US1511628A - Process of making ferrochromium - Google Patents
Process of making ferrochromium Download PDFInfo
- Publication number
- US1511628A US1511628A US496633A US49663321A US1511628A US 1511628 A US1511628 A US 1511628A US 496633 A US496633 A US 496633A US 49663321 A US49663321 A US 49663321A US 1511628 A US1511628 A US 1511628A
- Authority
- US
- United States
- Prior art keywords
- chromium
- iron
- chrome
- aluminothermic
- iron ore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000604 Ferrochrome Inorganic materials 0.000 title description 10
- 238000000034 method Methods 0.000 title description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 27
- 229910052742 iron Inorganic materials 0.000 description 20
- 239000000203 mixture Substances 0.000 description 13
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 9
- 229910052804 chromium Inorganic materials 0.000 description 9
- 239000011651 chromium Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910000599 Cr alloy Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000007133 aluminothermic reaction Methods 0.000 description 4
- 239000000788 chromium alloy Substances 0.000 description 4
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- 235000013980 iron oxide Nutrition 0.000 description 2
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 2
- -1 FeO and Fe Chemical class 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S75/00—Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
- Y10S75/959—Thermit-type reaction of solid materials only to yield molten metal
Definitions
- rolling-mill scale which forms a 'well known b -product, in the rolling of iron and steel: and which therefore, can be obtained in an desired quantities at a very low price.
- his rolling-mill scale consists of a mixture or comp)ound of iron oxides, mainly FeO and Fe,
- no-thermic mixture may be employed for the purpose of producing carbon-free ferro-chromium, to-wit, approximately 70% of chrome iron ore, 22% of aluminum and 8% of mill scale. It will be understood that this is merely a specific instance and, obviously, the invention contemplates the employment of such relative pro-portions of the ore and aluminum as are ordinarily regarded as necessary and proper for carrying out the alumino-thermic production of ferro-chromium, to which mixture isaddedsufiicient oxide of iron, in any appropriate form, to efi'ect the desired increase in the chromium content of the resultant alloy.
- multiple alloys of ferro-ch-romium can be produced by adding other oxides of metals such, for instance, as oxides of cobalt, nickel, tungsten, molybdenum or vanadium.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Metal Rolling (AREA)
Description
Patented Oct. lfl, 1924.
UNITED STATES PATENT OFFICE.
'KARL WEEK, OF E SS EN, GERMANY, ASSIGNOR TO METAL THERMIT CORPORA- TION, OF NEW YORK, N. Y., .l CORIORATION OF NEW JERSEY.
PROCESS OF MAKING FERROCHROMIUM.
No Drawing.
To all whom it may concern:
Be it known that I, KARL Mt'ILLeR, a cit-izen of the German Republic, and residing at Essen, Germany, have invented a new and useful Improvement irf'Processes of Making Ferrochromium (for which I filed application in Germany October 14, 1919); and I do hereby declare the following to a full, clear, and exact description of the same.
Some years ago it was found that, in the aluminothermic production of carbon-free ferro -chromium from chrome-iron ore, the previously inferior yield of chromium (about 70%) can be increased (by about 15 to 20 per cent) by adding chromic oxide to the mixture of chrome-iron ore and aluminum (or any other reducing metal or alloy actingvin the same manner). In this way it is possible to produce ferro-chromium of constant or uniform composition with a satisfactoryyield of chromium from chromeiron ore. However, this process cannot now be economically used in practice owing to the fact that the cost of chromium oxide has very greatly increased,in comparison with the price paid some years ago.
I have made the unexpected discovery that the same increased yield of chromium from chrome-iron ore can be obtained by the aluminothermic process, and also that carbon-free ferro-chromium of constant and uniform composition can be produced by adding oxides of iron to the usual aluminothermic mixture of chrome-iron ore and reducingmetal or metals and then subjecting this mass .to the aluminothermic reaction.
In this wva it is also possible to increase the yield of c romium from the chrome-iron ore. by, say, 15 to 20 per cent, and to produce ferro-chromium of any desired composition.
For carrying out the process in practice, I preferably make use of rolling-mill scale which forms a 'well known b -product, in the rolling of iron and steel: and which therefore, can be obtained in an desired quantities at a very low price. his rolling-mill scale consists of a mixture or comp)ound of iron oxides, mainly FeO and Fe,
By way of example, the following alumi- Serial No. 496,633.
no-thermic mixture may be employed for the purpose of producing carbon-free ferro-chromium, to-wit, approximately 70% of chrome iron ore, 22% of aluminum and 8% of mill scale. It will be understood that this is merely a specific instance and, obviously, the invention contemplates the employment of such relative pro-portions of the ore and aluminum as are ordinarily regarded as necessary and proper for carrying out the alumino-thermic production of ferro-chromium, to which mixture isaddedsufiicient oxide of iron, in any appropriate form, to efi'ect the desired increase in the chromium content of the resultant alloy.
Bypreheating the mixture of chromeiron ore, iron oxides and aluminum before subjecting same to the aluminothermic reaction, it is possible to obtain a particularly advantageous and uniform yield of chromium (in the shape of carbon-free ferro-chroinium) from chrome-iron ore.
It may be mentioned, also, that multiple alloys of ferro-ch-romium can be produced by adding other oxides of metals such, for instance, as oxides of cobalt, nickel, tungsten, molybdenum or vanadium.
What I claim is:
1. The process for-increasing the yield of chromium in the aluminothermic production of carbon-free. iron-chromium alloys from chrome-iron ore, which consists in adding to the ordinary aluminothermic mix.- tureof chrome-iron ore and reducing metal a certain amount of oxides of iron and subjecting this mass to the aluminothermic reaction.
2. The process for increasing the yield of chromium in the aluminothermic production of carbon-free iron-chromium alloys from chrome-iron ore, whichconsists in adding,
to the ordinary aluminothermic'mixture of chrome-iron ore and reducing metal a certain amount of rolling-mill scale and subjecting this mass to the aluminothermic reaction.
3. The process for increasing the yield of chromium in the aluminothermic production of carbon-free iron-chromium alloys from chrome-iron ore, which consists in adding to the ordinary aluminothermic mixture of chrome-iron ore and reducing metal" a certain amount of oxides of iron and oxides of other metals for the purpose of producing multiple alloys of term-chromium.
4. The process for increasing the yield of chromiumin the aluminothermic produc- 5 tion of carbon-free iron-chromium alloys from chrome-iron ore, which consists in adding to the ordinary aluminothermic mixture of chrome-iron ore and reducing metal a certain amount of rolling-mill scale and 10 oxides of other metals for the purpose of producing multiple alloys of ferro-chromium.
In testimony whereof, I have signed my name to this specification in the presence of two subscribing witnesses.
DR. KARL MULLER.
Witnesses:
AUGUST WALKER, FRITZ RUHL'.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US496633A US1511628A (en) | 1921-08-29 | 1921-08-29 | Process of making ferrochromium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US496633A US1511628A (en) | 1921-08-29 | 1921-08-29 | Process of making ferrochromium |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US1511628A true US1511628A (en) | 1924-10-14 |
Family
ID=23973487
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US496633A Expired - Lifetime US1511628A (en) | 1921-08-29 | 1921-08-29 | Process of making ferrochromium |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US1511628A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140377121A1 (en) * | 2010-11-30 | 2014-12-25 | Bloom Energy Corporation | Iron coated chromium powder and sofc ic made therefrom |
-
1921
- 1921-08-29 US US496633A patent/US1511628A/en not_active Expired - Lifetime
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140377121A1 (en) * | 2010-11-30 | 2014-12-25 | Bloom Energy Corporation | Iron coated chromium powder and sofc ic made therefrom |
| US9660274B2 (en) * | 2010-11-30 | 2017-05-23 | Bloom Energy Corporation | Iron coated chromium powder and SOFC IC made therefrom |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2395029A (en) | Method of reducing iron ores | |
| US1511628A (en) | Process of making ferrochromium | |
| GB437592A (en) | Improvements in alloys and methods of preparing the same | |
| US422403A (en) | Robert a | |
| US1059709A (en) | Process of producing low-carbon nickel alloys. | |
| US1538893A (en) | Manufacture of iron and steel alloys | |
| US1136669A (en) | Process of producing carbon-free ferrochromium. | |
| US1122907A (en) | Process of manufacturing ferrochromium. | |
| US2378397A (en) | Alloy process | |
| US1075782A (en) | Method of raising the alloying qualification of titanium. | |
| US457205A (en) | Henry marbeau | |
| US2008055A (en) | Method of producing ferro-chromium | |
| US2466091A (en) | Alloy process | |
| AT105032B (en) | Process for the production of stainless chromium steel and other iron alloys. | |
| GB152990A (en) | Process for increasing the yield of chromium in the aluminothermic production of carbon-free ferro-chromium or multiple alloys thereof from chrome-iron ore | |
| US2056766A (en) | Process of producing iron-chromium castings containing nitrogen | |
| US2277211A (en) | Method of producing low carbon chromium-containing iron alloys | |
| US993338A (en) | Process of reducing metallic oxids or other compounds of vanadium, molybdenum, tungsten, or similar metals and of producing alloys of these metals. | |
| US2203213A (en) | Alloy | |
| GB514472A (en) | A process for making chromium-iron or steel alloys and compositions for use in said process | |
| US1366254A (en) | Alloy | |
| US994055A (en) | Process of reducing refractory metallic oxids. | |
| DE898314C (en) | Process for producing a master alloy containing iron and chromium for the production of chromium steel or iron | |
| US1335992A (en) | Process for producing zirconium steel | |
| US99624A (en) | Improvement in the manufacture of steel |