[go: up one dir, main page]

JP6445451B2 - ネオアジュバントベバシズマブを用いた化学療法に対する予測結果の評価 - Google Patents

ネオアジュバントベバシズマブを用いた化学療法に対する予測結果の評価 Download PDF

Info

Publication number
JP6445451B2
JP6445451B2 JP2015544581A JP2015544581A JP6445451B2 JP 6445451 B2 JP6445451 B2 JP 6445451B2 JP 2015544581 A JP2015544581 A JP 2015544581A JP 2015544581 A JP2015544581 A JP 2015544581A JP 6445451 B2 JP6445451 B2 JP 6445451B2
Authority
JP
Japan
Prior art keywords
gene expression
expression level
patient
pcr
level information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015544581A
Other languages
English (en)
Other versions
JP2016508710A (ja
Inventor
ヴァラダン,ヴィネイ
カマラカラン,シタールタン
ヤネフスキー,エンジェル
バネルジェー,ニランジャナ
ディミトロワ,ネヴェンカ
ハリス,リンジー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV filed Critical Koninklijke Philips NV
Publication of JP2016508710A publication Critical patent/JP2016508710A/ja
Application granted granted Critical
Publication of JP6445451B2 publication Critical patent/JP6445451B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/20Supervised data analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/30Prediction of properties of chemical compounds, compositions or mixtures
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Medical Informatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Theoretical Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biotechnology (AREA)
  • Data Mining & Analysis (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Zoology (AREA)
  • Bioethics (AREA)
  • Evolutionary Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Databases & Information Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Hospice & Palliative Care (AREA)
  • Computing Systems (AREA)

Description

以下は、医療技術分野、腫瘍学技術分野及び関連技術分野に関する。
乳癌等の侵襲性の癌において、時宜を得た治療は好結果の可能性を大いに高め、さらに、複数の療法が同時に適用される。乳癌の場合、疑わしい乳房病変が生検され且つ悪性であると決定され、さらに、癌は分類される。(HER2陰性患者に対して治療の必要を示す)ベバシズマブ又は(HER2陽性患者に対して治療の必要を示す)トラスツズマブ等の生物学的薬剤の投与を含むネオアジュバント療法は、数週間化学療法と組み合わせて投与され、病変の外科的除去が続く。悪性腫瘍組織又は転移が患者において検出されない病理学的完全奏効(pCR)が、所望される結果である。実際には、pCRが所与の患者において達成されたかどうかは、外科的手術及び切除した腫瘍の後の検査の後まで決定されない。
その療法が最終的に効果的でない場合、貴重な時間が失われ、さらに、最終的に好結果である可能性が減少する。
これを考慮して、種々の評価が、典型的には、可能性のある有効性を評価するためにその療法の間に行われる。腫瘍は、磁気共鳴(MR)画像法又は別の適した画像化技術を使用した療法の過程にわたって行われる一連の画像化セッションによってモニターされてもよい。陽電子放射断層撮影(PET)又は単一光子放射型コンピュータ断層撮影(SPECT)等の機能的な画像化モダリティが、例えば血管新生等の機能的側面を評価するために適用されてもよい。さらなる生検が、腫瘍を周期的に評価するために治療レジメンの過程にわたって行われてもよい。
これらのアプローチは有用であるけれども、いくつかの欠点を有する。医用画像は高価であり、種々の解釈上の推測を要し、さらに、患者にとってストレスの多いものであり得る。生検は侵襲性である。患者の身体全体の健康及び免疫システムは、化学療法レジメンが進むに従い弱まるため、生検の間に感染が導入される可能性が、いかなるそのような感染に対する有害な患者反応の可能性も増えるように、時間の経過に伴い増える。これらの技術も、通常、治療の過程の実質的な終わりまで意味のある評価を提供せず、さらに結果は、特に治療の初期の間は不明確であり得る。例えば、腫瘍は期待するほど小さくなっていないが、治療はそれにもかかわらず最終的にpCRを達成することができるということを医用画像は示すことができる。時間の経過に伴い集まった証拠が、治療は効果的ではないということをますます示唆する場合、患者の医師は、機能しないかもしれない療法レジメンを続けるか、又或いは、最終的に成功するかどうかを知ることなくその療法を終える若しくは調整するという困難な選択をしなければならない。
遺伝子検査の使用は、遺伝子アレイ、免疫組織化学的検査又は逆転写ポリメラーゼ連鎖反応法(RT−PCR)を使用して測定される特定の遺伝子又はマイクロRNA(miRNA)の発現と患者の療法反応を相関させるために熟考されてきた。典型的に、これらの分子マーカーは、患者がネオアジュバント療法を受ける前にベースラインにて測定され、さらに、これらのベースライン測定は、後の療法から利益を得ることができるか又はできないグループに患者を層別化するために使用される。しかし、ベースライン乳房生検からのこれらの予測因子は、クリニックにおいて日常的に使用されるのに十分な特異性を達成しない。対照的に、短期間曝露のネオアジュバントのパラダイムは、患者の乳房生検をベースラインにて(療法前に)、及び、ネオアジュバント療法の1回の投与の数日後に採取することを含む。分子プロファイルが、次に、2つの患者生検に対して実施され、さらに、これら2つの生検間のプロファイルにおける変化が、完全なネオアジュバント治療の過程からの最終的な利益を予測するために使用される。
以下は、上述の制限等を克服する改善された装置及び方法を熟考している。
一態様によると、方法は:入力遺伝子セットに対する差次的遺伝子発現レベル情報を生成するステップであり、差次的遺伝子発現レベル情報は:(i)患者に対して乳癌療法レジメンを開始する前に取得された患者の乳腺腫瘍のベースライン試料からのベースラインの遺伝子発現レベル情報と、(ii)第1の用量のベバシズマブを患者に投与することによって乳癌療法レジメンを開始した後に取得された乳腺腫瘍の反応試料からの反応の遺伝子発現レベル情報とを比較する、ステップ;及び、入力遺伝子セットに対する差次的遺伝子発現レベル情報に基づき、患者に対する病理学的完全奏効(pCR)の予測をコンピュータで計算するステップ;を含む。上記の生成するステップ及びコンピュータで計算するステップは、電子データ処理装置によって適切に行われる。
別の態様によると、方法は:第1の用量のベバシズマブを患者に投与することによって、少なくともベバシズマブを含む乳癌療法レジメンを開始するステップ;上記開始前に、患者の乳腺腫瘍のベースライン試料を取得するステップ;上記開始後に、患者の乳腺腫瘍の反応試料を取得するステップ;入力遺伝子セットに対する、それぞれベースライン試料及び反応試料からのベースラインの遺伝子発現レベル情報及び反応の遺伝子発現レベル情報を生成するステップ;入力遺伝子セットに対する、ベースラインの遺伝子発現レベル情報と反応の遺伝子発現レベル情報とを比較する差次的遺伝子発現レベル情報を生成するステップ;並びに、入力遺伝子セットに対する差次的遺伝子発現レベル情報に基づき、患者に対する病理学的完全奏効(pCR)の予測をコンピュータで計算するステップ;を含む。
別の態様によると、直前の2つの段落のうちの1つの段落において明記された方法において、トランスフォーミング増殖因子β(TGF−β)シグナル経路に属する入力遺伝子セットが利用される。別の態様によると、直前の2つの段落のうちの1つの段落において明記された方法において、CDKN2B、ATL2、CTGF、INHBA、ID4、BMPR1A、CD1E、TFDP1、AMIG2、DDIT4、TGFB2、SPP1、CD28、PMEPA1、FAT4、KDM6B、MAP3K4、FAM162A、MYH11及びPPP2R1Bを含む群のうち少なくとも2つの遺伝子を含む入力遺伝子セットが利用される。入力遺伝子セットに対する他の適した選択肢も本明細書において開示され、入力遺伝子セットが61の遺伝子を含む実例を含む。
別の態様によると、方法は、研究対象の集団の各研究対象に対して:第1の用量のネオアジュバント治療薬を研究対象に投与することによって、少なくともネオアジュバント治療薬を含む腫瘍学的な療法レジメンを開始するステップ;上記開始前に、研究対象における悪性腫瘍のベースライン試料を取得するステップ;上記開始後に、研究対象における悪性腫瘍の反応試料を取得するステップ;反応試料を取得した後に、研究対象に対する腫瘍学的な療法レジメンを完了するステップ;腫瘍学的な療法レジメンを完了した後に、研究対象の病理学的完全奏効(pCR)の状態を決定するステップ;少なくとも1000の遺伝子に対するベースラインの遺伝子発現レベル情報及び反応の遺伝子発現レベル情報を生成するために、それぞれベースライン試料及び反応試料を処理するステップ;並びに、ベースラインの遺伝子発現レベル情報と反応の遺伝子発現レベル情報とを比較する、研究対象に対する差次的遺伝子発現レベル情報を計算するステップ;を含む。分類器が、次に、トレーニングデータとして、研究対象の集団に対して計算された差次的遺伝子発現レベル情報を使用してトレーニングされ、受信した入力遺伝子セットに対する差次的遺伝子発現レベル情報に基づきコンピュータで計算されたpCRの予測を出力するトレーニングされた分類器を生成する。
別の態様によると、方法は、直前の段落の方法によって生成されたトレーニングされた分類器を利用する。当該方法は、臨床治療を受ける患者に対して:第1の用量のネオアジュバント治療薬を患者に投与することによって、腫瘍学的な療法レジメンを開始するステップ;上記開始前に、患者における悪性腫瘍のベースライン患者試料を取得するステップ;上記開始後に、患者における悪性腫瘍の反応患者試料を取得するステップ;ベースライン患者試料及び反応患者試料に基づき、入力遺伝子セットに対する患者の差次的遺伝子発現レベル情報を生成するステップ;並びに、患者の差次的遺伝子発現レベル情報をトレーニングされた分類器に入力することによって、患者に対するpCRの予測を生成するステップであり、患者に対する腫瘍学的な療法レジメンの完了に先立ち行われるステップ;を含む。
1つの利点は、化学療法と共にネオアジュバントベバシズマブ療法が、乳癌に対して病理学的完全奏効(pCR)を達成する可能性があるかどうかの早期指摘を提供することにある。
別の利点は、ネオアジュバント療法がpCRを達成する可能性があるかどうかを決定する遺伝子検査を開発するための開発方法論を提供することにある。
数多くのさらなる利点及び利益が、当業者には以下の詳細な説明を読んだ後に明らかになる。
本発明は、種々の構成要素及び構成要素の取り合わせにおいて、並びに、種々の処理作業及び処理作業の取り合わせにおいて具体化することができる。図面は、好ましい実施形態を例示する目的のためだけにあり、本発明を限定するとして解釈されることはない。
ネオアジュバントベバシズマブと共に化学療法を含み、乳腺腫瘍の外科的切除が続く例示的な乳癌治療レジメンを示した概略図である。 図1の乳癌療法に対する予測結果評価テストの開発を示した概略図であり、研究集団の各研究対象に対して行われる処理を示している。 図1の乳癌療法に対する予測結果評価テストの開発を示した概略図であり、予測分類器を生成するために総計の研究集団に対して行われる処理を示している。 臨床患者のpCR結果を予測するために図2及び3おいて開発された予測結果評価テストの適用の実施形態を示した概略図である。 臨床患者のpCR結果を予測するために図2及び3おいて開発された予測結果評価テストの適用の実施形態を示した概略図である。 入力遺伝子の数の関数として、実際に開発された収縮重心分類器の誤分類エラーを示した概略図である。 本明細書において開発された61の遺伝子シグネチャーを示した図であり、遺伝子はそのシグネチャーへの寄与レベルに従って順序づけられている。 本明細書において開発された61の遺伝子シグネチャーを示した図であり、遺伝子はそのシグネチャーへの寄与レベルに従って順序づけられている。 本明細書において開発された61の遺伝子シグネチャーを示した図であり、遺伝子はそのシグネチャーへの寄与レベルに従って順序づけられている。
