US20030131913A1 - Deformed metal composite wire - Google Patents
Deformed metal composite wire Download PDFInfo
- Publication number
- US20030131913A1 US20030131913A1 US10/181,290 US18129002A US2003131913A1 US 20030131913 A1 US20030131913 A1 US 20030131913A1 US 18129002 A US18129002 A US 18129002A US 2003131913 A1 US2003131913 A1 US 2003131913A1
- Authority
- US
- United States
- Prior art keywords
- filaments
- metal
- composite wire
- composite
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES, PROFILES OR LIKE SEMI-MANUFACTURED PRODUCTS OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, rods, wire, tubes, profiles or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/04—Manufacture of metal sheets, rods, wire, tubes, profiles or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of rods or wire
- B21C37/042—Manufacture of coated wire or rods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES, PROFILES OR LIKE SEMI-MANUFACTURED PRODUCTS OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, rods, wire, tubes, profiles or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/04—Manufacture of metal sheets, rods, wire, tubes, profiles or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of rods or wire
- B21C37/045—Manufacture of wire or rods with particular section or properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES, PROFILES OR LIKE SEMI-MANUFACTURED PRODUCTS OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, rods, wire, tubes, profiles or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/04—Manufacture of metal sheets, rods, wire, tubes, profiles or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of rods or wire
- B21C37/047—Manufacture of metal sheets, rods, wire, tubes, profiles or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of rods or wire of fine wires
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B1/00—Constructional features of ropes or cables
- D07B1/14—Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
- D07B1/147—Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable comprising electric conductors or elements for information transfer
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B5/00—Making ropes or cables from special materials or of particular form
- D07B5/007—Making ropes or cables from special materials or of particular form comprising postformed and thereby radially plastically deformed elements
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2001—Wires or filaments
- D07B2201/2014—Compound wires or compound filaments
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2019—Strands pressed to shape
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2042—Strands characterised by a coating
- D07B2201/2043—Strands characterised by a coating comprising metals
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2015—Strands
- D07B2201/2046—Strands comprising fillers
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2047—Cores
- D07B2201/2052—Cores characterised by their structure
- D07B2201/2059—Cores characterised by their structure comprising wires
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2047—Cores
- D07B2201/2052—Cores characterised by their structure
- D07B2201/2065—Cores characterised by their structure comprising a coating
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2201/00—Ropes or cables
- D07B2201/20—Rope or cable components
- D07B2201/2047—Cores
- D07B2201/2066—Cores characterised by the materials used
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3021—Metals
- D07B2205/3025—Steel
- D07B2205/3046—Steel characterised by the carbon content
- D07B2205/305—Steel characterised by the carbon content having a low carbon content, e.g. below 0,5 percent respectively NT wires
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3021—Metals
- D07B2205/3025—Steel
- D07B2205/3046—Steel characterised by the carbon content
- D07B2205/3053—Steel characterised by the carbon content having a medium carbon content, e.g. greater than 0,5 percent and lower than 0.8 percent respectively HT wires
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3021—Metals
- D07B2205/306—Aluminium (Al)
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3021—Metals
- D07B2205/3067—Copper (Cu)
-
- D—TEXTILES; PAPER
- D07—ROPES; CABLES OTHER THAN ELECTRIC
- D07B—ROPES OR CABLES IN GENERAL
- D07B2205/00—Rope or cable materials
- D07B2205/30—Inorganic materials
- D07B2205/3021—Metals
- D07B2205/3071—Zinc (Zn)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12785—Group IIB metal-base component
- Y10T428/12792—Zn-base component
Definitions
- the present invention relates to a deformed metal composite wire and to a method of manufacturing such a composite wire.
- the present invention also relates to the uses of such a deformed metal composite wire.
- metal composite wires are to be understood as metal wires being composed of elements being made of different metals.
- Such metal composite wires are known in the art.
- GB 325 248 discloses a composite wire to be used as an electricity conductor.
- This conductor wire is composed of at least three filaments. At least one filament, e.g. a steel filament, functions as a tensile member and at least one filament, e.g. a copper filament, functions as a conducting member.
- Japanese patent application JP-A-09-047810 discloses a metal composite wire which is made as follows: individual steel filaments are first coated by aluminium by means of an electrolytic plating technique, the thus coated filaments are bundled and are integrally drawn so that the aluminium coating material fills up the gaps between the steel filaments. The steel filaments are not deformed.
- the separating metal is a metal which does not melt at the temperatures of hot rolling or heat treatmentdescribed in this process (typically low carbon steel).
- the number of filaments is always very high, as this is the only way to obtain small sized fibers with this process (typically more than 500).
- U.S. Pat. No. 3,907,550 discloses composite billets which function as starting stock for superconducting wire. Rods of a metal capable of forming a superconductor are immersed in a molten bath of ‘normal’ material, i.e. not capable of forming a superconductor. After solidification a rough billet is formed which may be subjected to high deformations which are enabled may intermediate heating treatments. The function of strengthening or reinforcing is not an issue.
- Patent application WO-A-99/23673 also describes the possibility to add in the center a filament in a softer material, which by compacting fills more easily the open spaces in between the filaments. But here again, the deformation degree is limited.
- a deformed metal composite wire comprises a matrix of a first metal with a first melting point and two or more filaments of a second or further metal which are embedded in and surround by the matrix without leaving interstices.
- Either the second or the further metal or both are carbon steel or stainless steel.
- the second or further metals have a melting point which is higher than or equal to the first melting point.
- the composite wire is in a deformed state so that the two or more filaments have a non-circular cross-section.
- the function of the matrix of the first metal can be multiple:
- the filaments in the deformed composite wire obtain a cross-section which is similar to a polygon. Due to the deformation degree, which can be very high, some “sides” of the polygon may show a very coarse aspect.
- the composite wire has a round cross-section due to its drawing through a die.
- the first—softer—metal may be selected from a group consisting of zinc zinc alloy, aluminium, brass, tin, tin alloy, etc . . .
- the metal filaments can be present in any number, starting with a minimum number of two filaments. Typical values are between three and twenty. For most cases, the number of filaments is smaller than twenty-seven.
- the metal filaments are made out of a second or further metal with a melting point higher than or equal to the melting point of the matrix material.
- the second metal filament or the further metal filament, or both filaments are made of carbon steel or stainless steel in order to obtain the required strenghtening or reinforcing effect.
- the metal filaments can have any size. Typical values of surface section vary between 0.01 mm 2 to 10 mm 2 .
- the metal filaments have the same longitudinal orientation of the wire; they can either be parallel or twisted, stranded, bunched, or cabled . . .
- the individual metal filaments may also have any metallic coating, of any thickness (e.g. Zn-coated steel, . . . ) and this coating can be applied by any process (electrolytic, hot dip, cladding, . . . ). Individual metal filaments without coating are possible as well.
- final deformation refers to a deformation of the composite wire without intermediate thermal treatments.
- reduction is defined as the cross-sectional reduction and can be calculated as:
- the wire can hold filaments in any combination of the cases mentioned above (e.g. one carbon steel filaments surrounded by six smaller copper or aluminium filaments or one low carbon steel filament or copper filament surrounded by six high carbon steel filaments).
- the filaments can be positioned anywhere in the section of the wire, and can be grouped in sub-groups (e.g. 3 ⁇ 3 or 7 ⁇ 3). Some filaments can be positioned in the center of a wire cross-section (“core filaments”) and be surrounded by one or more layers of other filaments (“layer filaments”). In other embodiments, no core filaments are present and all filaments are positioned more or less at the same distance from the center point of a wire cross-section.
- the metal of the filaments can have any metallurgical structure e.g. due to thermal treatments or mechanical deformation.
- the metal filaments may or may not have undulations, torsions, crimp, etc . . .
- a method of manufacturing a composite wire comprises the following steps:
- the step of providing a matrix around the filaments may be done by means of an electrolytical plating step or hot dip operation, or a combination of both, whereby the electrolytical plating step precedes the hot dip operation.
- the two or more filaments may or may not be twisted prior to providing the matrix around these two or more filaments.
- FIG. 1( a ), FIG. 1( b ), FIG. 1( c ), FIG. 1( d ), FIG. 1( e ) illustrate with cross-sections the subsequent steps of manufacturing a deformed metal composite wire
- FIG. 2 shows a cross-section of a deformed metal composite wire with two different types of filaments
- FIG. 3 shows a cross-section of a deformed metal composite wire where the filaments have a separate metal coating.
- FIGS. 1 ( a ) through 1 ( e ) illustrate the subsequent steps of manufacturing a deformed metal composite wire according to the present invention.
- FIG. 1( a ) shows a cross-section of the starting material: three separate parallel filaments 10 with an initial diameter of 0.68 mm.
- the filaments are made of a 0.70% carbon steel.
- the processing of three filaments has been experienced as being easier than similar processing of four or five filaments. A higher deformation degree could be obtained for three filaments than for four or five filaments. This is probably due to the more stable construction of a 3 ⁇ 1 configuration in comparison with a 4 ⁇ 1 or 5 ⁇ 1 configuration and due to the smaller central “hole” of a 3 ⁇ 1 configuration in comparison with a 4 ⁇ 1 or 5 ⁇ 1 configuration.
- FIG. 1( b ) illustrates the three filaments 10 after a twisting operation, e.g. by means of a conventional double-twisting machine (buncher) or by means of a conventional tubular rotating machine.
- the filaments may or may not have been preformed so that a more or less open cross-section is obtained.
- FIG. 1 ( c ) shows the cross-section after the twisted structure of three filaments 10 has left a hot dip galvanizing bath.
- the twisted structure is covered with a zinc matrix 12 .
- the diameter of the galvanized 1 ⁇ 3 is about 1.5 mm.
- FIG. 1( d ) shows an intermediate cross-section half way the series of drawing steps.
- the intermediate diameter of this cross-section is 0.20 mm.
- the intermediate tensile strength is 2850 MPa.
- FIG. 1( e ) shows the final cross-section of the deformed metal composite wire 14 .
- the individual filaments 10 show within the composite wire 14 more or less polygonal cross-sections.
- the sides 13 of these cross-sections, which are faced with sides of other filaments, show a rough pattern due to the high deformation degree and due to an alloy layer formed between the zinc and the steel.
- zinc matrix material 12 is present around each deformed filament, which means that the zinc has performed its lubricating function until the very last drawing step.
- the final diameter is 0.10 mm.
- the final tensile strength is 3840 MPa for the total cross-section.
- a final diameter of 0.10 mm means that a degree of reduction of 99.55% has been reached without any intermediate heat treatment.
- a hot dip galvanizing bath has as result that a small iron-zinc alloy layer is created at the surface of the 3 ⁇ 1 steel filaments 10 . This has the advantage of achieving a good adherence between the zinc matrix 12 and the steel filaments 12 .
- This iron-zinc alloy layer may become too brittle, e.g. if the immersion time in the zinc bath is too long. This brittleness can be avoided by decreasing the immersion times, by electroplating the 3 ⁇ 1 steel filaments 10 before the hot dip or by electroplating the 3 ⁇ 1 steel filaments to its final thickness without any hot dip step.
- a deformed metal composite wire as described in relation to FIGS. 1 ( a ) through 1 ( e ) (3 ⁇ 1 steel+zinc) can be used in a lot of applications where high tensile strength, flexibility and corrosion resistance are the required properties.
- An example of such an application is the use as electro discharge machining wire.
- brass can be used as the matrix material 12 .
- a method to manufacture such a deformed metal composite wire with brass comprises the following steps:
- a deformed metal composite wire with a brass matrix can be applied as reinforcements of rubber articles such as tires, conveyor belts, timing belts.
- the brass coated deformed metal composite wire can be used as such in this reinforcement or it can be bundled, or twisted together with other wires or filaments, which may be composite or not, before it is embedded in the rubber article.
- FIG. 2 shows the cross-section of another deformed metal composite wire 14 .
- This deformed metal composite wire 14 comprises a steel core filament 16 and a layer of filaments 18 made of a conducting metal such as copper or aluminium.
- the matrix material 12 can be zinc again or can be aluminium.
- Such a metal composite wire can be used as a cable in power applications.
- the steel filament 16 functions as the tensile member while the copper or aluminium filaments function as the electrical conducting elements.
- the matrix material 12 provides an additional corrosion protection.
- Such a metal composite wire can have a high tensile strength due to the steel core filament and the high degree of deformation and a high flexibility due to its composite nature.
- a core filament 16 softer than the six layer filaments 18 can be chosen. If the six layer filaments are of a high carbon steel (carbon content above 0.6%), the core filament may of a low carbon steel (% C lower than 0.5%), of copper, or of aluminium.
- FIG. 3 shows yet another cross-section of a deformed metal composite wire 14 .
- the difference with the metal composite wire of FIG. 1( e ) is that the steel filaments 10 are now coated with a metallic coating 20 .
- Stainless steel wires with composition 316L are drawn from 1.50 mm to a 0.50 mm filament. Three filaments are twisted into a 3 ⁇ 0.50 mm (external diameter of composite wire equal to 1.08 mm), hot dipped in zinc and subsequently drawn. The composite wire has been drawn without any problem to an external diameter of 0.15 mm, i.e. far beyond the normal drawability of stainless steel wire. The initial metal section of the stainless wire (diameter 1.50 mm) has been reduced to a metal section with a diameter of approximately 0.07 mm within the cross-section of the deformed composite wire. This is equivalent to an effective reduction of 99.8% without intermediate heat treatment.
- Table 2 mentions the time span it takes until the first spots of dark brown rust (DBR) and until 5% of the surface is covered with dark brown rust. TABLE 2 1 st DBR spots (hrs) % DBR (hrs) 0.15 mm reference wire 2 3 (comprises 3 filaments) 0.15 mm invention wire 20 24
- a 0.15 mm deformed composite wire (comprised three filaments) according to the invention has been used to make a 3 ⁇ 3 ⁇ 0.15 mm cord. This cord has been compared with a lightly galvanized 3 ⁇ 3 ⁇ 0.15 mm cord and with a heavily galvanized 3 ⁇ 3 ⁇ 0.15 mm cord. Table 3 mentions the results.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ropes Or Cables (AREA)
- Coating With Molten Metal (AREA)
- Metal Extraction Processes (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP00200186.5 | 2000-01-19 | ||
| EP00200186A EP1118397A1 (fr) | 2000-01-19 | 2000-01-19 | Fil de métal composite déformé |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20030131913A1 true US20030131913A1 (en) | 2003-07-17 |
Family
ID=8170927
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/181,290 Abandoned US20030131913A1 (en) | 2000-01-19 | 2000-12-22 | Deformed metal composite wire |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20030131913A1 (fr) |
| EP (2) | EP1118397A1 (fr) |
| AT (1) | ATE271428T1 (fr) |
| AU (1) | AU2001223689A1 (fr) |
| DE (1) | DE60012369T2 (fr) |
| WO (1) | WO2001053014A1 (fr) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070199731A1 (en) * | 2006-02-03 | 2007-08-30 | Sophie Wasiuta | Electrical cable protected against corrosion |
| WO2022129067A1 (fr) * | 2020-12-17 | 2022-06-23 | Nv Bekaert Sa | Toron d'acier compacté à âme gainée |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1197595A1 (fr) * | 2000-10-12 | 2002-04-17 | DRAHTCORD SAAR GMBH & Co.KG | Câble d'acier et procédé pour la fabrication d'un câble d'acier |
| FR2850888B1 (fr) * | 2003-02-10 | 2006-09-22 | Roger Marcel Sabau | Dispositifs pour recouvrir ou incruster un metal, ou un autre materiau,par un autre metal,ou autre materiau, par une operation d'ecrouissage et de compactage des des elements impliques. |
| DE102013009767A1 (de) * | 2013-06-11 | 2014-12-11 | Heinrich Stamm Gmbh | Drahtelektrode zum funkenerosiven Schneiden von Gegenständen |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3083817A (en) * | 1953-11-18 | 1963-04-02 | British Ropes Ltd | Wire ropes |
| US3130536A (en) * | 1961-09-21 | 1964-04-28 | American Chain & Cable Co | Method of manufacturing wire rope |
| US3131469A (en) * | 1960-03-21 | 1964-05-05 | Tyler Wayne Res Corp | Process of producing a unitary multiple wire strand |
| US3364289A (en) * | 1963-07-30 | 1968-01-16 | British Ropes Ltd | Method of manufacturing plastic monofilament structures |
| US3394214A (en) * | 1964-08-10 | 1968-07-23 | Grace W R & Co | Method of increasing the tensile strength of a crosslinked ethylene polymer by compression |
| US3907550A (en) * | 1973-03-19 | 1975-09-23 | Airco Inc | Method of making same composite billets |
| US4837416A (en) * | 1985-12-20 | 1989-06-06 | Sumitomo Electric Industries, Ltd. | Cut wire for electrical discharge machining |
| US5286577A (en) * | 1990-07-23 | 1994-02-15 | Aluminum Company Of America | Drawn conductors for cryogenic applications |
| US6313409B1 (en) * | 1997-05-02 | 2001-11-06 | General Science And Technology Corp | Electrical conductors and methods of making same |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58155127A (ja) * | 1982-03-09 | 1983-09-14 | Mitsubishi Electric Corp | ワイヤカツト放電加工用ワイヤ電極 |
| JPH04372313A (ja) * | 1991-06-18 | 1992-12-25 | Furukawa Electric Co Ltd:The | ワイヤ放電加工用電極線 |
-
2000
- 2000-01-19 EP EP00200186A patent/EP1118397A1/fr not_active Withdrawn
- 2000-12-22 US US10/181,290 patent/US20030131913A1/en not_active Abandoned
- 2000-12-22 WO PCT/EP2000/013208 patent/WO2001053014A1/fr not_active Ceased
- 2000-12-22 AT AT00987445T patent/ATE271428T1/de not_active IP Right Cessation
- 2000-12-22 EP EP00987445A patent/EP1250198B1/fr not_active Expired - Lifetime
- 2000-12-22 DE DE60012369T patent/DE60012369T2/de not_active Expired - Fee Related
- 2000-12-22 AU AU2001223689A patent/AU2001223689A1/en not_active Abandoned
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3083817A (en) * | 1953-11-18 | 1963-04-02 | British Ropes Ltd | Wire ropes |
| US3131469A (en) * | 1960-03-21 | 1964-05-05 | Tyler Wayne Res Corp | Process of producing a unitary multiple wire strand |
| US3130536A (en) * | 1961-09-21 | 1964-04-28 | American Chain & Cable Co | Method of manufacturing wire rope |
| US3364289A (en) * | 1963-07-30 | 1968-01-16 | British Ropes Ltd | Method of manufacturing plastic monofilament structures |
| US3394214A (en) * | 1964-08-10 | 1968-07-23 | Grace W R & Co | Method of increasing the tensile strength of a crosslinked ethylene polymer by compression |
| US3907550A (en) * | 1973-03-19 | 1975-09-23 | Airco Inc | Method of making same composite billets |
| US4837416A (en) * | 1985-12-20 | 1989-06-06 | Sumitomo Electric Industries, Ltd. | Cut wire for electrical discharge machining |
| US5286577A (en) * | 1990-07-23 | 1994-02-15 | Aluminum Company Of America | Drawn conductors for cryogenic applications |
| US6313409B1 (en) * | 1997-05-02 | 2001-11-06 | General Science And Technology Corp | Electrical conductors and methods of making same |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070199731A1 (en) * | 2006-02-03 | 2007-08-30 | Sophie Wasiuta | Electrical cable protected against corrosion |
| WO2022129067A1 (fr) * | 2020-12-17 | 2022-06-23 | Nv Bekaert Sa | Toron d'acier compacté à âme gainée |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2001223689A1 (en) | 2001-07-31 |
| EP1250198B1 (fr) | 2004-07-21 |
| WO2001053014A1 (fr) | 2001-07-26 |
| ATE271428T1 (de) | 2004-08-15 |
| DE60012369D1 (de) | 2004-08-26 |
| EP1250198A1 (fr) | 2002-10-23 |
| DE60012369T2 (de) | 2005-08-25 |
| EP1118397A1 (fr) | 2001-07-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0550005B1 (fr) | Câble de commande | |
| EP2118907B1 (fr) | Corde d'acier amélioré pour un câble de transmission électrique et son procédé de fabrication | |
| US10453581B2 (en) | Method for manufacturing electric wire | |
| US4952249A (en) | Intermediate coating of steel wire | |
| WO2001086058A1 (fr) | Cable d'acier revetu de zinc a resistance a la fatigue amelioree | |
| CN111263824A (zh) | 绝缘电线用绞线导体、绝缘电线、软线及电缆 | |
| JP2669754B2 (ja) | 操作用ロープ | |
| EP2329069B1 (fr) | Fil pour chauffage de siège de voiture comprenant un lubrifiant approprié | |
| Suliga et al. | The influence of the angle of working part of die on the zinc coating thickness and mechanical properties of medium carbon steel wires | |
| EP1250198B1 (fr) | Fil metallique composite deforme | |
| CN110785510B (zh) | 具有钢芯和金属合金涂层的丝 | |
| JP2001101929A (ja) | フレキシブル高強度軽量導体 | |
| CN107887053B (zh) | 镀敷铜线、镀敷绞线和绝缘电线以及镀敷铜线的制造方法 | |
| JP6407501B1 (ja) | 接続構造体 | |
| RU186285U1 (ru) | Несущий трос контактной сети железной дороги | |
| US20010000590A1 (en) | Flexible automotive electrical conductor of high mechanical strength using a central wire of copper clad steel and the process for manufacture thereof | |
| JP5136248B2 (ja) | 銅合金線およびその製造方法、銅合金撚線およびその製造方法、これらを用いた絶縁電線、同軸ケーブル並びに多芯ケーブル | |
| JP3105507B2 (ja) | コントロールケーブル | |
| RU187304U1 (ru) | Несущий трос контактной сети железной дороги | |
| JPH0689621A (ja) | 高導電性高強度撚り線の製造法 | |
| GB2320933A (en) | Manufacture of wire rope | |
| CN115726206B (zh) | 一种高耐腐蚀性和耐磨性钢丝绳及其制备方法 | |
| CN111816349A (zh) | 一种超高导电率铝包钢绞线及其生产工艺 | |
| JPH08176975A (ja) | 耐摩耗性耐食性ワイヤロープ | |
| EP4263934B1 (fr) | Câble d'acier compacté doté d'un brin plaqué |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: N.V. BEKAERT S.A., BELGIUM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOESMAN, PETER;BRUNEEL, ERIC;LOBBENS, JAAK;AND OTHERS;REEL/FRAME:013400/0479;SIGNING DATES FROM 20020827 TO 20020830 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |