US20020047221A1 - Process for the preparation of pulverulent heterogeneous substances - Google Patents
Process for the preparation of pulverulent heterogeneous substances Download PDFInfo
- Publication number
- US20020047221A1 US20020047221A1 US09/824,185 US82418501A US2002047221A1 US 20020047221 A1 US20020047221 A1 US 20020047221A1 US 82418501 A US82418501 A US 82418501A US 2002047221 A1 US2002047221 A1 US 2002047221A1
- Authority
- US
- United States
- Prior art keywords
- process according
- suspension
- dispersion
- emulsion
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims description 27
- 239000000126 substance Substances 0.000 title claims description 15
- 238000002360 preparation method Methods 0.000 title claims description 3
- 239000000725 suspension Substances 0.000 claims abstract description 30
- 239000006185 dispersion Substances 0.000 claims abstract description 29
- 239000000839 emulsion Substances 0.000 claims abstract description 28
- 239000000843 powder Substances 0.000 claims abstract description 26
- 239000003054 catalyst Substances 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- 239000011541 reaction mixture Substances 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000007795 chemical reaction product Substances 0.000 claims description 4
- 238000002485 combustion reaction Methods 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 239000003463 adsorbent Substances 0.000 claims description 2
- 238000006555 catalytic reaction Methods 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 230000001939 inductive effect Effects 0.000 claims description 2
- 229910001510 metal chloride Inorganic materials 0.000 claims description 2
- 150000002902 organometallic compounds Chemical class 0.000 claims description 2
- 230000005610 quantum mechanics Effects 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims 1
- 239000002241 glass-ceramic Substances 0.000 claims 1
- 239000002052 molecular layer Substances 0.000 claims 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical class [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 239000003570 air Substances 0.000 description 7
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical class [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- -1 for example Chemical class 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 229910052684 Cerium Inorganic materials 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical class [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000002184 metal Chemical class 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 3
- 150000001242 acetic acid derivatives Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical class [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 239000006229 carbon black Chemical class 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical class [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 3
- 150000002823 nitrates Chemical class 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- NWAHZABTSDUXMJ-UHFFFAOYSA-N platinum(2+);dinitrate Chemical compound [Pt+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O NWAHZABTSDUXMJ-UHFFFAOYSA-N 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010948 rhodium Chemical class 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical class [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical class [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical class [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Chemical class 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Chemical class 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- VGBWDOLBWVJTRZ-UHFFFAOYSA-K cerium(3+);triacetate Chemical compound [Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VGBWDOLBWVJTRZ-UHFFFAOYSA-K 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2/00—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
Definitions
- the present invention relates to a process for the preparation of pulverulent heterogeneous substances.
- Spray driers or similar apparatus are usually employed for the drying of suspensions, dispersions or emulsions. This is followed by a rotary tube or equivalent apparatus for calcining. With such prior known methods the losses of powder by cleaning and handling, and also during operation of the plant are or can be considerable; also the labor costs can be high.
- the dispersion, suspension or emulsion in the high temperature flow reactor, can be present as a gas-borne group of particles.
- the high temperature flow reactor can be heated by feeding in non-combustible hot gases.
- the high temperature flow reactor can be heated indirectly by heating up the walls of the reactor adjacent to the reaction space where the reaction takes place.
- Heating can be achieved in this embodiment by electrical plasma and/or inductive plasma.
- a high-energy laser light beam and/or microwave energy can additionally be used as an energy source for the high temperature flow reactor.
- non-combustible reactive gases or vapours can be fed to the high temperature flow reactor, it being possible for the reaction product to be a highly dispersed nanostructured solid which adds on to the surface of the particles of the dispersion, emulsion or suspension.
- the reaction product can form homogeneous molecular layers on the particles of the dispersion, emulsion or suspension, the particles of the dispersion, emulsion or suspension being coated with a mono- or multimolecular layer.
- the non-combustible reactive gases or vapours can be metal chlorides and/or organometallic compounds, as well as mixtures of these compounds.
- the temperature in the reaction space can be above 1000° C.
- the suspension, dispersion or emulsion can be fed to the reaction space axially in co- or countercurrent or radially.
- the dispersion, emulsion or suspension can be fed to the reaction space radially.
- the dispersion, emulsion or suspension can be a solids suspension, a solution, powder, pastes, melts or granules with or without dissolved “salts”.
- the dispersion, emulsion or suspension is metered into the space in finely divided form by atomizing, wave-breaking, as a mist or jet.
- the secondary gas mentioned in the figure can be air, ambient air with oxygen contents of between 0 and 100%, dry or humid, water vapour, other vapours or gases, nitrogen and the like.
- the burner can be of a known design with pulsatory combustion. Such a burner is described in the document DD 114 454 which is relied on and incorporated by reference herein.
- a burner of high turbulence can preferably be employed to improve the transportation of material.
- a spinning burner possibly with an overlaid pulsation, can be employed.
- the liquid phase of the suspension, dispersion or emulsion can be water, alcohol, liquid organic hydrocarbons or organic solvents.
- the components present as the solid in the suspension, dispersion or emulsion can be, individually or as a mixture: oxides, nitrides or carbides of aluminum, silicon, cerium, zirconium, titanium, crystallized-out salts of aluminum, silicon, cerium, zirconium, lanthanum, barium, metals such as, for example, nickel, silver, palladium, gold, rhodium, platinum, as well as carbon black and organic compounds.
- the dissolved or non-dissolved salts can be nitrates, acetates, carbonates, chlorides of aluminum, cerium, silicon, zirconium, titanium, lanthanum, barium, platinum, rhodium, palladium, iridium, potassium, calcium and ammonium and mixtures of these components.
- a combustible gas such as, for example, hydrogen and/or methane, can be used as the fuel.
- the temperature in the burner can be 500 to 2000° C.
- the temperature after the burner and the reducing or oxidizing atmosphere in the flow-through tube can be established via the ratio of oxygen (from the combustion air) to hydrogen and the flow rates. Moreover, further reactive or inert gases and vapours can be fed into the tube.
- the dispersion, emulsion or suspension of the solid can be sprayed or dripped into the flame of the burner.
- the water or the solvent evaporates and the powder formed is calcined, oxidized or reduced and sintered at high temperatures in the gas atmosphere present.
- the residence time of the powder in the hot gas phase can be varied in the range from 0.01 second up to minutes by the separating device (cyclone, high temperature filter).
- the mass and heat transfer is significantly better than in a rotary tube or in a muffle furnace.
- the powder in the waste air filters/cyclone of a rotary tube has a wide range of product quality and often cannot be used, while in the process according to the invention the range of product quality in the waste air filter/ cyclone is a very narrow range.
- the in situ treatment of the waste air can have an effect as a further advantage.
- the salts are often nitrates, acetates and ammonium compounds, the decomposition products of which, NO, NH 3 and CHNO, can be reduced in amount by adjusting the composition of the hot waste gases or can be treated in a downstream catalyst without additional heating up.
- the products which can be prepared are heterogeneous powders/granules:
- Base substances (support material) (possibly in shell form) impregnated/covered/coated with oxides/metals/nitrides/carbides.
- the substances prepared according to the invention can be employed as a catalyst, for the production of ductile ceramic components, for the production of components with a quantum mechanics activity, in particular sensors and photoelectrically active emitters, and as oxygen stores, NO x stores, C n H m stores for catalysis and adsorbents.
- FIG. 1 shows a burner 1 , to which the flow-through tube 2 is connected.
- the washer 3 , the separator 4 , the filter 5 and the fan 6 are connected to the flow-through tube 2 .
- a dispersion, suspension or emulsion, a secondary gas, combustion air and fuel are introduced into the burner 1 .
- the reaction mixture reacted in the burner 1 is introduced into the flow-through tube 2 .
- a reducing or oxidizing gas atmosphere can be established in the flow-through tube 2 .
- the reacted reaction mixture can be treated in the flow-through tube 2 such that
- the powder After passage through the flow-through tube 2 , the powder can be treated in the washer 3 if a dispersion is to be prepared or if contact with air is to be avoided.
- the powder can be separated off via the separating device 4 , for example, for brief treatment at high temperatures.
- the powder can be separated off by means of the filter 5 for a longer treatment at high temperatures.
- the waste gas can be discharged by means of the fan 6 .
- An aluminum oxide/water suspension with dissolved platinum nitrate is introduced into the burner 1 .
- the suspension comprises 400 g/l aluminum oxide 10 g/l platinum nitrate 800 g/l water.
- Hydrogen is employed as the fuel.
- the burner temperature is 1,200° C., and the residence time is approx. 1 sec.
- the powder separated off in the cyclone is dry and no longer contains nitrate ions.
- the platinum is deposited in a finely dispersed form on the surface of the aluminum oxide.
- An aqueous suspension which comprises 400 g/l aluminum oxide, 100 g/l cerium acetate, 100 g/l zirconium nitrate and 800 g/l water
- [0059] is introduced into the burner 1 .
- Natural gas is employed as the fuel.
- the burner temperature is 1,000° C.
- the powder separated off in the cyclone is dry and contains neither acetate ions nor nitrate ions.
- the cerium oxide and the zirconium oxide are deposited in a finely divided form on the surface of the aluminum oxide.
- a moist powder comprising 78 wt. % aluminum oxide 20 wt. % water 2 wt. % platinum nitrate is treated with natural gas at a burner temperature of 900° C.
- the powder separated off in the cyclone is dry and contains no nitrate ions.
- the platinum is deposited in a finely divided form on the surface of the aluminum oxide.
- German priority application 198 21 144.9 is relied on and incorporated herein by reference.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
A suspension, dispersion or emulsion is introduced into a burner. A two-stage after-treatment is then carried out. The resulting powder can be employed as a catalyst.
Description
- This application is a continuation-in-part of our copending provisional application 60/105,392 filed Oct. 23, 1998 which is relied on and incorporated herein by reference.
- The present invention relates to a process for the preparation of pulverulent heterogeneous substances.
- It is known to prepare pulverulent heterogeneous substances from oxides and salts starting from a suspension, dispersion or emulsion.
- Spray driers or similar apparatus are usually employed for the drying of suspensions, dispersions or emulsions. This is followed by a rotary tube or equivalent apparatus for calcining. With such prior known methods the losses of powder by cleaning and handling, and also during operation of the plant are or can be considerable; also the labor costs can be high.
- Drying and calcining in batches (for example in vessels in a muffle furnace) can be used as an alternative. However, there is the risk with such apparatus of a very wide range of product quality due to diffusion processes and temperature gradients in the powder.
- It is therefore an object of the present invention to prepare pulverulent heterogeneous substances and to overcome the disadvantages of prior known methods.
- The above and other objects can be achieved according to the present invention by introducing a dispersion, suspension or emulsion into a turbulent or laminar burner. This dispersion, suspension or emulsion is then treated there under the conditions established therein to produce a reaction mixture. The resulting reaction mixture is then introduced into a downstream flow-through tube, where the powder is further treated. The powder is subsequently fed, optionally, to a washer, a separator or a filter, and, optionally, subjected to a further treatment there. Subsequently, the pulverulent product can be transported further via any appropriate device.
- The present invention will be further understood with reference to the accompanying drawing which is a schematic flow diagram of the process of the invention.
- The present invention will now be described in further detail with reference to the accompanying drawing. In carrying out the process of this invention, in the high temperature flow reactor, the dispersion, suspension or emulsion can be present as a gas-borne group of particles.
- The high temperature flow reactor can be heated by feeding in non-combustible hot gases.
- The high temperature flow reactor can be heated indirectly by heating up the walls of the reactor adjacent to the reaction space where the reaction takes place.
- Heating can be achieved in this embodiment by electrical plasma and/or inductive plasma.
- A high-energy laser light beam and/or microwave energy can additionally be used as an energy source for the high temperature flow reactor.
- In addition to the dispersion, suspension or emulsion, non-combustible reactive gases or vapours can be fed to the high temperature flow reactor, it being possible for the reaction product to be a highly dispersed nanostructured solid which adds on to the surface of the particles of the dispersion, emulsion or suspension.
- The reaction product can form homogeneous molecular layers on the particles of the dispersion, emulsion or suspension, the particles of the dispersion, emulsion or suspension being coated with a mono- or multimolecular layer.
- The non-combustible reactive gases or vapours can be metal chlorides and/or organometallic compounds, as well as mixtures of these compounds.
- The temperature in the reaction space can be above 1000° C.
- The suspension, dispersion or emulsion can be fed to the reaction space axially in co- or countercurrent or radially.
- The dispersion, emulsion or suspension can be fed to the reaction space radially.
- The dispersion, emulsion or suspension can be a solids suspension, a solution, powder, pastes, melts or granules with or without dissolved “salts”. The dispersion, emulsion or suspension is metered into the space in finely divided form by atomizing, wave-breaking, as a mist or jet.
- The secondary gas mentioned in the figure can be air, ambient air with oxygen contents of between 0 and 100%, dry or humid, water vapour, other vapours or gases, nitrogen and the like.
- The burner can be of a known design with pulsatory combustion. Such a burner is described in the document DD 114 454 which is relied on and incorporated by reference herein.
- A burner of high turbulence can preferably be employed to improve the transportation of material. In particular, a spinning burner, possibly with an overlaid pulsation, can be employed.
- The liquid phase of the suspension, dispersion or emulsion can be water, alcohol, liquid organic hydrocarbons or organic solvents.
- The components present as the solid in the suspension, dispersion or emulsion can be, individually or as a mixture: oxides, nitrides or carbides of aluminum, silicon, cerium, zirconium, titanium, crystallized-out salts of aluminum, silicon, cerium, zirconium, lanthanum, barium, metals such as, for example, nickel, silver, palladium, gold, rhodium, platinum, as well as carbon black and organic compounds.
- The dissolved or non-dissolved salts can be nitrates, acetates, carbonates, chlorides of aluminum, cerium, silicon, zirconium, titanium, lanthanum, barium, platinum, rhodium, palladium, iridium, potassium, calcium and ammonium and mixtures of these components.
- A combustible gas, such as, for example, hydrogen and/or methane, can be used as the fuel.
- The temperature in the burner can be 500 to 2000° C.
- The temperature after the burner and the reducing or oxidizing atmosphere in the flow-through tube can be established via the ratio of oxygen (from the combustion air) to hydrogen and the flow rates. Moreover, further reactive or inert gases and vapours can be fed into the tube.
- The dispersion, emulsion or suspension of the solid can be sprayed or dripped into the flame of the burner.
- The water or the solvent evaporates and the powder formed is calcined, oxidized or reduced and sintered at high temperatures in the gas atmosphere present. The residence time of the powder in the hot gas phase can be varied in the range from 0.01 second up to minutes by the separating device (cyclone, high temperature filter). The mass and heat transfer is significantly better than in a rotary tube or in a muffle furnace.
- With spray calcining, the surfaces to be cleaned are considerably smaller compared with a spray drier with subsequent calcining in a rotary tube and the losses of substance are low. Due to the use of a continuous process, the range of product quality is narrow. Compared with the rotary tube, the losses during start-up and shut-down are very low.
- The powder in the waste air filters/cyclone of a rotary tube has a wide range of product quality and often cannot be used, while in the process according to the invention the range of product quality in the waste air filter/ cyclone is a very narrow range.
- The in situ treatment of the waste air can have an effect as a further advantage. The salts are often nitrates, acetates and ammonium compounds, the decomposition products of which, NO, NH 3 and CHNO, can be reduced in amount by adjusting the composition of the hot waste gases or can be treated in a downstream catalyst without additional heating up.
- The products which can be prepared are heterogeneous powders/granules:
- 1. Mixed agglomerates and/or mixed aggregates of different oxides/metals/nitrides/carbides/carbon black.
- 2. Base substances (support material) (possibly in shell form) impregnated/covered/coated with oxides/metals/nitrides/carbides.
- 3. Combination of 1. and 2.
- The substances prepared according to the invention can be employed as a catalyst, for the production of ductile ceramic components, for the production of components with a quantum mechanics activity, in particular sensors and photoelectrically active emitters, and as oxygen stores, NO x stores, CnHm stores for catalysis and adsorbents.
- The process according to the invention is shown and explained in more detail in the drawing:
- FIG. 1 shows a
burner 1, to which the flow-throughtube 2 is connected. Thewasher 3, theseparator 4, thefilter 5 and thefan 6 are connected to the flow-throughtube 2. - In the process according to the invention, a dispersion, suspension or emulsion, a secondary gas, combustion air and fuel are introduced into the
burner 1. The reaction mixture reacted in theburner 1 is introduced into the flow-throughtube 2. A reducing or oxidizing gas atmosphere can be established in the flow-throughtube 2. The reacted reaction mixture can be treated in the flow-throughtube 2 such that - a) the dispersion, suspension or emulsion is dried,
- b) the water of crystallization is driven off,
- c) the powder is calcined, substances such as nitrates, acetates, carbonates being decomposed to gases,
- d) the powder is oxidized or reduced,
- e) the powder is sintered,
- f) the specific surface area of the powder is decreased.
- After passage through the flow-through
tube 2, the powder can be treated in thewasher 3 if a dispersion is to be prepared or if contact with air is to be avoided. - Alternatively, after leaving the flow-through
tube 2, the powder can be separated off via theseparating device 4, for example, for brief treatment at high temperatures. - In another alternative, the powder can be separated off by means of the
filter 5 for a longer treatment at high temperatures. - The waste gas can be discharged by means of the
fan 6. - The following examples are illustrative of the present invention.
- An aluminum oxide/water suspension with dissolved platinum nitrate is introduced into the
burner 1. The suspension comprises400 g/l aluminum oxide 10 g/l platinum nitrate 800 g/l water. - Hydrogen is employed as the fuel.
- The burner temperature is 1,200° C., and the residence time is approx. 1 sec.
- The powder separated off in the cyclone is dry and no longer contains nitrate ions. The platinum is deposited in a finely dispersed form on the surface of the aluminum oxide.
- An aqueous suspension which comprises
400 g/l aluminum oxide, 100 g/l cerium acetate, 100 g/l zirconium nitrate and 800 g/l water - is introduced into the
burner 1. Natural gas is employed as the fuel. The burner temperature is 1,000° C. The powder separated off in the cyclone is dry and contains neither acetate ions nor nitrate ions. The cerium oxide and the zirconium oxide are deposited in a finely divided form on the surface of the aluminum oxide. - A moist powder comprising
78 wt. % aluminum oxide 20 wt. % water 2 wt. % platinum nitrate is treated with natural gas at a burner temperature of 900° C. - The powder separated off in the cyclone is dry and contains no nitrate ions. The platinum is deposited in a finely divided form on the surface of the aluminum oxide.
- By following the procedure set forth in examples 1-3 similar results can be obtain with the oxides, nitrides or carbides of silicon, cerium, zirconium, lanthanum, barium, as well as the corresponding compounds with metals such as, for example, nickel, silver, palladium, gold, rhodium, and platinum. In similar manner, carbon black and organic compounds can also be used in the method of this invention.
- Further variations and modifications of the foregoing will be apparent to those skilled in the art and are intended to be encompassed by the claims appended hereto.
- German priority application 198 21 144.9 is relied on and incorporated herein by reference.
Claims (21)
1. A process for the preparation of a pulverulent heterogeneous substance, comprising introducing a dispersion, suspension or emulsion into a turbulent or laminar burner, heating the dispersion, suspension or emulsion under reaction conditions established in said burner to obtain a reaction mixture powder, introducing said reaction mixture powder into a downstream flow through tube, treating said powder with a gas, optionally feeding said powder to a washer, a separator or a filter.
2. The process according to claim 1 , wherein said dispersion, suspension or emulsion is present in the high temperature flow through tubes reactor as a gas-borne group of particles.
3. A process according to claim 1 , further comprising heating the flow through tube by an exothermic combustion reaction which takes place in the tube.
4. The process according to claim 1 , further comprising heating the flow through the tube by feeding in non-combustible hot gases.
5. The process according to claim 1 , further comprising heating the flow through tube indirectly by heating up flow through tube walls adjacent a reaction space of said tube.
6. The process according to claim 1 , further comprising heating the flow through tube by electrical plasma and/or inductive plasma.
7. The process according to claim 1 , further comprising subjecting the flow through tube to a high-energy laser light beam and/or microwave energy.
8. The process according to claim 7 , further comprising, in addition to the dispersion, suspension or emulsion in the form of particles, feeding a non-combustible reactive gas or vapour to the flow through tube to produce a reaction product which is a highly dispersed nanostructured solid which adds on to the surface of the particles of the dispersion, suspension or emulsion.
9. The process according to claim 8 , wherein the reaction product formed thereby is a homogeneous molecular layer on the particles of the dispersion, suspension, or emulsion, the particles of the dispersion, suspension or emulsion being thereby coated with a mono- or multimolecular layer.
10. The process according to claim 8 , wherein the non-combustible reactive gas or vapour is at least one of a metal chloride or organometallic compound.
11. The process according to claim 1 , wherein the temperature of the reaction is above 1000° C.
12. The process according to claim 1 wherein the reaction temperature is 500 to 2000° C.
13. The process according to claim 1 , wherein the dispersion, suspension or emulsion is fed to the burner axially in co- or countercurrent or radially.
14. The process according to claim 13 , wherein the dispersion, suspension or emulsion is fed to the reaction space radially.
15. The process according to claim 1 wherein the powder is in a hot gas phase for at least 0.01 seconds.
16. A pulverulent substance obtainable by the process according to claim 1 .
17. The use of a pulverulent substance according to claim 16 as a catalyst.
18. The use of a pulverulent substance according to claim 16 as an oxygen store, NOx store, CnHm, store for catalysis and adsorbents.
19. The use of a pulverulent substance according to claim 16 for the production of ductile ceramic components.
20. The use of a pulverulent substance according to claim 16 for the production of components with a quantum mechanics activity, in particular sensors, and photoelectrically active emitters.
21. The use of a pulverulent substance according to claim 16 for the production of glasses and glass ceramic.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/824,185 US20020047221A1 (en) | 1998-05-12 | 2001-04-03 | Process for the preparation of pulverulent heterogeneous substances |
| US10/252,252 US20030017107A1 (en) | 1998-05-12 | 2002-09-23 | Process for the preparation of pulverulent heterogeneous substances |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19821144A DE19821144A1 (en) | 1998-05-12 | 1998-05-12 | Process for the production of powdery heterogeneous substances |
| DE19821144.9 | 1998-05-12 | ||
| US10539298P | 1998-10-23 | 1998-10-23 | |
| US09/309,504 US6228292B1 (en) | 1998-05-12 | 1999-05-11 | Process for the preparation of pulverulent heterogeneous substances |
| US09/824,185 US20020047221A1 (en) | 1998-05-12 | 2001-04-03 | Process for the preparation of pulverulent heterogeneous substances |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/309,504 Division US6228292B1 (en) | 1998-05-12 | 1999-05-11 | Process for the preparation of pulverulent heterogeneous substances |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/252,252 Division US20030017107A1 (en) | 1998-05-12 | 2002-09-23 | Process for the preparation of pulverulent heterogeneous substances |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020047221A1 true US20020047221A1 (en) | 2002-04-25 |
Family
ID=27218366
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/309,504 Expired - Lifetime US6228292B1 (en) | 1998-05-12 | 1999-05-11 | Process for the preparation of pulverulent heterogeneous substances |
| US09/824,185 Abandoned US20020047221A1 (en) | 1998-05-12 | 2001-04-03 | Process for the preparation of pulverulent heterogeneous substances |
| US10/252,252 Abandoned US20030017107A1 (en) | 1998-05-12 | 2002-09-23 | Process for the preparation of pulverulent heterogeneous substances |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/309,504 Expired - Lifetime US6228292B1 (en) | 1998-05-12 | 1999-05-11 | Process for the preparation of pulverulent heterogeneous substances |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/252,252 Abandoned US20030017107A1 (en) | 1998-05-12 | 2002-09-23 | Process for the preparation of pulverulent heterogeneous substances |
Country Status (1)
| Country | Link |
|---|---|
| US (3) | US6228292B1 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004058399A2 (en) * | 2002-12-20 | 2004-07-15 | Honda Giken Kogyo Kabushiki Kaisha | Platinum and rhodium and/or iron containing catalyst formulations for hydrogen generation |
| US7712182B2 (en) * | 2003-07-25 | 2010-05-11 | Milwaukee Electric Tool Corporation | Air flow-producing device, such as a vacuum cleaner or a blower |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE114454C (en) | ||||
| US2560357A (en) | 1946-08-15 | 1951-07-10 | Standard Oil Dev Co | Production of solid fuel agglomerates |
| DE3345983C2 (en) | 1983-12-20 | 1986-09-04 | Wolfgang 4600 Dortmund Seidler | Method and device for the production of spherical metallic particles |
| DE3602647A1 (en) | 1985-02-02 | 1986-08-07 | Toyota Jidosha K.K., Toyota, Aichi | PRODUCTION OF SILICONE CERAMIC POWDERS |
| DE3719825A1 (en) | 1987-06-13 | 1988-12-29 | Kernforschungsz Karlsruhe | METHOD FOR PRODUCING CERAMIC POWDERS AND DEVICE FOR IMPLEMENTING THE SAME |
| US5256389A (en) * | 1988-03-07 | 1993-10-26 | Cabot Corporation | High surface area metal oxide foams |
| US4937062A (en) | 1988-03-07 | 1990-06-26 | Cabot Corporation | High surface area metal oxide foams and method of producing the same |
| US5415164A (en) * | 1991-11-04 | 1995-05-16 | Biofield Corp. | Apparatus and method for screening and diagnosing trauma or disease in body tissues |
| WO1994014530A1 (en) | 1992-12-28 | 1994-07-07 | Kao Corporation | Method of manufacturing fine ceramic particles and apparatus therefor |
| GB9409660D0 (en) | 1994-05-13 | 1994-07-06 | Merck Patent Gmbh | Process for the preparation of multi-element metaloxide powders |
| JP3890512B2 (en) | 1995-09-20 | 2007-03-07 | 赤穂化成株式会社 | Spherical salt and method for producing the same |
-
1999
- 1999-05-11 US US09/309,504 patent/US6228292B1/en not_active Expired - Lifetime
-
2001
- 2001-04-03 US US09/824,185 patent/US20020047221A1/en not_active Abandoned
-
2002
- 2002-09-23 US US10/252,252 patent/US20030017107A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| US20030017107A1 (en) | 2003-01-23 |
| US6228292B1 (en) | 2001-05-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2271818C (en) | Process for the preparation of pulverulent heterogeneous substances | |
| KR100438228B1 (en) | Doped and pyrolyzed oxides | |
| US5466421A (en) | Apparatus for the catalytic conversion of waste gases containing hydrocarbon, halogenated hydrocarbon and carbon monoxide | |
| US7288501B2 (en) | Process and apparatus for the thermal treatment of pulverulent substances | |
| US6022489A (en) | Reagent for decomposing fluorocarbons | |
| JPH08500055A (en) | Catalytic incineration of organic compounds | |
| JPH04501380A (en) | Catalytic destruction of organohalogen compounds | |
| JP2010536709A (en) | Production of SiO2 coated titanium dioxide particles with adjustable coating | |
| US3960507A (en) | Apparatus for removing nitrogen oxides from a contaminated gas containing the same | |
| US6228292B1 (en) | Process for the preparation of pulverulent heterogeneous substances | |
| JP2957455B2 (en) | Zirconium dioxide powder produced by high pyrolysis, method for producing the same, and starting materials, fillers, electric industrial materials, heat insulating materials, catalyst materials, catalyst carrier materials, and cosmetic materials for producing ceramics and ceramic precursors composed thereof | |
| US4061597A (en) | NOx control in catalyst manufacture | |
| JP3409294B2 (en) | Method for producing oxide powder | |
| Sproson et al. | Ceramic Powder Synthesis by Thermal Reaction of Atomized Solutions.(Retroactive Coverage) | |
| RU2318723C2 (en) | Method used for production of the metal oxides powders | |
| KR100876031B1 (en) | Visible-responsive photocatalytic synthesis, photocatalyst materials, photocatalyst paints and photocatalysts | |
| KR20130003912A (en) | Method for manufacturing supported catalyst | |
| EP0466927B1 (en) | Method and apparatus for processing nitrogen oxide gas | |
| CN114269473A (en) | Method for producing catalyst for VOC treatment | |
| SU1633247A1 (en) | Method for concurrent drying of suspensions | |
| US9321033B2 (en) | Process for thermal fixation of catalytically active component onto alumina support | |
| JPS6230826B2 (en) | ||
| KR102296714B1 (en) | An apparatus for removing NOx | |
| JPS5850785B2 (en) | How to dry nitrate solution | |
| JPH07155599A (en) | Catalyst for removal of nox in water gas and its production |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |