[go: up one dir, main page]

JP6878011B2 - 3dモデル化オブジェクトの再構築 - Google Patents

3dモデル化オブジェクトの再構築 Download PDF

Info

Publication number
JP6878011B2
JP6878011B2 JP2017000266A JP2017000266A JP6878011B2 JP 6878011 B2 JP6878011 B2 JP 6878011B2 JP 2017000266 A JP2017000266 A JP 2017000266A JP 2017000266 A JP2017000266 A JP 2017000266A JP 6878011 B2 JP6878011 B2 JP 6878011B2
Authority
JP
Japan
Prior art keywords
mesh
mode
modes
transformation
template
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017000266A
Other languages
English (en)
Other versions
JP2017120648A (ja
Inventor
メヘル エロワ
メヘル エロワ
グイテニー ヴィンセント
グイテニー ヴィンセント
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dassault Systemes SE
Original Assignee
Dassault Systemes SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dassault Systemes SE filed Critical Dassault Systemes SE
Publication of JP2017120648A publication Critical patent/JP2017120648A/ja
Application granted granted Critical
Publication of JP6878011B2 publication Critical patent/JP6878011B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/30Polynomial surface description
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • G06T17/205Re-meshing
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/149Segmentation; Edge detection involving deformable models, e.g. active contour models
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/194Segmentation; Edge detection involving foreground-background segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/24Indexing scheme for image data processing or generation, in general involving graphical user interfaces [GUIs]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computer Graphics (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Databases & Information Systems (AREA)
  • Architecture (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Processing Or Creating Images (AREA)
  • Image Generation (AREA)

Description

本発明は、コンピュータプログラムおよびシステムの分野に関し、より詳細には、実物体を表す3Dモデル化オブジェクトを再構築するための方法、システム、およびプログラムに関する。
オブジェクトの設計、エンジニアリング、および製造用に、多くのシステムおよびプログラムが市場で提供されている。CADは、コンピュータ支援設計の頭字語であり、たとえば、それはオブジェクトを設計するためのソフトウェアソリューションに関する。CAEは、コンピュータ支援エンジニアリングの頭字語であり、たとえば、それは将来の製品の物理的挙動をシミュレーションするためのソフトウェアソリューションに関する。CAMは、コンピュータ支援製造の頭字語であり、たとえば、製造プロセスおよび操作を定義するためのソフトウェアソリューションに関する。そのようなコンピュータ支援設計システムでは、技法の効率に関してグラフィカルユーザインターフェースが重要な役割を果たす。これらの技法は、製品ライフサイクル管理(PLM)システム内に埋め込まれてもよい。PLMは、長い事業の概念にわたって、製品の開発のために、それらの構想から寿命の終わりまで、会社が製品データを共有し、共通のプロセスを適用し、企業知識を利用する助けとなる事業戦略を指す。Dassault Systemsによって(商標CATIA、ENOVIA、およびDELMIAの元で)提供されるPLMソリューションは、製品エンジニアリング知識を編成するエンジニアリングハブ、製造エンジニアリング知識を管理する製造ハブ、およびエンジニアリングハブおよび製造ハブへの事業の一体化および接続を可能にする事業ハブを提供する。このシステムは、一緒になって、製品、プロセス、リソースをリンクするオープンオブジェクトモデルをもたらし、動的な知識ベースの製品作成、および最適な製品定義、製造準備、製品、およびサービスを推進する判断サポートを可能にする。
この枠組みでは、コンピュータビジョンおよびコンピュータグラフィクスの分野は、ますます有用な技術を提供する。実際、この分野は、3D再構築、3Dモデルテクスチャリング、バーチャルリアリティ、また、たとえば1または複数の写真内の情報を入力として使用して正確なジオメトリを有する3Dシーンを精密に構築することが必要であるすべての領域で応用される。3D再構築は、シリアスゲーミング、ビデオゲーム、建築、考古学、リバースエンジニアリング、3D資産データベース、または仮想環境など、(たとえば、テクスチャリングされた)3Dモデルの作成を含む任意の分野で使用することができる。
ビデオストリームおよび写真セット解析からの3D再構築は、入力データに使用されるセンサのタイプに応じて、現況技術では2つの異なる手法で対処される。第1の手法は、「レシーバ」センサを使用する。これは、特にRGB画像解析からの3D再構築に関する。ここでは、3D再構築は、像平面のそれぞれに含まれるRGB色情報のマルチビュー解析によって得られる。論文、非特許文献1、非特許文献2、非特許文献3は、この手法に関する。第2の手法は、「エミッタ−レシーバ」センサを使用する。これは、特にRGB−深度画像解析からの3D再構築に関する。この種のセンサは、標準的なRGBデータに追加の深度データを与え、それは再構築プロセスで主に使用される深度情報である。論文、非特許文献4、非特許文献5、非特許文献6は、この手法に関する。さらに、複数の学界および産業界の参加者が今や、Acute3D、Autodesk、VisualSFMなどRGB画像解析によって、またはReconstructMeもしくはMicrosoftのSDK for Kinect(登録商標)などRGB深度解析によって3D再構築のためのソフトウェアソリューションを提供している。マルチビュー写真測量再構築方法は、ビデオシーケンス(または一連のスナップショット)の像平面内に含まれる唯一の情報を使用し、シーンの3Dジオメトリを推定する。2Dビューの異なるものの間での注目の点同士のマッチングが、カメラの相対位置を生み出す。次いで、最適化された三角法を使用し、マッチング対に対応する3D点を計算する。深度マップ解析再構築方法は、視差マップ(disparity map)または近似された3D点群に基づく。これらの視差マップは、立体視または構造化光(たとえば、「Kinect」デバイス参照)または「飛行時間」3Dカメラを使用して得られる。次いで、これらの現況技術の再構築方法は、一般に、実物体の離散的な3D表現、最もしばしば3Dメッシュを出力する。3Dモデルは、得られる3D点群を閉じる結果的な体積から派生する。
この分野では、単一のビューだけを使用する3D再構築もまた、関心のある特定の話題であった。なぜなら、この特定の手法は、全体的に容易な(したがって高速な)プロセスを可能にするからである。発想は、シェーディング(たとえば、論文、特許文献7に開示されているアルゴリズム)、テクスチャ(たとえば、いわゆる「シェイプフロムテクスチャ(Shape from Texture)アルゴリズム」)、等高線図(たとえば、いわゆる「シェイプフロムシルエット(Shape from Silhouette)」アルゴリズム)など、いくつかのヒントを利用して、単一RGBフレームだけを使用して3Dを推測することである。特に再構築のための単一深度フレームの使用は、消費者向け深度センサがごく最近市場に現れたおかげで、最近の話題である。目標は、オブジェクトの単一深度フレームを使用し、このオブジェクトの完全な3Dモデルを構築することである。いくつかの深度フレームを使用することは、問題をはるかに容易にする。なぜなら、オブジェクトの完全な3D点群を得るために、各フレームを他のフレームと位置合わせし、次いで論文、非特許文献8、または論文、非特許文献9に開示されているものなど、表面再構築アルゴリズムを使用することができるからである。しかし、深度フレームは再構築するオブジェクトの限られた一部を表すだけであるため、単一深度フレームだけを使用してオブジェクトの完全な3Dモデルを構築することは、依然として非常に難しい。そのため、しばしば、オブジェクトの完全なモデルを推測するために、手動のインタラクションを必要とする(たとえば、論文、非特許文献10に開示されているように)、または再構築するオブジェクトに対して強い制約を課さなければならない。1つのそのような制約は、再構築するオブジェクトに対して形状の限られた空間を課すこととすることができる。たとえば、論文、非特許文献11は、深度マップから逆投影された点群に対して(5つの内部パラメータによって定義される)超2次関数をフィッティングすることを開示している。形状の空間は非常に限られている(5つのパラメータだけ)ので、超2次関数を部分的な点群に対してフィッティングすることは容易である。これらの特定のパラメータは、超2次関数全体を定義し、したがって、オブジェクトの部分的な深度ビューだけを使用してオブジェクトの完全な形状を推測することができる。論文、非特許文献12は、同様の目標を達成するために、超2次関数ではなくキューボイドの使用を開示している。この発想は、都市環境再構築の状況において、単純な構成要素(たとえば、キューブ、ブリック、シリンダ)の組立てによって定義される形状のより発展した空間を使用して拡張されている。いくつかの構成要素を組み立て、妥当な形状を構築することを可能にする規則を、グラマ(grammar)が定義している。このグラマは、この状況、および再構築することができるようになりたいと望むオブジェクトの種類に特有のものである。たとえば、そのようなパラメトリック空間は、論文、非特許文献13(都市環境再構築の状況において)に開示されているように、単一のRGBフレームを使用して適用されている。別の発想は、形状の限られた空間を学習し、したがって特定の種類のオブジェクトの自然な制約を学習することにある。人間は、車のピクチャを見たとき、車は非常に特定のオブジェクトなので、この車を認識し、この車の見えない部分を推測することができる。いくつかのアルゴリズムは、この発想を利用し、単一の部分的なビューだけを使用して、オブジェクトを再構築するために特定の種類のオブジェクトについて形状の空間を学習する。論文、非特許文献14および非特許文献15は、人体の空間を学習し、次いでこの人の単一深度フレームだけで完全な人を再構築することを提案している。論文、非特許文献16には、オブジェクトのシルエットだけを使用していくつかのCADオブジェクトを再構築するために、同様の発想が使用されている。
R. Hartley and A. Zisserman: Multiple View Geometry in Computer Vision, Cambridge Univ. Press 2004 R. Szeliski: Computer Vision: Algorithms and Applications, Edition Springer 2010 Faugeras: Three−Dimensional Computer Vision: A Geometric viewpoint, MIT Press 1994 Yan Cui et al.: 3D Shape Scanning with a Time−of−Flight Camera, CVPR 2010 RS. Izadi et al.: KinectFusion: Real−Time Dense Surface Mapping and Tracking, Symposium ISMAR 2011 R. Newcombe et al.: Live Dense Reconstruction with a Single Moving Camera, IEEE ICCV2011 Prados et al, Shape from Shading, in Handbook of Mathematical Models in Computer Vision, 2006 Michael Kazhdan, Matthew Bolitho, and Hughes Hoppe, Poisson Surface Reconstruction, in Eurographics Symposium on Geometry Processing 2006 F. Calakli, and G. Taubin, SSD: Smooth Signed Distance Surface Reconstruction, in Pacific Graphics 2011 Chen et al, 3−Sweep: Extracting Editable Objects from a Single Photo, in SIGGRAPH ASIA, 2013 Kester Duncan, Sudeep Sarkar, Redwan Alqasemi, and Rajiv Dubey, Multi−scale Superquadric Fitting for Efficient Shape and Pose Recovery of Unknown Objects, in ICRA 2013 Zheng et al, Interactive Images: Cuboid Proxies for Smart Image Segmentation, in SIGGRAPH, 2012 Panagiotis Koutsourakis, Loic Simon, Olivier Teboul, Georgios Tziritas, and Nikos Paragios, Single View Reconstruction Using Shape Grammars for Urban Environments, in ICCV 2009 Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and James Davis, SCAPE: Shape Completion and Animation of People, in SIGGRAPH 2005 Oren Frefeld, and Michael J. Black, Lie Bodies: A Manifold Representation of 3D Human Shape, in ECCV 2012 Yu Chen, and Roberto Cipolla, Single and Sparse View 3D Reconstruction by Learning Shape Priors, in CVIU Journal 2011 Learning Descriptors for Object Recognition and 3D Pose Estimation, by Paul Wohlhart, and Vincent Lepetit, in Computer Vision and Pattern Recognition, 2015 Multimodal Deep Learing for Robust RGB−D Object Recognition, by Andreas Eitel, Jost Tobias Springenberg, Luciano Spinello, Martin Riedmiller, and Wolfram Burgard, in Internation Conference on Intelligent Robots and Systems, 2015 Sketch−Based Shape Retrieval, by Mathias Eitz, Ronald Richter, Tamy Boubekeur, Kristian Hildebrandt, and Marc Alexa, in SIGGRAPH, 2012 Database−Assisted Object Retrieval for Real−Time 3D Reconstruction, by Yangyan Li, Angela Dai, Leonidas Guibas, and Matthias Niessner, in EUROGRAPHICS, 2015 Jakob Engel and Thomas Schops and Daniel Cremers − LSD−SLAM: Large−Scale Direct Monocular SLAM, CVPR2014 Yasutaka Furukawa, Brian Curless, Steven M. Seitz and Richard Szeliski − Towards Internet−scale Multi−view Stereo, in CVPR 2010 Newcombe et al. Live Dense Reconstruction with a Single Moving Camera, IEEE ICCV2011 Toeppe et al, Fast and Globally Optimal Single View Reconstruction of Curved Objects, in CVPR, 2012 Barron et al, Shape, Illumination and Reflectance from Shading, in EECS, 2013 Carsten Rother, Vladimir Kolmogorov, and Andrew Blake, GrabCut − Interactive Foreground Extraction using Iterated Graph Cuts, in SIGGRAPH 2004 Luis A. Alexandre, 3D Descriptors for Object and Category Recognition: a Comparative Evaluation, in IROS 2012 Radu B. Rusu, Nico Blodow, and Michael Beetz, Fast Point Feature Histograms (FPFH) for 3D Registration, in ICRA 2009 Frederico Tombari, Samuele Salti, and Luigi Di Stefano, Unique Signatures of Histograms for local Surface Description, in ECCV 2010 Jernej Barbic, and Doug L. James, Real−Time Subspace Integration for St. Venant−Kirchhoff Deformable Models, in SIGGRAPH 2005 Klaus Hildebrandt, Christian Schulz, Christoph von Tycowitz, and Konrad Polthier, Eigenmodes of Surface Energies for Shape Analysis, in Advances in Geometric Modeling and Processing 2012 Eftychios D. Sifakis, FEM Simulation of 3D Deformable Solids: A Practitioner’s Guide to Theory, Discretization and Model Reduction, in SIGGRAPH 2012 Course Sparse Modeling for Image and Vision Processing, Foundations and Trends in Computer Graphics and Vision, Mairal, 2014 John Nelder, and Roger Mead, A Simplex Method for Function Minimization, in Computer Journal 1965
この状況の中で、実物体を表す3Dモデル化オブジェクトを再構築するための改善されたソリューションが依然として求められている。
したがって、実物体を表す3Dメッシュおよび測定データから実物体を表す3Dモデル化オブジェクトを再構築するためのコンピュータ実装方法が提供される。本方法は、変形モードのセットを提供するステップを含む。また、本方法は、その変形モードのコンポジションを決定するステップであって、そのコンポジションは、そのコンポジションによって変形された3Dメッシュと測定データとの間のフィットに見返りを与え、その決定されたコンポジション内に含まれるその変形モードのスパース性にさらに見返りを与えるプログラムを最適化する、ステップを含む。本方法は、そのコンポジションをその3Dメッシュに適用するステップを含む。
本方法は、以下の1または複数を含むことがある。
− 変形モードのセットは、リジッドモードおよび3Dスケーリングモードを含む幾何学的モードを表すサブセットを含む。
− 変形モードのセットは、少なくとも1つの物理モードを表すサブセットをさらに含む。
− 少なくとも1つの物理モードのサブセットは、少なくとも1つの材料固有モードを含む。
− 材料は、サンブナン−キルヒホッフ材料である。
− 少なくとも1つの物理モードを表すサブセットは、いくつかの最も低い固有ベクトルを含む。および/または
− プログラムは、
Figure 0006878011
でタイプμφ(θ)の項を含み、ここでs(J)=max(|infJ|,|supJ|)であり、係数αiは少なくとも1つの物理モードの係数である。
実物体を表す3Dモデル化オブジェクトがさらに提供され、この3Dモデル化オブジェクトは、本方法によって得ることが可能である(たとえば、得られる)。
本方法を実施するための命令を含むコンピュータプログラムがさらに提供される。
3Dモデル化オブジェクトおよび/またはコンピュータプログラムが記録されたコンピュータ可読記憶媒体がさらに提供される。
メモリに結合されたプロセッサとグラフィカルユーザインターフェースとを含むシステムであって、メモリにはコンピュータプログラムが記録されている、システムがさらに提供される。
製品を製造するための方法がさらに提供される。この製造方法は、(製造されることになる)製品を表す、上記の3Dモデル化オブジェクトを提供するステップを含む。3Dモデル化オブジェクトを提供するステップは、コンピュータモデル化仕様(すなわち、3Dモデル化オブジェクト)が使用可能であることを意味し、前記仕様は、3D再構築方法(したがって、これはこの製造方法に含まれてもよい)の実行の後直接か、それとも3Dモデル化オブジェクトが記憶された後、後から取り出された、および/または別のユーザもしくはワークステーションから受け取られたかにかかわらず、3D再構築方法によって得ることが可能である。次いで、この製造方法は、3Dモデル化オブジェクトに基づいて製品を作り出すステップを含む。これは、3Dモデル化オブジェクトの仕様が機械および/または機械を使用するユーザによって読まれ、かつ従われ、(少なくともジオメトリの点で、たとえば5%以下の相対誤差で)3Dモデル化オブジェクトに対応する実物体を作り出すことを意味し得る。
次に、本発明を実施形態について、非限定的な例として、添付の図面を参照して述べる。
本方法の一例のフローチャートである。 システムのグラフィカルユーザインターフェースの一例の図である。 システムの一例の図である。 本発明の図である。 本発明の図である。 本発明の図である。 本発明の図である。 本発明の図である。 本発明の図である。 本発明の図である。 本発明の図である。 本発明の図である。 本発明の図である。
図1のフローチャート(方法ステップを順に示すものであり、本方法によって実行される異なる計算はコンピュータサイエンスの分野から一般的かつそれ自体知られているように並列で、および/またはインターレース式に実施され得るので、これは例示のためのものにすぎないことに留意されたい)を参照すると、実物体を表す3Dメッシュおよび測定データから(したがって、3Dメッシュおよび測定データは、図1の方法の入力であり、本方法に対して予め決定されているか、または本方法の実行内で得られ、たとえば3Dメッシュは次いで、適用するステップS3によって修正される)実物体(すなわち、製造製品または部品、たとえば消費財、機械部品、またはそれらのアセンブリなど、任意の物理的オブジェクトまたは製品)を表す3Dモデル化オブジェクト(すなわち、本文脈では、コンポジションによって最終的に変形される3Dメッシュである3D表現を可能にする任意のコンピュータデータ)を再構築する(すなわち、たとえば実物体の物理的インスタンスに基づいて物理的信号の1または複数のセンサ、たとえばレシーバセンサおよび/またはエミッタ−レシーバセンサを介して−本方法に先立って、または本方法内で−得られる測定値に基づいて3Dモデル化オブジェクトを設計する)ためのコンピュータ実装方法(すなわち、コンピュータシステム上で実行される方法であり、これは、本方法によって実行される各アクションが、メモリに結合されたプロセッサによって実施されるそれぞれの1または複数の計算に関連することを意味する)が提案される。本方法は、変形モードのセットを提供するステップS1を含む。また、本方法は、変形モードのコンポジション(関数合成の非常に大きな数学的意味において)を決定するステップS2であって、コンポジションは、コンポジションによって変形された3Dメッシュと測定データとの間のフィットに見返りを与え(reward)(すなわち、プログラムは、最初の測定入力、すなわち測定データから遠い−すなわちフィッティングと反対の−結果である最終的に決定されたコンポジションにペナルティを課し、フィッティングの大きさは、幾何学的および/またはトポロジカル距離に対して評価され−たとえばこの距離は、本方法内で決定または予め決定される)、決定されたコンポジション内に含まれる変形モードのスパース性にさらに見返りを与えるプログラムを最適化する、ステップを含む。また、本方法は、コンポジションを3Dメッシュに適用する(すなわち、S2で決定された最適なコンポジションに従って3Dメッシュを変形し、これは3Dメッシュを定義するデータを修正すること、および/またはそのようなデータの修正されたバージョンを作成することを包含し、これは実装の詳細である)ステップS3を含む。そのような方法は、実物体を表す3Dモデル化オブジェクトの再構築を改善する。
特に、本方法は、3D再構築の分野に入り、実物体を(3Dメッシュ、すなわち本方法によって変形された3Dメッシュ)表す3Dモデル化オブジェクトを最終的に得ることを、測定値(すなわち、実物体を表す測定データ)に基づいて可能にする。ここで、適用するステップS3は、コンポジションによって変形された3Dメッシュと測定データとの間のフィットに見返りを与えるプログラムを最適化する、変形モードのコンポジションをS2で決定することに基づくので、本方法は、潜在的な結果を検討する際に柔軟性をもたらし、それにより比較的正確な結果に辿り着くことができる。これは、測定データが実物体の単一のRGB−深度画像(またはより一般的には、実物体の単なる深度画像、またはさらには実物体の光学センサ3D画像など、実物体の任意のセンサベースの3D画像の1つ)を含む(またはより厳密には、からなる)とき特に有用であることがわかる。この場合、本方法の枠組みは、最初の情報が、スパースなもの、ノイズの多いもの、および/または不正確なものであっても(たとえば、最初の測定データが遮蔽および/またはノイズを含む実物体の表現をもたらす)、妥当な結果に辿り着くことを可能にする。たとえば、S1で提供された変形モードは、可変パラメータを含む(したがって、それらの値は、少なくとも決定されたコンポジション内に最終的に含まれる変形モードについてS2で検討され、それぞれの変形モードに含まれることは、一実装では、それぞれの変形モードの専用の可変パラメータになる)。したがって、決定S2は、変形モードおよび/またはそれらの可変パラメータの値を検討することになり、したがって、最適な結果を達成し(これは、変形モードの最適なセットだけでなく、それらの最適なパラメータ値、さらには最適な変形モードを構成するための最適な方法でもある)、「最適」という用語は、コンピュータサイエンスに適用される数学の分野で広く知られているように、真の最適だけでなく、ヒューリスティックアルゴリズムによって提供される疑似最適(たとえば、論理最適)でもある(たとえば、問題が計算上比較的非常に複雑である場合)。したがって、柔軟性は、一般に、比較的高い計算コストを誘発することがある。たとえば、検討されるコンポジションは多数となる可能性があり(これは、提供されるセット内の多数の変形モード、および/またはコンポジション内に含まれる可変パラメータについての多数の潜在的な値による)、たとえば変形モードのセットは、少なくとも4つ(またはさらには6つ)の変形モードを含み(たとえば、後述のリジッドモードおよび/または3Dスケーリングモードに加えて)、それらのそれぞれは、少なくとも1000(もしくはさらには10000)、またはさらにはインスタンスの連続をそれぞれ含む(すなわち、「インスタンス」は、所与の変形モードの可変パラメータについての特定の値を示し、したがって、S2の下にある最適化プログラムのための検討されるソリューションは、S1で提供される変形モードのインスタンスのコンポジションであり、その結果、インスタンスは、簡単に「検討される変形モード」と呼ぶことができ、任意のそのようなインスタンスは、最終的に適用されるコンポジションのための潜在的な候補である)。たとえば、S2でのコンポジションの検討は、少なくとも5つ、10個のパラメータ、またはさらには20個のパラメータ(たとえば、実数の連続する領域において)のための最適な実数値の検討となる。しかし、本方法は、決定S2で見返りを受ける変形モードのスパース性のおかげで、比較的高い効率で実行する(たとえば、したがって、最適へ比較的速く収束し、これは検討される領域が特に大きく、多数の潜在的な結果を提供する場合特に妥当である)ことができる。実際、これは、換言すれば、決定S2がアルゴリズム(たとえば、厳密な最適化アルゴリズム、またはより一般的には、ヒューリスティックもしくは近似最適化アルゴリズム)に従って実施されることを意味し、アルゴリズムは、検討の際に(したがって、最終ソリューションにおいて)S1で提供される変形モードを少ししか含まない傾向がある、したがって妥当なソリューションに比較的速く収束する任意のアルゴリズムとすることができる(たとえば、当業者には理解されるように、従来技術のアルゴリズムを実際に決定S2で実行することができる)。これは、S1で提供される比較的多数の変形モードを含む最終ソリューションにペナルティを課す項を最適化プログラムに追加することによって実施することができる。したがって、本方法は、比較的正確な結果に比較的速く到達することを可能にし、それにより、検討される変形において比較的高い柔軟性を、したがって実物体の単一の3D測定画像の場合でさえ比較的効率的な結果を可能にする。また、一例では、本方法は、3Dメッシュおよび測定データだけに基づいて実施され、(従来技術を参照して述べたような)学習を除外し、したがって本方法は、S1〜S3からなり得る。
本方法は、コンピュータ実装型である。これは、方法のステップ(または実質的にすべてのステップ)が少なくとも1つのコンピュータまたは任意の同様のシステムによって実行されることを意味する。したがって、方法のステップは、コンピュータによって、おそらくは完全自動で、または半自動で実施される。例では、方法のステップの少なくともいくつかをトリガすることは、ユーザ−コンピュータインタラクションを通じて実施されてもよい。必要とされるユーザ−コンピュータインタラクションのレベルは、予見される自動のレベルに依存し、ユーザの望みを実装するための必要とバランスをとってもよい。例では、このレベルは、ユーザによって定義され、および/または予め定義されてもよい。
本方法のコンピュータ実装の典型的な例は、この目的のために適合されたシステムで本方法を実施することである。このシステムは、メモリに結合されたプロセッサとグラフィカルユーザインターフェースとを含んでもよく、メモリには本方法を実施するための命令を含むコンピュータプログラムが記録されている。また、メモリは、データベースを記憶してもよい。メモリは、そのようなストレージのために適合された任意のハードウェアであり、おそらくはいくつかの物理的に異なる部分(たとえば、プログラムのための部分、またおそらくはデータベースのための部分)を含む。
本方法は、一般に、モデル化オブジェクトを操作する。モデル化オブジェクトは、たとえばデータベース内に記憶されたデータによって定義される任意のオブジェクトである。さらに進めると、「モデル化オブジェクト」という表現は、データそれ自体を示す。システムのタイプに従って、モデル化オブジェクトは、異なる種類のデータによって定義されてもよい。システムは、実際、CADシステム、CAEシステム、CAMシステム、PDMシステム、および/またはPLMシステムの任意の組合せであってよい。これらの異なるシステムでは、モデル化オブジェクトは、対応するデータによって定義される。したがって、CADオブジェクト、PLMオブジェクト、PDMオブジェクト、CAEオブジェクト、CAMオブジェクト、CADデータ、PLMデータ、PDMデータ、CAMデータ、CAEデータのことを言ってもよい。しかし、これらのシステムは、モデル化オブジェクトがこれらのシステムの任意の組合せに対応するデータによって定義され得るので、互いに排他的なものではない。したがって、下記で提供されるそのようなシステムの定義から明らかになるように、システムはCADおよびPLMシステムとなり得る。
CADシステムは、さらに、CATIAなど、少なくともモデル化オブジェクトのグラフィカル表現に基づいてモデル化オブジェクトを設計するように適合された任意のシステムを意味する。この場合、モデル化オブジェクトを定義するデータは、モデル化オブジェクトの表現を可能にするデータを含む。CADシステムは、たとえば、エッジまたはライン、場合によってはフェイスまたはサーフェスを使用してCADモデル化オブジェクトの表現を提供してもよい。ライン、エッジ、またはサーフェスは、様々な方法、たとえば非一様有理Bスプライン(NURBS)で表現され得る。具体的には、CADファイルは仕様を含み、そこからジオメトリが生成されてもよく、これは表現が生成されることを可能にする。モデル化オブジェクトの仕様は、単一のCADファイルまたは複数のファイル内に記憶されてもよい。CADシステム内でモデル化オブジェクトを表すファイルの典型的なサイズは、1部品当たり1メガバイトの範囲内である。また、モデル化オブジェクトは、典型的には、数千の部品のアセンブリとなり得る。
CADの状況では、モデル化オブジェクトは、典型的には、3Dモデル化オブジェクトであってもよく、たとえば、部品もしくは部品のアセンブリなど製品、またはおそらくは製品のアセンブリを表す。「3Dモデル化オブジェクト」は、その3D表現を可能にするデータによってモデル化される任意のオブジェクトを意味する。3D表現は、すべての角度から部品を見ることを可能にする。たとえば、3Dモデル化オブジェクトは、3D表現されたとき、その軸のいずれかの周りで、または表現が表示されるスクリーン内の任意の軸周りで扱われ回されてもよい。これは、特に3Dモデル化されない2Dアイコンを除外する。3D表現の表示は、設計を容易にする(すなわち、設計者が各自のタスクを統計的に達成する速さを増大する)。これは、産業における製造プロセスを高速化する。なぜなら、製品の設計は、製造プロセスの一部であるからである。
3Dモデル化オブジェクトは、(たとえば、機械)部品もしくは部品のアセンブリ(または同等に、部品のアセンブリ、なぜなら、部品のアセンブリは、本方法から見て部品それ自体と見られてもよく、または本方法は、アセンブリの各部品に独立して適用されてもよいからである)、またはより一般的には、任意の剛体アセンブリ(たとえば、自動車機械)など、たとえばCADソフトウェアソリューションまたはCADシステムでのその仮想設計が完了した後で、現実の世界で製造されることになる製品(すなわち、それを表す測定データが本方法の入力である実物体)のジオメトリを表してもよい。CADソフトウェアソリューションは、航空宇宙、建築、建設、消費財、ハイテクデバイス、産業機器、輸送、海洋、および/またはオフショア石油/ガス生産もしくは輸送を含めて、様々な無限の産業分野で製品の設計を可能にする。したがって、本方法によって設計される3Dモデル化オブジェクトは、陸上輸送手段(たとえば、車および軽量トラック機器、レーシングカー、オートバイ、トラックおよびモータ機器、トラックおよびバス、列車を含む)、航空輸送手段の一部(たとえば、機体機器、航空宇宙機器、推進機器、防衛製品、航空機機器、宇宙機器を含む)、船舶輸送手段の一部(たとえば、海軍機器、商船、オフショア機器、ヨットおよび作業船、海洋機器を含む)、一般機械部品(たとえば、産業用製造機械、自動車重機械または機器、設置された機器、産業機器製品、組立金属製品、タイヤ製造製品を含む)、電気機械または電子部品(たとえば、家電、防犯および/または制御および/または計器製品、コンピューティングおよび通信機器、半導体、医療デバイスおよび機器を含む)、消費財(たとえば、家具、住宅および庭製品、レジャー用品、ファッション製品、耐久消費財小売業者の製品、非耐久財小売業者の製品を含む)、包装(たとえば、食品および飲料およびたばこ、美容およびパーソナルケア、家庭製品の包装を含む)など、任意の機械部品であってよい産業製品を表してもよい。
PLMシステムは、さらに、そのシステムによって物理的に製造された製品(または製造予定の製品)を表すモデル化オブジェクトの管理のために適合された任意のシステムを意味する。したがって、PLMシステムでは、モデル化オブジェクトは、物理的オブジェクトの製造に適したデータによって定義される。これらは、典型的には、寸法値および/または公差値であってもよい。オブジェクトを正しく製造するためには、そのような値を有することが実際によりよいことである。
CAMソリューションは、さらに、そのソリューションによって製品の製造データを管理するために適合された任意のソリューション、ソフトウェアまたはハードウェアを意味する。製造データは、一般に、製造する製品、製造プロセス、および必要とされるリソースに関連するデータを含む。CAMソリューションは、製品の製造プロセス全体を計画および最適化するために使用される。たとえば、CAMソリューションは、製造プロセスの特定のステップで使用され得る、実現可能性、製造プロセスの持続時間、または特定のロボットなどリソースの数に関する情報をCAMユーザに提供することができ、したがって管理または必要とされる投資に関する判断を可能にする。CAMは、CADプロセスおよび潜在的なCAEプロセスの後の後続プロセスである。そのようなCAMソリューションは、Dassault Systemesによって商標DELMIA(登録商標)の下で提供されている。
CAEソリューションはさらに、モデル化オブジェクトの物理的挙動を解析するために適合された任意のソリューション、ソフトウェアまたはハードウェアを意味する。周知の広く使用されているCAE技法は、有限要素法(FEM)であり、これは、典型的には、式を通じて物理的挙動を計算およびシミュレーションすることができる要素にモデル化オブジェクトを分割することを含む。そのようなCAEソリューションは、Dassault Systemesによって商標SIMULIA(登録商標)の下で提供されている。別の成長中のCAE技法は、CADジオメトリデータなしでの物理の異なる分野からの複数の構成要素で構成された複雑なシステムのモデル化および解析を含む。CAEソリューションは、製造する製品のシミュレーション、したがって最適化、改善、および検証を可能にする。そのようなCAEソリューションは、Dassault Systemesによって商標DYMOLA(登録商標)の下で提供されている。
PDMは、製品データ管理を表す。PDMソリューションは、特定の製品に関連するすべてのタイプのデータを管理するために適合された任意のソリューション、ソフトウェアまたはハードウェアを意味する。PDMソリューションは、製品のライフサイクルに含まれる主にエンジニアであるが、プロジェクトマネージャ、財務員、販売員、および購入者をも含むすべての関係者によって使用されてよい。PDMソリューションは、一般に、製品指向データベースに基づく。これは、関係者が各自の製品に関する一貫したデータを共有することを可能にし、したがって関係者が逸脱したデータを使用するのを防止する。そのようなPDMソリューションは、Dassault Systemesによって商標ENOVIA(登録商標)の下で提供されている。
図2は、システムのGUIの一例を示しており、このシステムはCADシステムである。この例では、システムは、本方法の結果から派生し得るCADモデル化オブジェクトを表示し(たとえば、本方法によって出力される3Dメッシュは、最終的にNURBSに変換され、次いでアセンブリ2000に挿入される)、または単に本方法をいつでも起動することができるワークスペースである。
GUI2100は、典型的なCADのようなインターフェースであってよく、標準的なメニューバー2110、2120と、下部ツールバー2140および側部ツールバー2150とを有する。そのようなメニューバーおよびツールバーは、ユーザ選択可能なアイコンのセットを含み、各アイコンは、当技術分野で知られているように、1または複数の操作または機能に関連付けられている。これらのアイコンのいくつかは、GUI2100内に表示された3Dモデル化オブジェクト2000を編集する、および/またはそれらに働きかけるために適合されたソフトウェアツールに関連付けられている。ソフトウェアツールは、ワークベンチ内にグループ化されてもよい。各ワークベンチは、ソフトウェアツールのサブセットを含む。具体的には、ワークベンチの1つは、モデル化製品2000の幾何学的特徴を編集するのに適した編集ワークベンチである。操作時には、設計者は、たとえばオブジェクト2000の一部を予め選択し、次いで適切なアイコンを選択することによって操作を開始し(たとえば、寸法、色などを変更する)、または幾何学的制約を編集してもよい。たとえば、典型的なCAD操作は、パンチングのモデル化、またはスクリーン上に表示された3Dモデル化オブジェクトの折り畳みである。GUIは、たとえば、表示された製品2000に関係するデータ2500を表示してもよい。図2の例では、「特徴ツリー」として表示されたデータ2500、およびそれらの3D表現2000は、ブレーキキャリパおよびディスクを含むブレーキアセンブリに関する。GUIはさらに、編集される製品の操作のシミュレーションをトリガするために、たとえばオブジェクトの3D配向を容易にするために様々なタイプのグラフィックツール2130、2070、2080を示し、または表示された製品2000の様々な属性をレンダリングしてもよい。カーソル2060は、ユーザがグラフィックツールとインタラクションすることを可能にするようにハプティックデバイスによって制御されてもよい。
図3は、システムの一例を示し、システムは、クライアントコンピュータシステム、たとえば、ユーザのワークステーションである。
この例のクライアントコンピュータは、内部通信バス1000に接続された中央処理ユニット(CPU)1010と、やはりバスに接続されたランダムアクセスメモリ(RAM)1070とを含む。クライアントコンピュータは、バスに接続されたビデオランダムアクセスメモリ1100に関連付けられているグラフィカル処理ユニット(GPU)1110をさらに備える。ビデオRAM1100は、当技術分野でフレームバッファとしても知られている。大容量記憶デバイスコントローラ1020は、ハードドライブ1030など大容量メモリデバイスへのアクセスを管理する。コンピュータプログラム命令およびデータを有形に実施するのに適した大容量メモリデバイスは、例として、EPROM、EEPRO、およびフラッシュメモリデバイス、内部ハードディスクおよび取外し可能ディスクなど磁気ディスク、光磁気ディスク、ならびにCD−ROMディスク1040など、半導体メモリデバイスを含む、すべての形態の不揮発性メモリを含む。前述のいずれかは、特別に設計されたASIC(特定用途向け集積回路)によって補われても、それらに組み込まれてもよい。ネットワークアダプタ1050は、ネットワーク1060へのアクセスを管理する。また、クライアントコンピュータは、カーソル制御デバイス、キーボードなど、ハプティックデバイス1090を含んでもよい。カーソル制御デバイスは、クライアントコンピュータ内で、ユーザがディスプレイ1080上の任意の所望の場所にカーソルを選択的に位置決めすることを可能にするために使用される。さらに、カーソル制御デバイスは、ユーザが様々なコマンドを選択し、制御信号を入力することを可能にする。カーソル制御デバイスは、制御信号をシステムに入力するためにいくつかの信号生成デバイスを含む。典型的には、カーソル制御デバイスはマウスであってもよく、マウスのボタンは、信号を生成するために使用される。代替として、またはそれに加えて、クライアントコンピュータシステムは、感応式パッドおよび/または感応式スクリーンを含んでもよい。
コンピュータプログラムは、コンピュータによって実行可能な命令を含んでもよく、これらの命令は、上記のシステムに本方法を実施させるための手段を含む。プログラムは、システムのメモリを含めて、任意のデータ記憶媒体に記憶可能であってよい。プログラムは、たとえば、デジタル電子回路内で、またはコンピュータハードウェア、ファームウェア、ソフトウェア内で、またはそれらの組合せで実装されてもよい。プログラムは、装置、たとえばプログラム可能なプロセッサによって実行可能であるように機械可読記憶デバイス内で明白に具現化された製品として実装されてもよい。方法ステップは、命令のプログラムを実行し、入力データに作用し出力を生成することによって本方法の機能を実施するプログラム可能なプロセッサによって実施されてもよい。したがって、プロセッサはプログラム可能であり、データ記憶システム、少なくとも1つの入力デバイス、および少なくとも1つの出力デバイスからデータおよび命令を受信し、それらにデータおよび命令を送信するように結合されてもよい。アプリケーションプログラムは、上位手続き型もしくはオブジェクト指向プログラミング言語で、または望むならアセンブリもしくは機械言語で実装されてもよい。いずれの場合も、言語は、コンパイル型またはインタープリタ型言語であってよい。プログラムは、完全インストールプログラムであっても更新プログラムであってもよい。システム上でプログラムを適用することは、いずれの場合も、本方法を実施するための命令をもたらす。
本方法によって実施される3D再構築は、3D設計プロセスの一部であってもよい。「3Dモデル化オブジェクトを設計すること」は、3Dモデル化オブジェクトを作り上げるプロセスの少なくとも一部である任意のアクションまたは一連のアクションを示す。したがって、本方法は、3Dモデル化オブジェクトをゼロから作成することを含んでもよい。あるいは、本方法は、以前に作成された3Dモデル化オブジェクトを提供し、次いでその3Dモデル化オブジェクトを修正することを含んでもよい。
本方法は、製造プロセス内に含まれてもよく、製造プロセスは、本方法を実施した後で、モデル化オブジェクトに対応する物理的製品を作り出すことを含んでもよい。いずれの場合も、本方法によって設計されるモデル化オブジェクトは、製造オブジェクトを表し得る。したがって、モデル化オブジェクトは、モデル化ソリッド(すなわち、ソリッドを表すモデル化オブジェクト)であってもよい。製造オブジェクトは、消費財、部品、または部品のアセンブリなど、製品であってよい。本方法はモデル化オブジェクトの設計を改善するので、本方法はまた、製品の製造を改善し、したがって製造プロセスの生産性を高める。
本方法は、特に実物体が製造製品である状況、より具体的には、実質的にコンベックスである、および/または−たとえば少なくとも実質的に−組み立てられていない製造された(すなわち、−たとえば少なくとも実質的に−分割できない状態で製造されたもの。たとえば製品が、たとえばプレス加工、機械加工、ミリングおよび/またはレーザ切削を介した潜在的なカットアウトの前の、たとえば後から他の部品の組立てがない、またはその組立てが無視できる程度である、成形部品、板金片部品、フォーミングまたはサーモフォーミングプラスチック部品、金属鋳造部品、金属圧延部品など押し出し部品または薄板加工部品である)製品であるとき効率的である。(単に「組み立てられていない」ではなく)「実質的に」組み立てられていないは、製品が部品のアセンブリ(各部品が組み立てられていない製品である)であり、1つの部品は、他の部品の体積の少なくとも2倍または4倍の体積を有し、および/または1つの部品に組み立てられたとき、他の部品は、それらの外部表面の少なくとも10%または20%を反映するその1つの部品との隣接部の表面を提示する。たとえば、製造製品は、それ自体市場で提供されるような単一の製品であり、別の完全な製品を形成するために別の製品と組み立てられることは意図されていなくてもよい。実物体が実質的に非コンベックス、および/またはそのような実物体のアセンブリである場合、本方法は、各コンベックスおよび/または組み立てられた分割できない部分について独立して適用されてもよい。実際、この手法、および後で提供される本方法の例は、実物体が比較的少ない単一性(singularities)を特徴とする場合(これは、上述の部品の場合である)、特に正確な結果をもたらす。
本方法は、測定データの関数として変形されることになる最初の3Dメッシュ(以下、「テンプレート」とも呼ばれる)に基づいて3Dモデル化オブジェクトを再構築するための方法に関する。テンプレートメッシュは、たとえばCADの分野から広く知られている任意の3Dメッシュである(すなわち、頂点が3D位置を指し、それらの3D位置間で−たとえば、直線の−エッジを表す無向円弧によって共に接続される特定のグラフ、たとえば、四角メッシュまたは三角メッシュ)。ここで、テンプレート3Dメッシュは、どのように提供することもでき、たとえば、別の(また従来の)3D再構築方法から派生することができ、それにより、図1の方法は、他の再構築(これは、図1の方法の前に、おそらくは同じ測定データに基づいて実施された可能性がある)を補正(すなわち、調整、改善)する。別の実装では、テンプレート3Dメッシュは、ユーザによってライブラリから手動で単に選択され得る。それにより、本方法は、この選択されたテンプレートを、測定データとフィットするように最適なようにして変形するための方法を提供する。
例では、最初のテンプレートは、取り出すタスクのためにトレーニングされた所定の機械学習アルゴリズムを使用して、所定のデータベース内の異なる3Dモデルの中から見つけることができる。または、テンプレートは、ユーザによって手動で選択され得る。テンプレートは、たとえば、1または複数の所定の類似性基準に対する距離閾値以下で、本当の3Dオブジェクトと可能な限り同様であってもよい(そのような類似性を捉えるために、異なる定量基準を企図することができる)。たとえば、テンプレートは、実物体が滑らかである場合、滑らかであってよく、および/またはオブジェクトが角度を有する場合、直線であってよい。幾何学的および/またはトポロジカル類似性が企図され得る。したがって、テンプレートは、たとえばほとんどの場合幾何学的意味で、実物体を表すものであり得る。基準は、テンプレートメッシュと実物体との間の任意の所定の3D距離、およびたとえば尊重されるべきそのような所定の距離について任意の最大値を含み得る。実物体を最適に表す理論的メッシュが企図され得、それにより、メッシュ距離が基準に含まれ得る。2つのメッシュXとYとの間の距離は、inf(d(T(X),Y)として定義してもよく、ここで、最小値は、リジッドモーション(回転および/または平行移動)であるTに対して評価され、ここでd(X,Y)=sum d’(x,Y)であり、ここでsum(和)は、Xのすべての頂点xに対して評価され、d’(x,Y)は、メッシュYに対する点xの距離である(すなわちd’(x,Y)=min||x−y||であり、ここでmin(最小値)は、Yのすべての頂点yで評価される)。一例では、所定の閾値以下の理論的メッシュ(3Dモデル化オブジェクトを表す)とのそのような距離の値を含む3Dメッシュが、そのようにして図1の方法に対して予め選択され得る。また、テンプレートの分解能は、再構築するオブジェクトを細かく表すことができるのに十分に大きいものであり得る。実際には、均等に拡散された500個または1000個を超える、たとえば5000個程度の頂点を有するテンプレートメッシュが十分に大きい。しかし、分解能が低すぎる場合、本方法は、単純に細分アルゴリズムを適用することができる。
したがって、本方法は、一例では、広範な種類の3Dモデルから入力テンプレートメッシュを事前選択すること(手動または自動またはさらには半自動)を含んでもよい。以下の論文、非特許文献17〜20は、それぞれが測定値に基づく3Dメッシュの設計のための方法を開示し、それにより、それぞれを本明細書において実装し、たとえば図1の測定データをこれらの論文に開示されている方法のいずれかまたは複数に入力することによってテンプレートの選択を実施することができる。
テンプレートメッシュに潜在的に基づいて(たとえば、測定データに全く基づかず)、図1の方法は、S1で(たとえば、自動的に)変形モードのセットを提供する。これは、潜在的な変形モードの初期化が実施されることを意味する(変形モードが、3Dメッシュのパラメータ化された変形関数、すなわち3Dメッシュを入力として取り、モードに対するそれぞれのパラメータの値、たとえば値の連続において変動するパラメータの値に応じて、入力の変形されたバージョンを出力する関数のセットを指定し、本方法は、パラメータの最適なセット、したがって3Dメッシュのための効果的な変形の最適なシーケンスを含めて、最適なコンポジションを見つけることを意図する)。各変形モードは、たとえば、そのモードを特徴付けるパラメータのために保持された値に基づいて、変形機能を提供し、たとえばモードの少なくとも一部は、2つより多くの(または3つまたは5つの)そのようなパラメータを含む。したがって、この初期化は、テンプレートメッシュの(たとえば、テンプレートメッシュだけの)機能であり得、所定の種類の変形モードの状況を説明する(すわなち、可変変形モードの所定のセットの1つ、いくつか、またはすべてのそれぞれを、本方法の入力、すなわちテンプレート3Dメッシュに対して評価する)ことになり得る。明らかに、前述のように、そのような変形モードの初期化(したがって、提供するステップS1)は、最初の計算として効果的に実施される必要はなく、後の決定するステップS2とインターレースされて実施されてもよい(ここでは、S3で適用されることになる、最終的に最適に到達するソフトウェア実装が企図されている)。
変形モードの少なくとも一部またはすべては、最初の3Dメッシュに依存してもよい。たとえば、変形モードは、最初の3Dメッシュの特定のトポロジに依存してもよい。また、変形モードは、3Dメッシュの最初の、および所定の位置決めに(たとえば、任意に)、ならびに/またはそのような位置決めの参照フレームに依存する(たとえば、そのような参照フレームの軸および/または原点に依存し、その場合、変形モードは、参照フレーム内の3Dメッシュの位置に応じて様々に働く)セットであってもよい。これは、集中的な決定するステップS2を可能にする。
変形モードは、それぞれが3Dメッシュのトポロジおよび規則性を保存し得る。後で提供される例では、物理固有モードおよびジオメトリックモードが、テンプレートをパラメータ化するためにS1で提供され、そのような条件を尊重する例である。しかし、多数の異なるモードを使用することができ、依然として非常に良好な結果が生み出され、それらがこの条件を尊重する場合にはなおさらである。この条件は、テンプレートを再構築するオブジェクトに変換するために必要とされる変形の大部分またはすべてをテンプレートのパラメータ化が受け止め得るということをわかりやすく言い換える。パラメータ化の各変形モードは、テンプレートの大きな、現実的で、相関関係がない変形を表す意味で、スタンドアロンであり得る。次いで、S2のスパース最適化は、テンプレートを再構築するオブジェクトに変換する変形を最もよく説明するいくつかのモードを最適に選択する。モードは、テンプレートの頂点の大きな割合(たとえば、10%超)に影響を及ぼし、指定された内部製品について他のモードに対して直交する場合、および/または頂点を変形する場合隣接する頂点もまた連続的に変形されるという意味でモードが十分に滑らかである場合、これらの基準を尊重すると考えることができる。具体的には、これらのモードは、以下の条件を尊重し得る。すなわち、メッシュの各頂点の変形は、モードパラメータに対して連続的なものであり、モードのパラメータのための所与の値について、メッシュのサーフェス上のガウス曲線は、連続的なものである(すなわち、変形モードは、サーフェスに対して不連続性/中断を導入しない)。S1で提供されるモードのセットの1つまたはいくつかまたはすべてが、これらの条件の任意の組合せまたはすべてを尊重し得る。
提供される変形モード内で、本方法は、S2で、変形モードのコンポジション(すなわち、コンポジション内に尊重するモードの固定された所定のシーケンスがある場合、すべてのモードパラメータのための値のセット、またはさらに、所定および/または固定でない場合そのようなシーケンス)を決定する。ここでもやはり、1または複数−たとえば、すべて−のモードについて、そのモードがコンポジション内にあるか否か、専用のパラメータが捉え得る(あるいは、そのような情報は、決定するステップS2中に任意の他の方法で捉えられ得る)ことに留意されたい。いずれの場合も、S2で決定されるコンポジションは、コンポジションによって変形された3Dメッシュと測定データとの間のフィット(たとえば、任意の所定の3Dメッシュ−測定データ間距離、たとえば、メッシュの各頂点と測定データとの間の個々の距離の和に対するものであり、たとえば、ここで各個々の距離は、頂点と測定データとの間の最小距離であり、この概念は、測定データが3Dメッシュの形態、点群か、または実物体を表す幾何学的データの任意の他の離散的なセット、さらには連続的なそのようなセット、たとえば1または複数のパラメータ化されたサーフェス下で提供されようと、それ自体当業者に知られている)に見返りを与え(すなわち、フィットしない、または大きな距離にペナルティを課す)、決定されたコンポジション内に最終的に含まれる変形モードのスパース性にさらに見返りを与える(たとえば、多数のモードのパラメータ値が、モードが実際に活性化される、すなわち効果的な変形を実施するようなものである)−たとえば、所定の−プログラムを最適化するものである。
次いで、本方法は、S3でコンポジションを3Dメッシュに適用するステップを含み、それにより、これは3Dメッシュを測定データに対して最適に補正する。たとえば、本方法の性能を測定するために、最終再構築を、再構築するオブジェクトの既知の3Dモデルに比較することができる。しかし、最終モデルの妥当性もまた、考慮されてよい。例では、ユーザは、再構築誤差がより大きい場合でさえ、正確であるがノイズの多い不快なモデルより妥当なモデルを有するほうがよいであろう。下記で提供される本方法の例は、これらの基準を(S2の収束に関して計算時間の点で)特に十分かつ効率的に満たす。たとえば、いくつかの物理固有モード(下記で述べる)は、そのような妥当性を表し、非現実的なモードは、スパース最適化によって廃棄される。
変形モードのセットは、リジッドモードおよび3Dスケーリングモードを含む幾何学的モードを表すサブセットを含む。
「を表す」は、ここでは、変形モードのセットが、(特定のコンポジションを通じて)「表される」モードのコンポジションと同じ結果を達成することを可能にする変形モード(すなわち、サブセット)を含むことを意味する。これを実装するための最も簡単な方法は、表されるモードそれ自体をS1で提供することであるが、変形形態もまた企図され得る(たとえば、表されるモードをそれら自体でなく組合せを提供する)。ある意味では、変形モードのセットの等価の種類(変形の同じパネルを達成するすべてのセット)が企図されてもよく、特定の等価の種類がS1で提供される。以下では、変形モードのセットが所与のモードを含むと言われるとき、これは、文字通り、あるいはモードのセットが、それを表すもの(すなわち、コンポジションを介して所与のモードを達成する1または複数のモード)を実際に含むことを意味すると理解することができる。
変形モードのセットは、リジッドモードおよび特に3Dスケーリングモードを含む幾何学的モードを表すサブセットを含む。これは、測定データ(測定データに対する3Dメッシュの最初の位置決めは何らかの方法、たとえば任意に実施され得ることに留意されたい)と最もよくフィットさせるために、3Dメッシュを、コンポジション内に加わるように任意の方法で平行移動および回転(すなわち、リジッドモーション)で移動させることができる。これは、3Dメッシュをスケーリング(増大および/または減少)することができることをも意味する(スケーリングは、任意の中心/参照、たとえば測定データおよび3Dメッシュが配置される参照フレームの原点に対して、任意の方法で実施され、リジッドモーションモードがあることにより、望ましいスケーリングを実施するように3Dメッシュを随意に、さらには3Dメッシュの質量中心を再配置することができることに留意されたい)。これは、3Dメッシュが選択されることになるライブラリ(たとえば、テンプレートライブラリ)を(テンプレートの数の点で)大幅に削減することを可能にする。実際、リジッドモーションおよび3Dスケーリングは、測定データをフィットさせるために(大抵の状況において)介在する可能性が最も高い変形である。
他の変形モードも企図され得る。特に、変形モードのセットは、少なくとも1つの物理モード(たとえば、例では、少なくとも2つまたは少なくとも5つの−たとえば、直交−物理モード)を表すサブセットをさらに含んでもよい。物理モードは、加えられる力(この場合には仕事を通して伝達される変形エネルギー)または温度の変化(この場合には熱を通して伝達される変形エネルギー)など物理的制約による任意の変形(すなわち、オブジェクトの形状またはサイズの変化)である。物理モードは、3Dメッシュの物理モデル解析から派生し得る(より正確には、3Dメッシュによって表される物理的オブジェクト)。そのような特定の変形は、特に妥当かつ正確な結果をもたらすことがテストによって示されているので、本方法の3D再構築の状況において特に効率的であることがわかる。本方法によって企図される物理モードは、非線形物理モードであってもよい。また、本方法によって企図される物理モードは、無限小力の印加による変形によって定義される線形物理モードであってもよい(そのような場合、モードの大きさは、モードを定義するベクトルのスカラ値−すなわち、モードのパラメータ−との乗算によって提供され得る)。具体的には、本方法によって企図される物理モードは、弾性変形モードであってもよい。したがって、本方法は、センサで測定されたデータとフィットするように3Dメッシュを変形させることを介して、完全に新しい目的のために、すなわち仮想設計を実施するために、弾性かつ可逆の変形の物理的概念を使用する。具体的には、本方法によって企図される物理モードは、たとえばサンブナン−キルヒホッフモデルから派生する超弾性変形モードであってもよい(たとえば、そのようなモデルの適用の例は、後で提供される)。これは、製品を製造するために、(前述のように)その製品が分割できない状態で形成されるとき、特に良好に機能する。
したがって、本方法は、3D再構築および形状最適化の分野に関する。本方法は、製品設計、シーンモデリング、シーン理解、および信号たとえば写真の情報を入力として使用して正確なジオメトリを有する3Dオブジェクトを精密に構築することが必要または有用なすべての領域で多数の応用例を有し得る。一例では、本方法は、物理ベースのオブジェクト変形と最適化とを単一のRGB−深度写真に対して共に使用し、観察されたオブジェクトの正確にパラメータ化された表現を得ることを可能にする。
本方法は、従来技術の欠点を克服する。従来技術のビデオベースの3D再構築パイプラインは、信頼性がありジェネリックである(論文、非特許文献21に開示されている方法など)が、いくつかの欠点を有する。再構築された3Dモデルは、特にモーションから構造解析アルゴリズムの場合、ノイズが多く、ウォータータイトでない(論文、非特許文献22に開示されている方法など)。再構築された3Dモデルは、非常に密であり(論文、非特許文献4、23に開示されている方法など)、したがって、スパースであるが正確かつウォータータイトなモデルを必要とする多数の産業応用例には適していない。さらに、ビデオベースのパイプラインは、ビデオまたは多数のピクチャを必要とする深刻な欠点を有し、これは再構築プロセスを長く複雑なものにし、多数のシーン、特に多数の遮蔽を含むシーンに適していない。従来技術の単一のビューの再構築パイプラインは、以下の欠点を有する。広大なデータベースに対する学習プロセスを必要とするものがある(論文、非特許文献15、16に開示されている方法など)。対称性などオブジェクトの内部特性が保存されない(論文、非特許文献7、24、25に開示されている方法など)。ジェネリックでなく、および/または形状が制約される(論文、非特許文献15、16、12、11、13に開示されている方法など)。特定の種類のオブジェクトに適合された形状の空間を学習することに依拠する単一深度フレーム再構築アルゴリズムは、時に効率的なこともあるが、再構築したいと望む種類のオブジェクトに属する妥当な3Dオブジェクトすべての広大なデータベースを、妥当な形状のその空間を学習するために必要とし、これは非常に強い制約である。形状(超2次関数形状など)のユーザ定義の空間またはユーザ定義のグラマを課す単一深度フレーム再構築アルゴリズムは、非常に限定され、不正確であり、複雑な形状に対して十分に機能しない。さらに、オブジェクトの新しい種類ごとに新しいアルゴリズムを設計し、形状の新しい空間および/またはこの空間に適合された最適化方式を定義しなければならない。他の種類のアルゴリズム、たとえば等高線、テクスチャ、シルエット、またはシェーディングを利用するものは、さらに非効率が低く、対称性またはトポロジなどオブジェクトの内部特性を保存することを保証しない。本方法は、そのような欠点のいくつか、またはすべてを克服し得る。
本方法は、たとえば、消費財など特に小さなオブジェクトで、非常にノイズの多い深度マップを提供する現行の消費者RGB−深度センサのために十分に適合されている。そのようなオブジェクトを再構築するために単一の深度マップを使用することは非常に困難である。しかし、再構築したいと望むオブジェクトの同じ種類の典型的なオブジェクトを表す近似的なメッシュを見つけることは容易である。たとえば、シャンプーを再構築したいと望む場合(そのような実物体は、図を参照して本方法の後で提供される例示的な実装の実行例である)、ジェネリックなシャンプーの3Dメッシュを提供することは非常に容易である。
したがって、一例では、本方法は、テンプレートメッシュと呼ばれるそのような3Dモデルを使用し、それを再構築するオブジェクトに(変換するために)変形する発想に頼る。したがって、本方法は、最終テンプレートのための良好なトポロジを保証する。本方法は、メッシュを定義するために無限の数の方法があるが、いくつかだけが自然な、妥当な変形を生み出すという認識に頼る。たとえば、いくつかの変形だけが、ジェネリックなテンプレートが他のシャンプーにモーフィングされることを可能にする。数学的に見て、本方法は、変形されたテンプレートを再構築するオブジェクトの種類のサブスペース上に立たせ、たとえば、ジェネリックなシャンプーに適用された変形は、シャンプーの妥当な形状をもたらすべきである。これらの自然な変形を見つけるための1つの従来技術の方法は、同じ種類の多数のオブジェクトを有するデータベースを使用してそれらを学習することである。これは、非常に強い制約である。本方法は、例では、再構築するオブジェクトの種類にかかわらず、たとえば前述のように物理固有モードを使用して、ジェネリック変形を定義することによって、従来技術から逸脱する。これは、すべての妥当な変形を表すのに十分な変形を定義する。したがって、本方法は、再構築するオブジェクトを表すのに最もよい変形を自動的に選択する自動スパース最適化方式を形成し得る。したがって、本方法は、同じ種類の多数の位置合わせされたメッシュを必要とし、したがってスケーラブルでない学習ベースのアルゴリズムの欠点なしに、種類ごとに1つのテンプレートを使用することの利点を組み合わせ、その良好なトポロジを保存し、再構築するテンプレートの種類のオブジェクトにかかわらず、正確なジオメトリをもたらす。
例では、現況技術のアルゴリズムとは異なり、本方法はジェネリックであり、対称性など再構築するオブジェクトの内部特性を保存し、再構築することができることを望むオブジェクトの種類の数百の3Dメッシュのデータベースではなくその種類に属する単一の3Dメッシュだけ(たとえば、単一深度フレームだけを使用して本方法が任意のボトルを再構築するために適用される場合、ボトルの単一のメッシュ)を必要とし、それだけで機能し得る。
本方法の一例は、再構築するオブジェクトのRGB−深度フレーム、および3Dで再構築したいと望むオブジェクトの各種類を表すCADモデルのデータベースを有するという発想に頼る。例では、本方法は、再構築ステップそれ自体に属する2つの主な特定性、すなわち、再構築するオブジェクトをフィットさせるためにテンプレートメッシュをモデル化および変形するための新しい方法、S1で提供される「モードモデル化」と、テンプレートをRGB−深度フレーム上に変形および位置合わせするのに十分な少数の変形モードを自動的に選択し最適化する新しいスパース最適化方式、S2内で実施される「スパース最適化」とを実装する。
次に、3D再構築パイプライン全体の一例について、図4のフローチャートを参照して論じるが、本方法のこの例は、シャンプーボトルを表す3Dモデル化オブジェクトの再構築に適用される(先に開示されているように、任意の他のタイプの実物体が企図可能である)。この例では、深度マップ(しかし、これは、3D関連の情報を提供する別のタイプの検知されたデータとすることができる)の各画素は、その画素上に投射された対応する3D点からのカメラに対する深度を含む。深度マップの各画素を3D点に逆投影することは容易であり、したがって深度マップは、3D点群と同等である。この例の実装の様々なステップで投影および逆投影を実施するために、本方法は、ジェネリックな内部パラメータ、またはフレームを捉えたセンサを較正することによって計算される正確な内部パラメータを使用することができる。ジェネリックな内部パラメータを使用することは、本方法が1つのフレームだけを使用し得るので良好な結果を生み出す。
次に、この例の(任意選択の)前処理段階について論じる。
(任意選択の)セグメント化について最初に論じる。
この前処理ステップは、最初に、再構築するオブジェクトのシルエットを抽出するために、RGB−深度フレームをセグメント化することにある。この目的のために、K平均法、領域統合(Region−merging)、ノーマライズドカット、および/またはスネークなど、多数のアルゴリズムを使用することができる。一実装では、本方法は、GrabCutアルゴリズム(非特許文献26)を使用し、RGBフレームをセグメント化してもよい。GrabCutは、非常にロバスト、自動であり、ユーザは、セグメント化するオブジェクトの周りにボックスを描くことを必要とするだけである。このアルゴリズムは、手で微調整されることを必要とせず、このアルゴリズムは、選択するパラメータを1つ有するだけである。さらに、セグメント化が失敗した場合、ユーザがこのアルゴリズムとインタラクティブにセグメント化を補正することが容易である。任意の他のセグメント化アルゴリズムが適するはずである。このセグメント化の中間結果は、RGBフレームであり、背景に属する各画素が色ブロック(0,0,0)に設定される。深度フレームをセグメント化するために、一例では、本方法は、RGBフレームのセグメント化を使用してもよい。実際には、本方法は、深度マップの3D点をRGBフレーム上に投影してもよく、点がRGBフレームの背景上に投影された場合、深度フレームの対応する画素もまた、それもやはり背景に属するので(0,0,0)に設定される。また、本方法は、GrabCutアルゴリズム(または別のセグメント化アルゴリズム)を使用し、深度フレームを直接セグメント化することができる。RGBフレームを最初にセグメント化し、このセグメント化を深度フレームに移すことが特にロバストである。
次にテンプレート選択について論じる。
この例の前処理段階のこの第2の段階は、テンプレート選択にある。テンプレートメッシュは、本方法が3Dで再構築しようとするオブジェクトと同じ種類のオブジェクトに属するメッシュであってよい。テンプレートは、再構築するオブジェクトの、同様のトポロジを有する近似的なメッシュとみなすことができる。再構築ステップは、深度フレームをフィットさせるようにこのテンプレートを変形し最適化する。一実装では、本方法は、以下を含んでもよい。ユーザは、3Dモデルのデータベース内で適切なテンプレートを選択するために、再構築するオブジェクトにタグ付けしてもよい。本方法は、データベース内で、深度フレームによって与えられる点群に最も近いテンプレートを見つけることができる形状マッチングアルゴリズムでこのタスクを自動化することができる。テンプレート、再構築するオブジェクトと同じ近似的なサイズを有してもよいが、完璧なスケールは必要とされない。なぜなら、テンプレートのスケールは、(特にスケーリングモードのおかげで)最適化ステップで最適化され得るからである。テンプレートが選択された後で、この例示的な方法は、テンプレートを中央に置き、テンプレートの主軸をxyz軸上に位置合わせするために主成分解析を適用する。それを行うために、本方法は、テンプレートを構成する中央に置かれた点群の経験共分散行列を対角化してもよい。この位置合わせは、最大の主成分がx軸上で回転されるようになされてもよい。
次に、この例の再構築段階について論じる。
次に、この例の再構築段階のポーズ初期化ステップ(任意選択)について論じる。
次いで、テンプレートは、深度フレーム上に位置合わせされてもよい。この位置合わせは、一実装では、ユーザによって手動で行うことができ、または、たとえば、論文、非特許文献27、28、または論文、非特許文献29に開示されているように、3D特徴を使用して、リジッド形状マッチングアルゴリズムによって提供することができる。ポーズはいずれにしても最適化ステップで最適化されることになるので、荒い位置合わせですでに十分に良好である。
次に、モードモデル化とも称される本方法の「提供するステップS1」の一例について論じる。
Eをテンプレートのエッジ、Vをその頂点として、T=(V,E)をテンプレートメッシュ(中央に置かれ、位置合わせされ、そのポーズがすでに初期化されている)とする。nをテンプレートの頂点の数とする。このとき、各頂点が3つの座標(x,y,z)を有するので、Vは、サイズ3nのベクトルである。lをテンプレートの典型的な長さとする。xmax=maxi%3=1|V(i)|とする。この例では、−サイズ3nでありメッシュを定義する−ベクトルVは、座標ずつではなく頂点ずつに順序付けられ、その結果、V=(x1,y1,z1,・・・,xn,yn,zn)であり、この毎回i%3=1であり、V(i)は、(本方法が、たとえば0ではなく1から始まるVにインデックス付けする場合)メッシュの頂点の1つのx座標に対応する。さらに、xは、(上記で提供されているテンプレート選択例で述べられているように)テンプレートの最も長い軸に対応し得る。
本方法は、ステップS1で、2種類の変形モード、すなわち物理モードおよびジオメトリックモード(を表すもの)を提供し得る。各モードは、
Figure 0006878011
から
Figure 0006878011
の関数であり、ここでIは、モードの大きさパラメータのセットである。次いで、これらのモードは、パラメータの所与のセットについて、コンポジションによってテンプレートに適用される。目標は、再構築するオブジェクトにテンプレートを最適に変形するために、(後のS2で)各モードについて最もよいパラメータを見つけることである。
テンプレートに対する従来の線形モデル解析によって、物理モードが計算され得る。これは、機械工学の分野から周知であり、そのようなモデル解析を行うための方法は、論文、非特許文献30、論文、非特許文献31、および論文、非特許文献32に詳細に提供されている。物理モードの決定に関するこれらの論文の教示を、本方法によって適用することができる。
以下は、この例で実装される主な発想を簡潔にまとめる。最初に、本方法は、テンプレート上の離散的なひずみエネルギーE(U)を定義してもよく、ここで
Figure 0006878011
は、テンプレートメッシュの変形ベクトルであり、すなわち、新しいテンプレートが座標についてV+Uを有するように本方法がベクトルUでテンプレートを変形する場合、関連の変形エネルギーは、E(U)である。Eを定義することは、特定の材料をテンプレートに割り当てることと同等である。したがって、各頂点での内部の力は、F(U)=−gradE(U)である。線形モデル解析のために、本方法は、未変形の位置(U=0)で力を線形化し、標準的な以下の一般化された固有値問題、すなわちK(U)=λMUの固有ベクトル(この場合、「固有モード」と呼ばれる)について解いてもよく、ここで、K(U)は、F(U)のヘッセン行列であり、通常、剛性行列と呼ばれ、Mは、質量行列であり、簡単な提供するステップS1のために、単位行列として選択することができる(共に周知のオブジェクト)。このようにして、少なくとも1つの物理モードのサブセットが、少なくとも1つの(材料)固有モードを含み得る。
次に、少なくとも1つの物理モードを表すサブセットは、いくつか(たとえば、所定の数)の最も低い固有ベクトルを含み得る。この例では、本方法は、Lノルムについて正規化された(最も低い固有値)の第1の固有ベクトルU1,...,Upを選択し、pの第1の変形モードを、
Figure 0006878011
の場合fi(αi,V)=V+αiiとして定義してもよく、ここで、lは、テンプレートの直径(すなわち、最も大きい内側長さ)を示す(
Figure 0006878011
は、極小に向かう収束を回避する助けとするためにモードの可変パラメータαiに設定された制約の任意の例であり、そのような目的を達成するために他の制約値が企図され、他の値が保持可能である)。典型的には、pは、2もしくは5より高く、および/または50もしくは20未満(pのための上限は、最適化のスパースな特性のおかげで本方法の速さに関して重要性が比較的小さいものであるが、極小を回避する助けとなる)、たとえば、10程度(テストは、ちょうど10を使用して実施された)であってもよい。そのような構成は、特に妥当な結果に向かって最適化の特に効率的な収束を可能にし、極小に追い込むことを比較的良好に回避する。
具体的には、上記の計算においてテンプレートに割り当てられる特定の材料は、サンブナン−キルヒホッフ材料であってよい。この非常によく知られた材料モデルは、特定の妥当な再構築をもたらすが、他の材料を企図することもできる。本方法は、実際、単位行列に比例する質量行列と共に、サンブナン−キルヒホッフ材料のひずみエネルギーを使用する。この材料のための従来の離散化の詳細は周知であり、論文、非特許文献30、および論文[Sifakis2012]、非特許文献32によって提供されている。サンブナン−キルヒホッフ材料のための物理モデルの決定に関するこれらの論文の教示は、本方法によって適用することができる。
また、本方法は、S1で、物理固有モードによって受け止められない妥当な変形として定義されるジオメトリックモードをも提供し得る。これは、S1で提供されS2で検討される変形モードのセットを(スマートに)豊かにし、よりロバストな結果をもたらす。
一例では、本方法は、いくつかのそのようなジオメトリックモードを提供する。
この例によって提供される第1のジオメトリック変形関数は、単純3次元スケーリングモードである。すなわち、g1(β,V)=((1+β1)I1+(1+β2)I2+(1+β3)I3)V、ここで、I1=diag((1,0,0),(1,0,0),...,(1,0,0))、I2=diag((0,1,0),(0,1,0),...,(0,1,0))、I3=diag((0,0,1),(0,0,1),...,(0,0,1))、およびβ∈B=[−0.8;0.8]3である。
第2のジオメトリック関数は、g2(γ,V)=V+γ1U’1+γ2U’2+γ3U’3として定義される不均一なスケーリングモードであり、ここで、
Figure 0006878011
および
Figure 0006878011
である。このモードは、不均一なスケーリングとして働く(このスケーリングは、0付近で強まる)。
第3のジオメトリックモードは、多項式変形モードであり、たとえば4つの多項式によって定義される。すなわち、
Figure 0006878011
上式でδi∈D=[−1;1](d+1)である。一実装では、次数d=2の多項式をとってもよい。
この例の別のジオメトリック関数は、テンプレート
Figure 0006878011
を平行移動および回転させることを可能にするリジッドモードであり、ここで、tは、平行移動ベクトルであり、Rot(ω)は、ツイストベクトルωでなされた回転行列であり、ωのノルムは、回転角であり、正規化されたベクトルは、回転軸である。我々の実装では、
Figure 0006878011
である。
なお、物理モードとは異なり、ジオメトリックモードの上記の定義は、テンプレートがその主軸上で位置合わせされることを必要とする。なぜなら、ジオメトリックモードの定義/パラメータがそれらを参照するからである。しかし、これらの定義は、他の位置合わせが企図される場合、適合され得る。また、すべてのモードは、大きさが0に等しいとき変形がヌルであるという特定性を有する(換言すれば、この例では、大きさは、モードが最終コンポジションで本当に使用されるかどうか決定するパラメータであり、したがって、決定S2は、比較的高い数の大きさが0とは異なることにペナルティを課す)。
したがって、S1で提供されるセットは、すべての上述のモードの任意の組合せ(たとえば、任意の数の物理モードおよび/または記載の4つのジオメトリック変形モードの任意のもの)、または任意の代表的なセット(すなわち、組合せとちょうど同じ結果を可能にするモードの任意のセットを含み得る。
一例では、テンプレートVの最終変形関数は、
Figure 0006878011
であり得るすべてのこれらのモードのコンポジションであり、ここで、θ=(α1,...,αp,β,γ,δ0,...,δ3,ω,t)∈I=Ap×B×C×D4×Eである(非線形モードのため、コンポジションの順序が異なる結果をもたらす可能性があり、本例では特定の順序が保持されており、他の順序が保持可能であることに留意されたい)。テンプレートは、#Iパラメータ、すなわち、p+3+3+4(d+1)+3=p+4(d+1)+9個のパラメータによってパラメータ化される。この例の実装では、d=2およびp=10の場合、したがってテンプレートを完全に制御する31個のパラメータがある。
頂点の数はnであるため、自由度の最大数は3n、典型的にはn>1000である。この例のパラメータ化は、テンプレートを非常に少ないパラメータで制御することを可能にする。さらに、このパラメータ化は、トポロジおよび規則性を内部的に保存する。テンプレートは、首尾一貫した妥当な状態でのみ変形され得る。そのため、本方法の例は、単一のフレームの場合でさえ、3D再構築のために非常に強力である。また、上記で提供される定義は、f(0,V)=Vであることを確実にすることに留意されたい。
次に、S2で実施される空間最適化の一例について、上記の例に従って論じる。
この例は、テンプレートを深度フレームにフィットさせるために最もよいパラメータθを見つけることを可能にする。発想は、変形されたテンプレートが深度フレームと最もよくフィットするとき最小となるエネルギーを定義することである。Fで深度フレームを示す。本方法は、エネルギーを、非線形最小二乗問題e(θ)=Σx,ymax([F(x,y)−π(f(θ,V))(x,y)]2,th)としてみなしてもよく、ここで(x,y)は画素を示し、πは、入力深度フレームの内部パラメータを使用して、変形されたテンプレートの深度マップを計算する関数であり、thは、セグメント化ステップで0に設定された背景深度のために各画素についての誤差を制限するための閾値である。任意の他のエネルギーが企図されてもよい。たとえば、代替として、またはそれに加えて、ロバストな最小二乗エネルギーおよび/またはM−estimatorエネルギーが企図され得る。たとえば、Σx,ymax([F(x,y)−π(f(θ,V))(x,y)]2,th)は、Σx,y,h(x,y,θ)によって置き換えることができ、ここで、hは、固定された(x,y)について|F(x,y)−π(f(θ,V))(x,y)|と同じ方向に変わる正の関数である(たとえば、これは、テンプレートが所与の(x,y)画素について深度マップ上で重畳されたときhが小さくなることを意味し得る。
深度マップをフィットさせるようにテンプレートが変形されることを可能にするのに十分な変形モードがS1で提供された。しかし、本方法が再構築しているオブジェクトへテンプレートを変形させるために、これらのモードすべてが使用されることを必要とすることは、非常に可能性が低い。本方法がエネルギーeを直接最小化する場合、すべてのモードが変形(θ(i)≠0∀i)に含まれ得るので、オーバーフィッティング現象が現れ得る。そのような場合、テンプレートは、その自由度すべてを使用し(我々の場合には31)、深度フレームをオーバーフィッティングさせることになる。本方法はむしろ、オーバーフィッティングを防止し、再構築するオブジェクトにテンプレートを変換するのに十分な少ない数のモードを見つけ得る。
そのような変形を表すことができる最も少ない数のモードを見つけることは困難な問題であり、再構築するオブジェクトに非常に依存する。そのため、本方法は、テンプレートが深度フレームをフィットさせることを可能にする最良のモードを自動的に選択するタスクを最適化に委ねるように、スパース最適化と呼ばれる強力な枠組みを使用する。具体的には、この例の方法は、グループ−スパース性を使用し、再構築するオブジェクトに関して規則性の喪失および妥当でない形状という犠牲を払って深度マップのノイズをオーバーフィッティングする可能性がある意味を持たないモードを廃棄する。したがって、本方法が実際に最小化するレギュラリゼーションされたエネルギーは、
e’(θ)=e(θ)+μφ(θ)
であり、ここで、レギュラリゼーション項
Figure 0006878011
および関数s(J)=max(|infJ|,|supJ|)は、[−1;1]の間で各パラメータを再スケーリングすることを可能にする(和の第2の項は、リジッドモーションおよび3Dスケーリングとは異なるジオメトリックモードがS1で提供されたセット内にある場合に介在する)。
ノルムまたはグループ−Lassoペナルティを導入するグループ−スパース性と呼ばれるレギュラリゼーション項φ(θ)の正確な役割は、テキストブック、非特許文献33に詳述され説明されている。φの目標は、スパース性を強制することであり、この手段は、係数αiおよびベクトルδiをヌルのままにさせる。μが大きいほど、より多くの係数がヌルのままとなる。この例の方法は、物理固有モードおよび多項式ジオメトリックモードをレギュラリゼーションするだけであることに留意されたい。実際、本方法は、スパース性を(再構築するオブジェクトが何であろうと変形ステップに含まれると考えることができるように)他のジオメトリックモードに強制することを回避し得る。この最適化問題は、テンプレートを再構築するオブジェクトに変換するために最も適切な物理固有モードおよび多項式ジオメトリックモードを内部的に選択する。
エネルギーe’(θ)を最小にするために、本方法は、e(θ)を線形化しテキストブック、非特許文献33に記載のアルゴリズムを適用することができる。しかし、関数πは、非常に複雑であり、その勾配の解析的に近い式を得ることは困難である。実際には、本方法はむしろ、関数πを適用するために、OpenGLなど低レベルのグラフィックAPIのZバッファ能力に基づいてもよい。本方法は、e(θ)の導関数を推定するために、有限差分を使用することができる。しかし、本方法はむしろ、θの良好な最初の推定値を使用し、良好な極小に向かって収束すべきである。そのため、一例では、本方法は、ネルダーミード方式(論文、非特許文献34に開示されているものなど)を実装し、これは、半局所大域最適化アルゴリズムであり、本方法が最初の推測θ=0で開始し、良好な解に向かって依然として収束することを可能にする。
一実装では、本方法は、0.2の最初のシンプレックスサイズ(スケーリングされたパラメータ空間において)、th=30mm、μ=150mm2を使用し、本方法は、パラメータβ、γ、ω、tだけを最小化することによって開始し(したがって、φ(θ)は、この第1段階中、ヌルのままである)、次いで、本方法は、αおよびδに対して最小化し、最後に、本方法は、th=15mmですべてのパラメータに対して最小化する。
次に、この例の方法の(任意選択の)「処理後」段階について論じる。この後処理は、テクスチャリングである。実際、最後のステップは、再構築するオブジェクトのテクスチャリングされた3Dモデルを得るために、RGBフレームを変形されたテンプレート上に投影することである。
図5〜図13は、図4を参照して論じた例の実装のテストを示す。より見やすくするために、図上のフィッティングサーフェスによりメッシュが表されている。図5は、最初のテンプレート(最も左のメッシュ)を示し、いくつかの物理変形モードがそれ(他のメッシュ)にどのように作用するかを示す。図6は、S2のスパース最適化が(3つの)最も妥当な物理モードまたはジオメトリックモードをどのように抽出するかを示す。図7〜図8は、2つの異なるシャンプーにフィットする変形された最初のテンプレートのいくつかの結果を示す。図9は、物理モードおよびジオメトリックモードを示す。図10は、深度カメラから提供された最初の点群、および関連のテンプレート(本方法の可能な入力)を示す。図11は、テンプレート最適化を(順次的な最適化の例で)示す。図12〜図13は、RGB−深度センサでの実際のシーンのキャプションを示す。図12は、RGB画像を示し、図13は、実際のシーンにあるシャンプーボトルの深度画像を示す。

Claims (10)

  1. 実物体を表す3Dメッシュおよび測定データから実物体を表す3Dモデル化オブジェクトを再構築するためのコンピュータ実装方法であって、
    変形モードのセットを提供するステップであって、各変形モードは、パラメータ化された変形関数を指定し、可変パラメータを含み、前記3Dメッシュに適用可能である、ステップと、
    前記変形モードのコンポジションを決定するステップであって、前記コンポジションは、変形モードの前記セットの1つまたは複数の変形モード、および/またはそれらの可変パラメータの値を検討するプログラムであって、前記コンポジションによって変形されたような前記3Dメッシュと前記測定データとの間のフィットに見返りを与え、前記決定されたコンポジション内に含まれる前記変形モードのスパース性にさらに見返りを与えるプログラムを最適化する、ステップと、
    前記コンポジションを前記3Dメッシュに適用するステップと
    を含み、
    変形モードの前記セットは、リジッドモードおよび3Dスケーリングモードを含む幾何学的モードを表すサブセットを含み、
    前記コンポジションを前記3Dメッシュに適用することは、前記3Dメッシュを定義するデータを修正すること、および/または前記データの修正されたバージョンを作成することを含むことを特徴とする方法。
  2. 変形モードの前記セットは、少なくとも1つの物理モードを表すサブセットをさらに含むことを特徴とする請求項に記載の方法。
  3. 少なくとも1つの物理モードを表す前記サブセットは、少なくとも1つの材料固有モードを含むことを特徴とする請求項に記載の方法。
  4. 前記材料は、サンブナン−キルヒホッフ材料であることを特徴とする請求項に記載の方法。
  5. 少なくとも1つの物理モードを表す前記サブセットは、いくつかの最も低い固有ベクトルを含むことを特徴とする請求項またはに記載の方法。
  6. 前記プログラムは、
    Figure 0006878011
    でタイプμφ(θ)の項を含み、ここでs(J)=max(|infJ|,|supJ|)であり、係数αiは前記少なくとも1つの物理モードの係数であることを特徴とする請求項乃至のいずれか一項に記載の方法。
  7. 請求項1乃至のいずれか一項に記載の方法を実施するための命令を含むことを特徴とするコンピュータプログラム。
  8. 請求項に記載の前記コンピュータプログラムが記録されたメモリを含むことを特徴とするコンピュータ可読記憶媒体。
  9. メモリに結合されたプロセッサとグラフィカルユーザインターフェースとを含むシステムであって、前記メモリには請求項に記載の前記コンピュータプログラムが記録されていることを特徴とするシステム。
  10. 製品を製造する方法であって、
    請求項1乃至のいずれか一項に記載の方法によって得ることができる3Dモデル化オブジェクトを提供するステップであって、前記3Dモデル化オブジェクトは前記製品を表す、ステップと、
    前記3Dモデル化オブジェクトに基づいて前記製品を作り出すステップと
    を含むことを特徴とする方法。
JP2017000266A 2015-12-31 2017-01-04 3dモデル化オブジェクトの再構築 Active JP6878011B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15307199.8A EP3188033B1 (en) 2015-12-31 2015-12-31 Reconstructing a 3d modeled object
EP15307199.8 2015-12-31

Publications (2)

Publication Number Publication Date
JP2017120648A JP2017120648A (ja) 2017-07-06
JP6878011B2 true JP6878011B2 (ja) 2021-05-26

Family

ID=55221251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017000266A Active JP6878011B2 (ja) 2015-12-31 2017-01-04 3dモデル化オブジェクトの再構築

Country Status (4)

Country Link
US (1) US9978177B2 (ja)
EP (1) EP3188033B1 (ja)
JP (1) JP6878011B2 (ja)
CN (1) CN107067473B (ja)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI125913B (en) * 2013-03-25 2016-04-15 Mikkelin Ammattikorkeakoulu Oy A state-defining object for computer-aided design
EP2811463B1 (en) 2013-06-04 2018-11-21 Dassault Systèmes Designing a 3d modeled object with 2d views
EP2874118B1 (en) 2013-11-18 2017-08-02 Dassault Systèmes Computing camera parameters
EP3032495B1 (en) 2014-12-10 2019-11-13 Dassault Systèmes Texturing a 3d modeled object
US11178166B2 (en) * 2016-02-22 2021-11-16 The Regents Of The University Of California Information leakage-aware computer aided cyber-physical manufacturing
US11458034B2 (en) 2016-05-03 2022-10-04 Icarus Medical, LLC Method for automating body part sizing
US20180005015A1 (en) * 2016-07-01 2018-01-04 Vangogh Imaging, Inc. Sparse simultaneous localization and matching with unified tracking
EP3293705B1 (en) 2016-09-12 2022-11-16 Dassault Systèmes 3d reconstruction of a real object from a depth map
KR20180051288A (ko) * 2016-11-08 2018-05-16 삼성전자주식회사 디스플레이 장치 및 그 제어 방법
WO2018118772A1 (en) 2016-12-19 2018-06-28 Lantos Technologies, Inc. Manufacture of inflatable membranes
US11113800B2 (en) * 2017-01-18 2021-09-07 Nvidia Corporation Filtering image data using a neural network
US11514613B2 (en) * 2017-03-16 2022-11-29 Samsung Electronics Co., Ltd. Point cloud and mesh compression using image/video codecs
US10600199B2 (en) * 2017-06-27 2020-03-24 Toyota Research Institute, Inc. Extending object detection and identification capability for an object sensor device
JP2019015553A (ja) * 2017-07-05 2019-01-31 ソニーセミコンダクタソリューションズ株式会社 情報処理装置、情報処理方法および個体撮像装置
US10732284B2 (en) 2017-07-28 2020-08-04 The Boeing Company Live metrology of an object during manufacturing or other operations
US10438408B2 (en) 2017-07-28 2019-10-08 The Boeing Company Resolution adaptive mesh for performing 3-D metrology of an object
US10354444B2 (en) * 2017-07-28 2019-07-16 The Boeing Company Resolution adaptive mesh that is generated using an intermediate implicit representation of a point cloud
WO2019035155A1 (ja) * 2017-08-14 2019-02-21 楽天株式会社 画像処理システム、画像処理方法、及びプログラム
US11087536B2 (en) * 2017-08-31 2021-08-10 Sony Group Corporation Methods, devices and computer program products for generation of mesh in constructed 3D images
CN107726975B (zh) * 2017-09-20 2019-05-14 大连理工大学 一种基于视觉拼接测量的误差分析方法
CN109658515B (zh) 2017-10-11 2022-11-04 阿里巴巴集团控股有限公司 点云网格化方法、装置、设备及计算机存储介质
EP3502929A1 (en) * 2017-12-22 2019-06-26 Dassault Systèmes Determining a set of facets that represents a skin of a real object
US10839585B2 (en) 2018-01-05 2020-11-17 Vangogh Imaging, Inc. 4D hologram: real-time remote avatar creation and animation control
WO2019190340A1 (en) * 2018-03-28 2019-10-03 Intel Corporation Channel pruning of a convolutional network based on gradient descent optimization
US10810783B2 (en) 2018-04-03 2020-10-20 Vangogh Imaging, Inc. Dynamic real-time texture alignment for 3D models
CN108597025B (zh) * 2018-04-03 2022-05-03 中国传媒大学 基于人工智能面向虚拟现实的快速模型构建方法和装置
US11170224B2 (en) 2018-05-25 2021-11-09 Vangogh Imaging, Inc. Keyframe-based object scanning and tracking
US10970586B2 (en) 2018-06-28 2021-04-06 General Electric Company Systems and methods of 3D scene segmentation and matching for robotic operations
US10984587B2 (en) * 2018-07-13 2021-04-20 Nvidia Corporation Virtual photogrammetry
US11055868B2 (en) * 2018-07-19 2021-07-06 Radius Technologies, LLC Systems and methods for sizing objects via a computing device
US10755431B2 (en) 2018-07-19 2020-08-25 Radius Technologies, LLC Systems and methods for sizing objects via a computing device
WO2020076285A1 (en) * 2018-10-08 2020-04-16 Hewlett-Packard Development Company, L.P. Validating object model data for additive manufacturing
DE102018217681A1 (de) * 2018-10-16 2020-04-16 Audi Ag Verfahren zum Rekonstruieren zumindest einer Fahrzeugkomponente eines Kraftfahrzeugs und Rekonstruktionseinrichtung
WO2020091745A1 (en) 2018-10-30 2020-05-07 Hewlett-Packard Development Company, L.P. Determination of modeling accuracy between three-dimensional object representations
KR20210096285A (ko) * 2018-12-13 2021-08-04 삼성전자주식회사 3차원 메쉬 컨텐트를 압축하기 위한 방법, 장치 및 컴퓨터 판독 가능한 기록 매체
EP3671660B1 (en) * 2018-12-20 2025-06-18 Dassault Systèmes Designing a 3d modeled object via user-interaction
EP3671492A1 (en) * 2018-12-21 2020-06-24 Dassault Systèmes Adaptive compression of simulation data for visualization
EP3671494A1 (en) 2018-12-21 2020-06-24 Dassault Systèmes Multi-instanced simulations for large environments
EP3674984B1 (en) * 2018-12-29 2024-05-15 Dassault Systèmes Set of neural networks
EP3675063A1 (en) * 2018-12-29 2020-07-01 Dassault Systèmes Forming a dataset for inference of solid cad features
EP3674983B1 (en) * 2018-12-29 2024-09-18 Dassault Systèmes Machine-learning for 3d modeled object inference
EP3675062A1 (en) 2018-12-29 2020-07-01 Dassault Systèmes Learning a neural network for inference of solid cad features
US11216984B2 (en) 2019-01-09 2022-01-04 Samsung Electronics Co., Ltd. Patch splitting for improving video-based point cloud compression performance
CN111563965B (zh) * 2019-02-14 2024-04-05 如你所视(北京)科技有限公司 一种通过优化深度图生成全景图的方法及装置
CN110033454B (zh) * 2019-04-19 2021-01-05 河北大学 Ct图像中大面积粘连肺边界组织的肺肿瘤的分割方法
EP3734477B1 (en) * 2019-05-03 2023-03-29 Honda Research Institute Europe GmbH Method for structural optimization of objects using a descriptor for deformation modes
US11170552B2 (en) 2019-05-06 2021-11-09 Vangogh Imaging, Inc. Remote visualization of three-dimensional (3D) animation with synchronized voice in real-time
US11232633B2 (en) 2019-05-06 2022-01-25 Vangogh Imaging, Inc. 3D object capture and object reconstruction using edge cloud computing resources
US11030801B2 (en) * 2019-05-17 2021-06-08 Standard Cyborg, Inc. Three-dimensional modeling toolkit
US12056820B2 (en) 2019-05-17 2024-08-06 Sdc U.S. Smilepay Spv Three-dimensional modeling toolkit
US12014470B2 (en) 2019-05-22 2024-06-18 Nec Corporation Model generation apparatus, model generation system, model generation method
CA3142320A1 (en) * 2019-05-31 2020-12-03 Applications Mobiles Overview Inc. System and method of generating a 3d representation of an object
US10818085B1 (en) * 2019-06-07 2020-10-27 Ford Global Technologies, Llc Systems and methods for 3D tolerance analysis
US11592820B2 (en) 2019-09-13 2023-02-28 The Boeing Company Obstacle detection and vehicle navigation using resolution-adaptive fusion of point clouds
EP3825956B1 (en) * 2019-11-21 2022-06-22 Dassault Systèmes Processing a 3d signal of a shape attribute over a real object
US11335063B2 (en) 2020-01-03 2022-05-17 Vangogh Imaging, Inc. Multiple maps for 3D object scanning and reconstruction
CN111260775B (zh) * 2020-01-23 2022-05-20 清华大学 基于遮挡信息多尺度感知的三维重建方法及装置
EP3859610A1 (en) 2020-01-30 2021-08-04 Dassault Systèmes Deformations basis learning
EP3872771B1 (en) 2020-02-25 2024-10-16 Dassault Systèmes Determining a 3d modeled object deformation
US11238650B2 (en) * 2020-03-13 2022-02-01 Nvidia Corporation Self-supervised single-view 3D reconstruction via semantic consistency
CN111986335B (zh) * 2020-09-01 2021-10-22 贝壳找房(北京)科技有限公司 纹理贴图方法和装置、计算机可读存储介质、电子设备
EP4036783A1 (en) * 2021-01-29 2022-08-03 Dassault Systèmes Adversarial 3d deformations learning
CN112991541B (zh) * 2021-04-06 2022-07-12 中国建筑第二工程局有限公司 基于bim的假山逆向建模方法、装置、设备及介质
US12229476B2 (en) * 2021-04-21 2025-02-18 Autodesk, Inc. Computer aided generative design with modal analysis driven shape modification process
US11893902B1 (en) 2021-05-11 2024-02-06 Prabhu Swaminathan Educational training system using mechanical models
TWI777795B (zh) * 2021-09-30 2022-09-11 東海大學 用於評價三維板金模型的板金分割之電腦程式產品
US12062145B2 (en) * 2022-02-01 2024-08-13 Samsung Electronics Co., Ltd. System and method for three-dimensional scene reconstruction and understanding in extended reality (XR) applications
CN115222790B (zh) * 2022-08-11 2022-12-30 中国科学技术大学 单光子三维重建方法、系统、设备及存储介质
US20240346765A1 (en) * 2023-04-13 2024-10-17 Samsung Electronics Co.,Ltd. Method and an electronic device for 3d scene reconstruction and visualization
CN116958958B (zh) * 2023-07-31 2024-10-25 中国科学技术大学 基于图卷积双流形状先验自适应类别级物体姿态估计方法
US12450830B2 (en) * 2024-02-23 2025-10-21 Panasonic Intellectual Property Management Co., Ltd. Methods and systems for estimating physical properties of objects
KR102791730B1 (ko) * 2024-07-05 2025-04-07 국립한국교통대학교산학협력단 포인트 클라우드 기반 기하학적 매개변수 추출을 통한 bim 모델 통합 시스템 및 방법
CN119249555B (zh) * 2024-09-14 2025-11-04 中国建筑第八工程局有限公司 基于gh插件的弧形墙的砌块参数化排砖方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3162630B2 (ja) 1996-07-31 2001-05-08 トヨタ自動車株式会社 ワイヤフレームモデルの面定義方法および装置
US6549201B1 (en) 1999-11-23 2003-04-15 Center For Advanced Science And Technology Incubation, Ltd. Method for constructing a 3D polygonal surface from a 2D silhouette by using computer, apparatus thereof and storage medium
US7084868B2 (en) 2000-04-26 2006-08-01 University Of Louisville Research Foundation, Inc. System and method for 3-D digital reconstruction of an oral cavity from a sequence of 2-D images
US6654027B1 (en) 2000-06-09 2003-11-25 Dassault Systemes Tool for three-dimensional analysis of a drawing
US6834119B2 (en) 2001-04-03 2004-12-21 Stmicroelectronics, Inc. Methods and apparatus for matching multiple images
US6850233B2 (en) 2002-05-01 2005-02-01 Microsoft Corporation Systems and methods for optimizing geometric stretch of a parametrization scheme
US7546156B2 (en) 2003-05-09 2009-06-09 University Of Rochester Medical Center Method of indexing biological imaging data using a three-dimensional body representation
US7565029B2 (en) 2005-07-08 2009-07-21 Seiko Epson Corporation Method for determining camera position from two-dimensional images that form a panorama
WO2007146069A2 (en) 2006-06-07 2007-12-21 Carnegie Mellon University A sketch-based design system, apparatus, and method for the construction and modification of three-dimensional geometry
KR100969764B1 (ko) 2008-02-13 2010-07-13 삼성전자주식회사 메쉬 모델로 구현된 3차원 데이터의 부호화 및 복호화 방법
CN101655992B (zh) * 2009-09-15 2011-12-21 中国科学院软件研究所 一种三角网格模型的重建方法
WO2013189058A1 (en) 2012-06-21 2013-12-27 Microsoft Corporation Avatar construction using depth camera
US8570343B2 (en) 2010-04-20 2013-10-29 Dassault Systemes Automatic generation of 3D models from packaged goods product images
JP5695186B2 (ja) 2010-05-11 2015-04-01 トムソン ライセンシングThomson Licensing 3次元ビデオのコンフォートノイズ及びフィルム粒子処理
EP2400410B1 (en) 2010-05-25 2014-01-08 Dassault Systèmes Computing of a resulting closed triangulated polyhedral surface from a first and a second modeled object
PH12013500647A1 (en) 2010-10-07 2016-10-14 Sungevity Rapid 3d modeling
WO2012096992A1 (en) 2011-01-10 2012-07-19 Rutgers, The State University Of New Jersey Boosted consensus classifier for large images using fields of view of various sizes
US20150172628A1 (en) 2011-06-30 2015-06-18 Google Inc. Altering Automatically-Generated Three-Dimensional Models Using Photogrammetry
US9031356B2 (en) 2012-03-20 2015-05-12 Dolby Laboratories Licensing Corporation Applying perceptually correct 3D film noise
US9218685B2 (en) 2012-06-05 2015-12-22 Apple Inc. System and method for highlighting a feature in a 3D map while preserving depth
US9536338B2 (en) * 2012-07-31 2017-01-03 Microsoft Technology Licensing, Llc Animating objects using the human body
US9183666B2 (en) 2013-03-15 2015-11-10 Google Inc. System and method for overlaying two-dimensional map data on a three-dimensional scene
US9483703B2 (en) 2013-05-14 2016-11-01 University Of Southern California Online coupled camera pose estimation and dense reconstruction from video
EP2811463B1 (en) 2013-06-04 2018-11-21 Dassault Systèmes Designing a 3d modeled object with 2d views
US9378576B2 (en) * 2013-06-07 2016-06-28 Faceshift Ag Online modeling for real-time facial animation
EP2874118B1 (en) 2013-11-18 2017-08-02 Dassault Systèmes Computing camera parameters
US9524582B2 (en) * 2014-01-28 2016-12-20 Siemens Healthcare Gmbh Method and system for constructing personalized avatars using a parameterized deformable mesh
US9299195B2 (en) * 2014-03-25 2016-03-29 Cisco Technology, Inc. Scanning and tracking dynamic objects with depth cameras
US9613298B2 (en) 2014-06-02 2017-04-04 Microsoft Technology Licensing, Llc Tracking using sensor data
US10719727B2 (en) 2014-10-01 2020-07-21 Apple Inc. Method and system for determining at least one property related to at least part of a real environment
US10110881B2 (en) 2014-10-30 2018-10-23 Microsoft Technology Licensing, Llc Model fitting from raw time-of-flight images
CN104794722A (zh) * 2015-04-30 2015-07-22 浙江大学 利用单个Kinect计算着装人体三维净体模型的方法
CN105657402B (zh) 2016-01-18 2017-09-29 深圳市未来媒体技术研究院 一种深度图恢复方法

Also Published As

Publication number Publication date
EP3188033A1 (en) 2017-07-05
EP3188033B1 (en) 2024-02-14
CN107067473A (zh) 2017-08-18
US9978177B2 (en) 2018-05-22
CN107067473B (zh) 2022-07-01
US20170193699A1 (en) 2017-07-06
JP2017120648A (ja) 2017-07-06
EP3188033C0 (en) 2024-02-14

Similar Documents

Publication Publication Date Title
JP6878011B2 (ja) 3dモデル化オブジェクトの再構築
CN111382470B (zh) 用于3d建模对象推断的机器学习
JP6659336B2 (ja) 3dモデル化オブジェクトのテクスチャリング
JP7491685B2 (ja) ニューラルネットワークのセット
US11893690B2 (en) 3D reconstruction with smooth maps
JP7473335B2 (ja) ソリッドcadフィーチャを推測するためのニューラルネットワークの学習
CN111898172A (zh) 虚拟世界中的经验学习
EP2874118A1 (en) Computing camera parameters
CN111898173A (zh) 虚拟世界中的经验学习
US20220382930A1 (en) Parameterization of cad model
JP7730264B2 (ja) 変形の基礎学習
CN116934998A (zh) 从图像进行3d重建
Willis et al. Rapid prototyping 3D objects from scanned measurement data
JP7644595B2 (ja) 現実のシーンのビデオフラックスの拡張
CN110060346B (zh) 确定代表真实对象皮肤的小面的集合
JP2017168081A (ja) 記述子を用いた3dオブジェクトの位置特定
JP2017162447A (ja) 量子化を用いた3dオブジェクトの位置特定

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210428

R150 Certificate of patent or registration of utility model

Ref document number: 6878011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250