US20010036062A1 - Active noise cancellation arrangement with heat dissipation - Google Patents
Active noise cancellation arrangement with heat dissipation Download PDFInfo
- Publication number
- US20010036062A1 US20010036062A1 US09/826,030 US82603001A US2001036062A1 US 20010036062 A1 US20010036062 A1 US 20010036062A1 US 82603001 A US82603001 A US 82603001A US 2001036062 A1 US2001036062 A1 US 2001036062A1
- Authority
- US
- United States
- Prior art keywords
- cooling member
- housing
- assembly
- electronics module
- circuit board
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000017525 heat dissipation Effects 0.000 title description 2
- 238000001816 cooling Methods 0.000 claims abstract description 54
- 229910001369 Brass Inorganic materials 0.000 claims abstract description 5
- 239000010951 brass Substances 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 238000007731 hot pressing Methods 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 3
- 238000010168 coupling process Methods 0.000 claims 3
- 238000005859 coupling reaction Methods 0.000 claims 3
- 239000000463 material Substances 0.000 abstract description 3
- 230000008901 benefit Effects 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 238000009434 installation Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M35/00—Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
- F02M35/10—Air intakes; Induction systems
- F02M35/10242—Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
- F02M35/10268—Heating, cooling or thermal insulating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M35/00—Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
- F02M35/12—Intake silencers ; Sound modulation, transmission or amplification
- F02M35/1244—Intake silencers ; Sound modulation, transmission or amplification using interference; Masking or reflecting sound
- F02M35/125—Intake silencers ; Sound modulation, transmission or amplification using interference; Masking or reflecting sound by using active elements, e.g. speakers
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/175—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
- G10K11/178—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/175—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
- G10K11/178—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
- G10K11/1785—Methods, e.g. algorithms; Devices
Definitions
- This invention generally relates to noise cancellation arrangements in vehicle air intake systems. More particularly, this invention relates to a heat dissipation arrangement for a noise cancellation system.
- Internal combustion engines include air induction systems for conducting air to the engine.
- Engine noise typically is propagated through the air induction system, which is undesirable.
- Noise attenuation mechanisms have been installed within the air induction systems to reduce such noises.
- Typical noise attenuation mechanisms include a speaker, a sound detector such as a microphone and a signal generator.
- Various other components are often used to reduce noise generated at the air induction system.
- the noise attenuation system signal generator is often part of a printed circuit board that is used to control operation of the noise attenuation system components.
- One problem associated with such arrangements is a tendency for heat build-up at the circuit components.
- This invention addresses that need in an efficient manner, which takes advantage of the characteristics of the air induction system.
- this invention is a noise attenuation assembly for use in a vehicle air intake arrangement.
- An assembly designed according to this invention includes a housing that at least partially defines an air passageway.
- An electronics module is supported by the housing.
- a metal cooling member is supported by the housing at least partially in the air passageway and coupled with the electronics module such that heat in the electronics module is dissipated by the cooling member.
- the cooling member is made of brass.
- the cooling member includes a body portion having an opening through the body portion and a plurality of ribs that extend radially outwardly from the body portion.
- a method of this invention for controlling the temperature of an electronics module in a noise attenuation device that is used in a vehicle air intake system includes several steps.
- a cooling member is supported on a portion of a housing that at least partially defines an air passageway such that the cooling member is at least partially within the air passageway.
- the cooling member is then coupled with the electronics module of the noise attenuation device to thereby allow heat in the electronics module to be dissipated by the cooling member.
- the cooling member is supported on the housing by hot pressing at least a portion of the cooling member into a portion of the housing.
- FIG. 1 schematically illustrates a noise attenuation system designed according to this invention.
- FIG. 2 is an enlarged view showing somewhat more detail of a portion of the embodiment of FIG. 1.
- FIG. 3 schematically illustrates selected portions of the embodiment of FIG. 1.
- FIG. 4 illustrates an example insert member designed according to this invention.
- FIG. 5 illustrates another example insert member designed according to this invention.
- a vehicle air intake assembly 20 is used to provide air to a vehicle engine 22 .
- An air intake housing 24 supports a noise attenuation device 26 near an inlet portion of the air intake system.
- the noise attenuation system 26 includes a housing portion 28 that supports a speaker 30 in the air intake arrangement.
- An electronics module 32 and noise detector 34 are also part of the noise attenuation device 26 .
- Noise attenuation devices are known and the function of the device 26 need not be elaborated on in this description.
- a cooling member 36 is supported at least partially within an air passageway 38 defined by the housing portion 28 .
- the cooling member 36 is preferably made from a metal material. Brass is the preferred material. Other example materials that are useful with this invention include steel or aluminum. Brass is preferred because of its expansion and contraction characteristics compared to other metals.
- the cooling member 36 preferably is at least partially received into a portion of the housing 28 .
- a hot press installation method is used.
- the cooling member 36 is heated and then pressed against the appropriate portion of the housing 28 so that the cooling member 36 is at least partially embedded into the wall of the housing.
- Hot press methodology is known in the art.
- Another example installation method includes a cold press.
- Locating cooling member 36 at least partially within the air passageway 38 provides a significant advantage in that the air flow through the passageway, which is required for engine operation, also serves a cooling function. Having the cooling member 36 at least partially within the air passageway 38 allows for a much smaller cooling member 36 to be utilized. Smaller cooling members reduces cost because the amount of metal material required is reduced. Cost savings are an important issue in automotive applications.
- the cooling member 36 can take a variety of forms. Examples are shown in FIGS. 3, 4 and 5 .
- the examples of FIGS. 3 and 4 each include a body portion having an opening 50 extending through the body portion.
- a plurality of rib members 52 extend away from the body portion in a radially outward direction. At least one of the rib portions 52 preferably is embedded into a portion of the housing wall 30 using the hot press method, for example.
- the cooling member 36 extends across an entire portion of the air passageway 38 between inner walls 40 and 42 of the air passageway. In situations where the cooling member 36 extends across an entire portion of the air passageway, the cooling member must include sufficient openings or passageways to allow air flow as needed.
- the example cooling member of FIG. 5 does not have ribs as the examples of FIGS. 3 and 4. Instead, an outer surface 54 on the body portion of the cooling member is knurled. A knurled outer surface 54 provides for a better adhesion between the cooling member and an interior surface on the housing wall within an air passageway compared to a smooth outer surface.
- the cooling member 36 of this invention is primarily intended to dissipate heat that is generated within the electronics module 32 .
- Electronics modules that are used for controlling noise cancellation systems typically include printed circuit boards that have circuit elements that tend to heat up during operation.
- the cooling member 36 preferably is coupled with the electronics module so that heat within the electronics 32 is dissipated through the cooling member 36 .
- the electronics module 32 includes a printed circuit board that has a flag portion 60 .
- a connecting member 62 extends through an opening in the flag portion 60 , through a portion of the housing wall 40 and makes contact with the cooling member 36 which allows for thermal conduction between the electronics module 32 and the cooling member 36 .
- a pin is used as the connecting member 62 .
- a clip is used as the connecting member 62 .
- Another advantage of this invention is that the connecting member 62 not only thermally couples the cooling member 36 with the electronics module 32 but also operates to mount the electronics module 32 onto the housing portion 28 .
- This invention provides a compact, cost effective arrangement for dissipating heat in an electronics module within a noise cancellation arrangement in a vehicle air intake system.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
Abstract
A vehicle air intake system includes a noise cancellation assembly. A cooling member is provided at least partially within an air passageway for dissipating heat within an electronics module portion of the noise cancellation assembly. The cooling member preferably is a brass material insert that is supported at least partially within an air passageway by a housing that supports components of the noise cancellation assembly. A connecting member that thermally couples the electronics module to the cooling member also operates to secure the electronics module to the housing in one example embodiment.
Description
- This application claims priority to U.S. Provisional Application No. 60/209,752, which was filed on Jun. 6, 2000.
- This invention generally relates to noise cancellation arrangements in vehicle air intake systems. More particularly, this invention relates to a heat dissipation arrangement for a noise cancellation system.
- Internal combustion engines include air induction systems for conducting air to the engine. Engine noise typically is propagated through the air induction system, which is undesirable. Noise attenuation mechanisms have been installed within the air induction systems to reduce such noises. Typical noise attenuation mechanisms include a speaker, a sound detector such as a microphone and a signal generator. Various other components are often used to reduce noise generated at the air induction system.
- The noise attenuation system signal generator is often part of a printed circuit board that is used to control operation of the noise attenuation system components. One problem associated with such arrangements is a tendency for heat build-up at the circuit components. There is a need for an effective way to dissipate heat in the noise attenuation system.
- This invention addresses that need in an efficient manner, which takes advantage of the characteristics of the air induction system.
- In general terms, this invention is a noise attenuation assembly for use in a vehicle air intake arrangement. An assembly designed according to this invention includes a housing that at least partially defines an air passageway. An electronics module is supported by the housing. A metal cooling member is supported by the housing at least partially in the air passageway and coupled with the electronics module such that heat in the electronics module is dissipated by the cooling member.
- In one example, the cooling member is made of brass.
- In one example, the cooling member includes a body portion having an opening through the body portion and a plurality of ribs that extend radially outwardly from the body portion.
- A method of this invention for controlling the temperature of an electronics module in a noise attenuation device that is used in a vehicle air intake system includes several steps. A cooling member is supported on a portion of a housing that at least partially defines an air passageway such that the cooling member is at least partially within the air passageway. The cooling member is then coupled with the electronics module of the noise attenuation device to thereby allow heat in the electronics module to be dissipated by the cooling member.
- In one example, the cooling member is supported on the housing by hot pressing at least a portion of the cooling member into a portion of the housing.
- The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows.
- FIG. 1 schematically illustrates a noise attenuation system designed according to this invention.
- FIG. 2 is an enlarged view showing somewhat more detail of a portion of the embodiment of FIG. 1.
- FIG. 3 schematically illustrates selected portions of the embodiment of FIG. 1.
- FIG. 4 illustrates an example insert member designed according to this invention.
- FIG. 5 illustrates another example insert member designed according to this invention.
- A vehicle
air intake assembly 20 is used to provide air to avehicle engine 22. Anair intake housing 24 supports anoise attenuation device 26 near an inlet portion of the air intake system. - The
noise attenuation system 26 includes ahousing portion 28 that supports aspeaker 30 in the air intake arrangement. Anelectronics module 32 andnoise detector 34 are also part of thenoise attenuation device 26. Noise attenuation devices are known and the function of thedevice 26 need not be elaborated on in this description. - A
cooling member 36 is supported at least partially within anair passageway 38 defined by thehousing portion 28. Thecooling member 36 is preferably made from a metal material. Brass is the preferred material. Other example materials that are useful with this invention include steel or aluminum. Brass is preferred because of its expansion and contraction characteristics compared to other metals. - The
cooling member 36 preferably is at least partially received into a portion of thehousing 28. In one example, a hot press installation method is used. Thecooling member 36 is heated and then pressed against the appropriate portion of thehousing 28 so that thecooling member 36 is at least partially embedded into the wall of the housing. Hot press methodology is known in the art. Another example installation method includes a cold press. - A variety of ways of securing the
cooling member 36 to the housing at least partially within theair passageway 38 may be used within the scope of this invention. - Those who have the benefit of this description will be able to choose the best installation method for their particular situation.
- Locating
cooling member 36 at least partially within theair passageway 38 provides a significant advantage in that the air flow through the passageway, which is required for engine operation, also serves a cooling function. Having thecooling member 36 at least partially within theair passageway 38 allows for a muchsmaller cooling member 36 to be utilized. Smaller cooling members reduces cost because the amount of metal material required is reduced. Cost savings are an important issue in automotive applications. - The
cooling member 36 can take a variety of forms. Examples are shown in FIGS. 3, 4 and 5. The examples of FIGS. 3 and 4 each include a body portion having an opening 50 extending through the body portion. A plurality ofrib members 52 extend away from the body portion in a radially outward direction. At least one of therib portions 52 preferably is embedded into a portion of thehousing wall 30 using the hot press method, for example. - In the example of FIG. 2, the
cooling member 36 extends across an entire portion of theair passageway 38 between 40 and 42 of the air passageway. In situations where theinner walls cooling member 36 extends across an entire portion of the air passageway, the cooling member must include sufficient openings or passageways to allow air flow as needed. - The example cooling member of FIG. 5 does not have ribs as the examples of FIGS. 3 and 4. Instead, an
outer surface 54 on the body portion of the cooling member is knurled. A knurledouter surface 54 provides for a better adhesion between the cooling member and an interior surface on the housing wall within an air passageway compared to a smooth outer surface. - The cooling
member 36 of this invention is primarily intended to dissipate heat that is generated within theelectronics module 32. Electronics modules that are used for controlling noise cancellation systems typically include printed circuit boards that have circuit elements that tend to heat up during operation. The coolingmember 36 preferably is coupled with the electronics module so that heat within theelectronics 32 is dissipated through the coolingmember 36. - In one example, the
electronics module 32 includes a printed circuit board that has aflag portion 60. A connectingmember 62 extends through an opening in theflag portion 60, through a portion of thehousing wall 40 and makes contact with the coolingmember 36 which allows for thermal conduction between theelectronics module 32 and the coolingmember 36. In one example, a pin is used as the connectingmember 62. In another example, a clip is used as the connectingmember 62. - Another advantage of this invention is that the connecting
member 62 not only thermally couples the coolingmember 36 with theelectronics module 32 but also operates to mount theelectronics module 32 onto thehousing portion 28. - This invention provides a compact, cost effective arrangement for dissipating heat in an electronics module within a noise cancellation arrangement in a vehicle air intake system.
- The preceding description gives example implementations of this invention. Variations and modifications may become apparent to those skilled in the art but do not necessarily depart from the essence of this invention. The scope of legal protection given to this invention can only be determined by studying the following claims.
Claims (14)
1. A noise attenuation assembly for use in a vehicle air intake arrangement, comprising:
a housing that at least partially defines an air passageway;
an electronics module supported by the housing; and
a metal cooling member supported by the housing at least partially in the air passageway and coupled with the electronics module such that heat in the electronics module is dissipated by the cooling member.
2. The assembly of , wherein the cooling member comprises brass.
claim 1
3. The assembly of , wherein the cooling member includes a body portion and a plurality of ribs extending radially outwardly from the body portion.
claim 1
4. The assembly of , wherein the cooling member body portion includes an opening extending through the body portion and wherein the opening is aligned with an air flow path through the air passageway.
claim 3
5. The assembly of , wherein the cooling member includes a body portion that has an exterior surface that is knurled.
claim 1
6. The assembly of , wherein the cooling member is at least partially received into a portion of the housing.
claim 1
7. The assembly of , wherein the electronics module includes a printed circuit board and a connector portion and including a connecting member coupling the connector portion to the cooling member.
claim 1
8. The assembly of , wherein the connecting member extends through an opening in the connector portion and through a portion of the housing such that the connecting member secures the printed circuit board to the housing.
claim 7
9. The assembly of , wherein the cooling member extends across the entire air passageway.
claim 1
10. The assembly of , wherein the cooling member only extends across a portion of the air passageway.
claim 1
11. A method of controlling a temperature of an electronics module in a noise attenuation device that is used in a vehicle air intake system, comprising the steps of:
forming a housing that at least partially defines an air passageway;
supporting a cooling member on a portion of the housing at least partially within the air passageway; and
coupling the cooling member with the electronics module to thereby allow heat in the electronics module to be dissipated by the cooling member.
12. The method of , including hot pressing at least a portion of the cooling member into a portion of the housing.
claim 11
13. The method of , wherein the electronics module comprises a printed circuit board and including securing the printed circuit board to the housing and coupling the printed circuit board to the cooling member using a single connecting member.
claim 11
14. The method of , including securing the cooling member to the housing, placing the circuit board into a desired position and then inserting the connecting member through a portion of the circuit board and the portion of the housing until the connecting member couples the portion of the circuit board to the cooling member.
claim 13
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US09/826,030 US6563711B1 (en) | 2000-06-06 | 2001-04-04 | Active noise cancellation arrangement with heat dissipation |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US20975200P | 2000-06-06 | 2000-06-06 | |
| US09/826,030 US6563711B1 (en) | 2000-06-06 | 2001-04-04 | Active noise cancellation arrangement with heat dissipation |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20010036062A1 true US20010036062A1 (en) | 2001-11-01 |
| US6563711B1 US6563711B1 (en) | 2003-05-13 |
Family
ID=22780117
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US09/826,030 Expired - Lifetime US6563711B1 (en) | 2000-06-06 | 2001-04-04 | Active noise cancellation arrangement with heat dissipation |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US6563711B1 (en) |
| DE (1) | DE10196313T1 (en) |
| GB (1) | GB2378690B (en) |
| WO (1) | WO2001094772A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3064749A1 (en) * | 2015-03-04 | 2016-09-07 | Honeywell International Inc. | Temperature management for throttle loss recovery systems |
| US9657696B2 (en) | 2015-03-04 | 2017-05-23 | Honeywell International Inc. | Excess power dissipation for throttle loss recovery systems |
| US9926807B2 (en) | 2015-03-04 | 2018-03-27 | Honeywell International Inc. | Generator temperature management for throttle loss recovery systems |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10332611A1 (en) * | 2003-07-17 | 2005-02-17 | Siemens Ag | Noise emission regulation device for a combustion engine has a loudspeaker, microphone and control unit for active influencing of the noise, with the microphone and loudspeaker being mounted on an integral support structure |
| DE10332610A1 (en) * | 2003-07-17 | 2005-02-24 | Siemens Ag | Noise reduction system for use on combustion engines uses loud speaker in flow duct to cancel generated noise |
| US6944024B1 (en) * | 2004-02-19 | 2005-09-13 | Audioplex Technology Incorporated | Heat sink bracket for powered loudspeaker |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3996914A (en) * | 1975-06-13 | 1976-12-14 | Chrysler Corporation | Housing for mounting electronic circuit boards on an engine air intake structure |
| US5097923A (en) * | 1988-02-19 | 1992-03-24 | Noise Cancellation Technologies, Inc. | Active sound attenation system for engine exhaust systems and the like |
| JP3121848B2 (en) * | 1991-01-28 | 2001-01-09 | 三信工業株式会社 | Attachment structure of electronic component unit to outboard engine |
| DE4430324C1 (en) * | 1994-08-26 | 1996-10-10 | Vdo Schindling | Air intake pipe for automobile i.c. engine |
| JPH09126076A (en) | 1995-10-31 | 1997-05-13 | Tenetsukusu:Kk | Speaker fitting structure of positive muffling device |
| JPH09151817A (en) | 1995-11-29 | 1997-06-10 | Tenetsukusu:Kk | Speaker mounting part structure of active type muffling device |
| US5715140A (en) * | 1996-05-03 | 1998-02-03 | Ford Motor Company | Overlay substrate for securing electronic devices in a vehicle |
| JPH09319376A (en) | 1996-05-24 | 1997-12-12 | Kubota Corp | Enclosed engine work machine |
| US6084971A (en) | 1997-06-10 | 2000-07-04 | Siemens Electric Limited | Active noise attenuation system |
| US5988119A (en) | 1998-08-03 | 1999-11-23 | Ford Motor Company | Electronic control module assembly using throttle body air for cooling and method thereof |
| JP3032505B1 (en) * | 1998-10-19 | 2000-04-17 | 北川工業株式会社 | heatsink |
| US6171380B1 (en) * | 1999-03-12 | 2001-01-09 | Carrier Corporation | Microprocessor cooler with integral acoustic attenuator |
-
2001
- 2001-04-04 US US09/826,030 patent/US6563711B1/en not_active Expired - Lifetime
- 2001-05-17 GB GB0227475A patent/GB2378690B/en not_active Expired - Fee Related
- 2001-05-17 WO PCT/CA2001/000701 patent/WO2001094772A1/en not_active Ceased
- 2001-05-17 DE DE10196313T patent/DE10196313T1/en not_active Ceased
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3064749A1 (en) * | 2015-03-04 | 2016-09-07 | Honeywell International Inc. | Temperature management for throttle loss recovery systems |
| US9657696B2 (en) | 2015-03-04 | 2017-05-23 | Honeywell International Inc. | Excess power dissipation for throttle loss recovery systems |
| US9835119B2 (en) | 2015-03-04 | 2017-12-05 | Honeywell International Inc. | Temperature management for throttle loss recovery systems |
| US9926807B2 (en) | 2015-03-04 | 2018-03-27 | Honeywell International Inc. | Generator temperature management for throttle loss recovery systems |
| US9970312B2 (en) | 2015-03-04 | 2018-05-15 | Honeywell International Inc. | Temperature management for throttle loss recovery systems |
Also Published As
| Publication number | Publication date |
|---|---|
| GB0227475D0 (en) | 2002-12-31 |
| GB2378690B (en) | 2004-12-15 |
| DE10196313T1 (en) | 2003-05-08 |
| US6563711B1 (en) | 2003-05-13 |
| WO2001094772A1 (en) | 2001-12-13 |
| GB2378690A (en) | 2003-02-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7533759B2 (en) | Active muffler for an exhaust system | |
| US6144556A (en) | Heat dissipating housing for electronic components | |
| US6867968B2 (en) | Electronic control unit | |
| US7113400B2 (en) | Housing structure of electronic control unit and mounting structure of the same | |
| US6059382A (en) | Control device for an antilocking system and process for producing a control device | |
| EP0968885A3 (en) | Cooling an engine control unit | |
| US6563711B1 (en) | Active noise cancellation arrangement with heat dissipation | |
| US20090188451A1 (en) | Engine cover with cooling fins | |
| EP0838135B1 (en) | A method and a device for permitting cooling of heat-sensitive components | |
| JPH11258019A (en) | Heating resistance type air flow measurement device | |
| US20050115357A1 (en) | Cover for joint part between engine and transmission | |
| CN111828389A (en) | Holding device and heat shield for holding device | |
| JP2003262145A (en) | Integrated control and fuel supply system | |
| JP3496550B2 (en) | Cooling system | |
| US6386151B1 (en) | Aluminum throttle body cartridge with engine control module heat sink | |
| GB2336194A (en) | Insulating device | |
| CN209687588U (en) | A kind of heat shield for engine catalyst converter | |
| KR100580456B1 (en) | Cooling device for electronic control unit mounted in vehicle engine room | |
| JPH08123927A (en) | Hard disk drive IC card and hard disk drive circuit board | |
| US20070126299A1 (en) | Constrained layer metallic endcap for motor | |
| EP4521867A1 (en) | Telematics control unit for a vehicle | |
| JP2005003007A (en) | Vibration-proof support structure for vibration heating element | |
| KR0136343Y1 (en) | Exhaust manifold heatshield | |
| JP2000356138A (en) | Exhaust pipe heat shield cover mounting structure | |
| KR20250159806A (en) | Control Apparatus for Vehicle |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SIEMENS CANADA LIMITED, ONTARIO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DALY, PAUL D.;ASTORINO, JOHN F.;COOK, CHARLES R., JR.;REEL/FRAME:011693/0966 Effective date: 20010327 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |