TWI777795B - 用於評價三維板金模型的板金分割之電腦程式產品 - Google Patents
用於評價三維板金模型的板金分割之電腦程式產品 Download PDFInfo
- Publication number
- TWI777795B TWI777795B TW110136479A TW110136479A TWI777795B TW I777795 B TWI777795 B TW I777795B TW 110136479 A TW110136479 A TW 110136479A TW 110136479 A TW110136479 A TW 110136479A TW I777795 B TWI777795 B TW I777795B
- Authority
- TW
- Taiwan
- Prior art keywords
- plate
- sheet metal
- dimensional
- sub
- initial
- Prior art date
Links
- 239000002184 metal Substances 0.000 title claims abstract description 139
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 139
- 238000004590 computer program Methods 0.000 title claims abstract description 30
- 230000011218 segmentation Effects 0.000 title claims abstract description 30
- 238000011156 evaluation Methods 0.000 claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 32
- 238000013528 artificial neural network Methods 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 18
- 238000012545 processing Methods 0.000 claims description 9
- 238000012549 training Methods 0.000 description 12
- 238000003466 welding Methods 0.000 description 7
- 238000003698 laser cutting Methods 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 238000013527 convolutional neural network Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Landscapes
- Image Generation (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Debugging And Monitoring (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
一種用於評價三維板金模型的板金分割之電腦程式產品,包含一分割決策模組、一展平決策模組與一評價模組,其中,該分割決策模組在三維板金模型的板部中找出數個初始板部,並分別由該些初始板部加入相鄰的其它板部,以生成複數個三維子板金模型。該展平決策模組將該些三維子板金模型進行展平,以產生複數種展平方案。該評價模組將各該展平方案中的展平子板金模型排置於一板體模型上;該評價模組依據各該板體模型及一生產成本參數計算對應各該展平方案的一總成本,並輸出總成本較低的板體模型。
Description
本發明係與板金分割的電腦程式有關;特別是指一種用於評價三維板金模型的板金分割之電腦程式產品。
板金產品是由多個板金件組合而成,已知在板金產品的開發過程中,開發人員均會透過三維工程軟體建立板金產品的三維板金模型,以便於修改、優化板金產品的結構、外型等,或是作板金產品的虛擬展示。
在開發人員確定三維板金模型定案後,接下來便是進行拆板金的步驟。由於拆板金是係由開發人員在三維工程軟體的三維板金模型中指定板金產品之各個板金件要分割的位置。亦即,以人員的經驗在三維板金模型中分割板金,將耗費許多的時間,造成效率不張的情形。
再者,板金分割的位置將影響後續板金件加工時的工序成本,對於經驗不足的人員,難以選擇較佳的分割的位置,導致加工成本的增加。
有鑑於此,本發明之目的在於提供一種用於評價三維板金模型的板金分割之電腦程式產品,可增加評價三維板金模型的板金分割之效率。
緣以達成上述目的,本發明提供的一種用於評價三維板金模型的板金分割之電腦程式產品,包含一分割決策模組、一展平決策模組與一評價模組,其中,該分割決策模組用以接收一三維圖檔,該三維圖檔包括一三維板金模型,該三維板金模型包括複數個拚接的板部;該分割決策模組在該三維板金模型的該些板部中找出複數者作為複數個初始板部,並分別由該些初始板部加入與各該初始板部相鄰的其它板部,以生成複數個三維子板金模型,其中,該些三維子板金模型可拚接成該三維板金模型;該展平決策模組接收該些三維子板金模型,且將該些三維子板金模型進行展平,以產生複數種展平方案,各該展平方案包括複數個展平子板金模型,各該展平方案中的各該展平子板金模型對應各該三維子板金模型,其中,至少一部分的三維子板金模型以不同的方式展平,而形成不同的展平方案中的展平子板金模型;該評價模組接收該些展平方案,並將各該展平方案中的展平子板金模型排置於一板體模型上;該評價模組依據各該板體模型及一生產成本參數計算對應各該展平方案的一總成本,並輸出該些板體模型中的至少一者,其中,所輸出的板體模型之總成本低於其它的板體模型之總成本。
本發明之效果在於,電腦程式產品可以自動將三維板金模型的板金分割、展平成不同展平方案,並輸出較佳的展平方案之板體模型,有效增加評價三維板金模型的板金分割之效率。
為能更清楚地說明本發明,茲舉較佳實施例並配合圖式詳細說明如後。請參圖1所示,為本發明第一較佳實施例之電腦程式產品100的架構圖,該電腦程式產品100係用於評價三維評價三維板金模型的板金分割。電腦程式產品100係應用於由圖2所示之電腦系統200,該電腦系統200包括一主機201、以及連接主機201的一螢幕202與一輸入裝置203。主機201用以運行該電腦程式產品100,並透過螢幕202顯示畫面,以及藉由輸入裝置203供使用者操控。輸入裝置203可包括滑鼠203a、鍵盤203b。主機201可為個人電腦主機、工業電腦主機、或工作站主機等,具有儲存媒體以儲存電腦程式產品100及三維圖檔。
電腦程式產品100包含一分割決策模組10、一展平決策模組20與一評價模組30。
該分割決策模組10用以接收一三維圖檔,該三維圖檔係儲存於儲存媒體中。三維圖檔包括一板金產品的一三維板金模型300(圖3與圖4參照),該三維板金模型300包括複數個拚接的板部,且該三維板金模型300主要由該些板部拚接而成。如圖3與圖4的三維板金模型300,其係由多個板金件310所組成,該些板金件310包括一主體板金件312與複數個長形板金件314,每一個板金件310具有複數個板部310a。例如圖4中,長形板金件314具有依序相連接三個板部314a, 314b, 314c,板部314b與其相鄰的各個板部314a, 314c之間具有共同的邊緣。長形板金件314的二個板部314a, 314c是與主體板金件312的板部312a相鄰,但無共同的邊緣。主體板金件312的所有相鄰兩個板部310a之間具有共同的邊緣。
該分割決策模組10在該三維板金模型300的該些板部310a中找出複數者作為複數個初始板部,並分別由該些初始板部加入與各該初始板部相鄰的其它板部,以生成複數個三維子板金模型。所生成的該些三維子板金模型可拚接成該三維板金模型300。分割決策模組10將各板部視為面進行處理,不考慮各板部的厚度。
本實施例中,該分割決策模組10包括一物件拆解子模組12、一初始板部決策子模組14、一三維物體生成子模組16。
三維板金模型300可包括至少一物件(圖未示)結合於至少一該板部310a上,所述之物件可例如是用以結合二個板部310a的結合件(例如螺栓、鉚釘、定位銷等零件),及/或物件亦可是尺寸小於一預定尺寸的板金件、或非板金件的零件(例如把手、電路板等)。前述之物件易影響初始板部的判斷。因此,藉由物件拆解子模組12從三維板金模型300中去除板部310a以外的至少一物件,只保留所述多個板部310a,可避免判斷初始板部的錯誤。