ネオアジュバントベバシズマブと共に化学療法を含む乳癌療法が所与の患者において病理学的完全奏効(pCR)をもたらす可能性を決定するための予測結果評価テストが本明細書において開示されている。リボ核酸(RNA)配列決定が、所与の患者から2つの時点にて採取された腫瘍生検、すなわち、診断時に採取された第1の生検、及び、単一用量の術前ベバシズマブの投与後(例えば、10〜14日後)に採取された第2の生検に対して行われる。2つの生検の分子プロファイルが、TGF−ベータ(すなわちTGF−β)活性に関連する遺伝子に対する差次的遺伝子発現レベルを検査するために比較される。本明細書において開示されるいくつか適した遺伝子シグネチャー(gene signature、遺伝子サイン)を、乳癌転移及びTGF−ベータ活性との関連の先の生物学的証拠に基づき開発した。これらの遺伝子を使用して、最近傍重心ベースの分類器(又は他の分類器)がトレーニングされ、該分類器は、TGF−ベータ活性に関連するシグネチャー遺伝子を使用して、個々の患者のpCRを達成する可能性を示すpCRの予測を割り当てる。本明細書において使用される場合、遺伝子は、ヒト遺伝子を意味し、いかなる非ヒト遺伝子を意味せず、同様に、リボ核酸(RNA)はヒトRNAを意味し、タンパク質はヒトタンパク質を意味する等、いかなる非ヒトRNA、タンパク質等を意味しない。
強固な結果予測分類器を作製するテスト開発技術も本明細書において開示される。
図1を参照すると、例示的な乳癌療法レジメンが記載されている。時間T0にて、患者は乳癌と診断され、さらに、ベースラインを確立するために、第1の生検が行われて、患者の乳房病変から第1の生検試料10が抽出される。第1の生検試料10は、乳癌を分類するために分析される。図1において治療が概略的に示されている患者において、乳癌は、HER2陰性として同定される。HER2はヒト上皮増殖因子受容体2であり、Neu、ErbB−2、CD340(表面抗原分類340)又はp185としても知られ、ERBB2遺伝子によってコード化されるタンパク質である。このタイプの乳癌に対して、ネオアジュバントベバシズマブと共に化学療法を含む腫瘍学的な療法レジメンが処方されてもよいが、満足な結果をいつももたらすわけではない。図1の例示的な乳癌療法レジメンは、ネオアジュバントベバシズマブと共に化学療法を含む。図1に示された療法レジメンにおいて、このベバシズマブ最初の投与は、いかなる他の療法も伴わないが、他の状況において、さらなる化学療法も伴ってよい。最初の用量のベバシズマブが投与された後、及び、ベバシズマブ+化学療法の組合せの第1の投与の前に発生する時間T1にて、第2の生検が行われて、乳房病変から第2の生検試料12が抽出される。開示されるpCR予測のテストが、本明細書において開示される適したシグネチャーを使用して、第1及び第2の生検から抽出された差次的遺伝子発現レベル情報に基づき行われる。pCR予測のテストは、療法レジメンがその患者において病理学的完全奏効(pCR)を達成する可能性を示すpCR予測を生成する。pCRの予測は図1において時間T1にて概略的に示されているが、pCR予測のコンピュータ計算は第2の生検試料12から得られたデータに頼っているため、pCRの予測は第2の生検が行われた後のある時間に生成されることが理解されるということに留意されたい。しかし、pCRの予測は、ベバシズマブ+化学療法の組合せが投与される前に生成され、そのようにして、医師は、図1に示された療法レジメンを進めるかどうかを決める際にpCRの予測を考慮に入れることができるということが好ましい。一部の実施形態において、第1のベバシズマブ投与と組合せ療法の開始との間に三週間(21日)の間隔があり、さらに、第2の生検手順が、第1のベバシズマブ投与の約10〜14日後に行われ、少なくとも1週間おいて、第1及び第2の生検試料10、12を分析する、及び、pCRの予測を生成する。本願において、患者は全員、第2の生検に続いて組合せ療法を受け、さらに、このレジメンの終わりにて乳腺腫瘍を外科的に除去(すなわち切除)し、悪性腫瘍組織又は転移が患者において検出されない所望の病理学的完全奏効(pCR)を患者が達成しているかどうかを医療関係者が決定するのを外科的検査及び任意で他のテストが可能にする。本願において、組合せレジメンの終わりに計算した患者のpCR状態を使用して、予測シグネチャーを開発した。
図2をはじめとして、アジュバント治療薬を含む腫瘍学的治療レジメンが成功する可能性のあるものであるかどうかを決定するための予測結果の評価を開発するためのアプローチが記載される。実例において、このアプローチを使用して、開示される、HER2陰性乳癌を有する乳癌患者のための化学療法と組み合わせたネオアジュバントベバシズマブの有効性に対する予測テストを開発した。しかし、開示されるアプローチは、いかなるネオアジュバント療法に対してもより一般的に適用可能である。図2において概略的に描かれている処理が、研究対象の集団の各研究対象に対して行われる。所与の研究対象に対して、入力は、第1の生検20及び第2の生検22である。第1の生検20は、図1において示されている第1の生検10に相当するが、第1の生検20は、臨床患者に対してではなく研究対象に対して行われる。第2の生検22は、図1において示されている第2の生検12に相当するが、ここでも第2に生検22は、臨床患者に対してではなく研究対象に対して行われる。第1の生検試料20は、リボ核酸(RNA)配列決定24を行うことによって処理され、さらに、第2の生検試料22も、同じRNA配列決定24を行うことによって処理される。RNA配列決定24は、例示的なIllumina(登録商標)Genome Analyzer IIx等、いかなる適したRNA配列決定装置30も利用することができる。
RNA配列決定動作24の出力は、種々のmRNA鎖に対するそれぞれの生検試料20、22におけるメッセンジャーRNA(mRNA)レベルである。これは電子データであるため、その後の処理は、コンピュータ32によって適切に行われる(分離されたコンピュータ32が例示されているけれども、一部又は全てのコンピュータ動作が、任意で、例えばRNA配列決定装置30のマイクロプロセッサ及び付随する電子メモリ等のコンピュータ要素によって行われてもよい)。第1及び第2の生検試料20、22のRNA鎖は、それぞれのアライメント動作34において並べられる。適したアプローチにおいて、RNA配列決定鎖(すなわちRNA−seqデータ)は、TopHat spliced read mapper(http://tophat.cbcb.umd.edu/(最終アクセス2012年11月13日)を参照)を使用して、基準となるヒトRefSeq(http://www.ncbi.nlm.nih.gov/RefSeq/)と共に並べられ、遺伝子発現レベルを計算するために、Cufflinks(http://cufflinks.cbcb.umd.edu/(最終アクセス2012年11月28日)を参照)が続けられる。ベースライン生検試料20のRNA配列決定データに適用されるアライメント動作34の出力は、RNAレベルという形のベースラインの遺伝子発現レベル情報であり、さらに、反応生検試料22のRNA配列決定データに適用されるアライメント動作34の出力は、RNAレベルという形の反応の遺伝子発現レベル情報である。RNAレベルは、マイクロアレイを使用する等、代わりのシステムによって測定することができるということが正しく理解されたい。開示されるテスト開発アプローチは、(経路ベースのエンリッチメントが本明細書において熟考及び記載されているけれども)実験によるものであるため、遺伝子発現レベル情報は、好ましくは、少なくとも1000の遺伝子、より好ましくは少なくとも10,000の遺伝子に対するデータを含む。実例として、Illumina(登録商標)Genome Analyzer IIxが、35,767の遺伝子に対する遺伝子発現レベル情報を(mRNA転写物という形で)提供する。別の例として、(Affimetrix Inc.,Santa Clara,CA,USAから入手可能な)GeneChip(登録商標)Human Gene ST1.0が、36,079の転写物を提供する。
図1を続けて参照すると、動作40において、差次的遺伝子発現レベル情報が、研究対象に対して計算される。差次的遺伝子発現レベル情報は、ベースラインの遺伝子発現レベル情報と反応の遺伝子発現レベル情報とを比較する。適したアプローチにおいて、研究対象の各遺伝子に対する差次的発現レベルは、ベースラインの遺伝子発現レベルと反応の遺伝子発現レベルとのlogフォールドチェンジ(log−fold change)として計算される。例えば、log2フォールドチェンジは、
Figure 0006445451
としてコンピュータで計算することができ、ここで、・は、ベースライン生検試料20に対するRNAレベルであり、さらに、・........は、反応生検試料22に対するRNAレベルである。RNAレベルに対するノイズレベルは遺伝子間で大きく異なるため、標準化が適切に適用される。実例において、RNAレベルは、動作42において差次的遺伝子発現レベルの有意性を推定するために使用されるポアソン分布に従うと仮定される。動作44において、動作42に基づき差次的発現レベルが有意ではないと見なされる遺伝子は、任意で、後の処理におけるその効果を数学的に限定するように、例えば、10又は100で差次的発現レベルを割ることによって下方に調整される。(代わりのアプローチにおいて、有意ではない差次的レベルはゼロに設定することができるが、これは、例えばゼロによる分割をもたらす場合に、後の数学的処理を複雑にし得る。別の選択肢として、調整動作42、44を省くことができるが、これは、いくらかノイズを導入し得る。)各研究対象に対する最終的な出力は、対象に対する差次的遺伝子発現レベルベクトル46によって実例において適切に表される差次的遺伝子発現レベル情報である。このベクトル46において、各ベクトル要素は1つの遺伝子に対応し、さらに、その値は、(動作42、44により任意で調整される)その遺伝子に対する差次的RNAレベルである。35,767の測定される遺伝子がある実例において、ベクトル46は、35,767の要素を有する。
図2の処理は、対象に対する差次的遺伝子発現レベルベクトルのセット46を生成するように、集団のうち各研究対象に対して適用される。この差次的遺伝子発現情報は、次に、分類器をトレーニングするために使用される。
図3を参照すると、研究対象の集団の対象に対する差次的遺伝子発現レベルベクトルのセット46は、データセット50を形成する。このデータセットにおいて、各研究対象にはpCR状態の注釈が付けられる。この状態は研究対象に対して既知であり、それは、各研究対象が図1の化学療法レジメンを経験し、さらに、このレジメンの終わりに研究対象は、乳腺腫瘍の外科的切除、及び、研究対象がpCRを達成したかどうかを決定するステージ分類を受けるためである。従って、データセット50は、治療レジメンが新たな患者においてpCRを達成するかどうかに関して新たな患者を分類するために設計される分類器をトレーニングするのに適した、注釈が付けられたデータセットである。しかし、分類器をトレーニングする前に、計算的に困難であり得るか又は値段がひどく高くありさえし得る差次的遺伝子発現データが利用可能である全遺伝子に対する分類器のトレーニングをするのではなく、分類器に入力するための有意な遺伝子のセットを選択することが有用であり得る。さらに、比較的小さい利用可能な遺伝子のサブセットに対して分類器が作動する場合、それらの遺伝子のみが、新たな患者を分類するために測定される必要がある。従って、動作52において、pCRを予測するための各遺伝子の有意性が分析される。適したアプローチにおいて、スチューデントt検定等の他の有意性検定も代わりに使用することができるけれども、(ウィルコクソン順位和検定としても知られる)マンホイットニーの有意性検定が適用される。典型的な有意性検定において、この場合、検定下の遺伝子に対する差次的mRNAレベルはpCRに対して弁別的ではないという帰無仮説が想定され、さらに、マンホイットニーの検定が、この帰無仮説が実際に真実である場合に研究対象のpCR状態の値が集団において示される分布を有する確率を示すp値を生成するために行われる。p値の値が小さいほど、相関性の非存在下で集団における分布を観察する可能性は低いことを示し、従って、p値が小さいほど、より統計的有意性が示唆される。1つのアプローチにおいて、有意な遺伝子は、有意性レベルの閾値αを使用して選ぶことができ、ここで、p<αは統計的に有意であると考慮される。他の閾値も利用することができるけれども、典型的に、α=0.05又はα=0.01の閾値が使用されるか、又或いは、最も小さいp値を有する“top−N”の遺伝子を選択することができる。
任意のフィルタリング動作54において、例えばKEGG経路データベースにおいて収集される既知のシグナル経路等のエンリッチメント情報に基づき、有意な遺伝子を選別することができる。http://www.genome.jp/kegg/pathway.html(最終アクセス2012年11月13日)を参照されたい。例えば、(検定52によって示される)統計的に有意な遺伝子のうち多くが単一経路に属している場合、任意で、フィルタリング54は、その経路に属していないいかなる統計的に有意な遺伝子も除いてよい。或いは、経路情報は、選択閾値αに近いが選択閾値αよりも大きいp値を有する経路の遺伝子を加えることによってさらなる有意な遺伝子を加えるために使用されてもよい。他のエンリッチメント方法論も熟考される。エンリッチメント動作54が(図3において概略的に示されている他の動作と共に)コンピュータ32によって行われるとして図3において示されているけれども、エンリッチメント動作54は手動で、例えば、適した医学訓練を有する人間に、有意性検定52によって出力された有意な遺伝子を経路データベースと比較させることによって、行われることになると熟考されるということに留意されたい。
図3を続けて参照すると、有意性検定動作52及び任意のエンリッチメント動作54の出力は、有意な遺伝子のセット60である。動作62において、分類器がトレーニングされる。トレーニングされることになる分類器は、有意な遺伝子のセット60に対する患者の差次的遺伝子発現レベル情報を受信するように、及び、受信した患者の差次的遺伝子発現レベル情報に基づきコンピュータで計算されたpCR予測を出力するように設計される。分類器は、有意な遺伝子に対するpCR状態で注釈が付けられた差次的遺伝子発現レベル情報のセット50をトレーニングデータとして使用してトレーニングされる。実例において、研究対象に対する差次的遺伝子発現レベルベクトル46は、35,767の遺伝子を(mRNA転写物という形で)有する。100の有意な遺伝子が分類器において使用されることに(ここでも実例として)なる場合、それらの100の有意な遺伝子に対応する100のベクトル要素のみが、トレーニングデータとして使用される。分類器は、実質的にいかなるタイプのバイナリ分類器であってもよく、さらに、確率(すなわち、患者が治療を介してpCRを達成する可能性を示すソフトバイナリ分類器)か又はバイナリアンサー(すなわち、ハードバイナリ分類器)を入力するように設計することができる。本明細書における実例においては、収縮重心分類器が利用され、トレーニングの間に遺伝子選択を行い、最初の入力遺伝子セットから遺伝子を除く。分類器トレーニング動作62の出力は、トレーニングされた分類器64である。
pCR状態で注釈が付けられた差次的遺伝子発現レベル情報のセット50は、トレーニングデータとして使用される。この場合、結果として生じる分類器64は、入力として、研究対象に対する差次的遺伝子発現レベルベクトル46のタイプ及びフォーマットの差次的遺伝子発現レベルデータを受信するように設計される。実例において、これらのデータは、RNA配列決定によって生成されたmRNA転写物という形である。
しかし、代わりのアプローチにおいて、分類器は、逆転写ポリメラーゼ連鎖反応(RT−PCR)処理又はタンパク質レベルデータを生成するマイクロアレイ処理等によって生成されるデータ等、入力された別のタイプ又はフォーマットの有意な遺伝子のセットに対する差次的遺伝子発現レベルデータを利用するようにトレーニングすることができる。これを行うために、所望のタイプ/フォーマットのトレーニング差次的遺伝子発現データセット66が提供される。データセット66は、好ましくは、研究対象の集団に対するものでもあり、さらに、研究対象のpCR状態で注釈が付けられるが、例えばRT−PCR又はマイクロアレイ分析等、異なる技術を使用して取得される。この代わりのアプローチにおいて、有意な遺伝子60に対する差次的遺伝子発現データセット66は、分類器トレーニング動作62に対する入力として役立ち、さらに、結果として生じるトレーニングされた分類器64は、入力された差次的遺伝子発現データを、データセット66のフォーマットで受信するように設計される。この代わりのアプローチは、(図2による)RNA配列決定等の「全ゲノム」技術が使用されて、適度に包括的な遺伝子発現データセット(すなわち、研究対象に対する差次的遺伝子発現レベルベクトル46)を生成するのを可能にし、そのデータセットは、有意な遺伝子60を同定するために使用され、従って、最も有意な遺伝子に対する包括的な検索が行われるということを確実にしている。しかし、結果として生じるテストは、トレーニングされた分類器66によって具体化され、この代わりの実施形態においては、トレーニングされた分類器66は、RT−PCR又はマイクロアレイ分析等の別の技術によって生成される患者の差次的遺伝子発現データセットを使用する。この他の技術は、有利に、より安価で、より容易に入手可能であり、同定された有意な遺伝子を標的にするか、又さもなければ、有意な遺伝子の同定に使用されるRNA配列決定若しくは他の包括的技術と比較して、臨床テストに対する利点を有し得る。
図4を参照すると、予測結果評価テストとしてのトレーニングされた分類器64の適用が記載されている。HER2陰性乳癌と診断され、且つ、(この実例において)図1の治療レジメンが処方されてきた患者は、まず生検され、研究対象のベースライン生検試料20に相当するベースライン患者生検70が生成される。図4に関連して患者は、典型的には、新たな患者であり、図2及び3の動作において分析された研究対象の集団のメンバーではない。最初の生検後に、患者は、図1の例示的なレジメンにおいて示されているようにいくらかの投与される化学療法薬も有することを熟考されるけれども、典型的にはいかなる併用化学療法薬も投与されることなく、ベバシズマブの第1の投与71を受ける。その後、例えば10〜14日以内に、患者は、第2の生検を受けて、研究対象の反応生検試料22に相当する反応患者生検72が生成される。これは、次に、図4の残りに明記された生検分析が行われて、患者の医師による考慮のためのpCR予測が生成されるように一週間以上おかれる。例示的な図4において、研究対象の生検試料を処理するために使用したもの(図2を参照)と同じRNA配列決定装置30がここでも示されているが、例えば同じ装置モデルだが明確に同じ機器ではない装置、又は、実質的に同じRNAリードを生成する異なるモデルの機器等、等価のRNA配列決定装置を使用することができるということが理解されたい。
図4の例において、分類器64は、図2によるRNA配列決定によって生成される差次的遺伝子発現レベルベクトル46を使用してトレーニングされてきたと仮定される。従って、患者のベースライン生検試料70及び反応生検試料72は、研究対象に対してすでに記載されたように(図2参照)、同じRNA配列決定及びアライメント動作24、34によって処理されて、ベースライン及び反応の患者RNAレベル情報が生成される。このRNAレベル情報は、動作74において、図2の動作40、42、44に相当する処理を行うためにあるが、動作74が任意で(必ずしもそうであるわけではないが)、トレーニングされた分類器64に対する入力として役立つ有意な遺伝子に対するRNAレベル情報に限定されるという違いを有する。動作74による差次的遺伝子発現レベル情報の出力は、差次的RNAレベル情報という形であり、患者に対するpCR予測を生成するためのトレーニングされる分類器64に対する入力である。動作34、74は、図2及び3のトレーニング処理において使用したものと同じコンピュータ32によって行われるとして示されているが、ここでも、異なるが類似してプログラムされたコンピュータを利用することができる。トレーニングされた分類器64によって生成された視覚的に知覚できるpCR予測の表示は、好ましくは、最初のベバシズマブ投与71を過ぎて腫瘍学的な療法レジメンを継続する前に表示され、例えば、数として、若しくは、患者におけるpCRを達成する可能性を長さが示すバーとしてビデオディスプレイユニット上に、又は、紙の印刷物等として表示される。
図4を続けて参照すると、決定80において、患者の医師は、最初のベバシズマブ投与71に続く療法レジメンを利用することによってpCR状態を患者が達成する可能性があるかどうかを考慮する。この決定を行うことにおいて、医師は、入力された患者の差次的RNAレベル情報に基づきトレーニングされた分類器64によって計算されたpCR予測を適切に考慮する。しかし、医師は、患者に対して行われる他のテスト、医師の医学的専門知識、又は、pCRよりも最適ではない結果ではあるが、患者に対しておそらく依然として有利である結果を達成する可能性等、決定80を行うことにおいてさらなる因子を考慮することができる。決定80は、典型的には、患者と協議して行われる。そのレジメンが患者に対してpCR状態を達成する可能性があると医師が決定する場合、その療法レジメンは動作82において継続される。一方、そのレジメンは患者に対してpCR状態を達成する可能性がないと医師が決定する場合、動作84においてその療法は適切に修正されるか、又は、異なる療法が適用される。
図5を参照すると、予測結果評価テストとしてのトレーニングされた分類器64の適用が別のケースにおいて記載されており、ここでは、図2の分類器トレーニング動作62が、差次的遺伝子発現レベルベータ66の別のデータセット、すなわち、図5の実例においてRT−PCRによって生成されるデータセットを利用している。図5の実施形態において、患者生検試料70、72は、図4を参照して既に記載されたように、最初のベバシズマブ投与71の前後に取得される。生検試料70、72は、RT−PCR90によって処理され、さらに、結果として生じるベースライン及び反応の遺伝子発現レベルデータが、動作92において処理され、図3の(別の)トレーニングデータセット66のフォーマットと同じフォーマットで入力遺伝子に対する差次的遺伝子発現レベルデータが生成される。動作92による差次的遺伝子発現レベル情報の出力は、トレーニングデータセット66の形と同じ形であり、患者に対するpCR予測を生成するための(この実施形態においては、トレーニングデータセット66を使用してトレーニングした)トレーニングされた分類器64に対する入力である。決定動作80及び後の治療選択肢82、84は、図4を参照してすでに記載されている。
図2及び3を参照して、患者にとってネオアジュバント治療薬の投与を含む腫瘍学的な療法レジメンを受ける可能性があるかどうかをpCR結果が予測するために予測結果評価テストを開発するための開発方法及びシステムの実施形態が記載されてきた。図4及び5を参照して、所与の患者にとって可能性があるかどうかをpCR結果が予測するためにそのような予測結果評価テストを適用するための方法及びシステムの実施形態が記載されてきた。
以下において、例示的な実際に行われた例が記載されており、図2及び3を参照して記載されたものに匹敵する開発方法が、ネオアジュバントベバシズマブと共に化学療法(カルボプラチン及びナノ粒子アルブミン結合パクリタキセル)を含む図1において概略的に示されている乳癌療法レジメンに対する予測結果評価テストを開発するために適用されている。予測結果評価テストの開発は、乳癌患者が短期間曝露として単一投与のベバシズマブ治療を2つの腫瘍の生検と共に受ける臨床治験からのデータを要し、1つの生検が療法の前に採取され、さらに、1つの生検が単一投与の約10〜15日後に採取された。コア生検RNAのトランスクリプトームを、ネオアジュバント臨床治験BrUOG211A/211Bから得た13対の乳腺腫瘍から配列決定した。乳腺腫瘍がHER2陰性であった研究対象に、前段階のベバシズマブの投与を与え、生物学的/化学療法の組み合わせ−ベバシズマブ+カルボプラチン+ナノ粒子アルブミン結合パクリタキセルを続けた。前段階の単独療法への曝露の前後10日に得た生検の対を配列決定した。ペアエンド配列決定を、74bp(塩基対)リード長を有する増幅された全RNAを使用してIllumina GAIIのプラットフォーム上で行い、22,160の遺伝子及び34,449の転写物に対する発現データを得た。ベバシズマブ単独療法への短期間曝露後のトランスクリプトームの変化を評価し、ポアソン分布のリードカウントを仮定した。これらの動作は、生検試料20、22に対して動作する図2の動作24、34に相当する。
図2の動作40、42、44に相当する、各対象に対する差次的遺伝子発現レベルベクトル46の計算を以下のように行った。FPKM、すなわち、百万のマップされたリードあたりの転写物の1キロベースあたりの断片という単位のベースライン(T0)の遺伝子発現レベル及び短期間曝露(T1)後の遺伝子発現レベルを取得した。log2フォールドチェンジ(動作40)を、log2(FPKM(T1)/(FPKM(T0)))の値として計算した。動作42を、ポアソン分布のリードを使用して行い、log2フォールドチェンジ(FC)の有意性を推定した。動作44を、有意(p<0.05)ではないlog2FCを100で割ることにより有意性が調整されたlog2FCをコンピュータで計算することによって行った。
統計的に有意な遺伝子の選択、すなわち、図3の動作52を、有意性が調整されたlog2FCのpCRとの関連をチェックするマンホイットニーの検定を使用して行った。エンリッチメント分析(図3の動作54)を行って、KEGG経路のpCRとの関連を同定した。多数検定補正後に、4つの経路のみがpCRと有意に関連していると発見した。これら4つの経路のうち、トランスフォーミング増殖因子ベータ(TGF−ベータ又はTGF−β)シグナル経路が、pCRと関連する全85の遺伝子のうち10の遺伝子を有したということがわかった。有意な遺伝子のセットをさらにエンリッチするために、医学文献の情報を求めた。Padua等は、4つのヒト細胞株(MCF−10A、MDA−MB−213、HPL1及びHaCaT)をTGFB1に3時間曝露する、及び、曝露後に発現レベルが有意に変化した遺伝子を捕獲することによって、153の遺伝子のTGF−β反応シグネチャーを開発した(Padua,“Roles of TGFβ in metastasis”,Cell Research vol.19 pages89−102(2009))。これを考慮して、有意性検定52によって同定したTGF−βシグナル経路に属する10の有意な遺伝子を、Pauda等により同定されたTGFに関連する153の遺伝子によってエンリッチした。1つの遺伝子の重複があったため、これは、162の有意な遺伝子の予備的セットをもたらし、これを次に、全試料にわたって有意性が調整されたlogfc値(<0.01)において少ない分散を有する遺伝子を選別するため、及び、半分を超える試料において低い絶対的な有意性が調整されたlogfc値を有する遺伝子、を選別するために処理し、すなわち、13の試料のうち少なくとも7の試料において<0.1の絶対的なlogfcを有する遺伝子を除いた。結果として生じる遺伝子のリストは107の遺伝子を含み、これは、図3の有意な遺伝子のセット60に相当した。
図6を参照すると、pCR患者と非pCR患者とを区別する選ばれた分類器は、収縮重心分類器であり、さらに、図3の分類器のトレーニング62を、上記107の遺伝子を用いて開始した。三分割交差確認を行い、それを10回繰り返した。収縮重心分類器の能力を使用して、収縮閾値の結果を同定した。図6において見られるように、トレーニングされた分類器は、重心の「収縮」が約50の遺伝子を除き、61の遺伝子の分類器をもたらした後に不安定性を示し始める。図6の上部において示されている誤分類エラーは、三分割交差確認戦略を使用して計算され、ここで、患者試料のサブセットが分類器をトレーニングするために選ばれ、さらに、残りの試料は、分類器の能力をテストするために使用される。従って、より少ない数の遺伝子がシグネチャーに含まれ、誤分類エラーが増えるに従い、シグネチャーがpCRを予測することにおいてより効果的ではなくなるという示唆に富んでいる。従って、上記107の遺伝子から少なくとも61の遺伝子を選ぶことは道理にかなっており、さらに、図7A、7B及び7Cは、その61の遺伝子のシグネチャーを示しており、遺伝子は、そのシグネチャーへの寄与レベルに従って順序づけられており、最も情報価値のある遺伝子が上に列挙されている。
このように、分類器は、好ましくは、少なくとも61の遺伝子を有するということがわかった。61未満の遺伝子を有する分類器は、有用であり続けるが、pCRを予測することにおいてエラーをもたらすより高い可能性を経験する。pCRと関連するほとんどの遺伝子の重心は負であり、これは、TGF−β活性の下方制御の示唆に富んでおり、さらに、ベバシズマブへの短期間曝露後のTGF−β活性の下方制御がpCRと関連しているということを示していることがわかった。
トレーニングされた収縮重心分類器(図3のトレーニングされた分類器64に相当する)は、表1並びに図7A、7B及び7Cに列挙される61の入力遺伝子のセットに対して作動し、ここで、列挙された遺伝子は、RefSeq(http://www.ncbi.nlm.nih.gov/RefSeq/)と呼ばれる標準的な供給源において定められている。表1において、61の遺伝子が、「非pCRグループ」に対して及び「pCRグループ」に対して収縮重心分類器によって提供された関連のレベルと共に列挙されている。関連のレベルは、分類器におけるその遺伝子の有用性の有意性に対する測定基準である。
Figure 0006445451
Figure 0006445451
図1において概略的に示されている乳癌療法レジメンに対する例示的な実際に開発した予測結果評価テストは、分類器トレーニング動作62に対するトレーニングデータセットとしてRNA配列決定データを利用した。従って、この分類器の臨床的使用は、図4のアプローチと一致している。RNA配列決定データは、ベバシズマブの単一投与71の前後に採取した患者の腫瘍生検試料70、72から取得される。ネオアジュバントベバシズマブを化学療法と組み合わせて受けることになるHER2陰性患者は、単一生検を受けて、第1の生検試料70を生成し、次に、ベバシズマブ単独療法の単一投与71の後で第2の生検を受けて、ベバシズマブ単独療法71を受けて典型的には10〜15日後に患者の腫瘍から採取される第2の生検試料72をもたらすことになる。RNA配列決定は、図4の動作24、34に従って腫瘍生検70に対しても腫瘍生検72に対しても行われる。差次的遺伝子発現分析74が、上記TGF−βシグネチャーにおける61の遺伝子に対して行われ、これは、図2の動作40、42、44に従って(しかし、分類器への入力として役立つ61の遺伝子のセットに対してのみ適切に行われる)ベースラインから短期間曝露後までの遺伝子のlog2フォールドチェンジの値をコンピュータで計算すること、及び、有意性が調整されたlog2fc値への変換を含む。61の遺伝子の有意性が調整されたlog2フォールドチェンジの値のベクトルは、分類器の2つの重心と比較することによるトレーニングされた最近傍重心分類器によって処理され、さらに、患者は、最近傍重心と関連するグループ、すなわち、有意なTGFb活性の下方制御を示すグループ、又は、有意なTGFb活性の上方制御を示すグループに割り当てられる。患者がTGFb活性の上方制御を示す場合、その患者は、ベバシズマブネオアジュバント治療から利益を得そうになく、さらに、pCRの予測は否定的である。一方、患者がTGFb活性の下方制御を示す場合、その患者は、ベバシズマブネオアジュバント治療から利益を得そうであり、さらに、pCRの予測は肯定的である。
検証フレームワークにおいて、この遺伝子のセットは、同じ試料からのRT−PCRデータとの相関関係に基づきさらに洗練させることができる。RT−PCRがRNAseqと同じ試料に対して行われる場合、マッピング関数が適切に利用されて、RNAseqからの値をRT−PCRの値にマップする。これは、遺伝子全てに対するリニアスケーリング関数、又は、(例えば二次関数等の)高階関数であり得る。或いは、非常によく関連する、及び、RNAseqとRT_PCRとの間でリニアマッピングを得ることができる遺伝子を、RT−PCRを使用して実行される最終的なシグネチャーにおいて使用することができる。
記載されるように、実際に開発した分類器を、ネオアジュバント設定におけるベバシズマブから利益を得ることができる患者を同定するために使用することができる。その先にあるものとして、分類器を、ベバシズマブに対するコンパニオン診断手段として使用することができる。一部の熟考される実施形態において、実際に開発した分類器は、腫瘍学における臨床決定支援を可能にするために、患者の配列決定データを統合するためのフレームワークであるPAPAyA内のモジュールとして、すなわち、「インシリコ」アッセイとして実行されるよう熟考される。Janevski等による“PAPAyA:a platform for breast cancer biomarker signature discovery,evaluation and assessment”,BMC Bioinformatics vol.10(Suppl 9):S7(2009)(doi:10.1186/1471−2105−10−S9−S7)を参照されたい。
表1並びに図7A、7B及び7Cの61の遺伝子のシグネチャーは、表1において(又は図7A、7B及び7Cにおいて同等に)列挙された61の遺伝子全てを含む入力遺伝子セットを利用する具体例である。数多くのバリアントが熟考される。
例えば、一部の実施形態において、遺伝子シグネチャーは、CDKN2B、ATL2、CTGF、INHBA、ID4、BMPR1A、CD1E、TFDP1、AMIG2、DDIT4、TGFB2、SPP1、CD28、PMEPA1、FAT4、KDM6B、MAP3K4、FAM162A、MYH11及びPPP2R1Bを含む群のうち少なくとも2つの遺伝子(すなわち、例示的な61の遺伝子のシグネチャーの上から20の最も情報価値のある遺伝子のうち少なくとも2つの遺伝子)を含む入力遺伝子セットを利用する。
他の実施形態において、遺伝子シグネチャーは、CDKN2B、ATL2、CTGF、INHBA、ID4、BMPR1A、CD1E、TFDP1、AMIG2、DDIT4、TGFB2、SPP1、CD28、PMEPA1、FAT4、KDM6B、MAP3K4、FAM162A、MYH11及びPPP2R1Bを含む群のうち少なくとも3つの遺伝子(すなわち、例示的な61の遺伝子のシグネチャーの上から20の最も情報価値のある遺伝子のうち少なくとも3つの遺伝子)を含む入力遺伝子セットを利用する。
他の実施形態において、遺伝子シグネチャーは、CDKN2B、ATL2、CTGF、INHBA、ID4、BMPR1A、CD1E、TFDP1、AMIG2、DDIT4、TGFB2、SPP1、CD28、PMEPA1、FAT4、KDM6B、MAP3K4、FAM162A、MYH11及びPPP2R1Bを含む群のうち少なくとも3つの遺伝子(すなわち、例示的な61の遺伝子のシグネチャーの上から20の最も情報価値のある遺伝子のうち少なくとも3つの遺伝子)を含む入力遺伝子セットを利用する。
他の実施形態において、遺伝子シグネチャーは、少なくともCDKN2B、ATL2、CTGF、INHBA、ID4、BMPR1A、CD1E、TFDP1、AMIG2及びDDIT4(すなわち、少なくとも例示的な61の遺伝子のシグネチャーの上から10の最も情報価値のある遺伝子)を含む入力遺伝子セットを利用する。
一部の実施形態において、経路の観点が考慮され、さらに、遺伝子シグネチャーは、TGF−βシグナル経路に属する入力遺伝子セットを利用する。そのような一部の実施形態において、TGF−βシグナル経路に属する入力遺伝子セットは、少なくともCDKN2B、INHBA、ID4、BMPR1A、CD1E、TFDP1、TGFB2、PPP2R1B、LTBP1及びPPP2CAを含む。これらの遺伝子は、マンホイットニーのアプローチにおいても見られ、表1並びに図7A、7B及び7Cの例示的な61の遺伝子のシグネチャーに属する。別の実施形態において、TGF−βシグナル経路に属する入力遺伝子セットは、CDKN2B、INHBA、ID4、BMPR1A、CD1E、TFDP1、TGFB2、PPP2R1B、LTBP1及びPPP2CAの群のうち少なくとも3つの遺伝子を含む。一部の実施形態において、TGF−βシグナル経路に属する入力遺伝子セットは、TGF−βシグナル経路に属する少なくとも61の遺伝子を含む。
実際に開発した予測結果評価テストは実例である。より一般的には、図2及び3を参照して本明細書において記載されるテスト開発のアプローチは、シスプラチン、カルボプラチン、ナノ粒子アルブミン結合パクリタキセル又はドセタキセル等のいかなる化学療法薬と組み合わせてベバシズマブ等のネオアジュバント治療薬を含むいかなる腫瘍学的な治療レジメンに対するpCRも予測するために適切に適用される。本明細書において開示されるように、ベースライン生検試料及び反応生検試料が、最初の用量のネオアジュバント治療薬の投与前後に、集団の各研究対象に対して取得される。ベースライン生検試料及び反応生検試料は処理され、例えば少なくとも1000の遺伝子、より好ましくは少なくとも10,000の遺伝子等、多くの数の遺伝子に対して、それぞれベースラインの遺伝子発現レベル情報及び反応の遺伝子発現レベル情報が生成され、さらに、ベースラインの遺伝子発現レベル情報と反応の遺伝子発現レベル情報とを比較する差次的遺伝子発現レベル情報が、各研究対象に対して計算される。分類器が、次に、集団の研究対象に対して計算された差次的遺伝子発現レベル情報を、トレーニングデータとして使用して適切にトレーニングされ、入力遺伝子セットに対する受信した差次的遺伝子発現レベル情報に基づきコンピュータで計算されたpCR予測を出力するトレーニングされた分類器が生成される。
本発明は、好ましい実施形態を参照して記載されてきた。明らかに、上述の詳細な説明を読み理解した後、修正及び変更が他の者の心に浮かぶはずである。本発明は、付随の特許請求の範囲又はその同等物内にある限りではそのような修正及び変更を全て含むとして解釈されることが意図される。

Claims (9)

  1. 電子的データ処理装置によって、乳癌療法レジメンに対する患者の病理学的完全奏効(pCR)を予測する方法であって
    力遺伝子セットに対する差次的遺伝子発現レベル情報を生成するステップであり、前記差次的遺伝子発現レベル情報は、
    (i)患者に対して乳癌療法レジメンを開始する前に取得された前記患者の乳腺腫瘍のベースライン試料からのベースラインの遺伝子発現レベルと、
    (ii)第1の用量のベバシズマブを前記患者に投与することによって前記乳癌療法レジメンを開始した後に取得された前記乳腺腫瘍の反応試料からの反応の遺伝子発現レベルと、
    の差次的発現情報を含む、ステップ、及び
    前記入力遺伝子セットに対する差次的遺伝子発現レベル情報を、研究対象に対して生成されたpCR状態で注釈が付けられた差次的遺伝子発現レベル情報を用いてトレーニングされた分類を行う装置に入力することによって、前記患者に対する病理学的完全奏効(pCR)の予測を計算するステップ、
    を含み、
    前記生成するステップ及び前記計算するステップは、電子的データ処理装置によって行われ、
    前記入力遺伝子セットは、CDKN2B、ATL2、CTGF、INHBA、ID4、BMPR1A、CD1E、TFDP1、AMIGO2、DDIT4、TGFB2、SPP1、CD28、PMEPA1、FAT4、KDM6B、MAP3K4、FAM162A、MYH11、PPP2R1B、LTBP1、COL1A1、YIPF5、VEGFA、C18orf25、FNDC3B、MYBL1、CDKN1A、ARHGEF40、LARP6、PAIP2B、RBMS1、NR2F2、ANGEL2、LEMD3、PPP2CA、NDST1、ZNF395、RNASE4、SMURF1、EDN1、SSBP3、SKIL、TBPL1、ALOX5AP、JUN、RARA、LMCD1、SERTAD2、ETS2、ABTB2、BET1L、MYC、CDK17、DOPEY1、SERPINE1、PFKFB3、TBC1D2B、PKIA、BMPR2及びNCOR2を含む、方法。
  2. 塩基配列決定装置及び電子的データ処理装置を含む、乳癌療法レジメンに対する患者の病理学的完全奏効(pCR)を予測するシステムの作動方法であって、
    前記塩基配列決定装置が、患者に対して乳癌療法レジメンを開始する前に取得された前記患者の乳腺腫瘍のベースライン試料から、ベースラインの配列決定データを取得するステップ、
    前記塩基配列決定装置が、第1の用量のベバシズマブを前記患者に投与することによって前記乳癌療法レジメンを開始した後に取得された前記患者の乳腺腫瘍の反応試料から、反応の配列決定データを取得するステップ、
    前記電子的データ処理装置が、入力遺伝子セットに対する、それぞれ前記ベースラインの配列決定データ及び前記反応の配列決定データからのベースラインの遺伝子発現レベル及び反応の遺伝子発現レベルを取得するステップ、
    前記電子的データ処理装置が、前記入力遺伝子セットに対する前記ベースラインの遺伝子発現レベルと前記反応の遺伝子発現レベルとの差次的発現情報を含む差次的遺伝子発現レベル情報を生成するステップ、及び
    前記電子的データ処理装置が、前記入力遺伝子セットに対する前記差次的遺伝子発現レベル情報を、研究対象に対して生成されたpCR状態で注釈が付けられた差次的遺伝子発現レベル情報を用いてトレーニングされた分類を行う装置に入力することによって、前記患者に対する病理学的完全奏効(pCR)の予測を計算するステップ、
    を含み、
    前記入力遺伝子セットは、CDKN2B、ATL2、CTGF、INHBA、ID4、BMPR1A、CD1E、TFDP1、AMIGO2、DDIT4、TGFB2、SPP1、CD28、PMEPA1、FAT4、KDM6B、MAP3K4、FAM162A、MYH11、PPP2R1B、LTBP1、COL1A1、YIPF5、VEGFA、C18orf25、FNDC3B、MYBL1、CDKN1A、ARHGEF40、LARP6、PAIP2B、RBMS1、NR2F2、ANGEL2、LEMD3、PPP2CA、NDST1、ZNF395、RNASE4、SMURF1、EDN1、SSBP3、SKIL、TBPL1、ALOX5AP、JUN、RARA、LMCD1、SERTAD2、ETS2、ABTB2、BET1L、MYC、CDK17、DOPEY1、SERPINE1、PFKFB3、TBC1D2B、PKIA、BMPR2及びNCOR2を含む、方法。
  3. 腫瘍学的な前記療法レジメンが、ベバシズマブに加えて少なくとも1つの化学療法薬をさらに含む、請求項2に記載の方法。
  4. 前記乳癌療法レジメンの始が、前記少なくとも1つの化学療法薬を前記患者に投与することなく、前記第1の用量のベバシズマブを前記患者に投与する前記腫瘍学的な療法レジメン始を含む、請求項3に記載の方法。
  5. 前記入力遺伝子セットは少なくとも61の遺伝子を含む、請求項1乃至のいずれか一項に記載の方法。
  6. 前記ベースラインの遺伝子発現レベル及び反応の遺伝子発現レベルが、リボ核酸(RNA)配列決定、逆転写ポリメラーゼ連鎖反応(RT−PCR)処理、及び、タンパク質レベルのデータを生成するマイクロアレイ処理のうち1つ又は複数の処理によって、ベースラインの遺伝子発現レベル情報及び反応の遺伝子発現レベル情報が生じるようにそれぞれ前記ベースライン試料及び前記反応試料を処理することによって得られる、請求項1乃至のいずれか一項に記載の方法。
  7. 前記pCRの予測を計算するステップが、バイナリ分類を行う装置に前記入力遺伝子セットを入力するステップを含む、請求項1乃至のいずれか一項に記載の方法。
  8. 前記pCRの予測を計算するステップが、トレーニングされた収縮重心分類を行う装置に前記入力遺伝子セットを入力するステップを含む、請求項1乃至のいずれか一項に記載の方法。
  9. 電子的データ処理装置によって、分類を行う装置をトレーニングする方法であって、
    研究対象の集団のうち各研究対象に対して、少なくとも61の遺伝子に対する差次的遺伝子発現レベル情報を生成するステップであり、前記差次的遺伝子発現レベル情報は、
    前記研究対象に対して乳癌療法レジメンを開始する前に取得された前記研究対象の乳腺腫瘍のベースライン試料からのベースラインの遺伝子発現レベルと
    第1の用量のベバシズマブを前記研究対象に投与することによって前記乳癌療法レジメンを開始した後に取得された前記研究対象の乳腺腫瘍の反応試料からの反応の遺伝子発現レベルと
    の差次的発現情報を含む、ステップ、
    前記乳癌療法レジメン了後、前記研究対象の病理学的完全奏効(pCR)の状態を決定するステップ
    力遺伝子セットに対する受信した差次的遺伝子発現レベル情報に基づき計算されたpCRの予測を出力するトレーニングされた分類を行う装置を生成するために、前記集団の研究対象に対して生成された、pCR状態で注釈が付けられた前記差次的遺伝子発現レベル情報をトレーニングデータとして使用して分類を行う装置をトレーニングするステップ、
    を含み、
    前記少なくとも61の遺伝子は、CDKN2B、ATL2、CTGF、INHBA、ID4、BMPR1A、CD1E、TFDP1、AMIGO2、DDIT4、TGFB2、SPP1、CD28、PMEPA1、FAT4、KDM6B、MAP3K4、FAM162A、MYH11、PPP2R1B、LTBP1、COL1A1、YIPF5、VEGFA、C18orf25、FNDC3B、MYBL1、CDKN1A、ARHGEF40、LARP6、PAIP2B、RBMS1、NR2F2、ANGEL2、LEMD3、PPP2CA、NDST1、ZNF395、RNASE4、SMURF1、EDN1、SSBP3、SKIL、TBPL1、ALOX5AP、JUN、RARA、LMCD1、SERTAD2、ETS2、ABTB2、BET1L、MYC、CDK17、DOPEY1、SERPINE1、PFKFB3、TBC1D2B、PKIA、BMPR2及びNCOR2である、方法。
JP2015544581A 2012-12-03 2013-11-22 ネオアジュバントベバシズマブを用いた化学療法に対する予測結果の評価 Expired - Fee Related JP6445451B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261732472P 2012-12-03 2012-12-03
US61/732,472 2012-12-03
PCT/IB2013/060326 WO2014087294A2 (en) 2012-12-03 2013-11-22 Predictive outcome assessment for chemotherapy with neoadjuvant bevacizumab

Publications (2)

Publication Number Publication Date
JP2016508710A JP2016508710A (ja) 2016-03-24
JP6445451B2 true JP6445451B2 (ja) 2018-12-26

Family

ID=50030352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015544581A Expired - Fee Related JP6445451B2 (ja) 2012-12-03 2013-11-22 ネオアジュバントベバシズマブを用いた化学療法に対する予測結果の評価

Country Status (5)

Country Link
US (1) US10460831B2 (ja)
EP (1) EP2925887B1 (ja)
JP (1) JP6445451B2 (ja)
BR (1) BR112015012548A2 (ja)
WO (1) WO2014087294A2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112017007965A8 (pt) * 2014-10-24 2022-11-08 Koninklijke Philips Nv Método implantado por computador para inferir a atividade de uma via de sinalização celular de tgf-b em um indivíduo; aparelho para inferir a atividade de uma via de sinalização celular de tgf-b em um indivíduo; meio de armazenamento não transitório; programa de computador; kits para medir níveis de expressão de três ou mais genes-alvo da via de sinalização celular de tgf-b em uma amostra de um indivíduo; inferir a atividade de uma via de sinalização celular de tgf-b em um indivíduo; inferir a atividade de uma via de sinalização celular de tgf-b em um indivíduo; e uso do kit
US20200216906A1 (en) * 2015-08-25 2020-07-09 President And Fellows Of Harvard College Methods and compositions relating to the diagnosis and treatment of cancer
JP6922444B2 (ja) * 2016-11-11 2021-08-18 コニカミノルタ株式会社 蛍光ナノ粒子を用いた、病理学的完全奏効(pCR)の予測を支援するための検査支援方法
US10902591B2 (en) * 2018-02-09 2021-01-26 Case Western Reserve University Predicting pathological complete response to neoadjuvant chemotherapy from baseline breast dynamic contrast enhanced magnetic resonance imaging (DCE-MRI)
CN110923318B (zh) * 2019-12-10 2022-02-11 中国医学科学院肿瘤医院 用于在乳腺癌患者中预测新辅助化疗疗效的标志物及其应用
EP4100549A1 (en) 2020-02-04 2022-12-14 Oslo Universitetssykehus HF Biomarkers predicting clinical response of a vegf-a inhibitory drug in cancer patients, method for their selection and use

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507222A (ja) * 2003-05-28 2007-03-29 ゲノミック ヘルス, インコーポレイテッド 化学療法に対する応答を予測するための遺伝子発現マーカー
KR20150097813A (ko) 2006-12-19 2015-08-26 제넨테크, 인크. 조기 종양의 치료 및 아주반트 및 네오아주반트 요법을 위한 vegf-특이적 길항제
WO2011020049A1 (en) * 2009-08-14 2011-02-17 Genentech, Inc. Biological markers for monitoring patient response to vegf antagonists
WO2011153224A2 (en) * 2010-06-02 2011-12-08 Genentech, Inc. Diagnostic methods and compositions for treatment of cancer
MX2012013874A (es) 2010-06-03 2013-01-24 Abraxis Bioscience Llc Uso de la signatura en el microentorno de sparc en el tratamiento de cancer.
WO2012106559A1 (en) 2011-02-02 2012-08-09 Translational Genomics Research Institute Biomarkers and methods of use thereof

Also Published As

Publication number Publication date
US20150347679A1 (en) 2015-12-03
WO2014087294A3 (en) 2014-10-16
WO2014087294A2 (en) 2014-06-12
EP2925887A2 (en) 2015-10-07
US10460831B2 (en) 2019-10-29
EP2925887B1 (en) 2018-03-07
BR112015012548A2 (pt) 2017-07-11
JP2016508710A (ja) 2016-03-24

Similar Documents

Publication Publication Date Title
JP7531217B2 (ja) 癌を査定および/または処置するためのセルフリーdna
JP6445451B2 (ja) ネオアジュバントベバシズマブを用いた化学療法に対する予測結果の評価
JP2022521791A (ja) 病原体検出のための配列決定データを使用するためのシステムおよび方法
US10323285B2 (en) Proteomics analysis and discovery through DNA and RNA sequencing, systems and methods
ES2492498T3 (es) Panel de biomarcadores para el diagnóstico y la predicción de rechazo de injerto
JP7304030B2 (ja) がん治療の効果および予後の予測方法および治療手段の選択方法
JP2019516406A (ja) 肺扁平上皮癌のサブタイピングのための方法
JP2012100536A (ja) 血液試料に含まれる単核球細胞を用いた癌関連遺伝子の発現解析による癌の遺伝子検査方法
CN113544288A (zh) 用于预测肝癌复发的dna甲基化标志物及其用途
US20240209455A1 (en) Analysis of fragment ends in dna
CN104428426B (zh) 多发性硬化的诊断miRNA概况
CN118660974A (zh) 细胞游离dna的单分子全基因组突变谱和片段谱
CN115449542A (zh) 用于测量个体的免疫组库的变化的方法
KR20240015624A (ko) 게놈 전체 cfdna 단편화 프로파일을 이용한 암을 검출하는 방법
JP2023529064A (ja) ヒト対象における医学的状態を同定する方法
CN113826166A (zh) 评估气道上皮细胞中的多信号传导途径活性评分以预测气道上皮异常和气道癌风险
JP2014518086A (ja) 腫瘍起源の決定
JP2022537776A (ja) 活性化NFkB経路の細胞機能の同定
Ramirez et al. Quantitative polymerase chain reaction for companion diagnostics and precision medicine application
JP7386897B2 (ja) 高悪性度漿液性卵巣癌における予後予測の方法
WO2025080152A1 (en) Method for using the t cell repertoire as a predictive and prognostic biomarker in cancer
Du et al. 312P Identification of neoantigen-specific T cell response and anti-tumour immunity in pancreatic cancer
EP4537106A1 (en) Protein predictors for lung cancer
CN117120631A (zh) 滤泡性甲状腺癌特异性标志物
WO2022120076A1 (en) Clinical classifiers and genomic classifiers and uses thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181129

R150 Certificate of patent or registration of utility model

Ref document number: 6445451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees