US20020042350A1 - Evaporative n-propyl bromide-based machining fluid formulations - Google Patents
Evaporative n-propyl bromide-based machining fluid formulations Download PDFInfo
- Publication number
- US20020042350A1 US20020042350A1 US10/016,003 US1600301A US2002042350A1 US 20020042350 A1 US20020042350 A1 US 20020042350A1 US 1600301 A US1600301 A US 1600301A US 2002042350 A1 US2002042350 A1 US 2002042350A1
- Authority
- US
- United States
- Prior art keywords
- machining fluid
- lubricant
- composition
- lubricating oil
- weight percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000003754 machining Methods 0.000 title claims abstract description 99
- 239000012530 fluid Substances 0.000 title claims abstract description 96
- 239000000203 mixture Substances 0.000 title claims abstract description 70
- CYNYIHKIEHGYOZ-UHFFFAOYSA-N 1-bromopropane Chemical compound CCCBr CYNYIHKIEHGYOZ-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 238000009472 formulation Methods 0.000 title abstract description 24
- 239000000314 lubricant Substances 0.000 claims abstract description 61
- 239000000126 substance Substances 0.000 claims abstract description 33
- 238000001816 cooling Methods 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 17
- 230000001050 lubricating effect Effects 0.000 claims abstract description 13
- -1 polyol ester Chemical class 0.000 claims description 27
- 239000010689 synthetic lubricating oil Substances 0.000 claims description 21
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 claims description 11
- 229920005862 polyol Polymers 0.000 claims description 9
- 229920001515 polyalkylene glycol Polymers 0.000 claims description 8
- OKIYQFLILPKULA-UHFFFAOYSA-N 1,1,1,2,2,3,3,4,4-nonafluoro-4-methoxybutane Chemical compound COC(F)(F)C(F)(F)C(F)(F)C(F)(F)F OKIYQFLILPKULA-UHFFFAOYSA-N 0.000 claims description 7
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 claims description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 5
- RIQRGMUSBYGDBL-UHFFFAOYSA-N 1,1,1,2,2,3,4,5,5,5-decafluoropentane Chemical compound FC(F)(F)C(F)C(F)C(F)(F)C(F)(F)F RIQRGMUSBYGDBL-UHFFFAOYSA-N 0.000 claims description 4
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 claims description 4
- 239000002480 mineral oil Substances 0.000 claims description 4
- 235000010446 mineral oil Nutrition 0.000 claims description 2
- 238000012360 testing method Methods 0.000 description 23
- 239000002904 solvent Substances 0.000 description 20
- 239000003921 oil Substances 0.000 description 18
- 235000019198 oils Nutrition 0.000 description 18
- 238000005553 drilling Methods 0.000 description 15
- 150000002148 esters Chemical class 0.000 description 14
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 13
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 13
- 238000005520 cutting process Methods 0.000 description 12
- 229930195733 hydrocarbon Natural products 0.000 description 11
- 150000002430 hydrocarbons Chemical class 0.000 description 11
- 238000000227 grinding Methods 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000002253 acid Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 150000002894 organic compounds Chemical class 0.000 description 8
- 239000004215 Carbon black (E152) Substances 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000005461 lubrication Methods 0.000 description 5
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 4
- 230000033228 biological regulation Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 239000002173 cutting fluid Substances 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000010685 fatty oil Substances 0.000 description 3
- 238000011010 flushing procedure Methods 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- CIRMGZKUSBCWRL-LHLOQNFPSA-N (e)-10-[2-(7-carboxyheptyl)-5,6-dihexylcyclohex-3-en-1-yl]dec-9-enoic acid Chemical compound CCCCCCC1C=CC(CCCCCCCC(O)=O)C(\C=C\CCCCCCCC(O)=O)C1CCCCCC CIRMGZKUSBCWRL-LHLOQNFPSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 235000019482 Palm oil Nutrition 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 235000019484 Rapeseed oil Nutrition 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- VJHINFRRDQUWOJ-UHFFFAOYSA-N dioctyl sebacate Chemical compound CCCCC(CC)COC(=O)CCCCCCCCC(=O)OCC(CC)CCCC VJHINFRRDQUWOJ-UHFFFAOYSA-N 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 239000002540 palm oil Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- CFQZKFWQLAHGSL-FNTYJUCDSA-N (3e,5e,7e,9e,11e,13e,15e,17e)-18-[(3e,5e,7e,9e,11e,13e,15e,17e)-18-[(3e,5e,7e,9e,11e,13e,15e)-octadeca-3,5,7,9,11,13,15,17-octaenoyl]oxyoctadeca-3,5,7,9,11,13,15,17-octaenoyl]oxyoctadeca-3,5,7,9,11,13,15,17-octaenoic acid Chemical compound OC(=O)C\C=C\C=C\C=C\C=C\C=C\C=C\C=C\C=C\OC(=O)C\C=C\C=C\C=C\C=C\C=C\C=C\C=C\C=C\OC(=O)C\C=C\C=C\C=C\C=C\C=C\C=C\C=C\C=C CFQZKFWQLAHGSL-FNTYJUCDSA-N 0.000 description 1
- CUXYLFPMQMFGPL-UHFFFAOYSA-N (9Z,11E,13E)-9,11,13-Octadecatrienoic acid Natural products CCCCC=CC=CC=CCCCCCCCC(O)=O CUXYLFPMQMFGPL-UHFFFAOYSA-N 0.000 description 1
- SKGWNZXOCSYJQL-BUTYCLJRSA-N 1,2,3-tripalmitoleoylglycerol Chemical compound CCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCC)COC(=O)CCCCCCC\C=C/CCCCCC SKGWNZXOCSYJQL-BUTYCLJRSA-N 0.000 description 1
- RDAGYWUMBWNXIC-UHFFFAOYSA-N 1,2-bis(2-ethylhexyl)benzene Chemical class CCCCC(CC)CC1=CC=CC=C1CC(CC)CCCC RDAGYWUMBWNXIC-UHFFFAOYSA-N 0.000 description 1
- YEYQUBZGSWAPGE-UHFFFAOYSA-N 1,2-di(nonyl)benzene Chemical class CCCCCCCCCC1=CC=CC=C1CCCCCCCCC YEYQUBZGSWAPGE-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- SRHFAJHKZRUNCK-MAZCIEHSSA-N 2-[(9z,12z)-octadeca-9,12-dienoyl]oxyethyl (9z,12z)-octadeca-9,12-dienoate Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OCCOC(=O)CCCCCCC\C=C/C\C=C/CCCCC SRHFAJHKZRUNCK-MAZCIEHSSA-N 0.000 description 1
- DJXNLVJQMJNEMN-UHFFFAOYSA-N 2-[difluoro(methoxy)methyl]-1,1,1,2,3,3,3-heptafluoropropane Chemical compound COC(F)(F)C(F)(C(F)(F)F)C(F)(F)F DJXNLVJQMJNEMN-UHFFFAOYSA-N 0.000 description 1
- 229910001250 2024 aluminium alloy Inorganic materials 0.000 description 1
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 description 1
- 229910001008 7075 aluminium alloy Inorganic materials 0.000 description 1
- FKLSONDBCYHMOQ-UHFFFAOYSA-N 9E-dodecenoic acid Natural products CCC=CCCCCCCCC(O)=O FKLSONDBCYHMOQ-UHFFFAOYSA-N 0.000 description 1
- UTKPKMPORXQYRY-PGRFSHRYSA-N CCCCCC[C@@H](O)C\C=C/CCCCCCCC(=O)OCCCCCCOC(=O)CCCCCCC\C=C/C[C@H](O)CCCCCC Chemical compound CCCCCC[C@@H](O)C\C=C/CCCCCCCC(=O)OCCCCCCOC(=O)CCCCCCC\C=C/C[C@H](O)CCCCCC UTKPKMPORXQYRY-PGRFSHRYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XTJFFFGAUHQWII-UHFFFAOYSA-N Dibutyl adipate Chemical compound CCCCOC(=O)CCCCC(=O)OCCCC XTJFFFGAUHQWII-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- NYIIDPYDLJYGAY-GRVYQHKQSA-N OCC(O)CO.CCCCC\C=C/C\C=C/CCCCCCCC(O)=O.CCCCC\C=C/C\C=C/CCCCCCCC(O)=O Chemical compound OCC(O)CO.CCCCC\C=C/C\C=C/CCCCCCCC(O)=O.CCCCC\C=C/C\C=C/CCCCCCCC(O)=O NYIIDPYDLJYGAY-GRVYQHKQSA-N 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- NKSOSPOXQKNIKJ-CLFAGFIQSA-N Polyoxyethylene dioleate Polymers CCCCCCCC\C=C/CCCCCCCC(=O)OCCOC(=O)CCCCCCC\C=C/CCCCCCCC NKSOSPOXQKNIKJ-CLFAGFIQSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 235000021322 Vaccenic acid Nutrition 0.000 description 1
- UWHZIFQPPBDJPM-FPLPWBNLSA-M Vaccenic acid Natural products CCCCCC\C=C/CCCCCCCCCC([O-])=O UWHZIFQPPBDJPM-FPLPWBNLSA-M 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- CUXYLFPMQMFGPL-SUTYWZMXSA-N all-trans-octadeca-9,11,13-trienoic acid Chemical compound CCCC\C=C\C=C\C=C\CCCCCCCC(O)=O CUXYLFPMQMFGPL-SUTYWZMXSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- 229940067597 azelate Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- OAXZVLMNNOOMGN-UHFFFAOYSA-N bis(8-methylnonyl) decanedioate Chemical compound CC(C)CCCCCCCOC(=O)CCCCCCCCC(=O)OCCCCCCCC(C)C OAXZVLMNNOOMGN-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 231100000045 chemical toxicity Toxicity 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- XZJZNZATFHOMSJ-KTKRTIGZSA-N cis-3-dodecenoic acid Chemical compound CCCCCCCC\C=C/CC(O)=O XZJZNZATFHOMSJ-KTKRTIGZSA-N 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- DZQISOJKASMITI-UHFFFAOYSA-N decyl-dioxido-oxo-$l^{5}-phosphane;hydron Chemical compound CCCCCCCCCCP(O)(O)=O DZQISOJKASMITI-UHFFFAOYSA-N 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229940100539 dibutyl adipate Drugs 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical class CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- QYDYPVFESGNLHU-UHFFFAOYSA-N elaidic acid methyl ester Natural products CCCCCCCCC=CCCCCCCCC(=O)OC QYDYPVFESGNLHU-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002168 ethanoic acid esters Chemical class 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- QUZGCEDYONOOFH-ONNLMXTPSA-N hexyl (2e,4e)-hexa-2,4-dienoate Chemical compound CCCCCCOC(=O)\C=C\C=C\C QUZGCEDYONOOFH-ONNLMXTPSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005555 metalworking Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- QYDYPVFESGNLHU-KHPPLWFESA-N methyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC QYDYPVFESGNLHU-KHPPLWFESA-N 0.000 description 1
- 229940073769 methyl oleate Drugs 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000009972 noncorrosive effect Effects 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- UJMWVICAENGCRF-UHFFFAOYSA-N oxygen difluoride Chemical class FOF UJMWVICAENGCRF-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- LGUZHRODIJCVOC-UHFFFAOYSA-N perfluoroheptane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F LGUZHRODIJCVOC-UHFFFAOYSA-N 0.000 description 1
- ZJIJAJXFLBMLCK-UHFFFAOYSA-N perfluorohexane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F ZJIJAJXFLBMLCK-UHFFFAOYSA-N 0.000 description 1
- YVBBRRALBYAZBM-UHFFFAOYSA-N perfluorooctane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YVBBRRALBYAZBM-UHFFFAOYSA-N 0.000 description 1
- NJCBUSHGCBERSK-UHFFFAOYSA-N perfluoropentane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F NJCBUSHGCBERSK-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- 150000001911 terphenyls Chemical class 0.000 description 1
- JZALLXAUNPOCEU-UHFFFAOYSA-N tetradecylbenzene Chemical compound CCCCCCCCCCCCCCC1=CC=CC=C1 JZALLXAUNPOCEU-UHFFFAOYSA-N 0.000 description 1
- MQHSFMJHURNQIE-UHFFFAOYSA-N tetrakis(2-ethylhexyl) silicate Chemical compound CCCCC(CC)CO[Si](OCC(CC)CCCC)(OCC(CC)CCCC)OCC(CC)CCCC MQHSFMJHURNQIE-UHFFFAOYSA-N 0.000 description 1
- ZUEKXCXHTXJYAR-UHFFFAOYSA-N tetrapropan-2-yl silicate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)OC(C)C ZUEKXCXHTXJYAR-UHFFFAOYSA-N 0.000 description 1
- UWHZIFQPPBDJPM-BQYQJAHWSA-N trans-vaccenic acid Chemical compound CCCCCC\C=C\CCCCCCCCCC(O)=O UWHZIFQPPBDJPM-BQYQJAHWSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000003799 water insoluble solvent Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M111/00—Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
- C10M111/02—Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a non-macromolecular organic compound
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/10—Arrangements for cooling or lubricating tools or work
- B23Q11/1038—Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality
- B23Q11/1061—Arrangements for cooling or lubricating tools or work using cutting liquids with special characteristics, e.g. flow rate, quality using cutting liquids with specially selected composition or state of aggregation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M101/00—Lubricating compositions characterised by the base-material being a mineral or fatty oil
- C10M101/02—Petroleum fractions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M101/00—Lubricating compositions characterised by the base-material being a mineral or fatty oil
- C10M101/02—Petroleum fractions
- C10M101/025—Petroleum fractions waxes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/02—Well-defined hydrocarbons
- C10M105/04—Well-defined hydrocarbons aliphatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/50—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen
- C10M105/52—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing halogen containing carbon, hydrogen and halogen only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/56—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen
- C10M105/70—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing nitrogen as ring hetero atom
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/02—Well-defined aliphatic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/02—Well-defined aliphatic compounds
- C10M2203/022—Well-defined aliphatic compounds saturated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/02—Well-defined aliphatic compounds
- C10M2203/024—Well-defined aliphatic compounds unsaturated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/04—Well-defined cycloaliphatic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/04—Well-defined cycloaliphatic compounds
- C10M2203/045—Well-defined cycloaliphatic compounds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/06—Well-defined aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/1006—Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/102—Aliphatic fractions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/102—Aliphatic fractions
- C10M2203/1025—Aliphatic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/104—Aromatic fractions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/104—Aromatic fractions
- C10M2203/1045—Aromatic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/106—Naphthenic fractions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/106—Naphthenic fractions
- C10M2203/1065—Naphthenic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/108—Residual fractions, e.g. bright stocks
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/108—Residual fractions, e.g. bright stocks
- C10M2203/1085—Residual fractions, e.g. bright stocks used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/024—Propene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/14—Synthetic waxes, e.g. polythene waxes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/14—Synthetic waxes, e.g. polythene waxes
- C10M2205/143—Synthetic waxes, e.g. polythene waxes used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/16—Paraffin waxes; Petrolatum, e.g. slack wax
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/16—Paraffin waxes; Petrolatum, e.g. slack wax
- C10M2205/163—Paraffin waxes; Petrolatum, e.g. slack wax used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/17—Fisher Tropsch reaction products
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/17—Fisher Tropsch reaction products
- C10M2205/173—Fisher Tropsch reaction products used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/18—Natural waxes, e.g. ceresin, ozocerite, bees wax, carnauba; Degras
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/18—Natural waxes, e.g. ceresin, ozocerite, bees wax, carnauba; Degras
- C10M2205/183—Natural waxes, e.g. ceresin, ozocerite, bees wax, carnauba; Degras used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/021—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/021—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/022—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/04—Ethers; Acetals; Ortho-esters; Ortho-carbonates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/04—Ethers; Acetals; Ortho-esters; Ortho-carbonates
- C10M2207/046—Hydroxy ethers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/121—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
- C10M2207/123—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/129—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/22—Acids obtained from polymerised unsaturated acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/281—Esters of (cyclo)aliphatic monocarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/282—Esters of (cyclo)aliphatic oolycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/286—Esters of polymerised unsaturated acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/34—Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/402—Castor oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/40—Fatty vegetable or animal oils
- C10M2207/404—Fatty vegetable or animal oils obtained from genetically modified species
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/104—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/105—Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/108—Polyethers, i.e. containing di- or higher polyoxyalkylene groups etherified
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/11—Complex polyesters
- C10M2209/111—Complex polyesters having dicarboxylic acid centres
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/02—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
- C10M2211/0206—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/02—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
- C10M2211/022—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/02—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
- C10M2211/022—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
- C10M2211/0225—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/02—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
- C10M2211/024—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aromatic
- C10M2211/0245—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aromatic used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/04—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen, halogen, and oxygen
- C10M2211/042—Alcohols; Ethers; Aldehydes; Ketones
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/06—Perfluorinated compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/02—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
- C10M2219/024—Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2221/00—Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2221/04—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2221/00—Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2221/04—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2221/041—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds involving sulfurisation of macromolecular compounds, e.g. polyolefins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/041—Triaryl phosphates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2227/00—Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
- C10M2227/02—Esters of silicic acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/041—Siloxanes with specific structure containing aliphatic substituents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/045—Siloxanes with specific structure containing silicon-to-hydroxyl bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/046—Siloxanes with specific structure containing silicon-oxygen-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/047—Siloxanes with specific structure containing alkylene oxide groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/048—Siloxanes with specific structure containing carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/05—Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/22—Metal working with essential removal of material, e.g. cutting, grinding or drilling
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/243—Cold working
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/244—Metal working of specific metals
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/244—Metal working of specific metals
- C10N2040/245—Soft metals, e.g. aluminum
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/244—Metal working of specific metals
- C10N2040/246—Iron or steel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/244—Metal working of specific metals
- C10N2040/247—Stainless steel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2050/00—Form in which the lubricant is applied to the material being lubricated
- C10N2050/015—Dispersions of solid lubricants
- C10N2050/02—Dispersions of solid lubricants dissolved or suspended in a carrier which subsequently evaporates to leave a lubricant coating
Definitions
- the present invention is generally directed to machining fluid formulations and, more specifically, to machining fluid formulations comprising an admixture of n-propyl bromide base solvent together with a dissolved or dispersed lubricant, and optionally together with a fluorinated hydrocarbon, as well as to methods of using the same.
- machining fluids Over the years, developments with respect to cutting and grinding fluids (collectively referred to herein as machining fluids) have been numerous. Machining fluid technology has expanded to include the formulation and use of mineral, vegetable, and fatty oils to impart an extended range of desirable properties—corrosion protection, resistance to bacterial attack, improved lubricity, greater chemical stability, improved emulsibility, and the like.
- water-soluble fluids and fluids comprised of chemicals in water solution have replaced many traditional oil-based fluids in many different applications. This trend has been spurred by, among other things, dwindling oil supplies and rising costs for petroleum products. Increased costs to clean workpieces and rising costs of machining fluid disposal have also fueled development and use of synthetic water-based fluids.
- machining fluids are increasingly significant in the formulation of machining fluids.
- the composition and use of machining fluids is now more than ever directly impacted by human safety considerations, air and water pollution regulations, chemical toxicity registration, waste disposal regulations, shipping regulations, energy policy, et cetera.
- the machining fluid selection process is further complicated by the fact that the machining fluid is only one component in an integrated metal-fabrication system.
- CFCs chlorofluorocarbons
- a lubricant generally formulated with a lubricant
- Advantages of CFC solvent-based fluids over traditional oils and water/lubricant blends include their non-flammability and cleanliness.
- CFC solvents evaporate completely and rapidly, thereby limiting the area of runoff and lubricant deposition.
- using CFC-based fluids on large parts with difficult-to-reach areas having stringent cleanliness requirements, such as aircraft wings generally saves many manhours of cleaning time.
- CFC-based fluids are also nonflammable, another desirable characteristic in work areas where heat and sparks may be generated.
- the present invention is directed to a machining fluid admixture for cooling and lubricating a workpiece/tool interface, wherein the admixture comprises a major amount of n-propyl bromide and a minor amount of a lubricant.
- the machining fluid consists essentially of about 30.0 to about 99.99 weight percent n-propyl bromide; from about 0.01 to about 30.0 weight percent of a lubricant; and optionally from 0.0 to about 70.0 weight percent of a fluorinated chemical.
- the machining fluid consists essentially of about 45.0 to about 50.0 weight percent n-propyl bromide; from about 0.01 to about 2.0 weight percent of a lubricant; and from 45.0 to about 50.0 weight percent of a fluorinated chemical.
- the present invention is directed to methods for cooling and lubricating a tool/workpiece interface. The methods comprise the steps of applying an effective amount of the n-propyl bromide-based machining formulations as disclosed herein to a part during a machining operation so as to cool and lubricate the tool/workpiece interface.
- the lubricant component of the inventive machining fluids may be a mineral oil, a synthetic lubricating oil, or a mixture thereof.
- the synthetic lubricating oils may or may not have a halogen constituent, and may be selected from a polyol ester, a polyalkylene glycol, a glycol ether, an isoparaffin, or mixture thereof.
- the polyalkylene glycol may be ethylene glycol monobutyl ether, propylene glycol methyl ether, or a mixture thereof; the isoparaffin may be 2,2,4-trimethylpentane.
- the fluorinated chemical component of the inventive machining fluids may have the formula of C a F b H c N d O e wherein 2 ⁇ a ⁇ 8, 5 ⁇ b ⁇ 18, 0 ⁇ c ⁇ 13, 0 ⁇ d ⁇ 2 and 0 ⁇ e ⁇ 2; the fluorinated chemical may be 1,1,1,2,3,4,4,5,5,5-decafluoropentane, 1-methoxy-nonafluorobutane, or a mixture thereof.
- FIG. 1 shows a graph of drilling test data used to determine preferred 1-methoxy-nonafluorobutane/n-propyl bromide admixtures wherein 100 ml samples of the admixture was mixed with 0.5 ml of polyol ester lubricant, and wherein drilling was 0.621 in. diameter by 1.5 in deep in 7050 aluminum with 950 RPM at 0.002 feed.
- FIG. 2A shows a bar graph of lubricant test data comparisons wherein 50/50 n-propyl bromide/fluorinated chemical samples were admixed with varying amounts of different lubricants, and wherein drilling was 0.621 in. diameter by 1.5 in deep in 7050 aluminum with 950 RPM at 0.002 feed.
- FIG. 2B shows a bar graph of lubricant test data comparisons wherein 50/50 n-propyl bromide/fluorinated chemical samples were admixed with varying amounts of different lubricants, and wherein drilling was 0.621 in. diameter by 1.5 in deep in 7050 aluminum with 950 RPM at 0.002 feed.
- the present invention is generally directed to machining fluid formulations and, more specifically, to machining fluid formulations comprising an admixture of n-propyl bromide base solvent together with a lubricant, and optionally together with a fluorinated hydrocarbon as well as to methods of using the same.
- machining fluid formulations comprising an admixture of n-propyl bromide base solvent together with a lubricant, and optionally together with a fluorinated hydrocarbon as well as to methods of using the same.
- machining operations is a broad term that is inclusive of all metal cutting and grinding operations in which a tool operates on a workpiece in a mechanical shaping or working process.
- machining fluids significantly increase productivity and reduce costs by making possible the use of higher cutting speeds, higher feed rates, and greater depths of cut.
- the effective application of machining fluids also lengthens tool life, decreases workpiece surface roughness, increases dimensional accuracy, and decreases the amount of energy consumed as compared to dry machining.
- a machining fluid typically has one or more of the following functions: cooling the tool, workpiece, and resulting grinds/chips; lubricating by reducing friction and minimizing erosion on the tool; flushing chips and swarf away from the tool; controlling “built-up edge” (BUE) on the tool; and protecting the workpiece and tool from corrosion.
- BUE built-up edge
- the relative importance of each of these functions depends on the workpiece material, the finish requirements of the final part, the machining conditions, as well as the nature of the cutting or grinding tool.
- machining fluid is inclusive of both, the primary difference between the functions of grinding and cutting fluids is that cooling and flushing is relatively more important in grinding than in cutting.
- the present invention is directed to a machining fluid admixture for cooling and lubricating a workpiece/tool interface, wherein the machining fluid admixture comprises n-propyl bromide and a lubricant.
- the present invention is directed to compositions of n-propyl bromide, a lubricant, and a fluorinated chemical.
- Such inventive n-propyl bromide-based machining fluids have been surprisingly discovered to be very effective replacements for many existing CFC-based machining fluids currently available.
- machining fluid formulations comprising a major amount of n-propyl bromide admixed together with a suitable lubricant, and optionally a fluorinated chemical such a hydrofluorocarbon and/or a hydroflouroether, works remarkably well for cooling and lubricating workpiece/tool interfaces during a machining operation; and afterwards such formulations are then able to evaporate quickly so as to leave behind little or no non-volatile residue (NVR).
- NVR non-volatile residue
- the term “admixture” includes mixtures of the recited components, as well as reaction products that may result from such mixing (together with, or without, other constituents) of the recited components.
- the term “lubricant” refers to those hydrocarbon-based compounds, and various mixtures thereof, that are capable of reducing frictional forces between the tool and workpiece during a machining operation.
- the term lubricant includes a wide variety of organic compounds/formulations having lubricating viscosity at standard conditions and are capable of reducing frictional forces; such organic compounds/formulations may be naturally occurring substances or compounds, mixtures of naturally occurring substances or compounds, synthetic organic compounds, mixtures of synthetic organic compounds, or mixtures of naturally occurring substances or compounds and synthetic organic compounds.
- the organic compounds/formulations of the present invention are naturally occurring or synthetic oils of lubricating viscosity.
- the organic compounds/formulations may be somewhat viscous such as, for example, a grease.
- the organic compounds/formulations of the present invention include, but are not limited to, water insoluble solvent refined or acid refined mineral oils of the paraffinic, naphthenic or mixed paraffinic and naphthenic types, oils derived from coal or shale, petroleum based oils such as products containing naphtha and/or kerosene, sulfurized oils, chlorosulfurized oils, chlorinated oils, vegetable oils including, but not limited to, caster oil, soybean oil, cottonseed oil, palm oil, sunflower oil and rapeseed oil, animal oils, polyolefins, fatty acid esters or amides, polymerized unsaturated C 12 to C 36 fatty acid amides and esters of polymerized unsaturated fatty acids.
- Synthetic lubricating oils useful in this invention may include, for example, water insoluble hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, etc.); alkyl benzenes (e.g., dodecylbenzenes, tetradecylbenzene, dinonylbenzenes, di-(2-ethylhexyl)benzenes, etc.); polyphenyls (e.g., biphenyls, terphenyls, etc.); and the like.
- polymerized and interpolymerized olefins e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, etc.
- Water insoluble alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc. constitute another class of known synthetic lubricating oils. These are exemplified by the oils prepared through polymerization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methylpolyisopropylene glycol ether having an average molecular weight of 1,000, diphenyl ether of polyethylene glycol having a molecular weight of 500-1,000, diethyl ether of polypropylene glycol having a molecular weight of 1,000-1,500, ethylene glycol monobutyl ethers, propylene glycol methyl ethers, etc.) or mono- and polycarboxylic ester thereof, for example, the acetic acid esters, mixed C 3 to C 8 fatty acid esters, or the C 13 oxo acid diester of tetraethylene glyco
- Another suitable class of synthetic lubricating oils useful in the practice of the present invention comprises the water insoluble esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, etc.) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethyhexyl alcohol, pentaerythritol, etc.).
- dicarboxylic acids e.g., phthalic acid, succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, etc.
- alcohols e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethyhexyl alcohol
- esters include dibutyl adipate, di(2-ethylhexyl)-sebacate, di-n-hexyl fumarate, dioctyl sebacate, di-isooctyl azelate, diisodecyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid, and the like.
- Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxysiloxane oils and silicate oils comprise another useful class of synthetic lubricants useful in the practice of the present invention (e.g., tetraethyl-silicate, tetraisopropyl-silicate, tetra-(2-ethylhexyl)-silicate, tetra-(4-methyl-2-tetraethyl)-silicate, tetra-(p-tertbutylphenyl) silicate, hexyl-(4-methyl-2-pentoxyl)-disiloxane, poly(methyl)-siloxanes, poly(methyl-phenyl)-siloxanes, etc.).
- synthetic lubricants useful in the practice of the present invention (e.g., tetraethyl-silicate, tetraisopropyl-s
- lubricating oils usable in this invention include liquid water insoluble esters of phosphorous containing acids (e.g., tricresyl phosphate, trioctyl phosphate di-ethyl ester of decane phosphonic acid, etc.), polymeric tetra-hydrofurans, and the like.
- phosphorous containing acids e.g., tricresyl phosphate, trioctyl phosphate di-ethyl ester of decane phosphonic acid, etc.
- the sulfurized unsaturated esters of aliphatic carboxylic acids useful as the lubricant component in accordance with the practice of the present invention include the full and partial esters of mono, di and tri hydric alcohols (e.g., ethanol, ethylene glycol and glycerol).
- sulfurized unsaturated esters of aliphatic carboxylic acids include, but are not limited to, sulfurized methyloleate, sulfurized hexyl sorbate, sulfurized dodecyllinolenate, and sulfurized ethylene dilinoleate, 1,6 hexylene diricinoleate, glycerine tripalmitoleate, polyoxyethylene dioleate, polyoxypropylene disorbate and glycerine dilinoleate.
- the sulfurized ester of an unsaturated aliphatic carboxylic acid employed in the practice of the present invention may be sulfurized fat or a sulfurized fatty oil, and the fat or fatty oil which has been sulfurized may be of animal or vegetable origin. Examples of such sulfurized fatty materials include, but are not limited to, sulfurized tallow, sulfurized palm oil, sulfurized coconut oil, sulfurized rapeseed oil, sulfurized lard oil and sulfurized castor oil.
- the sulfurized polymerized unsaturated fatty acid amides and esters thereof useful as the lubricant component in accordance with the practice of the present invention may be generally derivatives of sulfurized polymerized unsaturated fatty acids that are prepared from polymerized unsaturated fatty acids obtained by polymerizing ethylenically unsaturated fatty acids having from 12 to 36 carbon atoms.
- the polymerized unsaturated fatty acid contains from 2 to 4 monomeric units, 2 to 4 carboxylic acid groups and residual ethylenic unsaturation.
- the polymerization of ethylenically unsaturated fatty acids is known in the art and such acids and the methods for polymerization have been described in the art.
- Dimer, trimer and tetramer acids prepared from ethylenically unsaturated fatty acids are commercially available.
- the polymerized ethylenically unsaturated fatty acid may contain a mixture of ethylenically unsaturated fatty acid, dimer acid, trimer acid and tetramer acid in varying proportions depending upon the starting ethylenically unsaturated fatty acid and the conditions under which the polymerization was carried out.
- Sulfurization of the polymerized unsaturated fatty acid may be achieved by methods well known in the art.
- Esters of polymerized unsaturated acids that may be sulfurized to produce the lubricant useful in the practice of the present invention include, but are not limited to, mono methyl ester of dimerized linoleic acid, mono polyoxyalkylene (e.g., polyoxyethylene) glycol ester of dimerized linoleic acid, acid terminated polyoxyalkylene (e.g., polyoxyethylene) glycol diester of dimerized linoleic acid, and alcohol terminated polyoxyalkylene (e.g., polyoxypropylene oxyethylene) glycol polyester of dimerized linoleic acid.
- mono methyl ester of dimerized linoleic acid e.g., mono polyoxyalkylene (e.g., polyoxyethylene) glycol ester of dimerized linoleic acid
- acid terminated polyoxyalkylene e.g., polyoxyethylene glycol diester of dimerized linoleic acid
- sulfurized polymerized unsaturated fatty acids for preparing amide and ester derivatives include, but are not limited to, sulfurized polymerized oleic acid, sulfurized polymerized linoleic acid, sulfurized polymerized lauroleic acid, sulfurized polymerized vaccenic acid, sulfurized polymerized eleostearic acid and sulfurized polymerized linolenic acid.
- the lubricant component of the machining fluid admixture may vary in amount over a wide range.
- the lubricant component of the n-propyl bromide/lubricant admixture ranges from about 0.01% to about 30%, preferably from about 0.01% to about 10%, and more preferably from about 1.0% to about 3.0%, by weight based on the total machining fluid composition.
- the n-propyl bromide/lubricant admixture includes a fluorinated chemical component such as, for example, hydrofluorocarbons (HFCs) and/or hydrofluoroethers (HFEs).
- a fluorinated chemical component such as, for example, hydrofluorocarbons (HFCs) and/or hydrofluoroethers (HFEs).
- HFCs hydrofluorocarbons
- HFEs hydrofluoroethers
- the fluorinated chemical has the formula of C a F b H c N d O e wherein 2 ⁇ a ⁇ 8, 5 ⁇ b ⁇ 18, 0 ⁇ c ⁇ 13, 0 ⁇ d ⁇ 2 and 0 ⁇ e ⁇ 2.
- fluorinated chemicals useful in the present invention include perfluorinated chemicals such as perfluoroalkanes, perfluorocycloalkanes, perfluoroethers, perfluorocycloethers, perfluorocycloarninoethers and the like, as well as partially fluorinated hydrocarbons such as hydrofluoroethers.
- the partially fluorinated hydrocarbons preferably contain a fluorine:hydrogen atom ratio of at least about 1:1, and more preferably of at least about 2:1.
- perfluorinated chemicals are straight chain fluorocarbons containing only carbon and fluorine atoms, such as perfluoro-n-pentane, perfluoro-n-hexane, perfluoro-n-heptane and perfluoro-n-octane.
- the preferred fluorinated chemicals in the practice of the present invention include 1,1,1,2,3,4,4,5,5,5-decafluoropentane (available from E. I. Dupont de Nemours and Company, U.S.A. under the tradename VERTREL XF), 1-methoxy-nonafluorobutane (available from Minnesota Mining and Manufacturing Company, U.S.A.
- HFE-7100 1-methoxy-nonafluorobutane
- this fluorinated chemical generally consists of two inseparable isomers with essentially identical properties; namely, (CF 3 ) 2 CFCF 2 OCH 3 and CF 3 CF 2 CF 2 CF 2 OCH 3 .
- the fluorinated chemical component of the machining fluid formulation may also vary over a wide range.
- the fluorinated hydrocarbon component of the n-propyl bromide/lubricant admixture ranges from about 0.0% to about 70%, preferably from about 25% to about 60%, and more preferably from about 45% to about 55%, by weight based on the total machining fluid composition.
- the present invention is directed to methods for cooling and lubricating a tool/workpiece interface.
- the methods comprise the steps of applying an effective amount of the n-propyl bromide-based machining formulations as disclosed herein to a part during a machining operation so as to cool and lubricate the tool/workpiece interface.
- machining fluid formulations comprising an admixture of n-propyl bromide base solvent together with a lubricant (and optionally with a fluorinated chemical component) in accordance with the present invention
- several drilling tests were conducted. More specifically, several drilling tests that simulated exemplary machining conditions associated with the aerospace industry were conducted using portable, air-powered drill motors called “Quackenbush drills.” These motors allow the rotational speed of the drill bit (i.e., revolutions per minute or “RPM”), as well as the drill bit's feed rate (i.e., distance drill bit advances, expressed as thousandths of an inch per revolution or “IPR,” into workpiece during each revolution) to be precisely adjusted.
- RPM revolutions per minute
- IPR distance drill bit advances
- the drill bits used were standard high-speed steel having internal channels for transporting the machining fluid to the cutting edges of the drill bit's tip.
- the machining fluid supply was housed in a pressure pot and forced to the point of cut by compressed air.
- the Quackenbush drillmotor is equipped with a “nosepiece” and “foot” for attaching the motor to a drilling jig and aligning it perpendicular to the surface being drilled.
- the nosepiece is actually a drill bushing extending out from the attachment foot. It is inserted into a guide hole in the drill jig until the foot contacts the jig.
- the motor is then rotated a quarter turn, forcing a wedge shaped flange at the base of the foot to slide under an attachment lobe fastened to the jig. This action, similar to tightening a lid on a jar, securely attaches the drill motor to the jig at right angles to the work.
- the workpieces consisted of metal coupons measuring 6′′ wide, 3 ⁇ 4′′-11 ⁇ 2′′ thick, and 24′′ long. The coupons were clamped to a movable fixture parallel to the drill jig. After each hole was drilled, the fixture was moved to the next position. Coupons consisted of 2024 aluminum (soft & gummy), 7075 aluminum (hard), and 6AL4V titanium (very hard & tough). In some cases, several coupons were sandwiched together to simulate the arrangement of aircraft parts to be drilled. In general, it is generally difficult to control hole quality in such metal sandwiches in that hard chips exit back through the drill flutes and past the soft aluminum. Unless the machining fluid provides adequate lubrication, the chips tend to score the soft aluminum.
- Coupons were also drilled in a variety of positions to simulate shop floor situations: horizontal, vertical-up, and vertical-down.
- the vertical positions have special advantages and problems; for example, vertical-up holes lose fluid faster but chips clear the hole quickly, whereas vertical-down drilling does not lose fluid prematurely, but chips can bunch-up in the flutes more easily and score the hole. In either case, sufficient lubricant must remain in the hole and on the tool so as to prevent the flutes from rubbing the sides of the hole, causing it to go oversize, and the fluid must keep the chips lubricated so they flush from the hole without scoring its surface.
- Exemplary machining fluid admixtures in accordance with the present invention were prepared in which a commercial grade of n-propyl bromide (NPB) (Great Lakes Chemical Corp, U.S.A.) was used as the base solvent.
- NPB n-propyl bromide
- the inventive machining fluid was found to provide sufficient cooling and lubrication so as to produce holes that meet commercial aircraft standards. NPB's role however goes beyond acting as a lubricant vehicle—its physical characteristics provide many other benefits such as rapid evaporation under standard conditions.
- a primary benefit of using evaporative machining fluids like those of the present invention is the relative cleanliness of the operation.
- conventional machining fluids such as oil or water/lubricant blends are capable of making high quality cuts in metal; however, the part must normally be put through a cleaning process afterward. If the same quality machining can be performed with an evaporative fluid and no cleaning is required afterward, the savings in labor can more than offset the higher cost for the evaporative machining fluid.
- NPB nonflammable polystyrene-butadiene
- Such additives may then be able to evaporate at a rate similar to that of NPB and leave a low NVR.
- NPB's high heat-of-vaporization allows it to remove heat from the drill, workpiece, and chips as a cut is being made. This cooling action improves hole finish and allows faster RPMs and more aggressive feed rates.
- tools did not develop a “built-up-edge” (BUE). This is a chronic problem when drilling metal (e.g., aluminum or titanium) and it occurs when small metal particles weld to the surfaces of the drill bit contacting the workpiece. BUE will change the diameter of the drill bit when it occurs on the margins, eventually causing the drill bit to create an oversized hole.
- BUE Built-up-edge
- lubricants included: ethylene glycol monobutyl ether, propylene glycol methyl ether, polyol ester, “Boelube” (proprietary formula, based on long-chain alcohol, belonging to The Boeing Company), “Mayphos 45” (Proprietary formula, using phosphorous as a barrier lubricant, belonging to Castrol), “Ilocut 7425” (Castrol product consisting of Naphtha), kerosene, “Isopar” solvents (series of high-purity hydrocarbon solvents from Exxon).
- Drilling tests were conducted using various formulas of evaporative machining fluid. The tests were conducted in a machining laboratory and simulated the drilling procedures used during commercial aircraft assembly. The holes were then evaluated by Boeing engineers in accordance with standards required by the Boeing Aircraft Company. The most important criteria in determining effectiveness of the various formulas were the actual dimensions of the holes in relation to the drill size, and surface finish inside the hole. Holes whose surface finish or diameter requirements failed to meet Boeing specifications were rejected automatically. Because hole quality was effected by the drill or drill motor being used, and only one drill and drillmotor were used during a day's test series, holes from one test series were not compared to holes from another test series.
- Each hole was measured for its smallest and largest diameters at three positions: the hole's entrance, its middle, and its exit.
- the quality of the holes depended on the consistency of the diameters and how closely the hole conformed to the diameter of the drill. Diameter consistency is expressed in FIGS. 1 and 2A-B as “Total Deviation.” In general, the greater the differences in diameters, the greater the total deviation; hence, holes with the lowest total deviation within a test series were judged to be “best.”
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Lubricants (AREA)
Abstract
Disclosed is a machining fluid admixture for cooling and lubricating a workpiece/tool interface, wherein the admixture comprises a major amount of n-propyl bromide and a minor amount of a lubricant. In other embodiments, the machining fluid consists essentially of about 30.0 to about 99.99 weight percent n-propyl bromide; from about 0.01 to about 30.0 weight percent of a lubricant; and optionally from 0.0 to about 70.0 weight percent of a fluorinated chemical. In still further embodiments, the machining fluid consists essentially of about 45.0 to about 50.0 weight percent n-propyl bromide; from about 0.01 to about 2.0 weight percent of a lubricant; and from 45.0 to about 50.0 weight percent of a fluorinated chemical. In other aspects, the present invention is directed to methods for cooling and lubricating a tool/workpiece interface. The methods comprise the steps of applying an effective amount of the n-propyl bromide-based machining formulations as disclosed herein to a part during a machining operation so as to cool and lubricate the tool/workpiece interface.
Description
- The present invention is generally directed to machining fluid formulations and, more specifically, to machining fluid formulations comprising an admixture of n-propyl bromide base solvent together with a dissolved or dispersed lubricant, and optionally together with a fluorinated hydrocarbon, as well as to methods of using the same.
- Modern metal working and forming processes normally require the use of cutting and grinding fluids whose function is to facilitate machining operations by cooling and lubricating the workpiece. In machining operations where only lubrication is necessary, lube oils are generally used. When lubrication and cooling are required, lube oil-in-water emulsions are generally used. The cooling function is accomplished by the ability of the fluid to carry off heat generated by frictional contact between the tool and the workpiece. Cooling aids tool life, preserves tool hardness and helps to maintain the dimensions of the machined parts. Cutting and grinding fluids also serve to carry away debris from the work area. With respect to straight lube oils and lube oil-in-water emulsions, they both conventionally contain additives such as stabilizers, biocides, defoamants, corrosion inhibitors, extreme pressure active materials, metal cleaners, and the like.
- Over the years, developments with respect to cutting and grinding fluids (collectively referred to herein as machining fluids) have been numerous. Machining fluid technology has expanded to include the formulation and use of mineral, vegetable, and fatty oils to impart an extended range of desirable properties—corrosion protection, resistance to bacterial attack, improved lubricity, greater chemical stability, improved emulsibility, and the like. In more recent years, water-soluble fluids and fluids comprised of chemicals in water solution have replaced many traditional oil-based fluids in many different applications. This trend has been spurred by, among other things, dwindling oil supplies and rising costs for petroleum products. Increased costs to clean workpieces and rising costs of machining fluid disposal have also fueled development and use of synthetic water-based fluids.
- Increasingly significant in the formulation of machining fluids is a confusing array of government regulations (federal, state, and local) pertaining to solvent emissions and waste disposal. The composition and use of machining fluids is now more than ever directly impacted by human safety considerations, air and water pollution regulations, chemical toxicity registration, waste disposal regulations, shipping regulations, energy policy, et cetera. The machining fluid selection process is further complicated by the fact that the machining fluid is only one component in an integrated metal-fabrication system.
- Significantly, chlorofluorocarbons (CFCs), generally formulated with a lubricant, have for the last 30 years also been used in various machining operations. Advantages of CFC solvent-based fluids over traditional oils and water/lubricant blends include their non-flammability and cleanliness. In general, CFC solvents evaporate completely and rapidly, thereby limiting the area of runoff and lubricant deposition. Additionally, using CFC-based fluids on large parts with difficult-to-reach areas having stringent cleanliness requirements, such as aircraft wings, generally saves many manhours of cleaning time. CFC-based fluids are also nonflammable, another desirable characteristic in work areas where heat and sparks may be generated.
- Currently, there is a need to find replacements for CFC-based machining fluids; they are no longer being manufactured because of the Montreal Protocol and its attendant amendments which limit the use and production of certain ozone depleting chemicals. Thus, environmental concerns require that replacement machining fluids have low ozone depletion potentials, low global warming potentials, and short atmospheric lives; whereas workplace and machining concerns require that they have low toxicities, high flashpoints (or be non-flammable), non-corrosive characteristics towards a variety of metals, high heat-of-vaporization values (able to remove heat quickly), and are be able to dissolve (or otherwise disperse a lubricant) and evaporate quickly so as to leave behind little or no non-volatile residue (NVR).
- Although significant progress has been made with respect to machining fluid formulations, there is still a need in the art for improved machining fluid formulations that further alleviate environmental and worker safety concerns, especially within the context of finding a replacement machining fluid for CFC-based solvents. The present invention fulfills these needs and provides for further related advantages.
- In brief, the present invention is directed to a machining fluid admixture for cooling and lubricating a workpiece/tool interface, wherein the admixture comprises a major amount of n-propyl bromide and a minor amount of a lubricant. In other embodiments, the machining fluid consists essentially of about 30.0 to about 99.99 weight percent n-propyl bromide; from about 0.01 to about 30.0 weight percent of a lubricant; and optionally from 0.0 to about 70.0 weight percent of a fluorinated chemical. In still further embodiments, the machining fluid consists essentially of about 45.0 to about 50.0 weight percent n-propyl bromide; from about 0.01 to about 2.0 weight percent of a lubricant; and from 45.0 to about 50.0 weight percent of a fluorinated chemical. In other aspects, the present invention is directed to methods for cooling and lubricating a tool/workpiece interface. The methods comprise the steps of applying an effective amount of the n-propyl bromide-based machining formulations as disclosed herein to a part during a machining operation so as to cool and lubricate the tool/workpiece interface.
- The lubricant component of the inventive machining fluids may be a mineral oil, a synthetic lubricating oil, or a mixture thereof. The synthetic lubricating oils may or may not have a halogen constituent, and may be selected from a polyol ester, a polyalkylene glycol, a glycol ether, an isoparaffin, or mixture thereof. The polyalkylene glycol may be ethylene glycol monobutyl ether, propylene glycol methyl ether, or a mixture thereof; the isoparaffin may be 2,2,4-trimethylpentane.
- The fluorinated chemical component of the inventive machining fluids may have the formula of C aFbHcNdOe wherein 2≦a≦8, 5≦b≦18, 0≦c≦13, 0≦d≦2 and 0≦e≦2; the fluorinated chemical may be 1,1,1,2,3,4,4,5,5,5-decafluoropentane, 1-methoxy-nonafluorobutane, or a mixture thereof.
- FIG. 1 shows a graph of drilling test data used to determine preferred 1-methoxy-nonafluorobutane/n-propyl bromide admixtures wherein 100 ml samples of the admixture was mixed with 0.5 ml of polyol ester lubricant, and wherein drilling was 0.621 in. diameter by 1.5 in deep in 7050 aluminum with 950 RPM at 0.002 feed.
- FIG. 2A shows a bar graph of lubricant test data comparisons wherein 50/50 n-propyl bromide/fluorinated chemical samples were admixed with varying amounts of different lubricants, and wherein drilling was 0.621 in. diameter by 1.5 in deep in 7050 aluminum with 950 RPM at 0.002 feed.
- FIG. 2B shows a bar graph of lubricant test data comparisons wherein 50/50 n-propyl bromide/fluorinated chemical samples were admixed with varying amounts of different lubricants, and wherein drilling was 0.621 in. diameter by 1.5 in deep in 7050 aluminum with 950 RPM at 0.002 feed.
- As noted above, the present invention is generally directed to machining fluid formulations and, more specifically, to machining fluid formulations comprising an admixture of n-propyl bromide base solvent together with a lubricant, and optionally together with a fluorinated hydrocarbon as well as to methods of using the same. With respect to this disclosure, it is to be understood that although many specific details of certain embodiments of the present invention are set forth below and in the accompanying examples, the present invention may have additional embodiments, and the present invention may be practiced without several of the details described herein. Therefore, the described embodiments are to be considered in all respects only as illustrative and not restrictive.
- For purposes of clarity and to facilitate a more complete understanding of the full scope of the present invention, a brief review of the nomenclature associated with machining operations is provided below. As is appreciated by those skilled in the art, machining operations is a broad term that is inclusive of all metal cutting and grinding operations in which a tool operates on a workpiece in a mechanical shaping or working process. When properly applied to the workpiece/tool interface, machining fluids significantly increase productivity and reduce costs by making possible the use of higher cutting speeds, higher feed rates, and greater depths of cut. The effective application of machining fluids also lengthens tool life, decreases workpiece surface roughness, increases dimensional accuracy, and decreases the amount of energy consumed as compared to dry machining.
- Thus, and depending on the machining operation being performed (e.g., cutting versus grinding), a machining fluid typically has one or more of the following functions: cooling the tool, workpiece, and resulting grinds/chips; lubricating by reducing friction and minimizing erosion on the tool; flushing chips and swarf away from the tool; controlling “built-up edge” (BUE) on the tool; and protecting the workpiece and tool from corrosion. The relative importance of each of these functions depends on the workpiece material, the finish requirements of the final part, the machining conditions, as well as the nature of the cutting or grinding tool. Although the term machining fluid is inclusive of both, the primary difference between the functions of grinding and cutting fluids is that cooling and flushing is relatively more important in grinding than in cutting. In metal cutting, most of the heat generated during the cutting operation is carried away in the chip, whereas relatively less heat is generated in the workpiece and the tool. In the case of grinding, on the other hand, most of the heat is retained in the workpiece, and significant amounts of swarf tends to accumulate. Therefore, cooling and flushing becomes generally more important for grinding operations than for cutting operations.
- In view of the foregoing and in one embodiment, the present invention is directed to a machining fluid admixture for cooling and lubricating a workpiece/tool interface, wherein the machining fluid admixture comprises n-propyl bromide and a lubricant. In other embodiments, the present invention is directed to compositions of n-propyl bromide, a lubricant, and a fluorinated chemical. Such inventive n-propyl bromide-based machining fluids have been surprisingly discovered to be very effective replacements for many existing CFC-based machining fluids currently available. In particular, it has been surprisingly discovered that machining fluid formulations comprising a major amount of n-propyl bromide admixed together with a suitable lubricant, and optionally a fluorinated chemical such a hydrofluorocarbon and/or a hydroflouroether, works remarkably well for cooling and lubricating workpiece/tool interfaces during a machining operation; and afterwards such formulations are then able to evaporate quickly so as to leave behind little or no non-volatile residue (NVR). Thus, the present invention provides for very effective replacement machining fluids for many of the now banished CFC-based solvents.
- As used within the context of the present invention the term “admixture” includes mixtures of the recited components, as well as reaction products that may result from such mixing (together with, or without, other constituents) of the recited components. Likewise, the term “lubricant” refers to those hydrocarbon-based compounds, and various mixtures thereof, that are capable of reducing frictional forces between the tool and workpiece during a machining operation. Accordingly, the term lubricant includes a wide variety of organic compounds/formulations having lubricating viscosity at standard conditions and are capable of reducing frictional forces; such organic compounds/formulations may be naturally occurring substances or compounds, mixtures of naturally occurring substances or compounds, synthetic organic compounds, mixtures of synthetic organic compounds, or mixtures of naturally occurring substances or compounds and synthetic organic compounds. In general, the organic compounds/formulations of the present invention are naturally occurring or synthetic oils of lubricating viscosity. However the organic compounds/formulations may be somewhat viscous such as, for example, a grease. Accordingly, the organic compounds/formulations of the present invention include, but are not limited to, water insoluble solvent refined or acid refined mineral oils of the paraffinic, naphthenic or mixed paraffinic and naphthenic types, oils derived from coal or shale, petroleum based oils such as products containing naphtha and/or kerosene, sulfurized oils, chlorosulfurized oils, chlorinated oils, vegetable oils including, but not limited to, caster oil, soybean oil, cottonseed oil, palm oil, sunflower oil and rapeseed oil, animal oils, polyolefins, fatty acid esters or amides, polymerized unsaturated C 12 to C36 fatty acid amides and esters of polymerized unsaturated fatty acids.
- Synthetic lubricating oils useful in this invention may include, for example, water insoluble hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, etc.); alkyl benzenes (e.g., dodecylbenzenes, tetradecylbenzene, dinonylbenzenes, di-(2-ethylhexyl)benzenes, etc.); polyphenyls (e.g., biphenyls, terphenyls, etc.); and the like. Water insoluble alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc., constitute another class of known synthetic lubricating oils. These are exemplified by the oils prepared through polymerization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methylpolyisopropylene glycol ether having an average molecular weight of 1,000, diphenyl ether of polyethylene glycol having a molecular weight of 500-1,000, diethyl ether of polypropylene glycol having a molecular weight of 1,000-1,500, ethylene glycol monobutyl ethers, propylene glycol methyl ethers, etc.) or mono- and polycarboxylic ester thereof, for example, the acetic acid esters, mixed C 3 to C8 fatty acid esters, or the C13 oxo acid diester of tetraethylene glycol.
- Another suitable class of synthetic lubricating oils useful in the practice of the present invention comprises the water insoluble esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, etc.) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethyhexyl alcohol, pentaerythritol, etc.). Specific examples of these esters include dibutyl adipate, di(2-ethylhexyl)-sebacate, di-n-hexyl fumarate, dioctyl sebacate, di-isooctyl azelate, diisodecyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid, and the like.
- Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxysiloxane oils and silicate oils comprise another useful class of synthetic lubricants useful in the practice of the present invention (e.g., tetraethyl-silicate, tetraisopropyl-silicate, tetra-(2-ethylhexyl)-silicate, tetra-(4-methyl-2-tetraethyl)-silicate, tetra-(p-tertbutylphenyl) silicate, hexyl-(4-methyl-2-pentoxyl)-disiloxane, poly(methyl)-siloxanes, poly(methyl-phenyl)-siloxanes, etc.). Other synthetic lubricating oils usable in this invention include liquid water insoluble esters of phosphorous containing acids (e.g., tricresyl phosphate, trioctyl phosphate di-ethyl ester of decane phosphonic acid, etc.), polymeric tetra-hydrofurans, and the like. Likewise, sulfurized esters of an unsaturated aliphatic carboxylic acid are also useful as the lubricant component.
- The sulfurized unsaturated esters of aliphatic carboxylic acids useful as the lubricant component in accordance with the practice of the present invention include the full and partial esters of mono, di and tri hydric alcohols (e.g., ethanol, ethylene glycol and glycerol). Examples of sulfurized unsaturated esters of aliphatic carboxylic acids include, but are not limited to, sulfurized methyloleate, sulfurized hexyl sorbate, sulfurized dodecyllinolenate, and sulfurized ethylene dilinoleate, 1,6 hexylene diricinoleate, glycerine tripalmitoleate, polyoxyethylene dioleate, polyoxypropylene disorbate and glycerine dilinoleate. The sulfurized ester of an unsaturated aliphatic carboxylic acid employed in the practice of the present invention may be sulfurized fat or a sulfurized fatty oil, and the fat or fatty oil which has been sulfurized may be of animal or vegetable origin. Examples of such sulfurized fatty materials include, but are not limited to, sulfurized tallow, sulfurized palm oil, sulfurized coconut oil, sulfurized rapeseed oil, sulfurized lard oil and sulfurized castor oil.
- The sulfurized polymerized unsaturated fatty acid amides and esters thereof useful as the lubricant component in accordance with the practice of the present invention may be generally derivatives of sulfurized polymerized unsaturated fatty acids that are prepared from polymerized unsaturated fatty acids obtained by polymerizing ethylenically unsaturated fatty acids having from 12 to 36 carbon atoms. Generally, the polymerized unsaturated fatty acid contains from 2 to 4 monomeric units, 2 to 4 carboxylic acid groups and residual ethylenic unsaturation. The polymerization of ethylenically unsaturated fatty acids is known in the art and such acids and the methods for polymerization have been described in the art. Dimer, trimer and tetramer acids prepared from ethylenically unsaturated fatty acids are commercially available. The polymerized ethylenically unsaturated fatty acid may contain a mixture of ethylenically unsaturated fatty acid, dimer acid, trimer acid and tetramer acid in varying proportions depending upon the starting ethylenically unsaturated fatty acid and the conditions under which the polymerization was carried out. Sulfurization of the polymerized unsaturated fatty acid may be achieved by methods well known in the art. Esters of polymerized unsaturated acids that may be sulfurized to produce the lubricant useful in the practice of the present invention include, but are not limited to, mono methyl ester of dimerized linoleic acid, mono polyoxyalkylene (e.g., polyoxyethylene) glycol ester of dimerized linoleic acid, acid terminated polyoxyalkylene (e.g., polyoxyethylene) glycol diester of dimerized linoleic acid, and alcohol terminated polyoxyalkylene (e.g., polyoxypropylene oxyethylene) glycol polyester of dimerized linoleic acid. Examples of sulfurized polymerized unsaturated fatty acids for preparing amide and ester derivatives include, but are not limited to, sulfurized polymerized oleic acid, sulfurized polymerized linoleic acid, sulfurized polymerized lauroleic acid, sulfurized polymerized vaccenic acid, sulfurized polymerized eleostearic acid and sulfurized polymerized linolenic acid.
- Examples of sulfurized hydrocarbons useful as the lubricant component in accordance with the practice of the present invention include, but are not limited to, sulfurized olefin, olefin sulfides, aliphatic hydrocarbon sulfides (e.g, R 5—S—R6 where R5 is alkyl of 1 to 20 carbons and R6 is alkyl of 3 to 20 carbons) and sulfurized polyolefin, particularly sulfurized low molecular weight polyolefins.
- In the practice of the present invention the lubricant component of the machining fluid admixture may vary in amount over a wide range. Typically, the lubricant component of the n-propyl bromide/lubricant admixture ranges from about 0.01% to about 30%, preferably from about 0.01% to about 10%, and more preferably from about 1.0% to about 3.0%, by weight based on the total machining fluid composition.
- As noted above, in other embodiments the n-propyl bromide/lubricant admixture includes a fluorinated chemical component such as, for example, hydrofluorocarbons (HFCs) and/or hydrofluoroethers (HFEs). Preferably, the fluorinated chemical has the formula of C aFbHcNdOe wherein 2≦a≦8, 5≦b≦18, 0≦c≦13, 0≦d≦2 and 0≦e≦2. Thus, fluorinated chemicals useful in the present invention include perfluorinated chemicals such as perfluoroalkanes, perfluorocycloalkanes, perfluoroethers, perfluorocycloethers, perfluorocycloarninoethers and the like, as well as partially fluorinated hydrocarbons such as hydrofluoroethers. The partially fluorinated hydrocarbons preferably contain a fluorine:hydrogen atom ratio of at least about 1:1, and more preferably of at least about 2:1. Among the preferred perfluorinated chemicals are straight chain fluorocarbons containing only carbon and fluorine atoms, such as perfluoro-n-pentane, perfluoro-n-hexane, perfluoro-n-heptane and perfluoro-n-octane. The preferred fluorinated chemicals in the practice of the present invention include 1,1,1,2,3,4,4,5,5,5-decafluoropentane (available from E. I. Dupont de Nemours and Company, U.S.A. under the tradename VERTREL XF), 1-methoxy-nonafluorobutane (available from Minnesota Mining and Manufacturing Company, U.S.A. under the tradename HFE-7100), or a mixture thereof. With respect to 1-methoxy-nonafluorobutane, it is to be understood that this fluorinated chemical generally consists of two inseparable isomers with essentially identical properties; namely, (CF3)2CFCF2OCH3 and CF3CF2CF2CF2OCH3.
- As with the lubricant component, the fluorinated chemical component of the machining fluid formulation may also vary over a wide range. Typically, the fluorinated hydrocarbon component of the n-propyl bromide/lubricant admixture ranges from about 0.0% to about 70%, preferably from about 25% to about 60%, and more preferably from about 45% to about 55%, by weight based on the total machining fluid composition.
- In other aspects, the present invention is directed to methods for cooling and lubricating a tool/workpiece interface. The methods comprise the steps of applying an effective amount of the n-propyl bromide-based machining formulations as disclosed herein to a part during a machining operation so as to cool and lubricate the tool/workpiece interface.
- For purposes of illustration and not limitation, the following examples more specifically disclose various aspects of the present invention.
- In order to demonstrate the effectiveness of machining fluid formulations comprising an admixture of n-propyl bromide base solvent together with a lubricant (and optionally with a fluorinated chemical component) in accordance with the present invention, several drilling tests were conducted. More specifically, several drilling tests that simulated exemplary machining conditions associated with the aerospace industry were conducted using portable, air-powered drill motors called “Quackenbush drills.” These motors allow the rotational speed of the drill bit (i.e., revolutions per minute or “RPM”), as well as the drill bit's feed rate (i.e., distance drill bit advances, expressed as thousandths of an inch per revolution or “IPR,” into workpiece during each revolution) to be precisely adjusted. In the several tests, the drill bits used were standard high-speed steel having internal channels for transporting the machining fluid to the cutting edges of the drill bit's tip. (Note that the machining industry refers to this type of fluid delivery system as “through-the-tool” as opposed to “flood” or “spray”.) The machining fluid supply was housed in a pressure pot and forced to the point of cut by compressed air.
- The Quackenbush drillmotor is equipped with a “nosepiece” and “foot” for attaching the motor to a drilling jig and aligning it perpendicular to the surface being drilled. The nosepiece is actually a drill bushing extending out from the attachment foot. It is inserted into a guide hole in the drill jig until the foot contacts the jig. The motor is then rotated a quarter turn, forcing a wedge shaped flange at the base of the foot to slide under an attachment lobe fastened to the jig. This action, similar to tightening a lid on a jar, securely attaches the drill motor to the jig at right angles to the work.
- The workpieces consisted of metal coupons measuring 6″ wide, ¾″-1½″ thick, and 24″ long. The coupons were clamped to a movable fixture parallel to the drill jig. After each hole was drilled, the fixture was moved to the next position. Coupons consisted of 2024 aluminum (soft & gummy), 7075 aluminum (hard), and 6AL4V titanium (very hard & tough). In some cases, several coupons were sandwiched together to simulate the arrangement of aircraft parts to be drilled. In general, it is generally difficult to control hole quality in such metal sandwiches in that hard chips exit back through the drill flutes and past the soft aluminum. Unless the machining fluid provides adequate lubrication, the chips tend to score the soft aluminum. Coupons were also drilled in a variety of positions to simulate shop floor situations: horizontal, vertical-up, and vertical-down. The vertical positions have special advantages and problems; for example, vertical-up holes lose fluid faster but chips clear the hole quickly, whereas vertical-down drilling does not lose fluid prematurely, but chips can bunch-up in the flutes more easily and score the hole. In either case, sufficient lubricant must remain in the hole and on the tool so as to prevent the flutes from rubbing the sides of the hole, causing it to go oversize, and the fluid must keep the chips lubricated so they flush from the hole without scoring its surface.
- Exemplary machining fluid admixtures in accordance with the present invention were prepared in which a commercial grade of n-propyl bromide (NPB) (Great Lakes Chemical Corp, U.S.A.) was used as the base solvent. When the NPB was combined with small amounts of dissolved or otherwise dispersed lubricant, the inventive machining fluid was found to provide sufficient cooling and lubrication so as to produce holes that meet commercial aircraft standards. NPB's role however goes beyond acting as a lubricant vehicle—its physical characteristics provide many other benefits such as rapid evaporation under standard conditions.
- In this regard, a primary benefit of using evaporative machining fluids like those of the present invention is the relative cleanliness of the operation. In contrast, conventional machining fluids such as oil or water/lubricant blends are capable of making high quality cuts in metal; however, the part must normally be put through a cleaning process afterward. If the same quality machining can be performed with an evaporative fluid and no cleaning is required afterward, the savings in labor can more than offset the higher cost for the evaporative machining fluid.
- Although many solvents are known to exist which would evaporate after use, and which would provide adequate cooling and lubrication during a cut, these solvents by themselves, however, would generally create a fire hazard that could not be tolerated in an open workplace. NPB is not only nonflammable, it also suppresses the flammability of many fluids blended with it (thereby allowing the addition of small amounts of flammable hydrocarbons having a relatively high vapor pressure). Such additives may then be able to evaporate at a rate similar to that of NPB and leave a low NVR.
- NPB's high heat-of-vaporization allows it to remove heat from the drill, workpiece, and chips as a cut is being made. This cooling action improves hole finish and allows faster RPMs and more aggressive feed rates. During testing it was observed that tools did not develop a “built-up-edge” (BUE). This is a chronic problem when drilling metal (e.g., aluminum or titanium) and it occurs when small metal particles weld to the surfaces of the drill bit contacting the workpiece. BUE will change the diameter of the drill bit when it occurs on the margins, eventually causing the drill bit to create an oversized hole. Although the mechanism has not been determined, drill margins remained free of BUE while testing the NPB admixtures disclosed herein (which greatly extended tool life).
- All of the lubricants tested with NPB formed stable solutions when dissolved into the solvent. The solvency was reduced, however, when NPB was combined with either a hydroflourocarbon (HFC) or a hydroflouroether (HFE). In general, the more viscous the additive, the less likely it was to stay in solution if either HFC or HFE were part of the admixture. These solvents were included in the majority of drill tests because their physical characteristics are similar to NPB, and because they reduce the overall toxicity of the final formula. In some work environments, such as aircraft assembly plants, the concentration of solvent vapor could exceed 100 PPM in the workplace if problems occur with ventilation. Because of their higher PELs (200 PPM and 700 PPM, respectively) the overall toxicity of the fluid was reduced when either HFC or HFE was included in significant proportions.
- Testing was done in a number of phases. First, a basic lubricant package was developed that, when combined with NPB, produced good holes in aluminum drilling tests. NPB was then combined with HFE or HFC in varying ratios, mixed with the minimal amount of lubricant needed for drilling, and drill tests were conducted to determine an optimal solvent/solvent ratio. It was found that when NPB was less than 30% of the total mixture by weight, hole quality was significantly reduced. No significant improvement was observed in hole quality when the ratio of NPB exceeded 60% of the total combined solvent mixture. A standard solvent ratio of about 50% NPB and about 50% of either HFC or HFE was then used in combination with a variety of lubricants. These lubricants included: ethylene glycol monobutyl ether, propylene glycol methyl ether, polyol ester, “Boelube” (proprietary formula, based on long-chain alcohol, belonging to The Boeing Company), “Mayphos 45” (Proprietary formula, using phosphorous as a barrier lubricant, belonging to Castrol), “Ilocut 7425” (Castrol product consisting of Naphtha), kerosene, “Isopar” solvents (series of high-purity hydrocarbon solvents from Exxon).
- Good quality holes were produced with all of the tested lubricants in combination with NPB/HFE or NPB/HFC, but the most suitable lubricant for aircraft assembly was seemingly Isopar C. This lubricant appeared to work the best because it evaporated at a rate similar to the base solvents and it left behind very little NVR. The effectiveness of the several machining fluid formulations tested are more fully exemplified in the context of the following test data:
- Drilling Test Data and Summary
- Drilling tests were conducted using various formulas of evaporative machining fluid. The tests were conducted in a machining laboratory and simulated the drilling procedures used during commercial aircraft assembly. The holes were then evaluated by Boeing engineers in accordance with standards required by the Boeing Aircraft Company. The most important criteria in determining effectiveness of the various formulas were the actual dimensions of the holes in relation to the drill size, and surface finish inside the hole. Holes whose surface finish or diameter requirements failed to meet Boeing specifications were rejected automatically. Because hole quality was effected by the drill or drill motor being used, and only one drill and drillmotor were used during a day's test series, holes from one test series were not compared to holes from another test series. Each hole was measured for its smallest and largest diameters at three positions: the hole's entrance, its middle, and its exit. The quality of the holes depended on the consistency of the diameters and how closely the hole conformed to the diameter of the drill. Diameter consistency is expressed in FIGS. 1 and 2A-B as “Total Deviation.” In general, the greater the differences in diameters, the greater the total deviation; hence, holes with the lowest total deviation within a test series were judged to be “best.”
- More specifically, two values were determined by evaluating the hole diameter data: (1) greatest deviation within any given hole, and (2) deviation of a hole's largest diameter from the smallest diameter within a given test series. In both cases the deviations were expressed as 1=.0001 and were added together to determine the “Total Deviation” value for each test hole. As a result of these tests, it was discovered that drills using NPB-based machining fluid formulations in accordance with the present invention developed almost no “built up edge”, or BUE, while drilling aluminum or titanium. It was also found that holes could be drilled more aggressively with NPB and Isopar C or a blend of lubricants (not exceeding 2% lubricant) than with the soluble oil cutting fluid or the long-chain cetyl alcohol called “Boelube” which Boeing uses as its standard cutting fluids in similar operations. Speed and feed were increased from 950 RPM @ .002″ feed per revolution to 1250 RPM @ .004 feed per revolution, increasing productivity by 132%.
- While the machining fluid formulations of the present invention have been described in the context of the embodiments illustrated and described herein, the invention may be embodied in other specific ways or in other specific forms without departing from its spirit or essential characteristics. Therefore, the described embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Claims (32)
1. A machining fluid admixture for cooling and lubricating a workpiece/tool interface, the machining fluid admixture comprising:
a major amount of n-propyl bromide; and
a minor amount of a lubricant.
2. The machining fluid admixture of claim 1 wherein the lubricant is in an amount that ranges on a weight percent basis from about 0.01% to about 30% of the machining fluid admixture.
3. The machining fluid admixture of claim 1 wherein the lubricant is in an amount that ranges on a weight percent basis from about 0.01% to about 10% of the machining fluid admixture.
4. The machining fluid admixture of claim 1 wherein the lubricant is in an amount that ranges on a weight percent basis from about 1.0% to about 3.0% of the machining fluid admixture.
5. The machining fluid admixture of claim 1 wherein the lubricant is a mineral oil, a synthetic lubricating oil, or a mixture thereof.
6. The machining fluid admixture of claim 1 wherein the lubricant is a synthetic lubricating oil.
7. The machining fluid admixture of claim 6 wherein the synthetic lubricating oil is a non-halogenated synthetic lubricating oil.
8. The machining fluid admixture of claim 6 wherein the synthetic lubricating oil is a polyol ester, a polyalkylene glycol, a glycol ether, an isoparaffin, or mixture thereof.
9. The machining fluid admixture of claim 8 wherein the polyalkylene glycol is ethylene glycol monobutyl ether, propylene glycol methyl ether, or a mixture thereof.
10. The machining fluid admixture of claim 6 wherein the synthetic lubricating oil is an isoparaffin.
11. The machining fluid admixture of claim 10 wherein the isoparaffin is 2,2,4-trimethylpentane.
12. The machining fluid admixture of claim 6 wherein the synthetic lubricating oil is a polyol ester.
13. The machining fluid admixture of claim 6 further comprising a fluorinated chemical.
14. The machining fluid admixture of claim 13 wherein the fluorinated chemical has the formula of CaFbHcNdOe wherein 2≦a≦8, 5≦b≦18, 0≦c≦13, 0≦d≦2 and 0≦e≦2.
15. The machining fluid admixture of claim 13 wherein the fluorinated chemical is 1,1,1,2,3,4,4,5,5,5-decafluoropentane, 1-methoxy-nonafluorobutane, or a mixture thereof.
16. A composition useful as a machining fluid, the composition consisting essentially of:
from about 30.0 to about 99.99 weight percent n-propyl bromide;
from about 0.01 to about 30.0 weight percent of a lubricant; and optionally
from 0.0 to about 70.0 weight percent of a fluorinated chemical.
17. The composition of claim 16 wherein the lubricant is a synthetic lubricating oil.
18. The composition of claim 17 wherein the synthetic lubricating oil is a non-halogenated synthetic lubricating oil.
19. The composition of claim 17 wherein the synthetic lubricating oil is a polyol ester, a polyalkylene glycol, a glycol ether, an isoparaffin, or mixture thereof.
20. The composition of claim 19 wherein the polyalkylene glycol is ethylene glycol monobutyl ether, propylene glycol methyl ether, or a mixture thereof.
21. The composition of claim 17 wherein the synthetic lubricating oil is an isoparaffin.
22. The composition of claim 21 wherein the isoparaffin is 2,2,4-trimethylpentane.
23. The composition of claim 17 wherein the synthetic lubricating oil is a polyol ester.
24. The composition of claim 16 wherein the fluorinated chemical has the formula of CaFbHcNd 0 e wherein 2≦a≦8, 5≦b≦18, 0≦c≦13, 0≦d≦2 and 0≦e≦2.
25. The composition of claim 16 wherein the fluorinated chemical is 1,1,1,2,3,4,4,5,5,5-decafluoropentane, 1-methoxy-nonafluorobutane, or a mixture thereof.
26. A machining fluid composition consisting essentially of:
about 45.0 to about 50.0 weight percent n-propyl bromide;
about 0.01 to about 2.0 weight percent of a lubricant; and
about 45.0 to about 50.0 weight percent of a fluorinated chemical.
27. The machining fluid composition of claim 26 wherein the lubricant is a polyol ester, a polyalkylene glycol, a glycol ether, an isoparaffin, or mixture thereof.
28. The machining fluid composition of claim 27 wherein the polyalkylene glycol is ethylene glycol monobutyl ether, propylene glycol methyl ether, or a mixture thereof.
29. The machining fluid composition of claim 26 wherein the synthetic lubricating oil is an isoparaffin.
30. The machining fluid composition of claim 29 wherein the isoparaffin is 2,2,4-trimethylpentane.
31. The machining fluid composition of claim 26 wherein the synthetic lubricating oil is a polyol ester.
32. A method for cooling and lubricating a tool/workpiece interface, the method comprising applying an effective amount of a composition formulated in accordance with claim 1 , claim 16 , or claim 26 so as to cool and lubricate the tool/workpiece interface.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/016,003 US20020042350A1 (en) | 2000-06-26 | 2001-11-02 | Evaporative n-propyl bromide-based machining fluid formulations |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/603,790 US6326338B1 (en) | 2000-06-26 | 2000-06-26 | Evaporative n-propyl bromide-based machining fluid formulations |
| US10/016,003 US20020042350A1 (en) | 2000-06-26 | 2001-11-02 | Evaporative n-propyl bromide-based machining fluid formulations |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/603,790 Continuation US6326338B1 (en) | 2000-06-26 | 2000-06-26 | Evaporative n-propyl bromide-based machining fluid formulations |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20020042350A1 true US20020042350A1 (en) | 2002-04-11 |
Family
ID=24416918
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/603,790 Expired - Fee Related US6326338B1 (en) | 2000-06-26 | 2000-06-26 | Evaporative n-propyl bromide-based machining fluid formulations |
| US10/016,003 Abandoned US20020042350A1 (en) | 2000-06-26 | 2001-11-02 | Evaporative n-propyl bromide-based machining fluid formulations |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/603,790 Expired - Fee Related US6326338B1 (en) | 2000-06-26 | 2000-06-26 | Evaporative n-propyl bromide-based machining fluid formulations |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US6326338B1 (en) |
| AU (1) | AU2001273024A1 (en) |
| WO (1) | WO2002000816A2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050199853A1 (en) * | 2004-01-20 | 2005-09-15 | Bateman David J. | Vapor compression air conditioning or refrigeration system cleaning compositions and methods |
| US20100242559A1 (en) * | 2009-03-24 | 2010-09-30 | Saenz De Miera Vicente Martin | Method of producing aluminum products |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100799420B1 (en) * | 1999-10-25 | 2008-01-30 | 니폰 오일 코포레이션 (신 니혼 세키유 가부시키 가이샤) | Ultra-low oil supply cutting or grinding oil composition |
| US6537384B2 (en) * | 2001-02-06 | 2003-03-25 | General Electric Company | Composition and method for engine cleaning |
| US6759374B2 (en) * | 2001-09-19 | 2004-07-06 | 3M Innovative Properties Company | Composition comprising lubricious additive for cutting or abrasive working and a method therefor |
| CA2478195C (en) * | 2002-03-06 | 2011-08-30 | Exxonmobil Chemical Patents Inc. | Improved hydrocarbon fluids |
| EP1342774A1 (en) * | 2002-03-06 | 2003-09-10 | ExxonMobil Chemical Patents Inc. | A process for the production of hydrocarbon fluids |
| US20040087455A1 (en) * | 2002-10-30 | 2004-05-06 | Degroot Richard J. | Deposition of protective coatings on substrate surfaces |
| JP2008062361A (en) * | 2006-09-11 | 2008-03-21 | Nippon Oil Corp | Ultra-trace oil supply type cutting / grinding method and ultra-trace oil supply type cutting / grinding oil composition |
| US8066900B2 (en) | 2007-12-14 | 2011-11-29 | 3M Innovative Properties Company | Azeotropic-like compositions with 1,1,1,2,3,3-hexafluoro-3-methoxy-propane and 1-bromopropane |
| US7629307B2 (en) * | 2008-01-17 | 2009-12-08 | 3M Innovative Properties Company | Ternary azeotropic-like compositions with 1,1,1,2,3,3-hexafluoro-3-methoxy-propane and trans-1,2-dichloroethylene |
| US7625854B2 (en) | 2008-01-17 | 2009-12-01 | 3M Innovative Properties Company | Ternary azeotropic-like compositions with 1,1,1,2,3,3-hexafluoro-3-methoxy-propane and 1-bromopropane |
| RU2528294C2 (en) * | 2012-12-06 | 2014-09-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" | Method of assess efficiency of metalworking lubricant (mwl) used in cutting material |
| EP2970815B1 (en) | 2013-03-14 | 2021-04-21 | Howard University | Gelling nanofluids for dispersion stability |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4239635A (en) | 1979-06-11 | 1980-12-16 | Cincinnati Milacron Inc. | Novel diamide and lubricants containing same |
| JPS5921917B2 (en) * | 1980-12-05 | 1984-05-23 | ダイキン工業株式会社 | Volatile metalworking oil composition |
| NL189307C (en) * | 1982-12-02 | 1993-03-01 | Kali Chemie Ag | METHOD FOR MACHINING, SEPARATING OR GRINDING METALS USING A COOLANT AND COOLANT |
| DE4192638T1 (en) | 1990-11-06 | 1995-11-23 | Mobil Oil Corp | Bioresistant surfactants and cutting oil formulations |
| FR2693470B1 (en) | 1992-07-07 | 1994-09-23 | Roquette Freres | Compositions for aqueous machining fluids and aqueous machining fluids based on fatty substances and cyclodextrin. |
| US5391310A (en) | 1993-11-23 | 1995-02-21 | Cincinnati Milacron Inc. | Sulfurized aqueous machining fluid composition |
| US5858953A (en) * | 1995-04-12 | 1999-01-12 | Tosoh Corporation | Stabilized 1-bromopropane composition |
| JP2908033B2 (en) | 1995-05-16 | 1999-06-21 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | Azeotropic compositions and uses thereof |
| US5665170A (en) * | 1995-11-01 | 1997-09-09 | Albemarle Corporation | Solvent system |
| US5690862A (en) * | 1995-11-01 | 1997-11-25 | Albemarle Corporation | No flash point solvent system containing normal propyl bromide |
| US5616549A (en) * | 1995-12-29 | 1997-04-01 | Clark; Lawrence A. | Molecular level cleaning of contaminates from parts utilizing an envronmentally safe solvent |
| US5750488A (en) | 1996-01-04 | 1998-05-12 | Crc Industries, Inc. | Fluorinated cleaning solvents |
| US6043201A (en) | 1996-09-17 | 2000-03-28 | Minnesota Mining And Manufacturing Company | Composition for cutting and abrasive working of metal |
| US5716917A (en) | 1996-09-24 | 1998-02-10 | Cincinnati Milacron Inc. | Machining fluid composition and method of machining |
| AU8391298A (en) * | 1997-07-09 | 1999-02-08 | Great Lakes Chemical Corporation | Stabilized alkyl bromide solvents |
| US5874390A (en) | 1997-12-22 | 1999-02-23 | Cincinnati Milacron Inc. | Aqueous machining fluid and method |
| US6022842A (en) * | 1998-02-11 | 2000-02-08 | 3M Innovative Properties Company | Azeotrope-like compositions including perfluorobutyl methyl ether, 1- bromopropane and alcohol |
| US6010997A (en) * | 1998-06-25 | 2000-01-04 | Alliedsignal Inc. | Compositions of 1-bromopropane, nitromethane or acetonitrile and an alcohol |
| US6103684A (en) * | 1998-06-25 | 2000-08-15 | Alliedsignal Inc. | Compositions of 1-bromopropane and an organic solvent |
| US6048832A (en) | 1998-06-25 | 2000-04-11 | Alliedsignal Inc. | Compositions of 1-bromopropane, 4-methoxy-1,1,1,2,2,3,3,4,4-nonafluorobutane and an organic solvent |
| US6048833A (en) * | 1998-07-09 | 2000-04-11 | Great Lakes Chemical Corporation | Azeotrope and azeotrope-like compositions of 1-bromopropane and highly fluorinated hydrocarbons |
-
2000
- 2000-06-26 US US09/603,790 patent/US6326338B1/en not_active Expired - Fee Related
-
2001
- 2001-06-26 WO PCT/US2001/020452 patent/WO2002000816A2/en not_active Ceased
- 2001-06-26 AU AU2001273024A patent/AU2001273024A1/en not_active Abandoned
- 2001-11-02 US US10/016,003 patent/US20020042350A1/en not_active Abandoned
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050199853A1 (en) * | 2004-01-20 | 2005-09-15 | Bateman David J. | Vapor compression air conditioning or refrigeration system cleaning compositions and methods |
| US20100242559A1 (en) * | 2009-03-24 | 2010-09-30 | Saenz De Miera Vicente Martin | Method of producing aluminum products |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2001273024A1 (en) | 2002-01-08 |
| WO2002000816A2 (en) | 2002-01-03 |
| WO2002000816A3 (en) | 2002-06-13 |
| US6326338B1 (en) | 2001-12-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6326338B1 (en) | Evaporative n-propyl bromide-based machining fluid formulations | |
| US8167092B2 (en) | Metalworking lubricant formulations based on supercritical carbon dioxide | |
| CA2835019C (en) | Amine-free voc-free metal working fluid | |
| EP3394230B1 (en) | Metalworking fluid | |
| US6245723B1 (en) | Cooling lubricant emulsion | |
| US6043201A (en) | Composition for cutting and abrasive working of metal | |
| US6518225B1 (en) | Lubricating fluid | |
| JP4996872B2 (en) | Oil processing composition for metal processing, metal processing method and metal processed product | |
| EP0901510A1 (en) | A method for mechanical working | |
| JP6355339B2 (en) | Metalworking fluid composition, processing method using the same, and metalworked part manufactured by the metalworking method | |
| GB1599715A (en) | High production rate metal-working fluid | |
| JP2008007700A (en) | Metalworking fluid composition, metalworking method and metalworked product | |
| CA2309170A1 (en) | Methods of working metal and compositions useful as working fluids therefor | |
| KR100645098B1 (en) | Water Soluble Metal Covalent Composition Using Soybean Oil and Rapeseed Oil Methyl Esteroxide as Emulsifier | |
| CN113174287B (en) | Cutting fluid for metal | |
| CA2005682A1 (en) | Synthetic metalworking fluid | |
| JPH06313182A (en) | Cutting oil composition | |
| CA1059980A (en) | Cutting oil compositions having low air misting compositions | |
| CZ270199A3 (en) | Process for producing cooling and lubricating liquid | |
| HK1037881A (en) | Lubricating fluid |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |