US11848275B2 - Integrated shield package and method - Google Patents
Integrated shield package and method Download PDFInfo
- Publication number
- US11848275B2 US11848275B2 US17/140,614 US202117140614A US11848275B2 US 11848275 B2 US11848275 B2 US 11848275B2 US 202117140614 A US202117140614 A US 202117140614A US 11848275 B2 US11848275 B2 US 11848275B2
- Authority
- US
- United States
- Prior art keywords
- substrate
- conductive shield
- electronic component
- shield
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/563—Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
- H01L23/3675—Cooling facilitated by shape of device characterised by the shape of the housing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/5222—Capacitive arrangements or effects of, or between wiring layers
- H01L23/5225—Shielding layers formed together with wiring layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/552—Protection against radiation, e.g. light or electromagnetic waves
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/60—Protection against electrostatic charges or discharges, e.g. Faraday shields
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
- H01L21/60—Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
- H01L2021/60007—Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process
- H01L2021/60022—Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process using bump connectors, e.g. for flip chip mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/0401—Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16227—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
- H01L2224/921—Connecting a surface with connectors of different types
- H01L2224/9212—Sequential connecting processes
- H01L2224/92122—Sequential connecting processes the first connecting process involving a bump connector
- H01L2224/92125—Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
- H01L2224/922—Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
- H01L2224/9222—Sequential connecting processes
- H01L2224/92222—Sequential connecting processes the first connecting process involving a bump connector
- H01L2224/92225—Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06513—Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49811—Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
- H01L23/49816—Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49827—Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/162—Disposition
- H01L2924/16251—Connecting to an item not being a semiconductor or solid-state body, e.g. cap-to-substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3025—Electromagnetic shielding
Definitions
- the present application relates to the field of electronics, and more particularly, to methods of forming electronic component packages and related structures.
- An electronic component package generates electromagnetic radiation, which can interfere with surrounding devices in a board assembly.
- the generated electromagnetic radiation is sometimes called electromagnetic interference (EMI).
- EMI electromagnetic interference
- FIG. 1 is a cross-sectional view of an integrated shield electronic component package in accordance with one embodiment
- FIG. 2 is a top perspective view of an integrated shield of the integrated shield electronic component package of FIG. 1 in accordance with one embodiment
- FIG. 3 is a cross-sectional view of an integrated shield electronic component package in accordance with another embodiment.
- FIG. 4 is a cross-sectional view of an integrated shield electronic component package assembly formed with the integrated shield electronic component package of FIG. 3 in accordance with one embodiment.
- an integrated shield electronic component package 100 includes a substrate 102 having an upper surface 102 U, a lower surface 102 L, and sides 102 S extending between upper surface 102 U and lower surface 102 L.
- An electronic component 104 is mounted to upper surface 102 U of substrate 102 .
- FIG. 1 is a cross-sectional view of an integrated shield electronic component package 100 in accordance with one embodiment.
- Integrated shield electronic component package 100 includes a substrate 102 .
- Substrate 102 is a dielectric material such as laminate, ceramic, printed circuit board material, or other dielectric material.
- Substrate 102 includes an upper, e.g., first, surface 102 U and an opposite lower, e.g., second, surface 102 L. Substrate 102 further includes sides 102 S, sometimes called substrate edges, extending perpendicularly between upper surface 102 U and lower surface 102 L. Although the terms parallel, perpendicular, and similar terms are used herein, it is to be understood that the described features may not be exactly parallel and perpendicular, but only substantially parallel and perpendicular to within accepted manufacturing tolerances.
- Integrated shield electronic component package 100 further includes an electronic component 104 , e.g., a single die.
- electronic component 104 is an integrated circuit chip, e.g., an active component such as a high frequency ASIC device.
- electronic component 104 is a passive component such as a capacitor, resistor, or inductor.
- electronic component 104 includes two or more stacked dies.
- electronic component 104 is a single die and includes an active surface 106 , an opposite inactive surface 108 , and sides 110 extending perpendicularly between active surface 106 and inactive surface 108 .
- Electronic component 104 further includes bond pads 112 formed on active surface 106 .
- upper surface 102 U of substrate 102 Formed on upper surface 102 U of substrate 102 are one or more electrically conductive upper, e.g., first, traces 114 , e.g., formed of copper.
- bond pads 112 are electrically and physically connected to upper traces 114 , e.g., bond fingers thereof, by flip chip bumps 116 , e.g., solder bumps, extending between bond pads 112 and upper traces 114 .
- electronic component 104 is mounted to upper surface 102 U of substrate 102 .
- a dielectric underfill 118 is applied between upper surface 102 U of substrate 102 and active surface 106 of electronic component 104 and encloses flip chip bumps 116 .
- ground terminals 120 are formed on upper surface 102 U of substrate 102 , e.g., formed of copper.
- Ground terminals 120 are formed on the outer periphery of upper surface 102 U adjacent sides 102 S.
- Upper traces 114 are formed inward of ground terminals 120 in one embodiment.
- Lower traces 122 are electrically connected to upper traces 114 and/or ground terminals 120 by electrically conductive vias 124 extending through substrate 102 between upper surface 102 U and lower surface 102 L.
- an upper trace 114 and a ground terminal(s) 120 are coupled to the same lower trace 122 .
- a reference voltage source e.g., ground
- the respective upper trace 114 and ground terminal(s) 120 are connected to the same lower trace 122 , although can be connected to different lower traces 122 in other embodiments.
- integrated shield electronic component package 100 further includes solder masks on upper and lower surface 102 U, 102 L that protect first portions of upper and lower traces 114 , 122 while exposing second portions, e.g., terminals and/or bond fingers, of upper and lower traces 114 , 122 and also exposing ground terminals 120 .
- interconnection balls 126 Formed on terminals 123 of lower traces 122 and generally on lower surface 102 L of substrate 102 are electrically conductive interconnection balls 126 , e.g., solder balls in a ball grid array (BGA). In another embodiment, interconnection balls 126 are not formed, e.g., to form a land grid array (LGA).
- BGA and LGA package configurations are set forth, in other embodiments, integrated shield electronic component package 100 is formed with other package configurations.
- electrically conductive pathway between bond pads 112 /ground terminals 120 and interconnection balls 126 is described above, other electrically conductive pathways can be formed.
- contact metallizations can be formed between the various electrical conductors.
- substrate 102 is a multilayer substrate and a plurality of vias and/or internal traces form the electrical interconnection between upper traces 114 /ground terminals 120 and lower traces 122 .
- flip chip bumps 116 appear larger than interconnection balls 126 in FIG. 1 , in light of this disclosure, those of skill in the art will understand that the figure is not to scale. Typically, flip chip bumps 116 are significantly smaller than interconnection balls 126 . Accordingly, in various embodiments, flip chip bumps 116 are larger, equal to, or smaller than interconnection balls 126 .
- Integrated shield electronic component package 100 further includes an integrated shield 128 .
- Integrated shield 128 is formed of an electrically conductive material, e.g., copper, aluminum, or other electrically conductive material.
- FIG. 2 is a top perspective view of integrated shield 128 of integrated shield electronic component package 100 of FIG. 1 in accordance with one embodiment.
- integrated shield 128 includes an electronic component shielding portion 130 , a substrate shielding portion 132 , an electronic component to substrate transition shielding portion 134 , and a side shielding portion 136 .
- integrated shield 128 is a single piece and not a plurality of separate pieces connected together. More particularly, in accordance with this embodiment, electronic component shielding portion 130 , substrate shielding portion 132 , electronic component to substrate transition shielding portion 134 , and side shielding portion 136 are all portions (regions) of a single piece of conductive material, e.g., copper, aluminum, or other electrically conductive material.
- conductive material e.g., copper, aluminum, or other electrically conductive material.
- integrated shield 128 is continuous, i.e., does not include any cuts therein.
- integrated shield 128 is formed by stamping, bending, or other metal shaping technique.
- integrated shield 128 has one or more cuts, sometimes called gaps or spaces, where portions of integrated shield 128 are folded together.
- side shielding portion 136 is rectangular pieces extending from substrate shielding portion 132 .
- the rectangular pieces of side shielding portion 136 are bent downwards from substrate shielding portion 132 to contact the adjacent rectangular pieces. Accordingly, cuts 138 (see FIG. 2 ) exist between adjacent rectangular pieces of side shielding portion 136 .
- electronic component shielding portion 130 of integrated shield 128 is mounted to inactive surface 108 of electronic component 104 with a thermal interface material (TIM) 140 .
- TIM thermal interface material
- thermal interface material 140 has a high thermal conductivity and ensures good thermal contact between inactive surface 108 of electronic component 104 and integrated shield 128 . Accordingly, heat generated by electronic component 104 is conducted through thermal interface material 140 and to integrated shield 128 , which dissipates the heat to the ambient environment. In this manner, integrated shield 128 operates as a heat sink.
- thermal interface material 140 includes thermal grease, paste, adhesive such as epoxy, solder, or other thermally conductive material.
- thermal interface material 140 is a dielectric material such that inactive surface 108 of electronic component 104 is electrically isolated from integrated shield 128 .
- thermal interface material 140 is electrically conductive material, e.g., an electrically conductive adhesive or solder.
- inactive surface 108 of electronic component 104 is electrically coupled to integrated shield 128 by thermal interface material 140 .
- Electronic component shielding portion 130 of integrated shield 128 has the same shape as inactive surface 108 of electronic component 104 .
- electronic component shielding portion 130 of integrated shield 128 is said to have the same shape as inactive surface 108 of electronic component 104 , in light of this disclosure, those of skill in the art will understand that the shapes may not be exactly identical, but substantially identical, to within accepted manufacturing tolerances.
- electronic component shielding portion 130 may be slightly larger than inactive surface 108 to insure that inactive surface 108 fits within the area of electronic component shielding portion 130 .
- electronic component shielding portion 130 is rectangular and has four edges 142 .
- Electronic component shielding portion 130 is parallel to inactive surface 108 and upper surface 102 U of substrate 102 .
- substrate shielding portion 132 of integrated shield 128 is electrically and physically connected to ground terminals 120 by shield attach material 144 .
- Shield attach material 144 is electrically conductive, e.g., is solder or electrically conductive adhesive.
- substrate shielding portion 132 of integrated shield 128 is coupled to upper surface 102 U of substrate 102 .
- a reference voltage source e.g., ground
- ground applied to ground terminals 120
- integrated shield 128 is also grounded.
- substrate shielding portion 132 is a rectangular annulus parallel to upper surface 102 U of substrate 102 .
- Substrate shielding portion 132 of integrated shield 128 extends to the periphery of upper surface 102 U to cover the entire upper surface 102 U of substrate 102 .
- Substrate shielding portion 132 may be slightly larger than upper surface 102 U to insure that substrate 102 fits within the area of substrate shielding portion 132 .
- Substrate shielding portion 132 has four inner edges 146 and four outer edges 148 .
- Inner edges 146 define an inner rectangular periphery of substrate shielding portion 132 and outer edges 148 define an outer rectangular periphery of substrate shielding portion 132 .
- outer edges 148 define an outer rectangular periphery of substrate shielding portion 132 .
- the distance D 1 between upper surface 102 U and of substrate shielding portion 132 is less than the distance D 2 between upper surface 102 U and electronic component shielding portion 130 .
- Electronic component to substrate transition shield portion 134 connects electronic component shielding portion 130 to substrate shielding portion 132 . More particularly, electronic component to substrate transition shield portion 134 extends between and connects edges 142 of electronic component shielding portion 130 to inner edges 146 of substrate shielding portion 132 .
- electronic component to substrate transition shield portion 134 is sloped downwards from electronic component shielding portion 130 to substrate shielding portion 132 .
- Electronic component shielding portion 130 , substrate shielding portion 132 , and electronic component to substrate transition shield portion 134 collectively cover and provide an electromagnetic interference (EMI) shield for electronic component 104 and upper surface 102 U of substrate 102 .
- EMI electromagnetic interference
- electronic component shielding portion 130 , substrate shielding portion 132 , and electronic component to substrate transition shield portion 134 collectively prevent EMI from electronic component 104 and upper surface 102 U of substrate 102 from interfering with surrounding devices as well as prevent any EMI from the surrounding devices from interfering with electronic component 104 and upper surface 102 U of substrate 102 .
- Side shielding portion 136 extends downwards from outer edges 148 of substrate shielding portion 132 around sides 102 S of substrate 102 .
- Side shielding portion 136 includes four sidewalls 150 A, 150 B, 150 C, 150 D, collectively sidewalls 150 . It is to be understood that sidewalls 150 C, 150 D would not be visible in the view of FIG. 2 and so are indicated in dashed lines for clarity of presentation.
- Side shielding portion 136 including sidewalls 150 extend perpendicularly downward in a direction towards substrate 102 from substrate shielding portion 132 .
- Sidewalls 150 A, 150 C are parallel to one another and perpendicular to sidewalls 150 B, 150 D.
- Sidewalls 150 intersect one another at corners 152 of side shielding portion 136 .
- Each sidewall 150 includes an upper edge 148 , which also defines the outer edges 148 of substrate shielding portion 132 . Stated another way, edges 148 define the transition between substrate shielding portion 132 and sidewalls 150 . Edges 148 may be sharp corners to smooth curves depending upon the manufacturing technique used to form integrated shield 128 as those of skill in the art will understand.
- Each sidewall 150 further includes a lower edge 154 parallel to the respective upper edge 148 .
- Each sidewall 150 further includes side edges 156 extending perpendicularly between the respective upper edge 148 and lower edge 154 .
- integrated shield 128 can be continuous such that sidewalls 150 are joined to the adjacent sidewalls 150 at side edges 156 .
- cuts 138 are formed between each sidewall 150 such that sidewalls 150 are in abutting contact to the adjacent sidewalls 150 at side edges 156 .
- Lower edges 154 collectively define a lower rectangular annular edge 158 of side shielding portion 136 .
- Lower rectangular annular edge 158 of side shielding portion 136 extends between an inner surface 160 of integrated shield 128 and an outer surface 162 of integrated shield 128 . Accordingly, the width W of lower rectangular annular edge 158 is equal to the thickness of integrated shield 128 .
- Lower rectangular annular edge 158 is generally a flat surface, although may be curved or deformed slightly.
- Lower rectangular annular edge 158 defines the lowest portion of integrated shield 128 .
- lower rectangular annular edge 158 is parallel to and coplanar with lower surface 102 L of substrate 102 .
- side shielding portion 136 of integrated shield 128 is directly adjacent to and covers sides 102 S of substrate 102 .
- Side shielding portion 136 is parallel to sides 102 S and perpendicular to upper surface 102 U and substrate shielding portion 132 .
- side shielding portion 136 By covering sides 102 S of substrate 102 , side shielding portion 136 provides an electromagnetic interference (EMI) shield for sides 102 S of substrate 102 . Stated another way, side shielding portion 136 prevents EMI emanating from sides 102 S of substrate 102 from interfering with surrounding devices as well as prevents any EMI from the surrounding devices from entering into sides 102 S of substrate 102 and interfering with integrated shield electronic component package 100 .
- EMI electromagnetic interference
- lower rectangular annular edge 158 is illustrated and described above as being parallel to and coplanar with lower surface 102 L of substrate 102 , in another embodiment, lower rectangular annular edge 158 is located below upper surface 102 U yet above lower surface 102 L.
- side shielding portion 136 of integrated shield 128 is directly adjacent to and covers the upper portion of sides 102 S of substrate 102 while exposing the lower portion of sides 102 S.
- electronic component 104 is flip chip mounted to substrate 102 by flip chip bumps 116 .
- underfill 118 is applied.
- Integrated shield 128 is mounted to electronic component 104 and upper surface 102 U of substrate 102 by thermal interface material 140 and/or shield adhesive material 144 .
- Integrated shield 128 is mounted such that side shielding portion 136 extends around and covers sides 102 S of substrate 102 .
- Interconnection balls 126 are formed after mounting of integrated shield 128 , although are formed at earlier stages during fabrication in accordance with other embodiments.
- FIG. 3 is a cross-sectional view of an integrated shield electronic component package 300 in accordance with another embodiment.
- Integrated shield electronic component package 300 of FIG. 3 is similar to integrated shield electronic component package 100 of FIG. 1 and only the significant differences between integrated shield electronic component packages 300 , 100 are discussed below.
- integrated shield electronic component package 300 is identical to integrated shield electronic component package 100 except that side shielding portion 136 protrudes downwards past lower surface 102 L of substrate 102 in integrated shield electronic component package 300 .
- side shielding portion 136 extends downwards below lower surface 102 L to overlap a portion of interconnection balls 126 . More particularly, interconnection balls 126 protrudes vertically downwards a pre-reflow distance D 3 below lower surface 102 L of substrate 102 in a plane perpendicular to lower surface 102 L.
- Lower rectangular annular edge 158 i.e., a plane coplanar thereto, protrudes vertically downwards a side shielding portion distance D 4 below lower surface 102 L of substrate 102 in a plane perpendicular to lower surface 102 L.
- Side shielding portion distance D 4 of lower rectangular annular edge 158 is less than pre-reflow distance D 3 of interconnection balls 126 .
- side shielding portion 136 provides an electromagnetic interference (EMI) shield for interconnection balls 126 and lower surface 102 L of substrate 102 .
- EMI electromagnetic interference
- side shielding portion 136 prevents EMI emanating from interconnection balls 126 and lower surface 102 L from interfering with surrounding devices as well as prevents any EMI from the surrounding devices from entering into interconnection balls 126 and lower surface 102 L and interfering with integrated shield electronic component package 300 .
- FIG. 4 is a cross-sectional view of an integrated shield electronic component package assembly 400 formed with integrated shield electronic component package 300 of FIG. 3 in accordance with one embodiment.
- integrated shield electronic component package 300 is mounted to a larger substrate 402 , sometimes called a board assembly or motherboard, to form integrated shield electronic component package assembly 400 .
- Larger substrate 402 includes an upper, e.g., first, surface 402 U having terminals 404 and shield terminals 406 formed thereon.
- Lower traces 122 e.g., terminals 123 thereof, are physically and electrically connected to terminals 404 by interconnection balls 126 . More particularly, interconnection balls 126 are placed into contact with terminals 404 .
- Assembly 400 is heated to reflow, i.e., melt and resolidify, interconnection balls 126 .
- side shielding portion 136 including lower rectangular annular edge 158 is physically and electrically connected to shield terminals 406 by shield adhesive 408 , e.g., electrically conductive adhesive, solder, or other electrically conductive material. Accordingly, integrated shield 128 is electrically connected to shield terminals 406 .
- shield adhesive 408 e.g., electrically conductive adhesive, solder, or other electrically conductive material.
- integrated shield 128 is electrically connected to shield terminals 406 .
- a reference voltage source e.g., ground
- a reference voltage source applied to shield terminals 406
- integrated shield 128 is also grounded.
- integrated shield 128 has a direct path to motherboard ground.
- larger substrate 402 is formed without shield terminals 406 .
- Shield adhesive 408 which can be a dielectric in this embodiment, is applied between lower rectangular annular edge 158 and upper surface 402 U of larger substrate 402 . In this manner, shield adhesive 408 provides a mechanical attachment of integrated shield 128 to larger substrate 402 to provide a robust attachment of integrated shield electronic component package 300 to larger substrate 402 .
- larger substrate 402 is formed without shield terminals 406 and shield adhesive 408 is not applied. Accordingly, lower rectangular annular edge 158 is in abutting contact with or slightly spaced above upper surface 402 U of larger substrate 402 . In one embodiment, the exact spacing between lower rectangular annular edge 158 and upper surface 402 U of larger substrate 402 is based on electrical performance requirements, e.g., the spacing is set so that only an acceptable amount of EMI escapes from integrated shield 128 .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Toxicology (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
Claims (14)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/140,614 US11848275B2 (en) | 2011-06-27 | 2021-01-04 | Integrated shield package and method |
| US18/541,257 US20240194615A1 (en) | 2011-06-27 | 2023-12-15 | Integrated shield package and method |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/169,385 US10109591B1 (en) | 2011-06-27 | 2011-06-27 | Integrated shield package and method |
| US16/166,751 US10886235B2 (en) | 2011-06-27 | 2018-10-22 | Integrated shield package and method |
| US17/140,614 US11848275B2 (en) | 2011-06-27 | 2021-01-04 | Integrated shield package and method |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/166,751 Continuation US10886235B2 (en) | 2011-06-27 | 2018-10-22 | Integrated shield package and method |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US18/541,257 Continuation US20240194615A1 (en) | 2011-06-27 | 2023-12-15 | Integrated shield package and method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| US20210193588A1 US20210193588A1 (en) | 2021-06-24 |
| US11848275B2 true US11848275B2 (en) | 2023-12-19 |
Family
ID=63833429
Family Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/169,385 Active 2034-03-27 US10109591B1 (en) | 2011-06-27 | 2011-06-27 | Integrated shield package and method |
| US16/166,751 Active 2031-12-16 US10886235B2 (en) | 2011-06-27 | 2018-10-22 | Integrated shield package and method |
| US17/140,614 Active US11848275B2 (en) | 2011-06-27 | 2021-01-04 | Integrated shield package and method |
| US18/541,257 Pending US20240194615A1 (en) | 2011-06-27 | 2023-12-15 | Integrated shield package and method |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/169,385 Active 2034-03-27 US10109591B1 (en) | 2011-06-27 | 2011-06-27 | Integrated shield package and method |
| US16/166,751 Active 2031-12-16 US10886235B2 (en) | 2011-06-27 | 2018-10-22 | Integrated shield package and method |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US18/541,257 Pending US20240194615A1 (en) | 2011-06-27 | 2023-12-15 | Integrated shield package and method |
Country Status (1)
| Country | Link |
|---|---|
| US (4) | US10109591B1 (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10109591B1 (en) * | 2011-06-27 | 2018-10-23 | Amkor Technology, Inc. | Integrated shield package and method |
| US10649503B2 (en) * | 2017-06-29 | 2020-05-12 | Qualcomm Incorporated | Device comprising compressed thermal interface material (TIM) and electromagnetic (EMI) shield comprising flexible portion |
| CN219108105U (en) * | 2020-06-16 | 2023-05-30 | 株式会社村田制作所 | Module |
| US12438060B2 (en) * | 2020-08-27 | 2025-10-07 | Unimicron Technology Corp. | Chip package and method of manufacturing the same |
| CN115732456A (en) * | 2021-08-25 | 2023-03-03 | 欣兴电子股份有限公司 | Chip package and method of manufacturing the same |
| US12211762B2 (en) | 2021-09-13 | 2025-01-28 | Amkor Technology Singapore Holding Pte. Ltd. | Semiconductor devices and methods of manufacturing semiconductor devices |
| US12265119B2 (en) * | 2022-07-29 | 2025-04-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Repackaging IC chip for fault identification |
Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030015789A1 (en) | 2001-01-30 | 2003-01-23 | Jon Zuo | Semiconductor package with lid heat spreader |
| US6531784B1 (en) * | 2000-06-02 | 2003-03-11 | Amkor Technology, Inc. | Semiconductor package with spacer strips |
| US20030122242A1 (en) | 2002-01-02 | 2003-07-03 | Takeuchi Timothy M. | Semiconductor package with integrated heat spreader attached to a thermally conductive substrate core |
| US6713863B2 (en) * | 2000-01-24 | 2004-03-30 | Shinko Electric Industries Co., Ltd. | Semiconductor device having a carbon fiber reinforced resin as a heat radiation plate having a concave portion |
| US20060063310A1 (en) | 2004-09-22 | 2006-03-23 | Jadhav Susheel G | Method for attaching a semiconductor die to a substrate and heat spreader |
| US20070132083A1 (en) | 2005-12-14 | 2007-06-14 | Lsi Logic Corporation | Semiconductor package having increased resistance to electrostatic discharge |
| US7254032B1 (en) | 2004-03-03 | 2007-08-07 | Cisco Technology, Inc. | Techniques for providing EMI shielding within a circuit board component |
| US20070231953A1 (en) | 2006-03-31 | 2007-10-04 | Yoshihiro Tomita | Flexible interconnect pattern on semiconductor package |
| US20100109152A1 (en) | 2008-10-30 | 2010-05-06 | Nec Electronics Corporation | Electronic device and lid |
| US7759168B2 (en) | 2008-05-13 | 2010-07-20 | International Business Machines Corporation | Electromagnetic interference shield for semiconductors using a continuous or near-continuous peripheral conducting seal and a conducting lid |
| US20100207259A1 (en) * | 2008-02-05 | 2010-08-19 | Advanced Semiconductor Engineering, Inc. | Semiconductor device packages with electromagnetic interference shielding |
| US7851894B1 (en) * | 2008-12-23 | 2010-12-14 | Amkor Technology, Inc. | System and method for shielding of package on package (PoP) assemblies |
| US20120039046A1 (en) | 2010-08-16 | 2012-02-16 | International Business Machines Corporation | Multichip electronic packages and methods of manufacture |
| US10109591B1 (en) * | 2011-06-27 | 2018-10-23 | Amkor Technology, Inc. | Integrated shield package and method |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070023203A1 (en) * | 2005-07-26 | 2007-02-01 | Leizerovich Gustavo D | Method and system for customized radio frequency shielding using solder bumps |
| CN101562169A (en) * | 2008-04-16 | 2009-10-21 | 力成科技股份有限公司 | Laminated substrate and chip packaging structure using same |
-
2011
- 2011-06-27 US US13/169,385 patent/US10109591B1/en active Active
-
2018
- 2018-10-22 US US16/166,751 patent/US10886235B2/en active Active
-
2021
- 2021-01-04 US US17/140,614 patent/US11848275B2/en active Active
-
2023
- 2023-12-15 US US18/541,257 patent/US20240194615A1/en active Pending
Patent Citations (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6713863B2 (en) * | 2000-01-24 | 2004-03-30 | Shinko Electric Industries Co., Ltd. | Semiconductor device having a carbon fiber reinforced resin as a heat radiation plate having a concave portion |
| US6531784B1 (en) * | 2000-06-02 | 2003-03-11 | Amkor Technology, Inc. | Semiconductor package with spacer strips |
| US20030015789A1 (en) | 2001-01-30 | 2003-01-23 | Jon Zuo | Semiconductor package with lid heat spreader |
| US20030122242A1 (en) | 2002-01-02 | 2003-07-03 | Takeuchi Timothy M. | Semiconductor package with integrated heat spreader attached to a thermally conductive substrate core |
| US7254032B1 (en) | 2004-03-03 | 2007-08-07 | Cisco Technology, Inc. | Techniques for providing EMI shielding within a circuit board component |
| US20060063310A1 (en) | 2004-09-22 | 2006-03-23 | Jadhav Susheel G | Method for attaching a semiconductor die to a substrate and heat spreader |
| US20070132083A1 (en) | 2005-12-14 | 2007-06-14 | Lsi Logic Corporation | Semiconductor package having increased resistance to electrostatic discharge |
| US20070231953A1 (en) | 2006-03-31 | 2007-10-04 | Yoshihiro Tomita | Flexible interconnect pattern on semiconductor package |
| US20100207259A1 (en) * | 2008-02-05 | 2010-08-19 | Advanced Semiconductor Engineering, Inc. | Semiconductor device packages with electromagnetic interference shielding |
| US7759168B2 (en) | 2008-05-13 | 2010-07-20 | International Business Machines Corporation | Electromagnetic interference shield for semiconductors using a continuous or near-continuous peripheral conducting seal and a conducting lid |
| US20100109152A1 (en) | 2008-10-30 | 2010-05-06 | Nec Electronics Corporation | Electronic device and lid |
| US7851894B1 (en) * | 2008-12-23 | 2010-12-14 | Amkor Technology, Inc. | System and method for shielding of package on package (PoP) assemblies |
| US20120039046A1 (en) | 2010-08-16 | 2012-02-16 | International Business Machines Corporation | Multichip electronic packages and methods of manufacture |
| US10109591B1 (en) * | 2011-06-27 | 2018-10-23 | Amkor Technology, Inc. | Integrated shield package and method |
Also Published As
| Publication number | Publication date |
|---|---|
| US10886235B2 (en) | 2021-01-05 |
| US20190057941A1 (en) | 2019-02-21 |
| US20240194615A1 (en) | 2024-06-13 |
| US20210193588A1 (en) | 2021-06-24 |
| US10109591B1 (en) | 2018-10-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11848275B2 (en) | Integrated shield package and method | |
| US10211190B2 (en) | Semiconductor packages having reduced stress | |
| US8213180B2 (en) | Electromagnetic interference shield with integrated heat sink | |
| US8946886B1 (en) | Shielded electronic component package and method | |
| TWI471985B (en) | Chip package and manufacturing method thereof | |
| US10468356B2 (en) | Systems and methods for providing electromagnetic interference (EMI) compartment shielding for components disposed inside of system electronic packages | |
| CN105321933B (en) | Semiconductor package with conformal electromagnetic shielding structure and manufacturing method thereof | |
| TWI381510B (en) | Chip package structure with shielding cover | |
| US6956285B2 (en) | EMI grounding pins for CPU/ASIC chips | |
| US20090289352A1 (en) | Semiconductor device and a method for manufacturing the semiconductor device | |
| CN102779811B (en) | Chip package and chip packaging method | |
| US20040135239A1 (en) | EMI heatspreader/lid for integrated circuit packages | |
| CN102969303A (en) | Semiconductor package structure and manufacturing method thereof | |
| KR20110020548A (en) | Semiconductor package and manufacturing method thereof | |
| TWI663663B (en) | Electronic package and fabrication method thereof | |
| CN210489609U (en) | Integrated circuit package | |
| KR20120101965A (en) | Semiconductor package and method of manufacturing the same | |
| KR20180023488A (en) | Semiconductor Package and Manufacturing Method for Semiconductor Package | |
| CN206163478U (en) | Integrated circuit package | |
| US20020066592A1 (en) | Ball grid array package capable of increasing heat-spreading effect and preventing electromagnetic interference | |
| CN104377186B (en) | Electronic system with composite substrate | |
| TWI423405B (en) | Package structure with carrier | |
| KR101305581B1 (en) | Shield member and pcb comprising the shield member | |
| US20070077686A1 (en) | Packaging method for preventing chips from being interfered and package structure thereof | |
| US20080272468A1 (en) | Grounded shield for blocking electromagnetic interference in an integrated circuit package |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| AS | Assignment |
Owner name: AMKOR TECHNOLOGY, INC., ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MESCHER, PAUL;BRADY, DANNY;REEL/FRAME:055642/0805 Effective date: 20110622 Owner name: AMKOR TECHNOLOGY SINGAPORE HOLDING PTE. LTD., ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMKOR TECHNOLOGY, INC.;REEL/FRAME:055651/0346 Effective date: 20191119 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |