[go: up one dir, main page]

US20020025688A1 - Heat-processing apparatus and method of semiconductor process - Google Patents

Heat-processing apparatus and method of semiconductor process Download PDF

Info

Publication number
US20020025688A1
US20020025688A1 US09/932,942 US93294201A US2002025688A1 US 20020025688 A1 US20020025688 A1 US 20020025688A1 US 93294201 A US93294201 A US 93294201A US 2002025688 A1 US2002025688 A1 US 2002025688A1
Authority
US
United States
Prior art keywords
zones
cooling
process chamber
cooling gas
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/932,942
Other versions
US6403927B1 (en
Inventor
Kazuhiko Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to TOKYO ELECTRON LIMITED reassignment TOKYO ELECTRON LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KATO, KAZUHIKO
Publication of US20020025688A1 publication Critical patent/US20020025688A1/en
Application granted granted Critical
Publication of US6403927B1 publication Critical patent/US6403927B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • the present invention relates to a heat-processing apparatus and method for a semiconductor process in which a plurality of target substrates are subjected to a heat-process simultaneously, i.e., together at the same time.
  • semiconductor process used herein includes various kinds of processes which are performed to manufacture a semiconductor device or a structure having wiring layers, electrodes, and the like to be connected to a semiconductor device, on a target substrate, such as a semiconductor wafer or an LCD substrate, by forming semiconductor layers, insulating layers, and conductive layers in predetermined patterns on the target substrate.
  • a vertical heat-processing apparatus is known as a batch type processing apparatus that applies heat processes, such as oxidation, diffusion, annealing, and CVD, to a number of semiconductor wafers together at the same time.
  • the vertical heat-processing apparatus is used such that a number of wafers are arrayed and held with a gap therebetween in a vertical direction in a holder called a wafer boat, and then the holder is loaded into a process chamber of a vertical type. Then, the wafers are subjected to a heat process while they are heated by a heating mechanism disposed around the process chamber.
  • the heating mechanism includes a surrounding member formed of a cylindrical heat-insulating body, which forms a heating space around the process chamber.
  • a resistance heating wire (heater) is disposed on the inner surface of the surrounding member.
  • the heating space comprises a plurality of zones arrayed in a vertical direction, and the heater comprises a plurality of heater segments corresponding to the zones.
  • the heater segments can be controlled independently of each other, so that a heat process is performed uniformly over all the zones.
  • the heating mechanism is arranged to perform a cooling operation by natural cooling or forcible cooling, which is performed by gas cooling or liquid cooling. As shown in FIG. 5, when the heating mechanism is cooled, the cooling rates of the zones tend to be uneven due to heat discharge and the like. Generally, the cooling rates of the lower and upper zones of the heating space are higher than that of the middle zone. Such unevenness in the cooling rate makes the thermal budgets of wafers in one lot different from each other.
  • the cooling rate of the heating space is set when the heat-processing apparatus is first installed, using a method so as to adjust the rate of a zone, which tends to have a higher rate, to be closer to the rate of a zone, which tends to have a lower rate.
  • the apparatus is set such that, for example, the heater segments of the lower and upper zones are supplied with a voltage to decrease their cooling rates down to a value as low as the middle zone. In this case, the heat applied to the lower zone warms the middle zone due to convection, radiation, and conduction of the heat, resulting in a decrease in the cooling rate as a whole.
  • An object of the present invention is to provide a heat-processing apparatus and method for a semi-conductor process, which prevent the cooling rates of the zones of a heating space from differing from each other, and increase the cooling rate of the heating space as a whole.
  • Another object of the present invention is to provide a heat-processing apparatus and method for a semiconductor process, which does not entail the troublesome operation for setting the cooling rate of a heating space when the apparatus is installed.
  • a heat-processing apparatus for a semiconductor process in which a plurality of target substrates are simultaneously subjected to a heat-process, the apparatus comprising:
  • a heater disposed around the process chamber, which heats an interior of the process chamber through a sidewall of the process chamber;
  • a surrounding member which surrounds the process chamber and the heater, and forms a heating space around the process chamber, the heating space comprising a plurality of zones juxtaposed in a direction in which the target substrates are arrayed;
  • a cooling mechanism which forms flows of a cooling gas respectively in the zones, and cools the zones
  • a controller which controls the cooling mechanism on the basis of temperatures detected by the temperature sensors when the process chamber is cooled, such that a flow velocity of the cooling gas in a first zone having a lower cooling rate becomes higher than a flow velocity of the cooling gas in a second zone having a higher cooling rate used as a reference, thereby adjusting the cooling rate of the first zone to be closer to the cooling rate of the second zone.
  • a heat processing method in the apparatus according to the first aspect comprising:
  • a vertical heat-processing apparatus for a semiconductor process in which a plurality of target substrates are simultaneously subjected to a heat-process, the apparatus comprising:
  • a supply section which supplies the process gas into the process chamber
  • a holder which holds the target substrates in the process chamber such that they are stacked one on the other with a gap therebetween in a vertical direction;
  • a heater disposed around the process chamber, which heats an interior of the process chamber through a sidewall of the process chamber;
  • a surrounding member which surrounds the process chamber and the heater, and forms a heating space around the process chamber, the heating space comprising a plurality of zones juxtaposed in a vertical direction;
  • a cooling mechanism which forms flows of a cooling gas respectively in the zones, and cools the zones
  • the cooling mechanism comprising a plurality of supply pipes, which respectively supply the cooling gas to the zones to cool the zones, a plurality of valves respectively arranged on the supply pipes to adjust supply rates of the cooling gas to the zones, and an exhaust pipe, which exhausts the cooling gas from the zones;
  • a controller which adjusts opening degrees of the valves on the basis of temperatures detected by the temperature sensors when the process chamber is cooled, such that a flow velocity of the cooling gas in a first zone having a lower cooling rate becomes higher than a flow velocity of the cooling gas in a second zone having a higher cooling rate used as a reference, thereby adjusting the cooling rate of the first zone to be closer to the cooling rate of the second zone.
  • FIG. 1 is a structural view schematically showing a vertical heat-processing apparatus for processing semiconductor wafers according to an embodiment of the present invention
  • FIG. 2 is a structural view schematically showing a vertical heat-processing apparatus for processing semiconductor wafers according to another embodiment of the present invention
  • FIG. 3 is a structural view schematically showing a vertical heat-processing apparatus for processing semiconductor wafers according to still another embodiment of the present invention.
  • FIG. 4 is a structural view schematically showing a vertical heat-processing apparatus for processing semiconductor wafers according to still another embodiment of the present invention.
  • FIG. 5 is a graph showing the cooling rate of a heating space in a vertical heat-processing apparatus.
  • FIG. 1 is a structural view schematically showing a vertical heat-processing apparatus for processing semiconductor wafers according to an embodiment of the present invention.
  • the vertical heat-processing apparatus includes a vertical furnace 1 , which functions as, e.g., a high-temperature furnace or diffusion furnace.
  • the furnace 1 has a process chamber or process tube 3 , and a cylindrical heating mechanism 4 with a liner tube (temperature-unifying tube) 5 interposed between the heating mechanism 4 and the process tube 3 .
  • a holder, such as a boat 2 made of quartz, is placed in the process tube 3 .
  • the boat 2 holds a number of, e.g., about 150, target substrates, i.e., semiconductor wafers W, such that they are stacked one on the other with a gap therebetween in a vertical direction.
  • the heating mechanism 4 is arranged to surround the process tube 3 , and to heat the interior of the process tube 3 through the sidewall of the tube 3 to a predetermined temperature of, e.g., from about 600 to 1,200° C.
  • the bottom end of the process tube 3 is supported by a base plate 6 through an attachment (not shown) disposed below the base plate 6 .
  • the base plate 6 is made of, e.g., stainless steel, and disposed horizontally in the casing of the vertical heat-processing apparatus.
  • the base plate 6 is provided with an opening 7 formed therein, through which the process tube 3 is inserted in a vertical direction.
  • a heat-insulating body 8 is attached to the opening 7 around the process tube 3 to prevent the opening 7 from allowing heat to be discharged.
  • the heating mechanism 4 includes a surrounding member 11 , which is formed of a cylindrical heat-insulating body and forms a heating space HS around the process tube 3 .
  • a heater 12 comprising resistance heating wires is disposed on the inner face of the surrounding member 11 such that the wires meanderingly extend in the angular direction of the member 11 or spirally extend in the longitudinal direction of the member 11 .
  • the heating space HS consists of a plurality of zones, e.g., five zones Z 1 to Z 5 , arrayed in a vertical direction, while the heater 12 consists of a plurality of heater segments respectively corresponding to the zones.
  • the heater segments can be controlled independently of each other, so that a uniform heat process is performed over all the zones.
  • the surrounding member 11 is covered with a water-cooling jacket (not shown).
  • the heating mechanism 4 is placed on the base plate 6 .
  • the liner tube 5 is made of, e.g., silicon carbide (SiC).
  • the heating space HS is formed as a space substantially closed between the surrounding member 11 and the liner tube 5 .
  • the liner tube 5 improves uniformity in the heating temperature to the wafers W placed in the process tube 3 .
  • the liner tube 5 also prevents the wafers W from being contaminated with metals discharged from the resistance heating wires and the like of the heating mechanism 4 .
  • the liner tube 5 has a cylindrical shape vertically elongated, with a closed top and an open bottom.
  • the liner tube 5 surrounds the process tube 3 and is placed on the heat-insulating body 8 of the base plate 6 .
  • the liner tube 5 may be omitted, such that a heating space HS is formed between the surrounding member 11 and the process tube (process chamber) 3 .
  • the heating mechanism 4 is provided with a cooling mechanism 13 , which forms a flow of cooling gas in each of the zones Z 1 to Z 5 of the heating space HS to cool the zones Z 1 to Z 5 .
  • the cooling mechanism 13 includes supply pipes 15 , which respectively supply a cooling gas, such as air (clean air) to the zones Z 1 to Z 5 to cool them.
  • the supply pipes 15 are connected to a common blower (supply blower) 18 for supplying the cooling gas.
  • the distal ends of the supply pipes 15 penetrate the sidewall of the surrounding member 11 and come into the respective zones Z 1 to Z 5 of the heating space HS.
  • the cooling mechanism 13 also includes a common exhaust pipe 20 connected to a blower (exhaust blower) 19 for exhausting the cooling gas from the heating space HS.
  • the supply pipes 15 are respectively provided with valves 16 to adjust supply rates of the cooling gas into the zones Z 1 to Z 5 .
  • Each of the valves 16 is formed of, e.g., a valve of the type driven by an actuator, whose opening degree is controlled by a controller 17 .
  • Temperature sensors 14 are arranged to detect temperatures respectively representing the zones Z 1 to Z 5 of the heating space HS.
  • the temperature sensors 14 consist of, e.g., thermocouples, disposed between the process tube 3 and the liner tube 5 to respectively correspond to the zones Z 1 to Z 5 .
  • Each of the temperature sensors 14 may be inserted in and covered with a protection tube made of quartz.
  • the controller 17 is set to recognize as a reference value the cooling rate of a zone that has the highest cooling rate, when it controls the flow of the cooling gas.
  • the reference value may be a fixed value, which has been obtained by experiment and the like in advance, and inputted into the controller 17 . Instead, the reference value may be a non-fixed value, which is calculated at each time by the controller 17 on the basis of temperatures detected by the temperature sensors 14 during a cooling operation.
  • the controller 17 controls the opening degrees of the valves 16 of the supply pipes 15 , on the basis of the temperatures corresponding to the zones Z 1 to Z 5 , which are detected by the temperature sensors 14 , so that the cooling rate of the heating space HS as a whole is adjusted to be the reference value. More specifically, the controller 17 controls, on the basis of the detected temperatures, the supply rate of cooling air to a zone having a lower cooling rate, such as the middle zones Z 3 , to be higher than that to a zone having the highest cooling rate, such as the lower zones Z 5 , so that the lower cooling rate is adjusted to be closer to, i.e., approximate, the highest cooling rate.
  • the controller 17 controls the cooling mechanism 13 such that the flow velocity of the cooling gas in a first zone having a lower cooling rate becomes higher than the flow velocity of the cooling gas in a second zone having a higher cooling rate, thereby adjusting the cooling rate of the first zone to be closer to the cooling rate of the second zone.
  • the boat 2 which has been loaded with wafers W, is placed on the insulating cylinder 10 supported by the lid 9 at a loading area below the heating mechanism 4 . Then, the lid 9 is moved up by the elevating mechanism, so that the boat 2 is inserted into the process tube 3 through the bottom opening, which is then airtightly closed by the lid 9 . Then, while the process tube 3 is exhausted, the wafers W on the boat 2 are heated up to a predetermined process temperature by the heating mechanism 4 . Then, while the process tube 3 is exhausted, a predetermined process gas is supplied into the process tube 3 to subject the wafers W to a predetermined heat process, such as a diffusion process.
  • a predetermined process gas is supplied into the process tube 3 to subject the wafers W to a predetermined heat process, such as a diffusion process.
  • the heater 12 of the heating mechanism 4 is first turned off. Then, the blower 18 is operated to supply air used as a cooling gas through the supply pipes 15 into the heating space HS, so as to forcibly cool the interior of the heating space HS. At this time, the temperature sensors 14 detect temperatures representing the zones Z 1 to Z 5 . The controller 17 controls, on the basis of the detected temperatures, the supply rate of cooling air to a zone having a lower cooling rate, such as the middle zones Z 3 , to be higher than that to a zone having the highest cooling rate, such as the lower zones Z 5 , so that the lower cooling rate is adjusted to be closer to the highest cooling rate.
  • a zone having a lower cooling rate such as the middle zones Z 3
  • the vertical heat-processing apparatus shown in FIG. 1 can automatically control the cooling rates of the zones Z 1 to Z 5 to be uniform under the control of the controller 17 .
  • the cooling rate of the heating space HS can be higher as a whole to improve the thermodynamics.
  • FIG. 2 is a structural view schematically showing a vertical heat-processing apparatus for processing semiconductor wafers according to another embodiment of the present invention.
  • This vertical heat-processing apparatus includes a heating space HS, which comprises zones Z 1 to Z 5 separated from each other by partitions 21 made of, e.g., quartz.
  • the zones Z 1 to Z 5 are respectively provided with exhaust pipes 22 connected thereto, for exhausting a cooling gas independently of each other.
  • the vertical heat-processing apparatus shown in FIG. 2 can provide the same effect as the vertical heat-processing apparatus shown in FIG. 1. Furthermore, since the heating space HS is divided into the zones Z 1 to Z 5 by the partitions 21 , the zones Z 1 to Z 5 can be cooled independently of each other. As in this embodiment, where the heating space HS is partitioned into the zones Z 1 to Z 5 , it is possible to form a flow of the cooling gas only in a zone having a lower cooling rate so as to solve a temperature difference between the zones, in the case of not only the forcible cooling, but also natural cooling.
  • FIG. 3 is a structural view schematically showing a vertical heat-processing apparatus for processing semiconductor wafers according to still another embodiment of the present invention.
  • This vertical heat-processing apparatus includes a heating space HS, which comprises zones Z 1 to Z 5 separated from each other by partitions 21 made of, e.g., quartz.
  • the zones Z 1 to Z 5 are respectively provided with supply pipes 27 connected thereto, for supplying a cooling gas independently of each other, and exhaust pipes 23 connected thereto, for exhausting the cooling gas independently of each other.
  • the exhaust pipes 23 are connected to a common blower (exhaust blower) 25 .
  • the exhaust pipes 23 are respectively provided with valves 24 to adjust exhaust rates of the cooling gas from the zones Z 1 to Z 5 .
  • Each of the valves 24 is formed of, e.g., a valve of the type driven by an actuator, whose opening degree is controlled by a controller 17 .
  • Temperature sensors 14 are arranged to detect temperatures respectively representing the zones Z 1 to Z 5 of the heating space HS.
  • the controller 17 controls the opening degrees of the valves 24 of the exhaust pipes 23 , on the basis of the temperatures corresponding to the zones Z 1 to Z 5 , which are detected by the temperature sensors 14 , so that the cooling rate of the heating space HS as a whole is adjusted to be a reference value corresponding to the highest cooling rate. More specifically, the controller 17 controls, on the basis of the detected temperatures, the exhaust rate of cooling air from a zone having a lower cooling rate, such as the middle zones Z 3 , to be higher than that from a zone having the highest cooling rate, such as the lower zones Z 5 , so that the lower cooling rate is adjusted to be closer to, i.e., approximate, the highest cooling rate.
  • the controller 17 controls the cooling mechanism 13 such that the flow velocity of the cooling gas in a first zone having a lower cooling rate becomes higher than the flow velocity of the cooling gas in a second zone having a higher cooling rate, thereby adjusting the cooling rate of the first zone to be closer to the cooling rate of the second zone.
  • the vertical heat-processing apparatus shown in FIG. 3 can automatically control the cooling rates of the zones Z 1 to Z 5 to be uniform under the control of the controller 17 .
  • the cooling rate of the heating space HS can be higher as a whole to improve the thermodynamics.
  • FIG. 4 is a structural view schematically showing a vertical heat-processing apparatus for processing semiconductor wafers according to still another embodiment of the present invention.
  • This vertical heat-processing apparatus has a structure combining the features shown in FIG. 2 and the features shown in FIG. 3 with each other. More specifically, the vertical heat-processing apparatus includes a heating space HS, which comprises zones Z 1 to Z 5 separated from each other by partitions 21 made of, e.g., quartz.
  • the zones Z 1 to Z 5 are respectively provided with supply pipes 15 connected thereto, for supplying a cooling gas independently of each other, and exhaust pipes 23 connected thereto, for exhausting the cooling gas independently of each other.
  • the supply pipes 15 are connected to a common blower (supply blower) 18
  • the exhaust pipes 23 are connected to a common blower (exhaust blower) 25 .
  • the supply pipes 15 are respectively provided with valves 16 to adjust supply rates of the cooling gas into the zones Z 1 to Z 5 .
  • the exhaust pipes 23 are respectively provided with valves 24 to adjust exhaust rates of the cooling gas from the zones Z 1 to Z 5 .
  • the controller 17 controls the opening degrees of the valves 16 of the supply pipes 15 and the opening degrees of the valves 24 of the exhaust pipes 23 , on the basis of the temperatures corresponding to the zones Z 1 to Z 5 , which are detected by the temperature sensors 14 , so that the cooling rate of the heating space HS as a whole is adjusted to be a reference value corresponding to the highest cooling rate.
  • the vertical heat-processing apparatus shown in FIG. 4 can more reliably achieve the advantages described with reference to the vertical heat-processing apparatuses shown in FIGS. 1 to 3 , i.e., to prevent the cooling rates of the zones Z 1 to Z 5 from being uneven, and to control the cooling rate of the heating space HS to be higher as a whole.
  • the liner tube 5 may be omitted, wherein the heating space HS is formed between the surrounding member 11 and the process tube (process chamber) 3 .
  • a manifold made of a metal, such as stainless steel, and provided with a gas supply line and an exhaust line may be airtightly attached to the bottom of the process tube 3 .
  • the present invention may be applied to a low-temperature furnace, such as a CVD furnace.
  • the present invention may also be applied to a horizontal heat-processing apparatus in place of the vertical heat-processing apparatus.
  • the present invention may be applied to a target substrate other than a semiconductor wafer, such as an LCD substrate, or a glass substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

A vertical heat-processing apparatus includes a surrounding member, which surrounds a process chamber and a heater. The surrounding member forms a heating space around the process chamber. The heating space has zones juxtaposed in a vertical direction. Temperature sensors are arranged to detect temperatures respectively representing the zones. Supply pipes are arranged to respectively supply a cooling gas to the zones. The supply pipes are respectively provided with valves controlled by a controller. The controller adjusts opening degrees of the valves such that a flow velocity of the cooling gas in a first zone having a lower cooling rate becomes higher than a flow velocity of the cooling gas in a second zone having a higher cooling rate used as a reference.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2000-252249, filed Aug. 23, 2000, the entire contents of which are incorporated herein by reference. [0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to a heat-processing apparatus and method for a semiconductor process in which a plurality of target substrates are subjected to a heat-process simultaneously, i.e., together at the same time. The term “semiconductor process” used herein includes various kinds of processes which are performed to manufacture a semiconductor device or a structure having wiring layers, electrodes, and the like to be connected to a semiconductor device, on a target substrate, such as a semiconductor wafer or an LCD substrate, by forming semiconductor layers, insulating layers, and conductive layers in predetermined patterns on the target substrate. [0003]
  • 2. Description of the Related Art [0004]
  • In the semiconductor process, a vertical heat-processing apparatus is known as a batch type processing apparatus that applies heat processes, such as oxidation, diffusion, annealing, and CVD, to a number of semiconductor wafers together at the same time. The vertical heat-processing apparatus is used such that a number of wafers are arrayed and held with a gap therebetween in a vertical direction in a holder called a wafer boat, and then the holder is loaded into a process chamber of a vertical type. Then, the wafers are subjected to a heat process while they are heated by a heating mechanism disposed around the process chamber. [0005]
  • The heating mechanism includes a surrounding member formed of a cylindrical heat-insulating body, which forms a heating space around the process chamber. A resistance heating wire (heater) is disposed on the inner surface of the surrounding member. Preferably, the heating space comprises a plurality of zones arrayed in a vertical direction, and the heater comprises a plurality of heater segments corresponding to the zones. The heater segments can be controlled independently of each other, so that a heat process is performed uniformly over all the zones. [0006]
  • The heating mechanism is arranged to perform a cooling operation by natural cooling or forcible cooling, which is performed by gas cooling or liquid cooling. As shown in FIG. 5, when the heating mechanism is cooled, the cooling rates of the zones tend to be uneven due to heat discharge and the like. Generally, the cooling rates of the lower and upper zones of the heating space are higher than that of the middle zone. Such unevenness in the cooling rate makes the thermal budgets of wafers in one lot different from each other. [0007]
  • The cooling rate of the heating space is set when the heat-processing apparatus is first installed, using a method so as to adjust the rate of a zone, which tends to have a higher rate, to be closer to the rate of a zone, which tends to have a lower rate. In an apparatus of the natural cooling type, the apparatus is set such that, for example, the heater segments of the lower and upper zones are supplied with a voltage to decrease their cooling rates down to a value as low as the middle zone. In this case, the heat applied to the lower zone warms the middle zone due to convection, radiation, and conduction of the heat, resulting in a decrease in the cooling rate as a whole. [0008]
  • On the other hand, when an apparatus of the forcible cooling type is installed, supply rates of a cooling gas to the zones are adjusted in order to set the cooling rate of the heating space such that the cooling rate of the middle zone becomes almost the same as those of the lower and upper zones. In this case, it is necessary to perform a troublesome operation of repeatedly adjusting manual valves on air supply pipes while confirming the cooling rates of the zones. [0009]
  • BRIEF SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a heat-processing apparatus and method for a semi-conductor process, which prevent the cooling rates of the zones of a heating space from differing from each other, and increase the cooling rate of the heating space as a whole. [0010]
  • Another object of the present invention is to provide a heat-processing apparatus and method for a semiconductor process, which does not entail the troublesome operation for setting the cooling rate of a heating space when the apparatus is installed. [0011]
  • According to a first aspect of the present invention, there is provided a heat-processing apparatus for a semiconductor process in which a plurality of target substrates are simultaneously subjected to a heat-process, the apparatus comprising: [0012]
  • a process chamber, which accommodates the target substrates; [0013]
  • a holder, which holds the target substrates with a gap therebetween in the process chamber; [0014]
  • a heater disposed around the process chamber, which heats an interior of the process chamber through a sidewall of the process chamber; [0015]
  • a surrounding member, which surrounds the process chamber and the heater, and forms a heating space around the process chamber, the heating space comprising a plurality of zones juxtaposed in a direction in which the target substrates are arrayed; [0016]
  • a plurality of the temperature sensors, which detect temperatures respectively representing the zones; [0017]
  • a cooling mechanism, which forms flows of a cooling gas respectively in the zones, and cools the zones; and [0018]
  • a controller, which controls the cooling mechanism on the basis of temperatures detected by the temperature sensors when the process chamber is cooled, such that a flow velocity of the cooling gas in a first zone having a lower cooling rate becomes higher than a flow velocity of the cooling gas in a second zone having a higher cooling rate used as a reference, thereby adjusting the cooling rate of the first zone to be closer to the cooling rate of the second zone. [0019]
  • According to a second aspect of the present invention, there is provided a heat processing method in the apparatus according to the first aspect, comprising: [0020]
  • subjecting the target substrates to a heat process, in which the target substrates are held by the holder in the process chamber, and heated by the heater; [0021]
  • performing, after the heat process, a cooling operation to cool the process chamber, in which the controller controls the cooling mechanism on the basis of temperatures detected by the temperature sensors, such that a flow velocity of the cooling gas in a first zone having a lower cooling rate becomes higher than a flow velocity of the cooling gas in a second zone having a higher cooling rate used as a reference, thereby adjusting the cooling rate of the first zone to be closer to the cooling rate of the second zone. [0022]
  • According to a third aspect of the present invention, there is provided a vertical heat-processing apparatus for a semiconductor process in which a plurality of target substrates are simultaneously subjected to a heat-process, the apparatus comprising: [0023]
  • a process chamber, which accommodates the target substrates; [0024]
  • a supply section, which supplies the process gas into the process chamber; [0025]
  • an exhaust section, which exhausts the process chamber; [0026]
  • a holder, which holds the target substrates in the process chamber such that they are stacked one on the other with a gap therebetween in a vertical direction; [0027]
  • a heater disposed around the process chamber, which heats an interior of the process chamber through a sidewall of the process chamber; [0028]
  • a surrounding member, which surrounds the process chamber and the heater, and forms a heating space around the process chamber, the heating space comprising a plurality of zones juxtaposed in a vertical direction; [0029]
  • a plurality of the temperature sensors, which detect temperatures respectively representing the zones; [0030]
  • a cooling mechanism, which forms flows of a cooling gas respectively in the zones, and cools the zones, the cooling mechanism comprising a plurality of supply pipes, which respectively supply the cooling gas to the zones to cool the zones, a plurality of valves respectively arranged on the supply pipes to adjust supply rates of the cooling gas to the zones, and an exhaust pipe, which exhausts the cooling gas from the zones; and [0031]
  • a controller, which adjusts opening degrees of the valves on the basis of temperatures detected by the temperature sensors when the process chamber is cooled, such that a flow velocity of the cooling gas in a first zone having a lower cooling rate becomes higher than a flow velocity of the cooling gas in a second zone having a higher cooling rate used as a reference, thereby adjusting the cooling rate of the first zone to be closer to the cooling rate of the second zone. [0032]
  • Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.[0033]
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING
  • The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention, and together with the general description given above and the detailed description of the embodiments given below, serve to explain the principles of the invention. [0034]
  • FIG. 1 is a structural view schematically showing a vertical heat-processing apparatus for processing semiconductor wafers according to an embodiment of the present invention; [0035]
  • FIG. 2 is a structural view schematically showing a vertical heat-processing apparatus for processing semiconductor wafers according to another embodiment of the present invention; [0036]
  • FIG. 3 is a structural view schematically showing a vertical heat-processing apparatus for processing semiconductor wafers according to still another embodiment of the present invention; [0037]
  • FIG. 4 is a structural view schematically showing a vertical heat-processing apparatus for processing semiconductor wafers according to still another embodiment of the present invention; and [0038]
  • FIG. 5 is a graph showing the cooling rate of a heating space in a vertical heat-processing apparatus.[0039]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Embodiments of the present invention will be described hereinafter with reference to the accompanying drawings. In the following description, the constituent elements having substantially the same function and arrangement are denoted by the same reference numerals, and a repetitive description will be made only when necessary. [0040]
  • FIG. 1 is a structural view schematically showing a vertical heat-processing apparatus for processing semiconductor wafers according to an embodiment of the present invention. The vertical heat-processing apparatus includes a [0041] vertical furnace 1, which functions as, e.g., a high-temperature furnace or diffusion furnace. The furnace 1 has a process chamber or process tube 3, and a cylindrical heating mechanism 4 with a liner tube (temperature-unifying tube) 5 interposed between the heating mechanism 4 and the process tube 3. A holder, such as a boat 2 made of quartz, is placed in the process tube 3. The boat 2 holds a number of, e.g., about 150, target substrates, i.e., semiconductor wafers W, such that they are stacked one on the other with a gap therebetween in a vertical direction. The heating mechanism 4 is arranged to surround the process tube 3, and to heat the interior of the process tube 3 through the sidewall of the tube 3 to a predetermined temperature of, e.g., from about 600 to 1,200° C.
  • The [0042] process tube 3 is made of a material, such as quartz, which is heat-resistant and corrosion-resistant, and has a cylindrical shape vertically elongated, with a closed top and an open bottom. The lower portion of the process tube 3 is connected to a gas supply line Gi for supplying a process gas or an inactive gas, and an exhaust line Go for exhausting the interior of the process tube 3. The gas supply line Gi is connected to a process gas supply section PS. The exhaust line Go is connected to a vacuum exhaust section VE including a vacuum pump, a pressure valve, and so forth. The process tube 3 may have a double-tube structure formed of inner and outer tubes.
  • The bottom end of the [0043] process tube 3 is supported by a base plate 6 through an attachment (not shown) disposed below the base plate 6. The base plate 6 is made of, e.g., stainless steel, and disposed horizontally in the casing of the vertical heat-processing apparatus. The base plate 6 is provided with an opening 7 formed therein, through which the process tube 3 is inserted in a vertical direction. A heat-insulating body 8 is attached to the opening 7 around the process tube 3 to prevent the opening 7 from allowing heat to be discharged.
  • A [0044] lid 9 made of, e.g., stainless steel is disposed below the process tube 3, to be movable up and down by an elevating mechanism (not shown) so as to close and open the bottom opening of the process tube 3. A boat 2 is mounted on the lid 9 via an insulating cylinder 10. The elevating mechanism is used to transfer the boat 2 into and out of the process tube 3 and to open and close the lid 9. The lid 9 is provided with a rotational mechanism (not shown) to rotate the boat 2 along with the insulating cylinder 10, so that the semiconductor wafers W are processed with a high planar uniformity.
  • The [0045] heating mechanism 4 includes a surrounding member 11, which is formed of a cylindrical heat-insulating body and forms a heating space HS around the process tube 3. A heater 12 comprising resistance heating wires is disposed on the inner face of the surrounding member 11 such that the wires meanderingly extend in the angular direction of the member 11 or spirally extend in the longitudinal direction of the member 11. The heating space HS consists of a plurality of zones, e.g., five zones Z1 to Z5, arrayed in a vertical direction, while the heater 12 consists of a plurality of heater segments respectively corresponding to the zones. The heater segments can be controlled independently of each other, so that a uniform heat process is performed over all the zones. The surrounding member 11 is covered with a water-cooling jacket (not shown). The heating mechanism 4 is placed on the base plate 6.
  • The [0046] liner tube 5 is made of, e.g., silicon carbide (SiC). The heating space HS is formed as a space substantially closed between the surrounding member 11 and the liner tube 5. The liner tube 5 improves uniformity in the heating temperature to the wafers W placed in the process tube 3. The liner tube 5 also prevents the wafers W from being contaminated with metals discharged from the resistance heating wires and the like of the heating mechanism 4. The liner tube 5 has a cylindrical shape vertically elongated, with a closed top and an open bottom. The liner tube 5 surrounds the process tube 3 and is placed on the heat-insulating body 8 of the base plate 6. The liner tube 5 may be omitted, such that a heating space HS is formed between the surrounding member 11 and the process tube (process chamber) 3.
  • The [0047] heating mechanism 4 is provided with a cooling mechanism 13, which forms a flow of cooling gas in each of the zones Z1 to Z5 of the heating space HS to cool the zones Z1 to Z5. The cooling mechanism 13 includes supply pipes 15, which respectively supply a cooling gas, such as air (clean air) to the zones Z1 to Z5 to cool them. The supply pipes 15 are connected to a common blower (supply blower) 18 for supplying the cooling gas. The distal ends of the supply pipes 15 penetrate the sidewall of the surrounding member 11 and come into the respective zones Z1 to Z5 of the heating space HS. The cooling mechanism 13 also includes a common exhaust pipe 20 connected to a blower (exhaust blower) 19 for exhausting the cooling gas from the heating space HS.
  • The [0048] supply pipes 15 are respectively provided with valves 16 to adjust supply rates of the cooling gas into the zones Z1 to Z5. Each of the valves 16 is formed of, e.g., a valve of the type driven by an actuator, whose opening degree is controlled by a controller 17. Temperature sensors 14 are arranged to detect temperatures respectively representing the zones Z1 to Z5 of the heating space HS. The temperature sensors 14 consist of, e.g., thermocouples, disposed between the process tube 3 and the liner tube 5 to respectively correspond to the zones Z1 to Z5. Each of the temperature sensors 14 may be inserted in and covered with a protection tube made of quartz.
  • The [0049] controller 17 is set to recognize as a reference value the cooling rate of a zone that has the highest cooling rate, when it controls the flow of the cooling gas. The reference value may be a fixed value, which has been obtained by experiment and the like in advance, and inputted into the controller 17. Instead, the reference value may be a non-fixed value, which is calculated at each time by the controller 17 on the basis of temperatures detected by the temperature sensors 14 during a cooling operation.
  • The [0050] controller 17 controls the opening degrees of the valves 16 of the supply pipes 15, on the basis of the temperatures corresponding to the zones Z1 to Z5, which are detected by the temperature sensors 14, so that the cooling rate of the heating space HS as a whole is adjusted to be the reference value. More specifically, the controller 17 controls, on the basis of the detected temperatures, the supply rate of cooling air to a zone having a lower cooling rate, such as the middle zones Z3, to be higher than that to a zone having the highest cooling rate, such as the lower zones Z5, so that the lower cooling rate is adjusted to be closer to, i.e., approximate, the highest cooling rate. In other words, the controller 17 controls the cooling mechanism 13 such that the flow velocity of the cooling gas in a first zone having a lower cooling rate becomes higher than the flow velocity of the cooling gas in a second zone having a higher cooling rate, thereby adjusting the cooling rate of the first zone to be closer to the cooling rate of the second zone.
  • An explanation will be given of a heat processing method in the vertical heat-processing apparatus shown in FIG. 1. [0051]
  • First, the [0052] boat 2, which has been loaded with wafers W, is placed on the insulating cylinder 10 supported by the lid 9 at a loading area below the heating mechanism 4. Then, the lid 9 is moved up by the elevating mechanism, so that the boat 2 is inserted into the process tube 3 through the bottom opening, which is then airtightly closed by the lid 9. Then, while the process tube 3 is exhausted, the wafers W on the boat 2 are heated up to a predetermined process temperature by the heating mechanism 4. Then, while the process tube 3 is exhausted, a predetermined process gas is supplied into the process tube 3 to subject the wafers W to a predetermined heat process, such as a diffusion process.
  • After the heat process ends, the [0053] heater 12 of the heating mechanism 4 is first turned off. Then, the blower 18 is operated to supply air used as a cooling gas through the supply pipes 15 into the heating space HS, so as to forcibly cool the interior of the heating space HS. At this time, the temperature sensors 14 detect temperatures representing the zones Z1 to Z5. The controller 17 controls, on the basis of the detected temperatures, the supply rate of cooling air to a zone having a lower cooling rate, such as the middle zones Z3, to be higher than that to a zone having the highest cooling rate, such as the lower zones Z5, so that the lower cooling rate is adjusted to be closer to the highest cooling rate. As a result, it is possible to prevent the cooling rates of the zones Z1 to Z5 from being uneven, and also to cause the cooling rates to be higher as a whole. Furthermore, as this method allows a flexible control oriented toward a decrease in temperature, the thermodynamics of the furnace 1 is improved.
  • Accordingly, the vertical heat-processing apparatus shown in FIG. 1 can automatically control the cooling rates of the zones Z[0054] 1 to Z5 to be uniform under the control of the controller 17. In addition, the cooling rate of the heating space HS can be higher as a whole to improve the thermodynamics.
  • FIG. 2 is a structural view schematically showing a vertical heat-processing apparatus for processing semiconductor wafers according to another embodiment of the present invention. This vertical heat-processing apparatus includes a heating space HS, which comprises zones Z[0055] 1 to Z5 separated from each other by partitions 21 made of, e.g., quartz. The zones Z1 to Z5 are respectively provided with exhaust pipes 22 connected thereto, for exhausting a cooling gas independently of each other.
  • The vertical heat-processing apparatus shown in FIG. 2 can provide the same effect as the vertical heat-processing apparatus shown in FIG. 1. Furthermore, since the heating space HS is divided into the zones Z[0056] 1 to Z5 by the partitions 21, the zones Z1 to Z5 can be cooled independently of each other. As in this embodiment, where the heating space HS is partitioned into the zones Z1 to Z5, it is possible to form a flow of the cooling gas only in a zone having a lower cooling rate so as to solve a temperature difference between the zones, in the case of not only the forcible cooling, but also natural cooling.
  • FIG. 3 is a structural view schematically showing a vertical heat-processing apparatus for processing semiconductor wafers according to still another embodiment of the present invention. This vertical heat-processing apparatus includes a heating space HS, which comprises zones Z[0057] 1 to Z5 separated from each other by partitions 21 made of, e.g., quartz. The zones Z1 to Z5 are respectively provided with supply pipes 27 connected thereto, for supplying a cooling gas independently of each other, and exhaust pipes 23 connected thereto, for exhausting the cooling gas independently of each other. The exhaust pipes 23 are connected to a common blower (exhaust blower) 25.
  • The [0058] exhaust pipes 23 are respectively provided with valves 24 to adjust exhaust rates of the cooling gas from the zones Z1 to Z5. Each of the valves 24 is formed of, e.g., a valve of the type driven by an actuator, whose opening degree is controlled by a controller 17. Temperature sensors 14 are arranged to detect temperatures respectively representing the zones Z1 to Z5 of the heating space HS.
  • The [0059] controller 17 controls the opening degrees of the valves 24 of the exhaust pipes 23, on the basis of the temperatures corresponding to the zones Z1 to Z5, which are detected by the temperature sensors 14, so that the cooling rate of the heating space HS as a whole is adjusted to be a reference value corresponding to the highest cooling rate. More specifically, the controller 17 controls, on the basis of the detected temperatures, the exhaust rate of cooling air from a zone having a lower cooling rate, such as the middle zones Z3, to be higher than that from a zone having the highest cooling rate, such as the lower zones Z5, so that the lower cooling rate is adjusted to be closer to, i.e., approximate, the highest cooling rate. In other words, the controller 17 controls the cooling mechanism 13 such that the flow velocity of the cooling gas in a first zone having a lower cooling rate becomes higher than the flow velocity of the cooling gas in a second zone having a higher cooling rate, thereby adjusting the cooling rate of the first zone to be closer to the cooling rate of the second zone.
  • Accordingly, the vertical heat-processing apparatus shown in FIG. 3 can automatically control the cooling rates of the zones Z[0060] 1 to Z5 to be uniform under the control of the controller 17. In addition, the cooling rate of the heating space HS can be higher as a whole to improve the thermodynamics.
  • FIG. 4 is a structural view schematically showing a vertical heat-processing apparatus for processing semiconductor wafers according to still another embodiment of the present invention. This vertical heat-processing apparatus has a structure combining the features shown in FIG. 2 and the features shown in FIG. 3 with each other. More specifically, the vertical heat-processing apparatus includes a heating space HS, which comprises zones Z[0061] 1 to Z5 separated from each other by partitions 21 made of, e.g., quartz. The zones Z1 to Z5 are respectively provided with supply pipes 15 connected thereto, for supplying a cooling gas independently of each other, and exhaust pipes 23 connected thereto, for exhausting the cooling gas independently of each other. The supply pipes 15 are connected to a common blower (supply blower) 18, and the exhaust pipes 23 are connected to a common blower (exhaust blower) 25.
  • The [0062] supply pipes 15 are respectively provided with valves 16 to adjust supply rates of the cooling gas into the zones Z1 to Z5. The exhaust pipes 23 are respectively provided with valves 24 to adjust exhaust rates of the cooling gas from the zones Z1 to Z5. The controller 17 controls the opening degrees of the valves 16 of the supply pipes 15 and the opening degrees of the valves 24 of the exhaust pipes 23, on the basis of the temperatures corresponding to the zones Z1 to Z5, which are detected by the temperature sensors 14, so that the cooling rate of the heating space HS as a whole is adjusted to be a reference value corresponding to the highest cooling rate.
  • Accordingly, the vertical heat-processing apparatus shown in FIG. 4 can more reliably achieve the advantages described with reference to the vertical heat-processing apparatuses shown in FIGS. [0063] 1 to 3, i.e., to prevent the cooling rates of the zones Z1 to Z5 from being uneven, and to control the cooling rate of the heating space HS to be higher as a whole.
  • In all the embodiments, the [0064] liner tube 5 may be omitted, wherein the heating space HS is formed between the surrounding member 11 and the process tube (process chamber) 3. A manifold made of a metal, such as stainless steel, and provided with a gas supply line and an exhaust line may be airtightly attached to the bottom of the process tube 3.
  • The present invention may be applied to a low-temperature furnace, such as a CVD furnace. The present invention may also be applied to a horizontal heat-processing apparatus in place of the vertical heat-processing apparatus. Furthermore, the present invention may be applied to a target substrate other than a semiconductor wafer, such as an LCD substrate, or a glass substrate. [0065]
  • Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents. [0066]

Claims (20)

What is claimed is:
1. A heat-processing apparatus for a semiconductor process in which a plurality of target substrates are simultaneously subjected to a heat-process, the apparatus comprising:
a process chamber, which accommodates the target substrates;
a holder, which holds the target substrates with a gap therebetween in the process chamber;
a heater disposed around the process chamber, which heats an interior of the process chamber through a sidewall of the process chamber;
a surrounding member, which surrounds the process chamber and the heater, and forms a heating space around the process chamber, the heating space comprising a plurality of zones juxtaposed in a direction in which the target substrates are arrayed;
a plurality of the temperature sensors, which detect temperatures respectively representing the zones;
a cooling mechanism, which forms flows of a cooling gas respectively in the zones, and cools the zones; and
a controller, which controls the cooling mechanism on the basis of temperatures detected by the temperature sensors when the process chamber is cooled, such that a flow velocity of the cooling gas in a first zone having a lower cooling rate becomes higher than a flow velocity of the cooling gas in a second zone having a higher cooling rate used as a reference, thereby adjusting the cooling rate of the first zone to be closer to the cooling rate of the second zone.
2. The apparatus according to claim 1, wherein the cooling mechanism comprises a plurality of supply pipes, which respectively supply the cooling gas to the zones to cool the zones, and a plurality of valves respectively arranged on the supply pipes to adjust supply rates of the cooling gas to the zones, and the controller adjusts opening degrees of the valves to control flow velocities of the cooling gas in the zones.
3. The apparatus according to claim 2, wherein the supply pipes are connected to a common blower, which supplies the cooling gas to the supply pipes.
4. The apparatus according to claim 2, wherein the cooling mechanism comprises a common exhaust pipe, which exhausts the cooling gas from all the zones.
5. The apparatus according to claim 2, wherein the cooling mechanism comprises a plurality of exhaust pipes, which respectively exhaust the cooling gas from the zones.
6. The apparatus according to claim 1, wherein the cooling mechanism comprises a supply pipe, which supplies the cooling gas to the zones to cool the zones, a plurality of exhaust pipes, which respectively exhaust the cooling gas from the zones, and a plurality of valves respectively arranged on the exhaust pipes to adjust exhaust rates of the cooling gas from the zones, and the controller adjusts opening degrees of the valves to control flow velocities of the cooling gas in the zones.
7. The apparatus according to claim 6, wherein the exhaust pipes are connected to a common blower, which exhausts the cooling gas from the exhaust pipes.
8. The apparatus according to claim 6, wherein the cooling mechanism comprises a plurality of supply pipes, which respectively supply the cooling gas to the zones to cool the zones.
9. The apparatus according to claim 1, wherein the zones are separated from each other by partitions disposed in the heating space.
10. The apparatus according to claim 1, further comprising an liner tube disposed between the process chamber and the surrounding member and surrounding the process chamber, such that the heating space is formed between the liner tube and surrounding member.
11. The apparatus according to claim 10, wherein the temperature sensors are disposed between the process chamber and the liner tube to respectively correspond to the zones.
12. The apparatus according to claim 1, wherein the reference value is inputted into the controller in advance.
13. The apparatus according to claim 1, wherein the reference value is calculated by the controller on the basis of temperatures detected by the temperature sensors when the process chamber is cooled.
14. The apparatus according to claim 1, wherein the holder holds the target substrates such that they are stacked one on the other with a gap therebetween in a vertical direction.
15. The apparatus according to claim 1, further comprising a supply section, which supplies the process gas into the process chamber and an exhaust section, which exhausts the process chamber.
16. A heat processing method in the apparatus according to claim 1, comprising:
subjecting the target substrates to a heat process, in which the target substrates are held by the holder in the process chamber, and heated by the heater;
performing, after the heat process, a cooling operation to cool the process chamber, in which the controller controls the cooling mechanism on the basis of temperatures detected by the temperature sensors, such that a flow velocity of the cooling gas in a first zone having a lower cooling rate becomes higher than a flow velocity of the cooling gas in a second zone having a higher cooling rate used as a reference, thereby adjusting the cooling rate of the first zone to be closer to the cooling rate of the second zone.
17. The method according to claim 16, wherein the cooling mechanism comprises a plurality of supply pipes, which respectively supply the cooling gas to the zones to cool the zones, and a plurality of valves respectively arranged on the supply pipes to adjust supply rates of the cooling gas to the zones, and the controller adjusts opening degrees of the valves to control flow velocities of the cooling gas in the zones.
18. The method according to claim 16, wherein the cooling mechanism comprises a supply pipe, which supplies the cooling gas to the zones to cool the zones, a plurality of exhaust pipes, which respectively exhaust the cooling gas from the zones, and a plurality of valves respectively arranged on the exhaust pipes to adjust exhaust rates of the cooling gas from the zones, and the controller adjusts opening degrees of the valves to control flow velocities of the cooling gas in the zones.
19. A vertical heat-processing apparatus for a semiconductor process in which a plurality of target substrates are simultaneously subjected to a heat-process, the apparatus comprising:
a process chamber, which accommodates the target substrates;
a supply section, which supplies the process gas into the process chamber;
an exhaust section, which exhausts the process chamber;
a holder, which holds the target substrates in the process chamber such that they are stacked one on the other with a gap therebetween in a vertical direction;
a heater disposed around the process chamber, which heats an interior of the process chamber through a sidewall of the process chamber;
a surrounding member, which surrounds the process chamber and the heater, and forms a heating space around the process chamber, the heating space comprising a plurality of zones juxtaposed in a vertical direction;
a plurality of the temperature sensors, which detect temperatures respectively representing the zones;
a cooling mechanism, which forms flows of a cooling gas respectively in the zones, and cools the zones, the cooling mechanism comprising a plurality of supply pipes, which respectively supply the cooling gas to the zones to cool the zones, a plurality of valves respectively arranged on the supply pipes to adjust supply rates of the cooling gas to the zones, and an exhaust pipe, which exhausts the cooling gas from the zones; and
a controller, which adjusts opening degrees of the valves on the basis of temperatures detected by the temperature sensors when the process chamber is cooled, such that a flow velocity of the cooling gas in a first zone having a lower cooling rate becomes higher than a flow velocity of the cooling gas in a second zone having a higher cooling rate used as a reference, thereby adjusting the cooling rate of the first zone to be closer to the cooling rate of the second zone.
20. The apparatus according to claim 19, further comprising a liner tube disposed between the process chamber and the surrounding member and surrounding the process chamber, such that the heating space is formed between the liner tube and surrounding member.
US09/932,942 2000-08-23 2001-08-21 Heat-processing apparatus and method of semiconductor process Expired - Lifetime US6403927B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000252249A JP4365017B2 (en) 2000-08-23 2000-08-23 Method for controlling temperature drop rate of heat treatment apparatus and heat treatment apparatus
JP2000-252249 2000-08-23

Publications (2)

Publication Number Publication Date
US20020025688A1 true US20020025688A1 (en) 2002-02-28
US6403927B1 US6403927B1 (en) 2002-06-11

Family

ID=18741519

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/932,942 Expired - Lifetime US6403927B1 (en) 2000-08-23 2001-08-21 Heat-processing apparatus and method of semiconductor process

Country Status (3)

Country Link
US (1) US6403927B1 (en)
EP (1) EP1182692B1 (en)
JP (1) JP4365017B2 (en)

Cited By (344)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090136888A1 (en) * 2005-06-15 2009-05-28 Ken Nakao Heat processing apparatus
US20100224614A1 (en) * 2006-02-20 2010-09-09 Tokyo Electron Limited Heat Treatment Apparatus, Heater, and Method for Manufacturing the Heater
US20110076632A1 (en) * 2009-09-26 2011-03-31 Tokyo Electron Limited Thermal processing apparatus and cooling method
US20110239937A1 (en) * 2010-04-06 2011-10-06 Samsung Electronics Co., Ltd. Apparatus and method for treating substrate
US20120037096A1 (en) * 2010-08-16 2012-02-16 Takagi Industrial Co., Ltd. Combustion apparatus, method for combustion control, combustion control board, combustion control system and water heater
US20120064469A1 (en) * 2010-09-07 2012-03-15 Tokyo Electron Limited Vertical-type heat treatment apparatus, and control method for same
US20120213249A1 (en) * 2011-02-18 2012-08-23 Tokyo Electron Limited Heat treatment apparatus and temperature measuring method thereof
US20120231407A1 (en) * 2011-03-07 2012-09-13 Tokyo Electron Limited Thermal treatment apparatus
US20130065189A1 (en) * 2011-09-13 2013-03-14 Tokyo Electron Limited Thermal treatment apparatus, temperature control system, thermal treatment method, temperature control method, and non-transitory computer readable medium embodied with program for executing the thermal treatment method or the temperature control method
US20150093894A1 (en) * 2013-10-01 2015-04-02 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus, semiconductor manufacturing method, and process tube
US20170207078A1 (en) * 2016-01-15 2017-07-20 Taiwan Semiconductor Manufacturing Co., Ltd. Atomic layer deposition apparatus and semiconductor process
CN107342244A (en) * 2016-04-28 2017-11-10 光洋热系统股份有限公司 Annealing device
CN109494172A (en) * 2017-09-12 2019-03-19 株式会社国际电气 The manufacturing method of cooling unit, insulated structure, substrate board treatment and semiconductor device
TWI669411B (en) * 2016-12-09 2019-08-21 日商國際電氣股份有限公司 Substrate processing apparatus, cooling unit, heat insulating structure, and method of manufacturing semiconductor device
CN110444489A (en) * 2018-05-02 2019-11-12 东京毅力科创株式会社 Annealing device
CN110739244A (en) * 2018-07-20 2020-01-31 东京毅力科创株式会社 Heat treatment apparatus and heat treatment method
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US10561975B2 (en) 2014-10-07 2020-02-18 Asm Ip Holdings B.V. Variable conductance gas distribution apparatus and method
USD876504S1 (en) 2017-04-03 2020-02-25 Asm Ip Holding B.V. Exhaust flow control ring for semiconductor deposition apparatus
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US10604847B2 (en) 2014-03-18 2020-03-31 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10622375B2 (en) 2016-11-07 2020-04-14 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10665452B2 (en) 2016-05-02 2020-05-26 Asm Ip Holdings B.V. Source/drain performance through conformal solid state doping
US10672636B2 (en) 2017-08-09 2020-06-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US10707106B2 (en) 2011-06-06 2020-07-07 Asm Ip Holding B.V. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10714335B2 (en) 2017-04-25 2020-07-14 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US10720331B2 (en) 2016-11-01 2020-07-21 ASM IP Holdings, B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10720322B2 (en) 2016-02-19 2020-07-21 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top surface
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10734223B2 (en) 2017-10-10 2020-08-04 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10734497B2 (en) 2017-07-18 2020-08-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US10734244B2 (en) 2017-11-16 2020-08-04 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by the same
US10741385B2 (en) 2016-07-28 2020-08-11 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10755923B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10784102B2 (en) 2016-12-22 2020-09-22 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10787741B2 (en) 2014-08-21 2020-09-29 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US10804098B2 (en) 2009-08-14 2020-10-13 Asm Ip Holding B.V. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10832903B2 (en) 2011-10-28 2020-11-10 Asm Ip Holding B.V. Process feed management for semiconductor substrate processing
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US10847371B2 (en) 2018-03-27 2020-11-24 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10844486B2 (en) 2009-04-06 2020-11-24 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10851456B2 (en) 2016-04-21 2020-12-01 Asm Ip Holding B.V. Deposition of metal borides
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US10867786B2 (en) 2018-03-30 2020-12-15 Asm Ip Holding B.V. Substrate processing method
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US10914004B2 (en) 2018-06-29 2021-02-09 Asm Ip Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10928731B2 (en) 2017-09-21 2021-02-23 Asm Ip Holding B.V. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10934619B2 (en) 2016-11-15 2021-03-02 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
USD913980S1 (en) 2018-02-01 2021-03-23 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
CN112786482A (en) * 2019-11-11 2021-05-11 夏泰鑫半导体(青岛)有限公司 Heat treatment system
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11043402B2 (en) 2017-09-12 2021-06-22 Kokusai Electric Corporation Cooling unit, heat insulating structure, and substrate processing apparatus
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11056567B2 (en) 2018-05-11 2021-07-06 Asm Ip Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
CN113310309A (en) * 2021-06-01 2021-08-27 北京北方华创微电子装备有限公司 Vertical furnace and furnace body temperature control method thereof
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
CN113436996A (en) * 2021-06-22 2021-09-24 北京北方华创微电子装备有限公司 Cooling device for heat treatment equipment and heat treatment equipment
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11761087B2 (en) * 2016-11-30 2023-09-19 Kokusai Electric Corporation Substrate processing apparatus and non-transitory computer-readable recording medium
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
CN117419498A (en) * 2023-12-18 2024-01-19 盛吉盛半导体科技(无锡)有限公司 Gradual cooling device and cooling method thereof
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US11993843B2 (en) 2017-08-31 2024-05-28 Asm Ip Holding B.V. Substrate processing apparatus
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US12020934B2 (en) 2020-07-08 2024-06-25 Asm Ip Holding B.V. Substrate processing method
US12027365B2 (en) 2020-11-24 2024-07-02 Asm Ip Holding B.V. Methods for filling a gap and related systems and devices
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US12033885B2 (en) 2020-01-06 2024-07-09 Asm Ip Holding B.V. Channeled lift pin
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
US12051602B2 (en) 2020-05-04 2024-07-30 Asm Ip Holding B.V. Substrate processing system for processing substrates with an electronics module located behind a door in a front wall of the substrate processing system
US12051567B2 (en) 2020-10-07 2024-07-30 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including gas supply unit
US12057314B2 (en) 2020-05-15 2024-08-06 Asm Ip Holding B.V. Methods for silicon germanium uniformity control using multiple precursors
US12074022B2 (en) 2020-08-27 2024-08-27 Asm Ip Holding B.V. Method and system for forming patterned structures using multiple patterning process
US12087586B2 (en) 2020-04-15 2024-09-10 Asm Ip Holding B.V. Method of forming chromium nitride layer and structure including the chromium nitride layer
US12107005B2 (en) 2020-10-06 2024-10-01 Asm Ip Holding B.V. Deposition method and an apparatus for depositing a silicon-containing material
US12106944B2 (en) 2020-06-02 2024-10-01 Asm Ip Holding B.V. Rotating substrate support
US12112940B2 (en) 2019-07-19 2024-10-08 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US12125700B2 (en) 2020-01-16 2024-10-22 Asm Ip Holding B.V. Method of forming high aspect ratio features
US12131885B2 (en) 2020-12-22 2024-10-29 Asm Ip Holding B.V. Plasma treatment device having matching box
US12129545B2 (en) 2020-12-22 2024-10-29 Asm Ip Holding B.V. Precursor capsule, a vessel and a method
US12148609B2 (en) 2020-09-16 2024-11-19 Asm Ip Holding B.V. Silicon oxide deposition method
US12154824B2 (en) 2020-08-14 2024-11-26 Asm Ip Holding B.V. Substrate processing method
US12159788B2 (en) 2020-12-14 2024-12-03 Asm Ip Holding B.V. Method of forming structures for threshold voltage control
US12169361B2 (en) 2019-07-30 2024-12-17 Asm Ip Holding B.V. Substrate processing apparatus and method
US12173404B2 (en) 2020-03-17 2024-12-24 Asm Ip Holding B.V. Method of depositing epitaxial material, structure formed using the method, and system for performing the method
US12195852B2 (en) 2020-11-23 2025-01-14 Asm Ip Holding B.V. Substrate processing apparatus with an injector
US12211742B2 (en) 2020-09-10 2025-01-28 Asm Ip Holding B.V. Methods for depositing gap filling fluid
US12209308B2 (en) 2020-11-12 2025-01-28 Asm Ip Holding B.V. Reactor and related methods
USD1060598S1 (en) 2021-12-03 2025-02-04 Asm Ip Holding B.V. Split showerhead cover
US12218269B2 (en) 2020-02-13 2025-02-04 Asm Ip Holding B.V. Substrate processing apparatus including light receiving device and calibration method of light receiving device
US12217954B2 (en) 2020-08-25 2025-02-04 Asm Ip Holding B.V. Method of cleaning a surface
US12218000B2 (en) 2020-09-25 2025-02-04 Asm Ip Holding B.V. Semiconductor processing method
US12217946B2 (en) 2020-10-15 2025-02-04 Asm Ip Holding B.V. Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-CAT
US12221357B2 (en) 2020-04-24 2025-02-11 Asm Ip Holding B.V. Methods and apparatus for stabilizing vanadium compounds
US12230531B2 (en) 2018-04-09 2025-02-18 Asm Ip Holding B.V. Substrate supporting apparatus, substrate processing apparatus including the same, and substrate processing method
US12241158B2 (en) 2020-07-20 2025-03-04 Asm Ip Holding B.V. Method for forming structures including transition metal layers
US12243757B2 (en) 2020-05-21 2025-03-04 Asm Ip Holding B.V. Flange and apparatus for processing substrates
US12240760B2 (en) 2016-03-18 2025-03-04 Asm Ip Holding B.V. Aligned carbon nanotubes
US12243747B2 (en) 2020-04-24 2025-03-04 Asm Ip Holding B.V. Methods of forming structures including vanadium boride and vanadium phosphide layers
US12243742B2 (en) 2020-04-21 2025-03-04 Asm Ip Holding B.V. Method for processing a substrate
US12247286B2 (en) 2019-08-09 2025-03-11 Asm Ip Holding B.V. Heater assembly including cooling apparatus and method of using same
US12252785B2 (en) 2019-06-10 2025-03-18 Asm Ip Holding B.V. Method for cleaning quartz epitaxial chambers
US12255053B2 (en) 2020-12-10 2025-03-18 Asm Ip Holding B.V. Methods and systems for depositing a layer
US12266524B2 (en) 2020-06-16 2025-04-01 Asm Ip Holding B.V. Method for depositing boron containing silicon germanium layers
US12272527B2 (en) 2018-05-09 2025-04-08 Asm Ip Holding B.V. Apparatus for use with hydrogen radicals and method of using same
US12276023B2 (en) 2017-08-04 2025-04-15 Asm Ip Holding B.V. Showerhead assembly for distributing a gas within a reaction chamber
US12278129B2 (en) 2020-03-04 2025-04-15 Asm Ip Holding B.V. Alignment fixture for a reactor system
US12288710B2 (en) 2020-12-18 2025-04-29 Asm Ip Holding B.V. Wafer processing apparatus with a rotatable table
US12322591B2 (en) 2020-07-27 2025-06-03 Asm Ip Holding B.V. Thin film deposition process
US12378665B2 (en) 2018-10-26 2025-08-05 Asm Ip Holding B.V. High temperature coatings for a preclean and etch apparatus and related methods
US12406846B2 (en) 2020-05-26 2025-09-02 Asm Ip Holding B.V. Method for depositing boron and gallium containing silicon germanium layers
US12410515B2 (en) 2020-01-29 2025-09-09 Asm Ip Holding B.V. Contaminant trap system for a reactor system
US12431354B2 (en) 2020-07-01 2025-09-30 Asm Ip Holding B.V. Silicon nitride and silicon oxide deposition methods using fluorine inhibitor
US12431334B2 (en) 2020-02-13 2025-09-30 Asm Ip Holding B.V. Gas distribution assembly
US12428726B2 (en) 2019-10-08 2025-09-30 Asm Ip Holding B.V. Gas injection system and reactor system including same
US12442082B2 (en) 2020-05-07 2025-10-14 Asm Ip Holding B.V. Reactor system comprising a tuning circuit
USD1099184S1 (en) 2021-11-29 2025-10-21 Asm Ip Holding B.V. Weighted lift pin
US12469693B2 (en) 2019-09-17 2025-11-11 Asm Ip Holding B.V. Method of forming a carbon-containing layer and structure including the layer

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319569B1 (en) * 1998-11-30 2001-11-20 Howmet Research Corporation Method of controlling vapor deposition substrate temperature
JP4397546B2 (en) * 2001-06-07 2010-01-13 光洋サーモシステム株式会社 Continuous heat treatment furnace and workpiece heat treatment temperature control method in continuous heat treatment furnace
JP2003213421A (en) * 2002-01-21 2003-07-30 Hitachi Kokusai Electric Inc Substrate processing equipment
JP4448662B2 (en) * 2003-03-14 2010-04-14 光洋サーモシステム株式会社 Single wafer heat treatment system
JP3910151B2 (en) * 2003-04-01 2007-04-25 東京エレクトロン株式会社 Heat treatment method and heat treatment apparatus
JP4642349B2 (en) * 2003-12-26 2011-03-02 東京エレクトロン株式会社 Vertical heat treatment apparatus and low temperature region temperature convergence method
US7026580B2 (en) * 2004-03-26 2006-04-11 Taiwan Semiconductor Manufacturing Co., Ltd. Adjustable exhaust flow for thermal uniformity
US7371998B2 (en) * 2006-07-05 2008-05-13 Semitool, Inc. Thermal wafer processor
US7795157B2 (en) 2006-08-04 2010-09-14 Hitachi Kokusai Electric, Inc. Substrate treatment device and manufacturing method of semiconductor device
US7727780B2 (en) 2007-01-26 2010-06-01 Hitachi Kokusai Electric Inc. Substrate processing method and semiconductor manufacturing apparatus
JP5090097B2 (en) * 2007-07-26 2012-12-05 株式会社日立国際電気 Substrate processing apparatus, semiconductor device manufacturing method, and substrate processing method
JP5751549B2 (en) * 2010-03-15 2015-07-22 株式会社日立国際電気 Heat treatment apparatus and semiconductor manufacturing method
WO2012011423A1 (en) * 2010-07-22 2012-01-26 株式会社日立国際電気 Device for treating substrate and method for producing semiconductor device
JP5893280B2 (en) * 2010-09-09 2016-03-23 東京エレクトロン株式会社 Vertical heat treatment equipment
US20120168143A1 (en) * 2010-12-30 2012-07-05 Poole Ventura, Inc. Thermal Diffusion Chamber With Heat Exchanger
US20130153201A1 (en) * 2010-12-30 2013-06-20 Poole Ventura, Inc. Thermal diffusion chamber with cooling tubes
US8950470B2 (en) * 2010-12-30 2015-02-10 Poole Ventura, Inc. Thermal diffusion chamber control device and method
JP5662845B2 (en) 2011-03-01 2015-02-04 東京エレクトロン株式会社 Heat treatment apparatus and control method thereof
US20120244684A1 (en) * 2011-03-24 2012-09-27 Kunihiko Suzuki Film-forming apparatus and method
JP6158025B2 (en) * 2013-10-02 2017-07-05 株式会社ニューフレアテクノロジー Film forming apparatus and film forming method
DE102015104932B3 (en) * 2015-03-31 2016-06-02 Heraeus Noblelight Gmbh Apparatus for heat treatment
JP7101599B2 (en) 2018-11-27 2022-07-15 東京エレクトロン株式会社 Heat treatment equipment and heat treatment method
JP7638752B2 (en) * 2021-03-29 2025-03-04 東京エレクトロン株式会社 Heat treatment apparatus and heat treatment method
US12489002B2 (en) * 2021-08-30 2025-12-02 Taiwan Semiconductor Manufacturing Company Ltd. Annealing apparatus and method of operating the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3330166B2 (en) * 1992-12-04 2002-09-30 東京エレクトロン株式会社 Processing equipment
JP3177722B2 (en) 1993-06-15 2001-06-18 東京エレクトロン株式会社 Temperature control equipment for high-speed heat treatment furnace
JP3151092B2 (en) 1993-06-30 2001-04-03 東京エレクトロン株式会社 Heat treatment apparatus and heat treatment method
JP3471100B2 (en) * 1994-11-07 2003-11-25 東京エレクトロン株式会社 Vertical heat treatment equipment
JP3242281B2 (en) * 1995-03-13 2001-12-25 東京エレクトロン株式会社 Heat treatment equipment
US6005225A (en) * 1997-03-28 1999-12-21 Silicon Valley Group, Inc. Thermal processing apparatus
US6198075B1 (en) * 1998-11-25 2001-03-06 Yield Engineering Systems, Inc. Rapid heating and cooling vacuum oven

Cited By (435)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090136888A1 (en) * 2005-06-15 2009-05-28 Ken Nakao Heat processing apparatus
US8033823B2 (en) * 2005-06-15 2011-10-11 Tokyo Electron Limited Heat processing apparatus
US20100224614A1 (en) * 2006-02-20 2010-09-09 Tokyo Electron Limited Heat Treatment Apparatus, Heater, and Method for Manufacturing the Heater
US8253075B2 (en) 2006-02-20 2012-08-28 Tokyo Electron Limited Heat treatment apparatus, heater, and method for manufacturing the heater
US10844486B2 (en) 2009-04-06 2020-11-24 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US10804098B2 (en) 2009-08-14 2020-10-13 Asm Ip Holding B.V. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US20110076632A1 (en) * 2009-09-26 2011-03-31 Tokyo Electron Limited Thermal processing apparatus and cooling method
US9099505B2 (en) * 2009-09-26 2015-08-04 Tokyo Electron Limited Thermal processing apparatus and cooling method
US20110239937A1 (en) * 2010-04-06 2011-10-06 Samsung Electronics Co., Ltd. Apparatus and method for treating substrate
US9513003B2 (en) * 2010-08-16 2016-12-06 Purpose Company Limited Combustion apparatus, method for combustion control, board, combustion control system and water heater
US20120037096A1 (en) * 2010-08-16 2012-02-16 Takagi Industrial Co., Ltd. Combustion apparatus, method for combustion control, combustion control board, combustion control system and water heater
US20120064469A1 (en) * 2010-09-07 2012-03-15 Tokyo Electron Limited Vertical-type heat treatment apparatus, and control method for same
US20120213249A1 (en) * 2011-02-18 2012-08-23 Tokyo Electron Limited Heat treatment apparatus and temperature measuring method thereof
US8636409B2 (en) * 2011-02-18 2014-01-28 Tokyo Electron Limited Heat treatment apparatus and temperature measuring method thereof
US9039411B2 (en) * 2011-03-07 2015-05-26 Tokyo Electron Limited Thermal treatment apparatus
US20120231407A1 (en) * 2011-03-07 2012-09-13 Tokyo Electron Limited Thermal treatment apparatus
US10707106B2 (en) 2011-06-06 2020-07-07 Asm Ip Holding B.V. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US20130065189A1 (en) * 2011-09-13 2013-03-14 Tokyo Electron Limited Thermal treatment apparatus, temperature control system, thermal treatment method, temperature control method, and non-transitory computer readable medium embodied with program for executing the thermal treatment method or the temperature control method
US10832903B2 (en) 2011-10-28 2020-11-10 Asm Ip Holding B.V. Process feed management for semiconductor substrate processing
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11967488B2 (en) 2013-02-01 2024-04-23 Asm Ip Holding B.V. Method for treatment of deposition reactor
US20150093894A1 (en) * 2013-10-01 2015-04-02 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus, semiconductor manufacturing method, and process tube
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10604847B2 (en) 2014-03-18 2020-03-31 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US12454755B2 (en) 2014-07-28 2025-10-28 Asm Ip Holding B.V. Showerhead assembly and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US10787741B2 (en) 2014-08-21 2020-09-29 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10561975B2 (en) 2014-10-07 2020-02-18 Asm Ip Holdings B.V. Variable conductance gas distribution apparatus and method
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US20170207078A1 (en) * 2016-01-15 2017-07-20 Taiwan Semiconductor Manufacturing Co., Ltd. Atomic layer deposition apparatus and semiconductor process
US10720322B2 (en) 2016-02-19 2020-07-21 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top surface
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US12240760B2 (en) 2016-03-18 2025-03-04 Asm Ip Holding B.V. Aligned carbon nanotubes
US10851456B2 (en) 2016-04-21 2020-12-01 Asm Ip Holding B.V. Deposition of metal borides
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
CN107342244A (en) * 2016-04-28 2017-11-10 光洋热系统股份有限公司 Annealing device
TWI781096B (en) * 2016-04-28 2022-10-21 日商捷太格特熱處理股份有限公司 Heat treatment device
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US10665452B2 (en) 2016-05-02 2020-05-26 Asm Ip Holdings B.V. Source/drain performance through conformal solid state doping
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10741385B2 (en) 2016-07-28 2020-08-11 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US10943771B2 (en) 2016-10-26 2021-03-09 Asm Ip Holding B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10720331B2 (en) 2016-11-01 2020-07-21 ASM IP Holdings, B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10644025B2 (en) 2016-11-07 2020-05-05 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10622375B2 (en) 2016-11-07 2020-04-14 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
US10934619B2 (en) 2016-11-15 2021-03-02 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11761087B2 (en) * 2016-11-30 2023-09-19 Kokusai Electric Corporation Substrate processing apparatus and non-transitory computer-readable recording medium
TWI669411B (en) * 2016-12-09 2019-08-21 日商國際電氣股份有限公司 Substrate processing apparatus, cooling unit, heat insulating structure, and method of manufacturing semiconductor device
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US12000042B2 (en) 2016-12-15 2024-06-04 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11970766B2 (en) 2016-12-15 2024-04-30 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US10784102B2 (en) 2016-12-22 2020-09-22 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US12043899B2 (en) 2017-01-10 2024-07-23 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US12106965B2 (en) 2017-02-15 2024-10-01 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
USD876504S1 (en) 2017-04-03 2020-02-25 Asm Ip Holding B.V. Exhaust flow control ring for semiconductor deposition apparatus
US10950432B2 (en) 2017-04-25 2021-03-16 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
US10714335B2 (en) 2017-04-25 2020-07-14 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US12040200B2 (en) 2017-06-20 2024-07-16 Asm Ip Holding B.V. Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US11976361B2 (en) 2017-06-28 2024-05-07 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US10734497B2 (en) 2017-07-18 2020-08-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US12363960B2 (en) 2017-07-19 2025-07-15 Asm Ip Holding B.V. Method for depositing a Group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US12276023B2 (en) 2017-08-04 2025-04-15 Asm Ip Holding B.V. Showerhead assembly for distributing a gas within a reaction chamber
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US10672636B2 (en) 2017-08-09 2020-06-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11993843B2 (en) 2017-08-31 2024-05-28 Asm Ip Holding B.V. Substrate processing apparatus
TWI696229B (en) * 2017-09-12 2020-06-11 日商國際電氣股份有限公司 Cooling unit, heat insulating structure, substrate processing device, and method of manufacturing semiconductor device
US11043402B2 (en) 2017-09-12 2021-06-22 Kokusai Electric Corporation Cooling unit, heat insulating structure, and substrate processing apparatus
CN109494172A (en) * 2017-09-12 2019-03-19 株式会社国际电气 The manufacturing method of cooling unit, insulated structure, substrate board treatment and semiconductor device
US10928731B2 (en) 2017-09-21 2021-02-23 Asm Ip Holding B.V. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US12033861B2 (en) 2017-10-05 2024-07-09 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10734223B2 (en) 2017-10-10 2020-08-04 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US12040184B2 (en) 2017-10-30 2024-07-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US10734244B2 (en) 2017-11-16 2020-08-04 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by the same
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US12119228B2 (en) 2018-01-19 2024-10-15 Asm Ip Holding B.V. Deposition method
US11972944B2 (en) 2018-01-19 2024-04-30 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD913980S1 (en) 2018-02-01 2021-03-23 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US12173402B2 (en) 2018-02-15 2024-12-24 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US10847371B2 (en) 2018-03-27 2020-11-24 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US12020938B2 (en) 2018-03-27 2024-06-25 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US10867786B2 (en) 2018-03-30 2020-12-15 Asm Ip Holding B.V. Substrate processing method
US12230531B2 (en) 2018-04-09 2025-02-18 Asm Ip Holding B.V. Substrate supporting apparatus, substrate processing apparatus including the same, and substrate processing method
CN110444489A (en) * 2018-05-02 2019-11-12 东京毅力科创株式会社 Annealing device
US12025484B2 (en) 2018-05-08 2024-07-02 Asm Ip Holding B.V. Thin film forming method
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US12272527B2 (en) 2018-05-09 2025-04-08 Asm Ip Holding B.V. Apparatus for use with hydrogen radicals and method of using same
US11056567B2 (en) 2018-05-11 2021-07-06 Asm Ip Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11837483B2 (en) 2018-06-04 2023-12-05 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11952658B2 (en) 2018-06-27 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US10914004B2 (en) 2018-06-29 2021-02-09 Asm Ip Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US10755923B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
CN110739244A (en) * 2018-07-20 2020-01-31 东京毅力科创株式会社 Heat treatment apparatus and heat treatment method
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US12378665B2 (en) 2018-10-26 2025-08-05 Asm Ip Holding B.V. High temperature coatings for a preclean and etch apparatus and related methods
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US12448682B2 (en) 2018-11-06 2025-10-21 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US12040199B2 (en) 2018-11-28 2024-07-16 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US12444599B2 (en) 2018-11-30 2025-10-14 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11959171B2 (en) 2019-01-17 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US12176243B2 (en) 2019-02-20 2024-12-24 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US12410522B2 (en) 2019-02-22 2025-09-09 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11996309B2 (en) 2019-05-16 2024-05-28 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US12195855B2 (en) 2019-06-06 2025-01-14 Asm Ip Holding B.V. Gas-phase reactor system including a gas detector
US11453946B2 (en) 2019-06-06 2022-09-27 Asm Ip Holding B.V. Gas-phase reactor system including a gas detector
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US12252785B2 (en) 2019-06-10 2025-03-18 Asm Ip Holding B.V. Method for cleaning quartz epitaxial chambers
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US12107000B2 (en) 2019-07-10 2024-10-01 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11996304B2 (en) 2019-07-16 2024-05-28 Asm Ip Holding B.V. Substrate processing device
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US12129548B2 (en) 2019-07-18 2024-10-29 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US12112940B2 (en) 2019-07-19 2024-10-08 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US12169361B2 (en) 2019-07-30 2024-12-17 Asm Ip Holding B.V. Substrate processing apparatus and method
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
US12247286B2 (en) 2019-08-09 2025-03-11 Asm Ip Holding B.V. Heater assembly including cooling apparatus and method of using same
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US12040229B2 (en) 2019-08-22 2024-07-16 Asm Ip Holding B.V. Method for forming a structure with a hole
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US12033849B2 (en) 2019-08-23 2024-07-09 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by PEALD using bis(diethylamino)silane
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US12469693B2 (en) 2019-09-17 2025-11-11 Asm Ip Holding B.V. Method of forming a carbon-containing layer and structure including the layer
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US12230497B2 (en) 2019-10-02 2025-02-18 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US12428726B2 (en) 2019-10-08 2025-09-30 Asm Ip Holding B.V. Gas injection system and reactor system including same
US12006572B2 (en) 2019-10-08 2024-06-11 Asm Ip Holding B.V. Reactor system including a gas distribution assembly for use with activated species and method of using same
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US12009241B2 (en) 2019-10-14 2024-06-11 Asm Ip Holding B.V. Vertical batch furnace assembly with detector to detect cassette
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11996292B2 (en) 2019-10-25 2024-05-28 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US12266695B2 (en) 2019-11-05 2025-04-01 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
CN112786482A (en) * 2019-11-11 2021-05-11 夏泰鑫半导体(青岛)有限公司 Heat treatment system
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US12119220B2 (en) 2019-12-19 2024-10-15 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US12033885B2 (en) 2020-01-06 2024-07-09 Asm Ip Holding B.V. Channeled lift pin
US11976359B2 (en) 2020-01-06 2024-05-07 Asm Ip Holding B.V. Gas supply assembly, components thereof, and reactor system including same
US11993847B2 (en) 2020-01-08 2024-05-28 Asm Ip Holding B.V. Injector
US12125700B2 (en) 2020-01-16 2024-10-22 Asm Ip Holding B.V. Method of forming high aspect ratio features
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US12410515B2 (en) 2020-01-29 2025-09-09 Asm Ip Holding B.V. Contaminant trap system for a reactor system
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US12431334B2 (en) 2020-02-13 2025-09-30 Asm Ip Holding B.V. Gas distribution assembly
US12218269B2 (en) 2020-02-13 2025-02-04 Asm Ip Holding B.V. Substrate processing apparatus including light receiving device and calibration method of light receiving device
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11986868B2 (en) 2020-02-28 2024-05-21 Asm Ip Holding B.V. System dedicated for parts cleaning
US12278129B2 (en) 2020-03-04 2025-04-15 Asm Ip Holding B.V. Alignment fixture for a reactor system
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11961741B2 (en) 2020-03-12 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US12173404B2 (en) 2020-03-17 2024-12-24 Asm Ip Holding B.V. Method of depositing epitaxial material, structure formed using the method, and system for performing the method
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US12087586B2 (en) 2020-04-15 2024-09-10 Asm Ip Holding B.V. Method of forming chromium nitride layer and structure including the chromium nitride layer
US11996289B2 (en) 2020-04-16 2024-05-28 Asm Ip Holding B.V. Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
US12243742B2 (en) 2020-04-21 2025-03-04 Asm Ip Holding B.V. Method for processing a substrate
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US12221357B2 (en) 2020-04-24 2025-02-11 Asm Ip Holding B.V. Methods and apparatus for stabilizing vanadium compounds
US12243747B2 (en) 2020-04-24 2025-03-04 Asm Ip Holding B.V. Methods of forming structures including vanadium boride and vanadium phosphide layers
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US12130084B2 (en) 2020-04-24 2024-10-29 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11959168B2 (en) 2020-04-29 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US12051602B2 (en) 2020-05-04 2024-07-30 Asm Ip Holding B.V. Substrate processing system for processing substrates with an electronics module located behind a door in a front wall of the substrate processing system
US12442082B2 (en) 2020-05-07 2025-10-14 Asm Ip Holding B.V. Reactor system comprising a tuning circuit
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US12057314B2 (en) 2020-05-15 2024-08-06 Asm Ip Holding B.V. Methods for silicon germanium uniformity control using multiple precursors
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US12243757B2 (en) 2020-05-21 2025-03-04 Asm Ip Holding B.V. Flange and apparatus for processing substrates
US11987881B2 (en) 2020-05-22 2024-05-21 Asm Ip Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
US12406846B2 (en) 2020-05-26 2025-09-02 Asm Ip Holding B.V. Method for depositing boron and gallium containing silicon germanium layers
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US12106944B2 (en) 2020-06-02 2024-10-01 Asm Ip Holding B.V. Rotating substrate support
US12266524B2 (en) 2020-06-16 2025-04-01 Asm Ip Holding B.V. Method for depositing boron containing silicon germanium layers
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US12431354B2 (en) 2020-07-01 2025-09-30 Asm Ip Holding B.V. Silicon nitride and silicon oxide deposition methods using fluorine inhibitor
US12020934B2 (en) 2020-07-08 2024-06-25 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US12055863B2 (en) 2020-07-17 2024-08-06 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US12241158B2 (en) 2020-07-20 2025-03-04 Asm Ip Holding B.V. Method for forming structures including transition metal layers
US12322591B2 (en) 2020-07-27 2025-06-03 Asm Ip Holding B.V. Thin film deposition process
US12154824B2 (en) 2020-08-14 2024-11-26 Asm Ip Holding B.V. Substrate processing method
US12040177B2 (en) 2020-08-18 2024-07-16 Asm Ip Holding B.V. Methods for forming a laminate film by cyclical plasma-enhanced deposition processes
US12217954B2 (en) 2020-08-25 2025-02-04 Asm Ip Holding B.V. Method of cleaning a surface
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US12074022B2 (en) 2020-08-27 2024-08-27 Asm Ip Holding B.V. Method and system for forming patterned structures using multiple patterning process
US12211742B2 (en) 2020-09-10 2025-01-28 Asm Ip Holding B.V. Methods for depositing gap filling fluid
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
US12148609B2 (en) 2020-09-16 2024-11-19 Asm Ip Holding B.V. Silicon oxide deposition method
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US12218000B2 (en) 2020-09-25 2025-02-04 Asm Ip Holding B.V. Semiconductor processing method
US12009224B2 (en) 2020-09-29 2024-06-11 Asm Ip Holding B.V. Apparatus and method for etching metal nitrides
US12107005B2 (en) 2020-10-06 2024-10-01 Asm Ip Holding B.V. Deposition method and an apparatus for depositing a silicon-containing material
US12051567B2 (en) 2020-10-07 2024-07-30 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including gas supply unit
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US12217946B2 (en) 2020-10-15 2025-02-04 Asm Ip Holding B.V. Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-CAT
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US12209308B2 (en) 2020-11-12 2025-01-28 Asm Ip Holding B.V. Reactor and related methods
US12195852B2 (en) 2020-11-23 2025-01-14 Asm Ip Holding B.V. Substrate processing apparatus with an injector
US12027365B2 (en) 2020-11-24 2024-07-02 Asm Ip Holding B.V. Methods for filling a gap and related systems and devices
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US12255053B2 (en) 2020-12-10 2025-03-18 Asm Ip Holding B.V. Methods and systems for depositing a layer
US12159788B2 (en) 2020-12-14 2024-12-03 Asm Ip Holding B.V. Method of forming structures for threshold voltage control
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US12288710B2 (en) 2020-12-18 2025-04-29 Asm Ip Holding B.V. Wafer processing apparatus with a rotatable table
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US12131885B2 (en) 2020-12-22 2024-10-29 Asm Ip Holding B.V. Plasma treatment device having matching box
US12129545B2 (en) 2020-12-22 2024-10-29 Asm Ip Holding B.V. Precursor capsule, a vessel and a method
USD1023959S1 (en) 2021-05-11 2024-04-23 Asm Ip Holding B.V. Electrode for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
CN113310309A (en) * 2021-06-01 2021-08-27 北京北方华创微电子装备有限公司 Vertical furnace and furnace body temperature control method thereof
CN113436996A (en) * 2021-06-22 2021-09-24 北京北方华创微电子装备有限公司 Cooling device for heat treatment equipment and heat treatment equipment
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
USD1099184S1 (en) 2021-11-29 2025-10-21 Asm Ip Holding B.V. Weighted lift pin
USD1060598S1 (en) 2021-12-03 2025-02-04 Asm Ip Holding B.V. Split showerhead cover
CN117419498A (en) * 2023-12-18 2024-01-19 盛吉盛半导体科技(无锡)有限公司 Gradual cooling device and cooling method thereof

Also Published As

Publication number Publication date
US6403927B1 (en) 2002-06-11
EP1182692B1 (en) 2009-05-13
JP4365017B2 (en) 2009-11-18
EP1182692A3 (en) 2006-05-31
EP1182692A2 (en) 2002-02-27
JP2002075890A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
US6403927B1 (en) Heat-processing apparatus and method of semiconductor process
KR100241293B1 (en) Temperature control method and apparatus for high speed heat treatment
KR100793329B1 (en) Methods and apparatus for heat treating wafers
US6949722B2 (en) Method and apparatus for active temperature control of susceptors
TWI469237B (en) A mounting apparatus, a processing apparatus, and a temperature control method
EP1443543B1 (en) Thermal treating apparatus
US8183502B2 (en) Mounting table structure and heat treatment apparatus
US7311520B2 (en) Heat treatment apparatus
US5903711A (en) Heat treatment apparatus and heat treatment method
US20070148606A1 (en) Vertical heat treatment device and method controlling the same
US7313931B2 (en) Method and device for heat treatment
JPH11204442A (en) Single wafer heat treatment device
CN101645393A (en) Substrate processing apparatus, heating device, and semiconductor device manufacturing method
KR20040010620A (en) Processing apparatus and processing method
JP2005535126A (en) Wafer batch processing system and method
JPH09232297A (en) Heat treatment apparatus
US20080197125A1 (en) Substrate heating method and apparatus
KR100856153B1 (en) Substrate stage mechanism and substrate processing apparatus
JP4742431B2 (en) Heat treatment equipment
JP4468555B2 (en) Heat treatment apparatus and heat treatment method
KR20050083837A (en) Forced convection assisted rapid thermal furnace
JP4104070B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, heating apparatus, and heat insulating material
JP2007242850A (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
JP3084232B2 (en) Vertical heat treatment equipment
JP2004327528A (en) Semiconductor processing equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOKYO ELECTRON LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KATO, KAZUHIKO;REEL/FRAME:012099/0937

Effective date: 20010807

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

CC Certificate of correction
CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12