物件拆解子模組12判斷物件與相鄰的板部310a是否有重疊,若有則將物件與板部310a的重疊分開,並將物件獨立出來另外儲存至一物件資料集中,並由三維板金模型300中移除物件。將只有板部310a的三維板金模型300進行後續的處理。
該初始板部決策子模組14由該些板部310a之中先選擇至少一個板部310a作為至少一第一初始板部,初始板部決策子模組14亦能選擇出多個板部310a作為複數個第一初始板部。
本實施例中,該初始板部決策子模組14分析該些板部310a之頂點,並計算每個頂點之一鄰接邊緣數,鄰接邊緣數即是頂點的度(degree),請配合圖4,此長形板金件的頂點a的鄰接邊緣數為3,頂點b的鄰接邊緣數為2。初始板部決策子模組14由該些板部310a中選擇該鄰接邊緣數大於一預定數值的頂點相接的至少一個板部作為該至少一第一初始板部,或選擇該鄰接邊緣數最大的頂點相接的至少一個板部作為該至少一第一初始板部。以前述決策條件選擇出來的第一初始板部的數量可為一個或多個。初始板部決策子模組14將第一初始板部儲存到一初始板部資料集。
便於說明,於後以一個第一初始板部為例說明,並且假設所選擇出的第一初始板部為長形板金件314的板部314b(圖4參照)。該三維物體生成子模組16讀取初始板部資料集以第一初始板部形成一個三維子板金模型,由第一初始板部作為一個三維子板金模型之基礎,再由第一初始板部周圍的其它板部310a中選擇加入對應第一初始板部的三維子板金模型後仍可展平的其它板部310a(即選擇相鄰接且有共同邊緣的其它板部),並加入至對應第一初始板部的三維子板金模型中。藉此,即可產生對應第一初始板部的三維子板金模型。
當該三維物體生成子模組16判斷所選擇的板部加入而無法讓對應該第一初始板部的三維子板金模型展平時,初始板部決策子模組14將所選擇的板部310a設定為至少一第二初始板部並儲存到初始板部資料集。舉例而言,判斷如圖3所示之長形板金件314與主體板金件312的板部312a之間二者有相鄰接但沒有共同的邊緣時,則初始板部決策子模組14將主體板金件312的板部312a設定為第二初始板部。該三維物體生成子模組16讀取初始板部資料集以第二初始板部形成另一個三維子板金模型,由第二初始板部作為另一個三維子板金模型之基礎,再由第二初始板部周圍的其它板部310a中選擇加入另一個三維子板金模型後仍可展平的其它板部310a,並加入至對應第二初始板部的三維子板金模型中。藉此,即可產生對應第二初始板部的三維子板金模型。
之後,若該三維物體生成子模組16判斷己經無其它板部310a可用於生成三維子鈑金模型時,則完成所有板金件310的三維子板金模型。
若該三維物體生成子模組16判斷所選擇的板部310a加入而無法讓對應該第二初始板部的三維子板金模型展平時,則初始板部決策子模組14將所選擇的板部為設定另一第二初始板部並儲存到初始板部資料集。接著如同上述產生第二初始板部的三維子板金模型之步驟,再生成另一個新的三維子板金模型。直到所有板金件310的三維子板金模型皆產生完畢。最終的初始板部資料集中的該些初始板部包括至少一第一初始板部與至少一第二初始板部。
該分割決策模組10更可包括一模型檢測子模組(圖未示),模型檢測子模組用以對各三維子板金模型進行除錯,再將除錯後的三維子板金模型與三維板金模型300比對,以確認三維子板金模型的板部與三維板金模型300中對應的板金件310的板部310a是否相同,若相同,代表三維子板金模型產生無誤。若不同,代表三維子板金模型產生有誤,則再重新第一初始板部開始生成所有的三維子板金模型,或由對應的第二初始板部重新產生部分的三維子板金模型。
而後,該分割決策模組10將所有的三維子板金模型輸出至該展平決策模組20。
展平決策模組20接收該些三維子板金模型,且將該些三維子板金模型進行展平,以產生複數種展平方案,各該展平方案包括複數個展平子板金模型,各該展平方案中的各該展平子板金模型對應各該三維子板金模型,其中,至少一部分的三維子板金模型以不同的方式展平,而形成不同的展平方案中的展平子板金模型。本實施例中,該展平決策模組20係以一演算法將各個三維子板金模型展平,所使用的演算法可為暴力演算法(窮舉搜尋),各三維子板金模型的所有展平態樣全部產生,其中,部分的三維板子模型可能只有一展平態樣,例如單純只有彎折結構的三維板子模型,只能展成一個展平子板金模型。部分的三維板子模型可能有多種展平態樣,例如包含三個以上之板部彼此相鄰接之結構的三維板子模型,能夠展成多個展平子板金模型。此外,展平決策模組更於每個展平子板金模型中記錄各展平子板金模型加工時所需的切割邊、彎折邊、焊接邊,及對應的邊長。
舉例而言,以下表一為例,三維子板金模型1只能展平成一個展平子板金模型1,三維子板金模型2以不同方式展平而能展平成展平子板金模型1及展平子板金模型2。該展平決策模組20將各種可能的展平子板金模型的組合排列形成展平方案。當各三維子板金模型可能的展平子板金模型越多,則展平方案就越多。
表一 展平方案
| 三維子板金模型1 | 三維子板金模型2 | |
| 展平方案1 | 展平子板金模型1 | 展平子板金模型1 |
| 展平方案2 | 展平子板金模型1 | 展平子板金模型2 |
評價模組30接收該些展平方案,並將各該展平方案中的展平子板金模型排置於一板體模型上。本實施例中,各板部的厚度以相同為例,因此,該評價模組30可將厚度相同的展平子板金模型排置於同一個板體模型。實務上,若展平方案中的多個展平子板金模型有不同厚度的情形,則將厚度相同的展平子板金模型排置於同一個板體模型,而形成複數個板體模型。
請參圖5,為一個展平方案中的展平子板金模型410排置於一板體模型400上的示例,評價模組30係至少將兩個展平子板金模型相鄰排置,使其具有共同的一加工邊420。所述的加工邊是作為切割之用,例如雷射切割的切割道即為加工邊420。有共同的加工邊420時,則可減少切割的次數,以降低工序成本。
每個展平方案皆有對應的至少一個板體模型。該評價模組30依據各該板體模型及一生產成本參數計算對應各該展平方案的一總成本,並輸出該些板體模型中的至少一者,其中,所輸出的板體模型之總成本低於其它的板體模型之總成本。
本實施例中,該生產成本參數包括一材料成本參數及一工序成本參數,該評價模組依據各該板體模型及該材料成本參數計算一材料成本,及依據各該板體模型及該工序成本參數計算一工序成本,且各該展平方案的總成本至少為其材料成本與工序成本的總和。
材料成本參數包括板材的單位面積價格。板金產品在板材的部分有許多種選擇,例如磨光鋼板,鍍鋅鐵板,不鏽鋼板…等,不同的材料有不同的單位面積價格。前述排置後的結果,可以決定一個展平方案所需要材料的總面積,將所需的材料總面積乘以使用的板材的的單位面積價格,即可得到該展平方案的材料成本。
另外,工序成本則與生產時所使用的工序有關,例如切割成本、折床、焊接成本等。工序成本參數包括使用的工序的單價,包括雷射切割的單位長度價格、折床的每刀使用價格、焊接的單位長度價格。
首先,將展平後的展平子板金模型之板金從板材上切割下來,會使用到雷射切割,雷射切割的使用成本則會與板材的厚度及雷射施打的長度有關。所以,將排置後的該些展平子板金模型的切割邊的總週長扣除共用的加工邊長度,再乘上雷射切割的單位長度價格,即可得到雷射切割這個工序的工序成本。
折床使用的次數單位通常採用刀來計算。折床的使用成本,與打折的次數(即刀數),和每次打折時的折邊之長度有關。依據展平子板金模型之彎折邊的數量及長度配合每刀使用價格即得到使用折床的工序成本。
另外,使用折床彎折後的兩個邊緣可能會需要焊接,焊接的單位長度價格與板材的厚度、板材的材質及焊接的長度有關,依據展平子板金模型之焊接邊的長度及焊接的單位長度價格即可得到焊接的工序成本。
該評價模組30將材料成本及全部的工序成本加總得到各個板體模型之總成本。該評價模組30可輸出總成本最低的展平方案的板體模型,或者輸出總成本低於一預定成本的展平方案的板體模型,或是依輸出材料成本的高低、或工序成本的高低輸出對應的板體模型。
輸出的展平方案之板體模型的篩選方式可由使用者自行設定,或是評價模組30預設。
在本發明的一第二較佳實施例的電腦程式產品中,具有大致相同於第一實施例之架構,不同的是,本實施例中,初始板部決策子模組決定第一初始板部之方式係分析三維板金模型300之該些板部310a之頂點,並選擇該些板部310a之中頂點之間相對距離最短的板部310a或頂點之間構成之面積最小的板部310a作為至少一第一初始板部。亦即,選擇最小的板部作為第一初始板部。
在本發明的一第三較佳實施例的電腦程式產品中,具有大致相同於第一實施例之架構,不同的是,本實施例中,初始板部決策子模組決定第一初始板部之方式係使用訓練後的人工神經網路(Artificial Neural Network, ANN)分析三維板金模型300,且由該些板部310a中選擇至少一個板部310a作為至少一第一初始板部。
在訓練人工神經網路的訓練過程中,由於輸入層的神經元的數量是固定的,而用於訓練的不同的三維板金模型範例的尺寸各不相同,因此,需要將所有訓練用的三維板金模型範例進行尺寸的調整。例如圖6所示,選擇一固定解析度的球體510,並將三維板金模型範例500在該球體上的投影作為ANN的輸入資料,球體的內面進行數位量化(quantization)時的解析度夠高,即可捕捉到將三維板金模型範例的外觀特徵,並可應用到輸入層固定的神經元的數量。
在另一種實施方式中,可以將球體選擇固定的解析度,並將三維板金模型範例經過適當的等比例大小調整 (scale adjust),放置於球內並進行前述的投影,一樣可以解決前述的輸入資料大小不固定的問題。
在另外一個實施例中,三維板金模型範例投影至球面後的圖像資訊,也可以透過其他的演算法展開變成平面化以後,再作為前述ANN的輸入,這些平面化的圖像資料,一樣可以解決前述的輸入資料大小不固定的問題。在另一個實施例中,可以將等距球面的圖像透過等距圓柱投影法(equirectangular projection),將其投影在一個長方形的平面上,長方形平面上的圖像資訊,即可作為前述ANN的輸入。
在另外一個實施例中,可以將等距球面的圖像透過立方體貼圖(cube map)投影法,投影到一個正方體的表面上。然後,被投影的立方體的六個正方形表面上的圖像資訊,即可作為前述ANN的輸入。
在另一個實施例中,亦可以使用等角立方體貼圖(equi-angular cubemaps)投影法來取代前述的立方體貼圖投影法,被投影的立方體的六個正方形表面上的圖像資訊,可作為前述ANN的輸入。
前述的ANN須包含多層的隱藏層(hidden layer),以捕捉作為ANN輸入的訓練資料中所隱含的選擇分割決策模組使用的初始板部的規則。ANN可能的實現方式包含了MLP(Multi-Layer Perceptron,多層感知機)、CNN(Convolutional Neural Network,卷積神經網絡)及其他類型的深度學習ANN。
ANN訓練方式如下:
1. 蒐集某種類型之板金產品的三維板金模型範例之集合;
2. 針對上述集合中的每個的三維板金模型範例,加上人工標示的一個或多個初始板部作為標記(label);
3. 以監督式學習(supervised learning)的方式,利用上述集合中加上標記後的三維板金模型範例,作為訓練集合來訓練ANN,訓練的過程可能會以多個回合(epoch)多次以該集合內的三維板金模型範例及標記來訓練ANN,直到ANN的輸出誤差小於可接受的範圍為止。
分割決策模組使用ANN來找第一初始板部,優點是可以配合不同類型的板金產品,使用最合適的選擇初始板部方式,來進行分割決策模組選擇第一初始板部的訓練。意即是針對特定一種類型的板金產品的三維板金模型,可以訓練一個特定的ANN,讓這個ANN遇對分割這一類型的板金產品三維板金模型選擇第一初始板部的方式經由訓練產生優化。
藉此,分割決策模組在面對不同類型的板金產品的三維板金模型時,可以依照板金產品的類型,選擇訓練好的ANN,並以前述對應的訓練ANN的投影方式捕捉到將三維板金模型的外觀特徵,並應用到輸入層固定的神經元的數量,即可以進行第一初始板部的選擇。
據上所述,本發明的電腦程式產品可以將三維板金模型的板金分割、展平成不同展平方案,並輸出較佳的展平方案之板體模型,有效增加評價三維板金模型的效率。
以上所述僅為本發明較佳可行實施例而已,舉凡應用本發明說明書及申請專利範圍所為之等效變化,理應包含在本發明之專利範圍內。
100:電腦程式產品
10:分割決策模組
12:物件拆解子模組
14:初始板部決策子模組
16:三維物體生成子模組
20:展平決策模組
30:評價模組
200:電腦系統
201:主機
202:螢幕
203:輸入裝置
203a:滑鼠
203b:鍵盤
300:三維板金模型
310:板金件
310a:板部
312:主體板金件
312a:板部
314:長形板金件
314a:板部
314b:板部
314c:板部
a:頂點
b:頂點
400:板體模型
410:展平子板金模型
420:加工邊
500:三維板金模型範例
510:球體
圖1為本發明第一較佳實施例之電腦程式產品的架構圖。
圖2為本發明第一較佳實施例之電腦程式產品所應用的電腦系統。
圖3為本發明第一較佳實施例之三維板金模型。
圖4為本發明第一較佳實施例之三維板金模型的長形板金件。
圖5為本發明第一較佳實施例之板體模型的局部示意圖。
圖6為本發明第三較佳實施例之訓練用的三維板金模型範本投影至球體的示意圖。
100:電腦程式產品
10:分割決策模組
12:物件拆解子模組
14:初始板部決策子模組
16:三維物體生成子模組
20:展平決策模組
30:評價模組
Claims (10)
- 一種用於評價三維板金模型的板金分割之電腦程式產品,包含:一分割決策模組,用以接收一三維圖檔,該三維圖檔包括一三維板金模型,該三維板金模型包括複數個拚接的板部,該分割決策模組在該三維板金模型的該些板部中找出複數者作為複數個初始板部,並分別由該些初始板部加入與各該初始板部相鄰的其它板部,以生成複數個三維子板金模型,其中,該些三維子板金模型可拚接成該三維板金模型;一展平決策模組,接收該些三維子板金模型,且將該些三維子板金模型進行展平,以產生複數種展平方案,各該展平方案包括複數個展平子板金模型,各該展平方案中的各該展平子板金模型對應各該三維子板金模型,其中,至少一部分的三維子板金模型包含三個以上之板部彼此相鄰接之結構且具有多種展平態樣,而形成不同的展平方案中的展平子板金模型;以及一評價模組,接收該些展平方案,並將各該展平方案中的展平子板金模型排置於一板體模型上,該評價模組依據各該板體模型及一生產成本參數計算對應各該展平方案的一總成本,並輸出該些板體模型中的至少一者,其中,所輸出的板體模型之總成本低於其它的板體模型之總成本。
- 如請求項1所述用於評價三維板金模型的板金分割之電腦程式產品,其中該些初始板部包括至少一第一初始板部與至少一第二初始板部,該分割決策模組係在該三維板金模型的該些板部中先選擇至少一者作為該至少一第一初始板部,以該至少一第一初始板部作為至少一個該三維子板金模型之基礎,再由該至少一第一初始板部周圍的其它 板部中選擇加入對應該至少一第一初始板部的該三維子板金模型後仍可展平的其它板部,並加入至對應該至少一第一初始板部的三維子板金模型中;當該分割決策模組判斷所選擇的板部加入而無法讓對應該至少一第一初始板部的三維子板金模型展平時,則將所選擇的板部為設定該至少一第二初始板部,並以該至少一第二初始板部作為另一個該三維子板金模型之基礎,再由該至少一第二初始板部周圍的其它板部中選擇加入另一個該三維子板金模型後仍可展平的其它板部,並加入至對應該至少一第二初始板部的三維子板金模型。
- 如請求項2所述用於評價三維板金模型的板金分割之電腦程式產品,其中該分割決策模組包括一初始板部決策子模組,該初始板部決策子模組用以由該些板部中選擇至少一個板部作為該至少一第一初始板部。
- 如請求項3所述用於評價三維板金模型的板金分割之電腦程式產品,其中該初始板部決策子模組分析該些板部之頂點,並選擇該些板部之中頂點之間相對距離最短的板部或頂點之間構成之面積最小的板部作為該至少一第一初始板部。
- 如請求項3所述用於評價三維板金模型的板金分割之電腦程式產品,其中,該初始板部決策子模組分析該些板部之頂點,並計算每個頂點之一鄰接邊緣數,選擇該鄰接邊緣數大於一預定數值的頂點相接的至少一個板部作為該至少一第一初始板部,或選擇該鄰接邊緣數最大的頂點相接的至少一個板部作為該至少一第一初始板部。
- 如請求項3所述用於評價三維板金模型的板金分割之電腦程式產品,其中,該初始板部決策子模組使用訓練後的人工神經網路 (Artificial Neural Network,ANN),由該些板部中選擇至少一個板部作為該至少一第一初始板部。
- 如請求項3所述用於評價三維板金模型的板金分割之電腦程式產品,其中該初始板部決策子模組選擇該些初始板部,將該些初始板部儲存在一初始板部資料集;其中該分割決策模組包括一三維物體生成子模組,該三維物體生成子模組讀取該初始板部資料集,並由取得的各該初始板部加入與各該初始板部相鄰接且有共同邊緣的其它板部,以生成各該三維子板金模型。
- 如請求項1所述用於評價三維板金模型的板金分割之電腦程式產品,其中該評價模組將各該展平方案中的展平子板金模型排置於一板體模型時,係至少將兩個展平子板金模型相鄰排置,使其具有共同的一加工邊。
- 如請求項1所述用於評價三維板金模型的板金分割之電腦程式產品,其中該生產成本參數包括一材料成本參數及一工序成本參數,該評價模組依據各該板體模型及該材料成本參數計算一材料成本,及依據各該板體模型及該工序成本參數計算一工序成本,且各該展平方案的總成本至少為其材料成本與工序成本的總和。
- 如請求項1所述用於評價三維板金模型的板金分割之電腦程式產品,其中該分割決策模組包括一物件拆解子模組,該三維板金模型包括至少一物件結合於至少一該板部;該物件拆解子模組用以從該三維板金模型中去除該至少一物件。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110136479A TWI777795B (zh) | 2021-09-30 | 2021-09-30 | 用於評價三維板金模型的板金分割之電腦程式產品 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| TW110136479A TWI777795B (zh) | 2021-09-30 | 2021-09-30 | 用於評價三維板金模型的板金分割之電腦程式產品 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| TWI777795B true TWI777795B (zh) | 2022-09-11 |
| TW202316376A TW202316376A (zh) | 2023-04-16 |
Family
ID=84958130
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| TW110136479A TWI777795B (zh) | 2021-09-30 | 2021-09-30 | 用於評價三維板金模型的板金分割之電腦程式產品 |
Country Status (1)
| Country | Link |
|---|---|
| TW (1) | TWI777795B (zh) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1830323A2 (en) * | 1996-05-06 | 2007-09-05 | Amada Company, Ltd. | Apparatus and method for managing and distributing design and manufacturing information throughout a sheet metal production facility |
| CN103678799A (zh) * | 2013-12-04 | 2014-03-26 | 南京航空航天大学 | 一种弯边钣金件斜角值快速测量标定方法 |
| CN103902755A (zh) * | 2012-12-31 | 2014-07-02 | 上海琦中机电设备有限公司 | 钣金件三维压型模设计工艺 |
| EP3188033A1 (en) * | 2015-12-31 | 2017-07-05 | Dassault Systèmes | Reconstructing a 3d modeled object |
| US20180189419A1 (en) * | 2017-01-04 | 2018-07-05 | Onshape Inc. | System maintaining domain-specific 3d models as a graph within computer aided design |
-
2021
- 2021-09-30 TW TW110136479A patent/TWI777795B/zh active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1830323A2 (en) * | 1996-05-06 | 2007-09-05 | Amada Company, Ltd. | Apparatus and method for managing and distributing design and manufacturing information throughout a sheet metal production facility |
| CN103902755A (zh) * | 2012-12-31 | 2014-07-02 | 上海琦中机电设备有限公司 | 钣金件三维压型模设计工艺 |
| CN103678799A (zh) * | 2013-12-04 | 2014-03-26 | 南京航空航天大学 | 一种弯边钣金件斜角值快速测量标定方法 |
| EP3188033A1 (en) * | 2015-12-31 | 2017-07-05 | Dassault Systèmes | Reconstructing a 3d modeled object |
| US20180189419A1 (en) * | 2017-01-04 | 2018-07-05 | Onshape Inc. | System maintaining domain-specific 3d models as a graph within computer aided design |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202316376A (zh) | 2023-04-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN113822885B (zh) | 融合多注意力机制的工件缺陷检测方法和装置 | |
| Ben-Shabat et al. | Nesti-net: Normal estimation for unstructured 3d point clouds using convolutional neural networks | |
| JP6964031B2 (ja) | パターンエッジ検出方法 | |
| JP7298825B2 (ja) | 学習支援装置、学習装置、学習支援方法及び学習支援プログラム | |
| TW202027036A (zh) | 基於深度學習網路的室內場景結構估測系統及其估測方法 | |
| JP7028322B2 (ja) | 情報処理装置、情報処理方法及び情報処理プログラム | |
| CN115527229A (zh) | 一种文档图像关键信息提取方法和系统 | |
| TW202341083A (zh) | 缺陷檢測系統及方法 | |
| Zhang et al. | An objective quality of experience (QoE) assessment index for retargeted images | |
| US8341571B1 (en) | Pattern signature | |
| KR101522478B1 (ko) | 복수의 요소를 그룹화하는 방법, 프로그램 및 장치 | |
| US11219928B2 (en) | Shape packing technique | |
| TWI777795B (zh) | 用於評價三維板金模型的板金分割之電腦程式產品 | |
| JP7070308B2 (ja) | 推定器生成装置、検査装置、推定器生成方法、及び推定器生成プログラム | |
| WO2013161511A1 (ja) | 複数の要素の結合結果を識別する情報処理装置、プログラムおよび方法 | |
| CN118229625A (zh) | 基于对图输入的pcb裸板缺陷检测方法及相关设备 | |
| US20090213428A1 (en) | Automated layout | |
| JP6177649B2 (ja) | データ処理装置、測長システム、欠陥検査システム、画像トラッキングシステム、及びデータ処理方法 | |
| JP7663423B2 (ja) | 箱詰め支援装置、箱詰め支援方法及び箱詰め支援システム | |
| CN118230113B (zh) | 一种基于多模态融合与注意力机制的目标检测方法及系统 | |
| CN118644673A (zh) | 印刷电路板的孪生网络缺陷分割方法、装置、设备和介质 | |
| CN118691952A (zh) | 一种瓦楞纸箱印刷图案匹配检测方法及系统 | |
| JPWO2021176572A5 (zh) | ||
| CN104239626B (zh) | 用于设计折叠片对象的方法、装置、介质和系统 | |
| JP4104840B2 (ja) | マスクパターン評価システム及びその方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| GD4A | Issue of patent certificate for granted invention patent |