary during a 2-week observation period while taking ACEI only. They were asked to fill in their cough severity daily according to the following scale; 0 indicates no cough, 1 indicates only a tickling sensation on the throat, 2 indicates mild cough that did not interfere with everyday life, 3 indicates moderate cough which was tolerable for sleep but severe enough to interrupt daily activities for some time, and 4 indicates severe cough which persisted and interfered with most of the daily activities or disturbed sleeping at night. Each day was divided into two 12-hour periods. The daytime period began at 8 A.M, and the nighttime period, vice versa. Patients recorded the cough score for each period.
- 2. Treatment Period
- At the end of the observation period, blood samples were drawn from the patient for evaluation of hemoglobin level, hematocrit, iron concentration, total iron binding capacity (“TIBC”), and ferritin concentration. After sampling, they were randomized to either an iron taking group or placebo taking group. 256 mg of ferrous sulfate (of which 80 mg is ferrate) was daily administered to the iron taking group. During the four weeks of the treatment period, subjects were asked to fill in a cough diary in the identical way that they completed the diary in the observation period. After four weeks of the treatment period, blood sampling was repeated for the same evaluation (hemoglobin level, hematocrit, iron concentration, total iron binding capacity (“TIBC”) and ferritin concentration) that was performed in the initiation of the treatment period.
- 3. Analysis
- Cough scores from the last week of the observation period and the last week of the treatment period were compared and evaluated. The total sum of the cough scores were calculated from cough scores during the daytime and the nighttime recorded from the range of 0 to 4 for the last week of the observation period and the treatment period, and mean daily cough scores were calculated by dividing the total amount by days. Also, the cough score during the daytime and the nighttime was compared separately. The result was expressed as mean±standard deviation and analysis was performed using the SPSS software (SPSS Inc, II, USA). The two groups were compared using Wilcoxon's signed rank sum test. The following Table 2 shows the cough score during the observation and treatment period.
TABLE 2 Degree of cough (score, mean standard deviation) Group Period Observation period Treatment period Iron taking group Daily 6.14 ± 1.41 3.39 ± 2.20 Daytime 2.86 ± 0.86 1.51 ± 1.00 Nighttime 3.29 ± 0.73 1.87 ± 1.24 Control group Daily 5.14 ± 1.61 4.70 ± 2.44 Daytime 2.37 ± 0.73 2.37 ± 1.23 Nighttime 2.78 ± 0.97 2.33 ± 1.21 - As can be seen in Table 2, the mean daily cough score in iron taking group was 6.14±1.41 at the last week of the observation period and 3.39≅2.20 at the last week of the treatment period, showing a significant reduction of dry cough with iron supplementation. The reduction in cough scores was exhibited in both the daytime and nighttime period. No significant change in the mean daily cough scores was found in the placebo taking group( 5.14±1.61 and 4.70±2.44, at the end of the observation and treatment period). Individual changes in the mean cough scores are shown in FIGS. 1 and 2.
- FIG. 1 is a graph showing the change of cough scores when ferrous sulphate, which is the cough depressant composition containing iron. The cough score in the treatment period is significantly reduced. That is, 9 of 10 patients who took iron showed a decrease in the cough score and three patients showed an almost complete abolishment of cough in the iron taking group.
- FIG. 2 is a graph showing the change of cough scores when the control group has taken placebo. There was no significant reduction of cough scores in the placebo taking group and only one of the nine subjects showed improvement.
- The hemoglobin level, hematocrit, iron concentration, TIBC and ferritin concentration in blood samples taken before the treatment period and after the treatment were compared. The result is shown in the following Table 3.
TABLE 3 Iron taking group Placebo taking group Pretreatment Posttreatment Pretreatment Posttreatment Hemoglobin(mg/dL) 13.43 ± 0.81 13.63 ± 0.60 13.45 ± 1.12 13.34 ± 1.39 Hematocrit (%) 39.58 ± 2.65 40.78 ± 2.51 40.31 ± 3.65 39.61 ± 3.92 Iron (mg/dL) 74.75 ± 10.53 83.75 ± 16.07 93.00 ± 48.70 97.16 ± 17.27 TIBC (mg/dL) 312.5 ± 28.1 320.3 ± 11.9 287.8 ± 39.7 287.8 ± 47.6 Ferritin (mg/dL) 68.15 ± 32.86 86.03 ± 25.78 102.47 ± 46.17 98.97 ± 41.58 - As can be seen in Table 3, no significant difference was observed in hemoglobin, hematocrit, iron concentration, TIBC and ferritin concentration between the iron taking group and the placebo taking group. In the iron taking group, the mean ferritin level of 68.15±32.86 was increased to 86.03±25.78 mg/dL after the supply of iron. In the control group, the ferritin level decreased, but the difference did not reach a significant level.
- As mentioned above, the dry cough depressant composition containing iron of the present invention prevents the side effect of angiotensin-converting enzyme inhibitor by reducing angiotensin-converting enzyme inhibitor induced cough, and reduces the troubles experienced by patients taking the angiotensin-converting enzyme inhibitor.
Claims (4)
1. A cough depressant composition containing iron for inhibiting dry cough induced by angiotensin-converting enzyme inhibitors.
2. The cough depressant composition according to claim 1 , wherein the iron is selected from the group consisting of iron containing component such as Fe2+(ferrous) and Fe3+(ferric).
3. The cough depressant composition according to claim 1 comprising 0.01˜100% by weight of iron.
4. The cough depressant composition according to claim 1 further comprising an angiotensin-converting enzyme inhibitor.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/289,005 US7320804B2 (en) | 2000-09-14 | 2005-11-29 | Cough depressant composition containing iron for angiotensin-converting enzyme inhibitor inducing cough |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR2000/54012 | 2000-09-14 | ||
| KR1020000054012A KR100356374B1 (en) | 2000-09-14 | 2000-09-14 | A cough inhibitory composition containing iron showing inhibitory effects on cough associated with angiotensin converting enzyme inhibitors |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/289,005 Continuation US7320804B2 (en) | 2000-09-14 | 2005-11-29 | Cough depressant composition containing iron for angiotensin-converting enzyme inhibitor inducing cough |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20030190372A1 true US20030190372A1 (en) | 2003-10-09 |
Family
ID=36125845
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/380,567 Abandoned US20030190372A1 (en) | 2000-09-14 | 2001-09-13 | Cough depressant composition containing iron for angiotensin-converting enzyme inhibitor inducing cough |
| US11/289,005 Expired - Fee Related US7320804B2 (en) | 2000-09-14 | 2005-11-29 | Cough depressant composition containing iron for angiotensin-converting enzyme inhibitor inducing cough |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/289,005 Expired - Fee Related US7320804B2 (en) | 2000-09-14 | 2005-11-29 | Cough depressant composition containing iron for angiotensin-converting enzyme inhibitor inducing cough |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US20030190372A1 (en) |
| JP (1) | JP3965362B2 (en) |
| KR (1) | KR100356374B1 (en) |
| WO (1) | WO2002022142A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007081136A1 (en) * | 2006-01-09 | 2007-07-19 | Lg Electronics Inc. | Inter-layer prediction method for video signal |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4582709A (en) * | 1985-02-08 | 1986-04-15 | Warner-Lambert Company | Chewable mineral supplement |
| US4994283A (en) * | 1987-07-02 | 1991-02-19 | The Procter & Gamble Company | Iron-calcium mineral supplements with enhanced bioavailability |
| US5122369A (en) * | 1990-03-30 | 1992-06-16 | Harmony Health Products, Inc. | Nutrient composition for preventing hair loss |
| US6086919A (en) * | 1994-09-02 | 2000-07-11 | Astra Aktiebolag | Pharmaceutical composition containing the ace inhibitor ramipril and a dihydropyridine compound |
| US6420426B1 (en) * | 1999-06-25 | 2002-07-16 | The Institute For Pharmaceutical Discovery Llc | Substituted phenoxyacetic acids |
| US6569456B2 (en) * | 2000-01-13 | 2003-05-27 | Osmotica Corp. | Osmotic device containing diltiazem and an ACE inhibitor or diuretic |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6194460B1 (en) * | 1995-05-31 | 2001-02-27 | Montefiore Medical Center | Composition for treating cough induced by angiotensin converting enzyme inhibitors |
| AU1110897A (en) * | 1995-12-15 | 1997-07-14 | Kissei Pharmaceutical Co. Ltd. | Agent for prevention and depression of dry coughing caused by angiotensin converting enzyme inhibitors |
| KR101075065B1 (en) * | 2009-08-24 | 2011-10-19 | 다우리농산물(주) | Antioxiative mixture food of making well-nourished rice |
-
2000
- 2000-09-14 KR KR1020000054012A patent/KR100356374B1/en not_active Expired - Fee Related
-
2001
- 2001-09-13 WO PCT/KR2001/001542 patent/WO2002022142A1/en not_active Ceased
- 2001-09-13 US US10/380,567 patent/US20030190372A1/en not_active Abandoned
- 2001-09-13 JP JP2002526392A patent/JP3965362B2/en not_active Expired - Fee Related
-
2005
- 2005-11-29 US US11/289,005 patent/US7320804B2/en not_active Expired - Fee Related
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4582709A (en) * | 1985-02-08 | 1986-04-15 | Warner-Lambert Company | Chewable mineral supplement |
| US4994283A (en) * | 1987-07-02 | 1991-02-19 | The Procter & Gamble Company | Iron-calcium mineral supplements with enhanced bioavailability |
| US5122369A (en) * | 1990-03-30 | 1992-06-16 | Harmony Health Products, Inc. | Nutrient composition for preventing hair loss |
| US6086919A (en) * | 1994-09-02 | 2000-07-11 | Astra Aktiebolag | Pharmaceutical composition containing the ace inhibitor ramipril and a dihydropyridine compound |
| US6420426B1 (en) * | 1999-06-25 | 2002-07-16 | The Institute For Pharmaceutical Discovery Llc | Substituted phenoxyacetic acids |
| US6569456B2 (en) * | 2000-01-13 | 2003-05-27 | Osmotica Corp. | Osmotic device containing diltiazem and an ACE inhibitor or diuretic |
Also Published As
| Publication number | Publication date |
|---|---|
| KR100356374B1 (en) | 2002-10-19 |
| JP3965362B2 (en) | 2007-08-29 |
| JP2004508408A (en) | 2004-03-18 |
| KR20020021253A (en) | 2002-03-20 |
| US7320804B2 (en) | 2008-01-22 |
| US20060073215A1 (en) | 2006-04-06 |
| WO2002022142A1 (en) | 2002-03-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6693129B2 (en) | Compositions and methods for lowering plasma lipoprotein(A) and risk factors of cardiovascular diseases | |
| US10583168B1 (en) | Nutritional supplements including cardiovascular support components | |
| AU2002211452A1 (en) | Compositions and methods for lowering plasma lipoprotein(a) and risk factors of cardiovascular diseases | |
| TW200425907A (en) | Composition containing dipeptide of histidine and alanine for reducing uric acid | |
| US20210338648A1 (en) | Methods and compositions for reducing serum uric acid | |
| US9050323B2 (en) | Methods of treating destructive inflammation of the mucous membranes with lactoferrin | |
| US7320804B2 (en) | Cough depressant composition containing iron for angiotensin-converting enzyme inhibitor inducing cough | |
| JP2017078089A (en) | Combination of solifenacin and salivary stimulant for the treatment of overactive bladder | |
| Van der Walt et al. | Important complications of chronic kidney disease | |
| Bath et al. | Clinical experience with bethanidine in treatment of hypertension | |
| WO2019082428A1 (en) | Prophylactic and/or therapeutic agent for dementia | |
| Haleem et al. | Management of Acute Ferrous Sulfate Poisoning Using Activated Charcoal Monotherapy: A Case Report | |
| EP2052735B1 (en) | Pharmaceutical composition and kit comprising anserine for rapidly reducing uric acid in blood | |
| KR102506076B1 (en) | Composition for preventing or treating immune diseases comprising zinc sulfate, lactobacillus acidophillus and coenzyme q | |
| JP2014513689A (en) | Combination of trospium and salivary stimulants for the treatment of overactive bladder | |
| Tøndel et al. | Pharmacokinetic (PK) Results From a Phase 3 Trial to Evaluate Pegunigalsidase Alfa Every 4 Weeks (Q4W) in Patients (Pts) With Fabry Disease Previously Treated With Agalsidase Beta or Agalsidase Alfa: FR-PO231 | |
| Wahba et al. | Increased vascular resistance and not salt retention characterizes cyclosporine A–induced hypertension: Report in an anuric patient | |
| US5962020A (en) | Composition and method for preventing and/or treating microalbuminuria | |
| Alhamdani | Possible beneficial effects of amlodipine, lisinopril, and their combination on lipid profile in hypertensive patients | |
| Majed et al. | Tetany in a Young Female Not Resulting From Hypocalcemia | |
| Taylor et al. | Hyperkalemia with concomitant watery diarrhea: an unusual association | |
| RU2359686C2 (en) | Way of correction of endothelial dysfunction | |
| US20070292533A1 (en) | Copper lowering treatment of autoimmune diseases | |
| TR2023000723A2 (en) | MEDICINE ? 2 COMPOSITION DEVELOPED FOR USE IN THE DRUG TREATMENT OF DIABETES | |
| Kaye | Shumen, Bulgaria z, Clinic for Homeopathy, Plovdiv, Bulgaria |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SAMSUNG LIFE PUBLIC WELFARE FOUNDATION SAMSUNG MED Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HONG, KYUNG-PYO;PARK, SEUNG-WOO;LEE, SANG-CHOL;REEL/FRAME:014167/0395 Effective date: 20030303 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |