ES2650610T3 - Perfiles de expresión génica para predecir desenlaces en cáncer de mama - Google Patents
Perfiles de expresión génica para predecir desenlaces en cáncer de mama Download PDFInfo
- Publication number
- ES2650610T3 ES2650610T3 ES13180605.1T ES13180605T ES2650610T3 ES 2650610 T3 ES2650610 T3 ES 2650610T3 ES 13180605 T ES13180605 T ES 13180605T ES 2650610 T3 ES2650610 T3 ES 2650610T3
- Authority
- ES
- Spain
- Prior art keywords
- seq
- subtype
- clinical
- breast cancer
- risk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000014509 gene expression Effects 0.000 title description 59
- 206010006187 Breast cancer Diseases 0.000 title description 55
- 208000026310 Breast neoplasm Diseases 0.000 title description 55
- 108090000623 proteins and genes Proteins 0.000 abstract description 50
- 238000001514 detection method Methods 0.000 abstract description 7
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 4
- 238000011002 quantification Methods 0.000 abstract description 4
- 230000002441 reversible effect Effects 0.000 abstract description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 abstract 2
- 206010028980 Neoplasm Diseases 0.000 description 75
- 239000000523 sample Substances 0.000 description 56
- 102100038595 Estrogen receptor Human genes 0.000 description 55
- 108010038795 estrogen receptors Proteins 0.000 description 54
- 238000000034 method Methods 0.000 description 52
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 40
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 40
- 238000011282 treatment Methods 0.000 description 31
- 230000004083 survival effect Effects 0.000 description 30
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 29
- 241001609030 Brosme brosme Species 0.000 description 28
- 241000023320 Luma <angiosperm> Species 0.000 description 28
- 238000004458 analytical method Methods 0.000 description 26
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 26
- 238000012360 testing method Methods 0.000 description 25
- 238000002493 microarray Methods 0.000 description 24
- 201000010099 disease Diseases 0.000 description 22
- 210000001519 tissue Anatomy 0.000 description 22
- 230000004044 response Effects 0.000 description 19
- 238000002512 chemotherapy Methods 0.000 description 17
- 102000003998 progesterone receptors Human genes 0.000 description 16
- 108090000468 progesterone receptors Proteins 0.000 description 16
- 239000011159 matrix material Substances 0.000 description 15
- 230000001575 pathological effect Effects 0.000 description 15
- 238000002560 therapeutic procedure Methods 0.000 description 15
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 14
- 230000003993 interaction Effects 0.000 description 14
- 210000001165 lymph node Anatomy 0.000 description 14
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 13
- 238000009261 endocrine therapy Methods 0.000 description 13
- 229940034984 endocrine therapy antineoplastic and immunomodulating agent Drugs 0.000 description 13
- 238000001356 surgical procedure Methods 0.000 description 12
- 239000012472 biological sample Substances 0.000 description 11
- 101001122448 Rattus norvegicus Nociceptin receptor Proteins 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 10
- 238000011529 RT qPCR Methods 0.000 description 9
- 239000002671 adjuvant Substances 0.000 description 9
- 238000004422 calculation algorithm Methods 0.000 description 9
- 238000003364 immunohistochemistry Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 238000012549 training Methods 0.000 description 9
- 101150029707 ERBB2 gene Proteins 0.000 description 8
- 210000000481 breast Anatomy 0.000 description 8
- 208000026535 luminal A breast carcinoma Diseases 0.000 description 8
- 238000004393 prognosis Methods 0.000 description 8
- 238000013145 classification model Methods 0.000 description 7
- 230000035755 proliferation Effects 0.000 description 7
- 229960001603 tamoxifen Drugs 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 239000002299 complementary DNA Substances 0.000 description 6
- 238000003745 diagnosis Methods 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 230000007774 longterm Effects 0.000 description 6
- 239000013615 primer Substances 0.000 description 6
- 238000001574 biopsy Methods 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 208000026534 luminal B breast carcinoma Diseases 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000002124 endocrine Effects 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 238000009099 neoadjuvant therapy Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000009121 systemic therapy Methods 0.000 description 4
- 210000004881 tumor cell Anatomy 0.000 description 4
- 206010027476 Metastases Diseases 0.000 description 3
- 238000009098 adjuvant therapy Methods 0.000 description 3
- 238000011366 aggressive therapy Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 210000001124 body fluid Anatomy 0.000 description 3
- 239000010839 body fluid Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 229940011871 estrogen Drugs 0.000 description 3
- 239000000262 estrogen Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000011227 neoadjuvant chemotherapy Methods 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- -1 polymeric surfaces Substances 0.000 description 3
- 102000040430 polynucleotide Human genes 0.000 description 3
- 108091033319 polynucleotide Proteins 0.000 description 3
- 239000002157 polynucleotide Substances 0.000 description 3
- 238000001959 radiotherapy Methods 0.000 description 3
- 238000003757 reverse transcription PCR Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 description 2
- 108700020472 CDC20 Proteins 0.000 description 2
- 101150023302 Cdc20 gene Proteins 0.000 description 2
- 102100038099 Cell division cycle protein 20 homolog Human genes 0.000 description 2
- 102100031219 Centrosomal protein of 55 kDa Human genes 0.000 description 2
- 101710092479 Centrosomal protein of 55 kDa Proteins 0.000 description 2
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 2
- 239000003155 DNA primer Substances 0.000 description 2
- 108700039964 Duplicate Genes Proteins 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- 102100032340 G2/mitotic-specific cyclin-B1 Human genes 0.000 description 2
- 208000003098 Ganglion Cysts Diseases 0.000 description 2
- 101000882584 Homo sapiens Estrogen receptor Proteins 0.000 description 2
- 101000868643 Homo sapiens G2/mitotic-specific cyclin-B1 Proteins 0.000 description 2
- 101001112162 Homo sapiens Kinetochore protein NDC80 homolog Proteins 0.000 description 2
- 101000575639 Homo sapiens Ribonucleoside-diphosphate reductase subunit M2 Proteins 0.000 description 2
- 101001087372 Homo sapiens Securin Proteins 0.000 description 2
- 101000809797 Homo sapiens Thymidylate synthase Proteins 0.000 description 2
- 101000807354 Homo sapiens Ubiquitin-conjugating enzyme E2 C Proteins 0.000 description 2
- 101000837581 Homo sapiens Ubiquitin-conjugating enzyme E2 T Proteins 0.000 description 2
- 102100023890 Kinetochore protein NDC80 homolog Human genes 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- 102100026006 Ribonucleoside-diphosphate reductase subunit M2 Human genes 0.000 description 2
- 101100010298 Schizosaccharomyces pombe (strain 972 / ATCC 24843) pol2 gene Proteins 0.000 description 2
- 102100033004 Securin Human genes 0.000 description 2
- 108010002687 Survivin Proteins 0.000 description 2
- 208000005400 Synovial Cyst Diseases 0.000 description 2
- 102100038618 Thymidylate synthase Human genes 0.000 description 2
- 102100037256 Ubiquitin-conjugating enzyme E2 C Human genes 0.000 description 2
- 102100028705 Ubiquitin-conjugating enzyme E2 T Human genes 0.000 description 2
- 229940009456 adriamycin Drugs 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000002790 cross-validation Methods 0.000 description 2
- 229960004397 cyclophosphamide Drugs 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 201000007281 estrogen-receptor positive breast cancer Diseases 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229960002949 fluorouracil Drugs 0.000 description 2
- 210000000609 ganglia Anatomy 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- 238000012775 microarray technology Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 238000003909 pattern recognition Methods 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 239000013074 reference sample Substances 0.000 description 2
- 210000003296 saliva Anatomy 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 238000013517 stratification Methods 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012353 t test Methods 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- 210000000779 thoracic wall Anatomy 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- WVAKRQOMAINQPU-UHFFFAOYSA-N 2-[4-[2-[5-(2,2-dimethylbutyl)-1h-imidazol-2-yl]ethyl]phenyl]pyridine Chemical compound N1C(CC(C)(C)CC)=CN=C1CCC1=CC=C(C=2N=CC=CC=2)C=C1 WVAKRQOMAINQPU-UHFFFAOYSA-N 0.000 description 1
- KIAPWMKFHIKQOZ-UHFFFAOYSA-N 2-[[(4-fluorophenyl)-oxomethyl]amino]benzoic acid methyl ester Chemical compound COC(=O)C1=CC=CC=C1NC(=O)C1=CC=C(F)C=C1 KIAPWMKFHIKQOZ-UHFFFAOYSA-N 0.000 description 1
- 101150096316 5 gene Proteins 0.000 description 1
- 102100029631 Actin-related protein 3B Human genes 0.000 description 1
- 102100033393 Anillin Human genes 0.000 description 1
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 1
- 102100037152 BAG family molecular chaperone regulator 1 Human genes 0.000 description 1
- 108091012583 BCL2 Proteins 0.000 description 1
- 102100035752 Biliverdin reductase A Human genes 0.000 description 1
- 101150116295 CAT2 gene Proteins 0.000 description 1
- 102100036167 CXXC-type zinc finger protein 5 Human genes 0.000 description 1
- 102100024153 Cadherin-15 Human genes 0.000 description 1
- 101100326920 Caenorhabditis elegans ctl-1 gene Proteins 0.000 description 1
- 102100027047 Cell division control protein 6 homolog Human genes 0.000 description 1
- 102100023344 Centromere protein F Human genes 0.000 description 1
- 102100037579 D-3-phosphoglycerate dehydrogenase Human genes 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 206010061819 Disease recurrence Diseases 0.000 description 1
- 108050002772 E3 ubiquitin-protein ligase Mdm2 Proteins 0.000 description 1
- 102000012199 E3 ubiquitin-protein ligase Mdm2 Human genes 0.000 description 1
- 208000017701 Endocrine disease Diseases 0.000 description 1
- 102100029075 Exonuclease 1 Human genes 0.000 description 1
- 102100027844 Fibroblast growth factor receptor 4 Human genes 0.000 description 1
- 102100021084 Forkhead box protein C1 Human genes 0.000 description 1
- 102100037858 G1/S-specific cyclin-E1 Human genes 0.000 description 1
- 108700031843 GRB7 Adaptor Proteins 0.000 description 1
- 101150052409 GRB7 gene Proteins 0.000 description 1
- 102100033107 Growth factor receptor-bound protein 7 Human genes 0.000 description 1
- 101100342039 Halobacterium salinarum (strain ATCC 29341 / DSM 671 / R1) kdpQ gene Proteins 0.000 description 1
- 102100029283 Hepatocyte nuclear factor 3-alpha Human genes 0.000 description 1
- 101000728742 Homo sapiens Actin-related protein 3B Proteins 0.000 description 1
- 101000732632 Homo sapiens Anillin Proteins 0.000 description 1
- 101000884385 Homo sapiens Arylamine N-acetyltransferase 1 Proteins 0.000 description 1
- 101000740062 Homo sapiens BAG family molecular chaperone regulator 1 Proteins 0.000 description 1
- 101000802825 Homo sapiens Biliverdin reductase A Proteins 0.000 description 1
- 101000947154 Homo sapiens CXXC-type zinc finger protein 5 Proteins 0.000 description 1
- 101000762242 Homo sapiens Cadherin-15 Proteins 0.000 description 1
- 101000714553 Homo sapiens Cadherin-3 Proteins 0.000 description 1
- 101000914465 Homo sapiens Cell division control protein 6 homolog Proteins 0.000 description 1
- 101000907941 Homo sapiens Centromere protein F Proteins 0.000 description 1
- 101000739890 Homo sapiens D-3-phosphoglycerate dehydrogenase Proteins 0.000 description 1
- 101001034811 Homo sapiens Eukaryotic translation initiation factor 4 gamma 2 Proteins 0.000 description 1
- 101000918264 Homo sapiens Exonuclease 1 Proteins 0.000 description 1
- 101000917134 Homo sapiens Fibroblast growth factor receptor 4 Proteins 0.000 description 1
- 101000818310 Homo sapiens Forkhead box protein C1 Proteins 0.000 description 1
- 101000738568 Homo sapiens G1/S-specific cyclin-E1 Proteins 0.000 description 1
- 101001062353 Homo sapiens Hepatocyte nuclear factor 3-alpha Proteins 0.000 description 1
- 101000614436 Homo sapiens Keratin, type I cytoskeletal 14 Proteins 0.000 description 1
- 101000998027 Homo sapiens Keratin, type I cytoskeletal 17 Proteins 0.000 description 1
- 101001056473 Homo sapiens Keratin, type II cytoskeletal 5 Proteins 0.000 description 1
- 101001050567 Homo sapiens Kinesin-like protein KIF2C Proteins 0.000 description 1
- 101000590482 Homo sapiens Kinetochore protein Nuf2 Proteins 0.000 description 1
- 101001055386 Homo sapiens Melanophilin Proteins 0.000 description 1
- 101000891579 Homo sapiens Microtubule-associated protein tau Proteins 0.000 description 1
- 101000593405 Homo sapiens Myb-related protein B Proteins 0.000 description 1
- 101000686034 Homo sapiens Nuclear receptor ROR-gamma Proteins 0.000 description 1
- 101000721146 Homo sapiens Origin recognition complex subunit 6 Proteins 0.000 description 1
- 101000857740 Homo sapiens Probable G-protein coupled receptor 160 Proteins 0.000 description 1
- 101000583175 Homo sapiens Prolactin-inducible protein Proteins 0.000 description 1
- 101000945496 Homo sapiens Proliferation marker protein Ki-67 Proteins 0.000 description 1
- 101000864743 Homo sapiens Secreted frizzled-related protein 1 Proteins 0.000 description 1
- 101000639975 Homo sapiens Sodium-dependent noradrenaline transporter Proteins 0.000 description 1
- 101000577877 Homo sapiens Stromelysin-3 Proteins 0.000 description 1
- 238000010824 Kaplan-Meier survival analysis Methods 0.000 description 1
- 102100040445 Keratin, type I cytoskeletal 14 Human genes 0.000 description 1
- 102100033511 Keratin, type I cytoskeletal 17 Human genes 0.000 description 1
- 102100025756 Keratin, type II cytoskeletal 5 Human genes 0.000 description 1
- 102100023424 Kinesin-like protein KIF2C Human genes 0.000 description 1
- 102100032431 Kinetochore protein Nuf2 Human genes 0.000 description 1
- 238000003657 Likelihood-ratio test Methods 0.000 description 1
- 102100024299 Maternal embryonic leucine zipper kinase Human genes 0.000 description 1
- 101710154611 Maternal embryonic leucine zipper kinase Proteins 0.000 description 1
- 102100026158 Melanophilin Human genes 0.000 description 1
- 102100040243 Microtubule-associated protein tau Human genes 0.000 description 1
- 102100034670 Myb-related protein B Human genes 0.000 description 1
- 101100126846 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) katG gene Proteins 0.000 description 1
- 102100023421 Nuclear receptor ROR-gamma Human genes 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 102100025201 Origin recognition complex subunit 6 Human genes 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 102100025346 Probable G-protein coupled receptor 160 Human genes 0.000 description 1
- 102100030350 Prolactin-inducible protein Human genes 0.000 description 1
- 102100034836 Proliferation marker protein Ki-67 Human genes 0.000 description 1
- 108091006938 SLC39A6 Proteins 0.000 description 1
- CGNLCCVKSWNSDG-UHFFFAOYSA-N SYBR Green I Chemical compound CN(C)CCCN(CCC)C1=CC(C=C2N(C3=CC=CC=C3S2)C)=C2C=CC=CC2=[N+]1C1=CC=CC=C1 CGNLCCVKSWNSDG-UHFFFAOYSA-N 0.000 description 1
- 244000292604 Salvia columbariae Species 0.000 description 1
- 235000012377 Salvia columbariae var. columbariae Nutrition 0.000 description 1
- 235000001498 Salvia hispanica Nutrition 0.000 description 1
- 102100030058 Secreted frizzled-related protein 1 Human genes 0.000 description 1
- 102100033929 Sodium-dependent noradrenaline transporter Human genes 0.000 description 1
- 102100028847 Stromelysin-3 Human genes 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- 102100023144 Zinc transporter ZIP6 Human genes 0.000 description 1
- 238000011226 adjuvant chemotherapy Methods 0.000 description 1
- 238000009260 adjuvant endocrine therapy Methods 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 239000010836 blood and blood product Substances 0.000 description 1
- 229940125691 blood product Drugs 0.000 description 1
- 208000030270 breast disease Diseases 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- RUDATBOHQWOJDD-BSWAIDMHSA-N chenodeoxycholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 RUDATBOHQWOJDD-BSWAIDMHSA-N 0.000 description 1
- 235000014167 chia Nutrition 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 230000003826 endocrine responses Effects 0.000 description 1
- 208000030172 endocrine system disease Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 1
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 1
- 102000015694 estrogen receptors Human genes 0.000 description 1
- 238000007387 excisional biopsy Methods 0.000 description 1
- 230000000574 ganglionic effect Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 108091008039 hormone receptors Proteins 0.000 description 1
- 238000001794 hormone therapy Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 238000012151 immunohistochemical method Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 208000030776 invasive breast carcinoma Diseases 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 230000009397 lymphovascular invasion Effects 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 238000009607 mammography Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 208000029691 metastatic malignant neoplasm in the lymph nodes Diseases 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000010202 multivariate logistic regression analysis Methods 0.000 description 1
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 1
- 238000013188 needle biopsy Methods 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 210000002445 nipple Anatomy 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000012567 pattern recognition method Methods 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000000575 proteomic method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000007727 signaling mechanism Effects 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 210000001562 sternum Anatomy 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- DKPFODGZWDEEBT-QFIAKTPHSA-N taxane Chemical class C([C@]1(C)CCC[C@@H](C)[C@H]1C1)C[C@H]2[C@H](C)CC[C@@H]1C2(C)C DKPFODGZWDEEBT-QFIAKTPHSA-N 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 230000009790 vascular invasion Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B25/00—ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B25/00—ICT specially adapted for hybridisation; ICT specially adapted for gene or protein expression
- G16B25/10—Gene or protein expression profiling; Expression-ratio estimation or normalisation
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
- G16B40/20—Supervised data analysis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/106—Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/112—Disease subtyping, staging or classification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B40/00—ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- Medical Informatics (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Theoretical Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Evolutionary Biology (AREA)
- Immunology (AREA)
- Wood Science & Technology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Data Mining & Analysis (AREA)
- Hospice & Palliative Care (AREA)
- Microbiology (AREA)
- Oncology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioethics (AREA)
- Artificial Intelligence (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Evolutionary Computation (AREA)
- Public Health (AREA)
- Software Systems (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Un kit que comprende reactivos suficientes para la detección y/o cuantificación de al menos 40 de los genes intrínsecos listados en la Tabla 1, caracterizado porque dichos reactivos comprenden al menos 40 pares de cebadores de avance y reversos que corresponden a cada uno de los al menos 40 genes, en donde dichos pares de cebadores de avance y reversos se seleccionan de los siguientes pares SEQ ID NO: 1 y SEQ ID NO: 51 SEQ ID NO: 2 y SEQ ID NO: 52 SEQ ID NO: 3 y SEQ ID NO: 53 SEQ ID NO: 4 y SEQ ID NO: 54 SEQ ID NO: 5 y SEQ ID NO: 55 SEQ ID NO: 6 y SEQ ID NO: 56 SEQ ID NO: 7 y SEQ ID NO: 57 SEQ ID NO: 8 y SEQ ID NO: 58 SEQ ID NO: 9 y SEQ ID NO: 59 SEQ ID NO: 10 y SEQ ID NO: 60 SEQ ID NO: 11 y SEQ ID NO: 61 SEQ ID NO: 12 y SEQ ID NO: 62 SEQ ID NO: 13 y SEQ ID NO: 63 SEQ ID NO: 14 y SEQ ID NO: 64 SEQ ID NO: 15 y SEQ ID NO: 65 SEQ ID NO: 16 y SEQ ID NO: 66 SEQ ID NO: 17 y SEQ ID NO: 67 SEQ ID NO: 18 y SEQ ID NO: 68 SEQ ID NO: 19 y SEQ ID NO: 69 SEQ ID NO: 20 y SEQ ID NO: 70 SEQ ID NO: 21 y SEQ ID NO: 71 SEQ ID NO: 22 y SEQ ID NO: 72 SEQ ID NO: 23 y SEQ ID NO: 73 SEQ ID NO: 24 y SEQ ID NO: 74 SEQ ID NO: 25 y SEQ ID NO: 75 SEQ ID NO: 26 y SEQ ID NO: 76 SEQ ID NO: 27 y SEQ ID NO: 77 SEQ ID NO: 28 y SEQ ID NO: 78 SEQ ID NO: 29 y SEQ ID NO: 79 SEQ ID NO: 30 y SEQ ID NO: 80 SEQ ID NO: 31 y SEQ ID NO: 81 SEQ ID NO: 32 y SEQ ID NO: 82 SEQ ID NO: 33 y SEQ ID NO: 83 SEQ ID NO: 34 y SEQ ID NO: 84 SEQ ID NO: 35 y SEQ ID NO: 85 SEQ ID NO: 36 y SEQ ID NO: 86 SEQ ID NO: 37 y SEQ ID NO: 87 SEQ ID NO: 38 y SEQ ID NO: 88 SEQ ID NO: 39 y SEQ ID NO: 89 SEQ ID NO: 40 y SEQ ID NO: 90 SEQ ID NO: 41 y SEQ ID NO: 91 SEQ ID NO: 42 y SEQ ID NO: 92 SEQ ID NO: 43 y SEQ ID NO: 93 SEQ ID NO: 44 y SEQ ID NO: 94 SEQ ID NO: 45 y SEQ ID NO: 95 SEQ ID NO: 46 y SEQ ID NO: 96 SEQ ID NO: 47 y SEQ ID NO: 97 SEQ ID NO: 48 y SEQ ID NO: 98 SEQ ID NO: 49 y SEQ ID NO: 99 y SEQ ID NO: 50 y SEQ ID NO: 100.
Description
- GEN
- NÚMERO DE REGISTRO DE GENBANK REPRESENTATIVO CEBADOR DIRECTO SEQ ID NO: CEBADOR INVERSO SEQ ID NO:
- ACTR3B
-
NM_020445| NM_001040135
imagen4 1imagen5 51
- ANLN
-
NM_018685
imagen6 2imagen7 52
- BAG1
-
NM_004323
imagen8 3imagen9 53
- BCL2
-
NM_000633
imagen10 4imagen11 54
- BIRC5
-
NM_001012271
imagen12 5imagen13 55
- BLVRA
-
BX647539
imagen14 6imagen15 56
- CCNB1
-
NM_031966
imagen16 7imagen17 57
- CCNE1
-
BC035498
imagen18 8imagen19 58
- CDC20
-
BG256659
imagen20 9imagen21 59
- CDC6
-
NM_001254
imagen22 10imagen23 60
- CDCA1
-
NM_031423
imagen24 11imagen25 61
- CDH3
-
BC041846
imagen26 12imagen27 62
- CENPF
-
NM_016343
imagen28 13imagen29 63
- CEP55
-
AB091343
imagen30 14imagen31 64
- CXXC5
-
BC006428
imagen32 15imagen33 65
- EGFR
-
NM_005228
imagen34 16imagen35 66
- ERBB2
-
NM_001005862
imagen36 17imagen37 67
- ESR1
-
NM_001122742
imagen38 18imagen39 68
- EXO1
-
NM_130398
imagen40 19imagen41 69
- FGFR4
-
AB209631
imagen42 20imagen43 70
- FOXA1
-
NM_004496
imagen44 21imagen45 71
5
- FOXC1
-
NM_001453
imagen46 22imagen47 72
- GPR160
-
AJ249248
imagen48 23imagen49 73
- GRB7
-
NM_005310
imagen50 24imagen51 74
- HSPC150 (UBE2T)
-
NM_014176
imagen52 25imagen53 75
- KIF2C
-
NM_006845
imagen54 26imagen55 76
- KNTC2
-
NM_006101
imagen56 27imagen57 77
- KRT14
-
BC042437
imagen58 28imagen59 78
- KRT17
-
AK095281
imagen60 29imagen61 79
- KRT5
-
M21389
imagen62 30imagen63 80
- MAPT
-
NM_001123066
imagen64 31imagen65 81
- MDM2
-
M92424
imagen66 32imagen67 82
- MELK
-
NM_014791
imagen68 33imagen69 83
- MIA
-
BG765502
imagen70 34imagen71 84
- MKI67
-
NM_002417
imagen72 35imagen73 85
- MLPH
-
NM_024101
imagen74 36imagen75 86
- MMP11
-
NM_005940
imagen76 37imagen77 87
- MYBL2
-
BX647151
imagen78 38imagen79 88
- MYC
-
NM_002467
imagen80 39imagen81 89
- NAT1
-
BC013732
imagen82 40imagen83 90
- ORC6L
-
NM_014321
imagen84 41imagen85 91
- PGR
-
NM_000926
imagen86 42imagen87 92
- PHGDH
-
AK093306
imagen88 43imagen89 93
6 5
10
15
20
25
30
35
40
45
- PTTG1
-
BE904476
imagen90 44imagen91 94
- RRM2
-
AK123010
imagen92 45imagen93 95
- SFRP1
-
BC036503
imagen94 46imagen95 96
- SLC39A6
-
NM_012319
imagen96 47imagen97 97
- TMEM45 B
-
AK098106
imagen98 48imagen99 98
- TYMS
-
BQ056428
imagen100 49imagen101 99
- UBE2C
-
BC032677
imagen102 50imagen103 100
“Expresión génica” tal como se usa en el presente documento se refiere a los niveles de expresión y/o al patrón de expresión relativos de un gen. La expresión de un gen puede medirse a nivel de ADN, ADNc, ARN, ARNm, o combinaciones de los mismos. “Perfil de expresión génica” se refiere a los niveles de expresión de múltiples genes diferentes medidos para la misma muestra. Un perfil de expresión puede derivarse de una muestra biológica recogida de un sujeto en uno o más puntos de tiempo antes de, durante, o tras el diagnóstico, el tratamiento o la terapia contra el cáncer de mama (o cualquier combinación de los mismos), puede derivarse de una muestra biológica recogida de un sujeto en uno o más puntos de tiempo durante los que no hay tratamiento o terapia contra el cáncer de mama (por ejemplo, para monitorizar la progresión de la enfermedad o para evaluar el desarrollo de la enfermedad en un sujeto en riesgo de cáncer de mama), o puede recogerse de un sujeto sano. Pueden medirse perfiles de expresión génica en una muestra, tales como muestras que comprenden una variedad de tipos celulares, tejidos diferentes, órganos diferentes o fluidos (por ejemplo, sangre, orina, líquido cefalorraquídeo, sudor, saliva o suero) mediante diversos métodos que incluyen pero no se limitan a tecnologías de micromatriz y técnicas de RT-PCR cuantitativa y semicuantitativa.
Variables clínicas
El modelo de clasificación PAM50 descrito en el presente documento puede combinarse adicionalmente con información sobre variables clínicas para generar un factor pronóstico de riesgo de recidiva (ROR) continuo. Tal como se describe en el presente documento, en la técnica se describen varios de factores de cáncer de mama clínicos y pronósticos y se usan para predecir el desenlace del tratamiento y la probabilidad de reaparición de la enfermedad. Tales factores incluyen, por ejemplo, implicación de ganglios linfáticos, tamaño del tumor, grado histológico, estado del receptor de la hormona estrógeno y progesterona, niveles de HER-2 y ploidía tumoral.
En una realización, se proporciona una puntuación de riesgo de recidiva (ROR) para un sujeto diagnosticado con o que se sospecha que tiene cáncer de mama. Esta puntuación usa el modelo de clasificación PAM50 en combinación con factores clínicos de estado de los ganglios linfáticos (N) y tamaño del tumor(T). La evaluación de variables clínicas se basa en el sistema normalizado del American Joint Committee on Cancer (AJCC) para estadificar el cáncer de mama. En este sistema, se clasifica el tamaño del tumor primario en una escala de 0-4 (T0: sin evidencia de tumor primario; T1: ≤ 2 cm; T2: > 2 cm -≤ 5 cm; T3: > 5 cm; T4: tumor de cualquier tamaño con extensión directa a la piel o la pared torácica). El estado de los ganglios linfáticos se clasifica como N0-N3 (N0: los ganglios linfáticos regionales están libres de metástasis; N1: metástasis no móvil, ganglio(s) linfático(s) axilar(es) del mismo lado; N2: metástasis al/a los ganglio(s) linfático(s) del mismo lado fijado(s) entre sí o a otras estructuras; N3: metástasis a ganglios linfáticos del mismo lado por debajo del esternón). Los métodos de identificación de pacientes con cáncer de mama y estadificación del estadio de la enfermedad se conocen bien y pueden incluir examen manual, biopsia, revisión la historia de la paciente y/o la familia, y técnicas de obtención de imágenes, tales como mamografía, obtención de imágenes por resonancia magnética (MRI) y tomografía de emisión de positrones (PET).
Usando los métodos de clasificación PAM50 descritos aquí, puede determinarse el pronóstico de una paciente con cáncer de mama independientemente de o en combinación con la evaluación de estos factores clínicos. En algunas realizaciones, combinar los métodos de clasificación del subtipo intrínseco de cáncer de mama PAM50 dados a conocer en el presente documento con evaluación de estos factores clínicos puede permitir una evaluación del riesgo más precisa. Los métodos pueden acoplarse adicionalmente con análisis de, por ejemplo, el estado de receptor de estrógeno (ER) y receptor de progesterona (PgR), y/o niveles de expresión de HER-2. Otros factores, tales como la historia clínica de la paciente, la historia familiar y el estado menopáusico, también pueden
7 5
10
15
20
25
30
35
40
45
50
55
60
65
considerarse cuando se evalúa el pronóstico de cáncer de mama.
Fuente de la muestra
En una realización, se evalúa el subtipo de cáncer de mama a través de la evaluación de patrones, o perfiles, de expresión, de los genes intrínsecos enumerados en la tabla 1 en una o más muestras del sujeto. Para fines de descripción, el término sujeto, o muestra de sujeto, se refiere a un individuo independientemente de su estado de salud y/o de enfermedad. Un sujeto puede ser un sujeto, un participante de estudio, un sujeto control, un sujeto de examen, o cualquier otra clase de individuo del que se obtiene una muestra y se evalúa en el contexto de la divulgación y de la invención. Por consiguiente, un sujeto puede estar diagnosticado con cáncer de mama, puede presentar uno o más síntomas de cáncer de mama, o un factor de predisposición, tal como un factor de historia familiar (genético) o médica (médico), para cáncer de mama, puede estar sometiéndose a tratamiento o terapia contra el cáncer de mama, o similares. Alternativamente, un sujeto puede estar sano con respecto a cualquiera de los factores o criterios mencionados anteriormente. Se apreciará que el término “sano” tal como se usa en el presente documento, se refiere a estado de cáncer de mama, ya que no puede definirse que el término “sano” para corresponder a cualquier evaluación o estado absoluto. Por tanto, un individuo que se define como sano con referencia a cualquier enfermedad o criterio de enfermedad especificados, puede estar diagnosticado de hecho con otra cualquiera o más enfermedades, o presentar cualquier otro o más criterios de enfermedad, incluyendo uno o más cánceres distintos de cáncer de mama. Sin embargo, los controles sanos están libres preferiblemente de cualquier cáncer.
En realizaciones particulares, los métodos para predecir subtipos intrínsecos de cáncer de mama incluyen recoger una muestra biológica que comprende una célula o tejido canceroso, tal como una muestra de tejido de mama o una muestra de tejido de tumor de mama primario. Mediante “muestra biológica” se pretende decir cualquier toma de muestras de células, tejidos o fluidos corporales en los que puede detectarse la expresión de un gen intrínseco. Los ejemplos de tales muestras biológicas incluyen, pero no se limitan a, biopsias y frotis. Los fluidos corporales incluyen sangre, linfa, orina, saliva, aspirados de pezones, fluidos ginecológicos o cualquier otra secreción corporal o derivado de la misma. La sangre puede incluir sangre completa, plasma, suero o cualquier hemoderivado. En algunas realizaciones, la muestra biológica incluye células de mama, particularmente tejido de mama de una biopsia, tal como una muestra de tejido de tumor de mama. Las muestras biológicas pueden obtenerse de un sujeto mediante una variedad de técnicas que incluyen, por ejemplo, raspando o frotando un área, usando una aguja para aspirar células o fluidos corporales, o extrayendo una muestra de tejido (es decir, biopsia). En la técnica se conocen bien los métodos para recoger diversas muestras biológicas. En algunas realizaciones, una muestra de tejido de mama se obtiene mediante, por ejemplo, biopsia por aspiración con aguja fina, biopsia con aguja gruesa o biopsia por escisión. Pueden aplicarse disoluciones de fijación o de tinción a las células o tejidos para conservar la muestra y para facilitar el examen. Las muestras biológicas, particularmente muestras de tejido de mama, pueden transferirse a un portaobjetos de vidrio para observación con aumentos. En una realización, la muestra biológica es una muestra de tejido de mama incrustada en parafina, fijada en formalina, particularmente una muestra de tumor de mama primario. En diversas realizaciones, la muestra de tejido se obtiene de una muestra de núcleo de tejido guiado por patólogo tal como se describe en el ejemplo 4.
Obtención del perfil de expresión
En diversas realizaciones, la divulgación proporciona métodos para clasificar, pronosticar o monitorizar cáncer de mama en sujetos. En esta realización, los datos obtenidos del análisis de la expresión de genes intrínsecos se evalúan usando uno o más algoritmos de reconocimiento de patrones. Tales métodos de análisis pueden usarse para formar un modelo predictivo, que puede usarse para clasificar datos de prueba. Por ejemplo, un método de clasificación conveniente y particularmente eficaz emplea la creación de modelos de análisis estadísticos de múltiples variables, en primer lugar para formar un modelo (un “modelo matemático predictivo”) usando datos (“datos de creación de modelo”) de muestras de un subtipo conocido (por ejemplo, de sujetos que se sabe que tienen un subtipo intrínseco de cáncer de mama particular: LumA, LumB, de tipo basal, enriquecido en HER-2, o de tipo normal), y en segundo lugar para clasificar una muestra desconocida (por ejemplo, “muestra de prueba”) según el subtipo.
Se han usado ampliamente métodos de reconocimiento de patrones para caracterizar muchos tipos diferentes de problemas que varían, por ejemplo, entre lingüística, toma de huellas dactilares, química y psicología. En el contexto de los métodos descritos en el presente documento, el reconocimiento de patrones es el uso de datos estadísticos de múltiples variables, tanto paramétricos como no paramétricos, para analizar datos, y por tanto para clasificar muestras y para predecir el valor de alguna variable dependiente basándose en una variedad de mediciones observadas. Existen dos enfoques principales. Un conjunto de métodos se denomina “no supervisado” y éstos simplemente reducen la complejidad de los datos de una manera racional y también producen diagramas de representación que pueden interpretarse por el ojo humano. Sin embargo, este tipo de enfoque puede no ser adecuado para desarrollar un ensayo clínico que puede usarse para clasificar muestras derivadas de sujetos independientes de la población de muestra inicial usada para entrenar el algoritmo de predicción.
8 5
15
25
35
45
55
65
El otro enfoque se denomina “supervisado” mediante lo cual se usa un conjunto entrenado de muestras con clase o desenlace conocidos para producir un modelo matemático que entonces se evalúa con conjuntos de datos de validación independientes. En este caso, se usa un “conjunto de entrenamiento” de datos de expresión de genes intrínsecos para construir un modelo estadístico que predice correctamente el “subtipo” de cada muestra. Este conjunto entrenado se somete entonces a prueba con datos independientes (denominados conjunto de validación o prueba) para determinar la robustez del modelo basado en ordenador. Estos modelos se denominan en ocasiones “sistemas expertos”, pero pueden basarse en una variedad de diferentes procedimientos matemáticos. Los métodos
supervisados pueden usar un conjunto de datos con dimensionalidad reducida (por ejemplo, los primeros pocos componentes principales), pero normalmente usan datos no reducidos, con toda la dimensionalidad. En todos los casos, los métodos permiten la descripción cuantitativa de los límites de múltiples variables que caracterizan y separan cada subtipo en lo que se refiere a su perfil de expresión de genes intrínsecos. También es posible obtener límites de confianza sobre cualquier predicción, por ejemplo, a nivel de probabilidad para ubicarse en la bondad de ajuste (véase, por ejemplo, Kowalski et al., 1986). La robustez de los modelos predictivos también puede comprobarse usando validación cruzada, dejando fuera muestras seleccionadas del análisis.
El modelo de clasificación PAM50 descrito en el presente documento se basa en el perfil de expresión génica para una pluralidad de muestras del sujeto usando los genes intrínsecos enumerados en la tabla 1. La pluralidad de muestras incluye un número suficiente de muestras derivadas de sujetos que pertenecen a cada clase de subtipo. Por “muestras suficientes” o “número representativo” en este contexto se pretende decir una cantidad de muestras derivadas de cada subtipo que es suficiente para construir un modelo de clasificación que puede distinguir de manera fiable cada subtipo de todos los demás en el grupo. Un algoritmo de predicción supervisado se desarrolla basándose en los perfiles de muestras prototipo seleccionadas objetivamente para “entrenar” el algoritmo. Las muestras se seleccionan y se clasifican en subtipos usando un conjunto de genes intrínsecos expandido según los métodos dados a conocer en la publicación de patente internacional WO 2007/061876.
Alternativamente, las muestras pueden clasificarse en subtipos según cualquier ensayo conocido para clasificar subtipos de cáncer de mama. Tras estratificar las muestras de entrenamiento según el subtipo, se usa un algoritmo de predicción basado en centroides para construir centroides basándose en el perfil de expresión del conjunto de genes intrínsecos descritos en la tabla 1.
En una realización, el algoritmo de predicción es la metodología del centroide más cercano relacionada con la descrita en Narashiman y Chu (2002) PNAS 99:6567-6572.
En la presente divulgación, el método calcula un centroide normalizado para cada subtipo. Este centroide es la expresión génica promedio para cada gen en cada subtipo (o “clase”) dividida entre la desviación estándar dentro de la clase para ese gen. La clasificación del centroide más cercano toma el perfil de expresión génica de una nueva muestra, y la compara con cada uno de estos centroides de clase. La predicción de subtipo se realiza calculando la correlación de rangos de Spearman de cada caso de prueba para los cinco centroides, y asignando una muestra a un subtipo basándose en el centroide más cercano.
Detección de expresión de genes intrínsecos
En el presente documento se abarca cualquier método disponible en la técnica para detectar la expresión de los genes intrínsecos enumerados en la tabla 1. Por “detectar la expresión” se pretende determinar la cantidad o presencia de un transcrito de ARN o su producto de expresión de un gen intrínseco.
Los métodos para detectar la expresión de los genes intrínsecos, es decir, obtención de perfiles de expresión génica, incluyen métodos basados en análisis de hibridación de polinucleótidos, métodos basados en la secuenciación de polinucleótidos, métodos inmunohistoquímicos y métodos basados en análisis proteómicos. Los métodos detectan generalmente productos de expresión (por ejemplo, ARNm) de los genes intrínsecos enumerados en la tabla 1. En realizaciones preferidas, se usan métodos basados en PCR, tales como PCR de transcripción inversa (RT-PCR) (Weis et al., TIG 8:263-64, 1992), y métodos basados en matrices tales como micromatriz (Schena et al., Science 270:467-70, 1995). Por “micromatriz” se pretende decir una disposición ordenada de elementos de matriz que pueden hibridarse, tales como, por ejemplo, sondas de polinucleótido, sobre un sustrato. El término “sonda” se refiere a cualquier molécula que puede unirse selectivamente a una biomolécula diana prevista específicamente, por ejemplo, un transcrito de nucleótido o una proteína codificada por o que corresponde a un gen intrínseco. Un experto en la técnica puede sintetizar sondas, o pueden derivarse de preparaciones biológicas apropiadas. Pueden diseñarse las sondas específicamente para marcarse. Los ejemplos de moléculas que pueden utilizarse como sondas incluyen, pero no se limitan a, ARN, ADN, proteínas, anticuerpos y moléculas orgánicas.
Muchos métodos de detección de la expresión usan ARN aislado. El material de partida es normalmente ARN total aislado de una muestra biológica, tal como un tumor o línea celular de tumor, y tejido o línea celular normales correspondientes, respectivamente. Si la fuente de ARN es un tumor primario, puede extraerse ARN (por ejemplo, ARNm), por ejemplo, de muestras de tejido congeladas o archivadas incrustadas en parafina y fijadas (por ejemplo, fijadas en formalina) (por ejemplo, muestras de núcleo de tejido guiado por patólogo).
9
5
15
25
35
45
55
65
muestras repetidamente de los productos de reacción. En la PCR cuantitativa, los productos de reacción pueden monitorizarse por medio de un mecanismo de señalización (por ejemplo, fluorescencia) mientras se generan y se controlan después de que la señal ascienda por encima de un nivel de fondo pero antes de que la reacción alcance una meseta. El número de ciclos requerido para lograr un nivel detectable o “umbral” de fluorescencia varíadirectamente con la concentración de dianas amplificables al principio del procedimiento de PCR, permitiendo una medición de la intensidad de señal para proporcionar una medida de la cantidad de ácido nucleico diana en una muestra en tiempo real.
En otra realización, se usan micromatrices para la obtención del perfil de expresión. Las micromatrices son particularmente adecuadas para este fin debido a la reproducibilidad entre diferentes experimentos. Las micromatrices de ADN proporcionan un método para la medición simultánea de los niveles de expresión de grandes números de genes. Cada matriz consiste en un patrón reproducible de sondas de captura unidas a un soporte sólido. El ARN o ADN marcado se hibrida con las sondas complementarias en la matriz y entonces se detectan mediante exploración por láser. Se determinan las intensidades de hibridación para cada sonda en la matriz y se convierten en un valor cuantitativo que representa niveles de expresión génica relativos. Véanse, por ejemplo, las patentes estadounidenses Nos.6.040.138, 5.800.992 y 6.020.135, 6.033.860 y 6.344.316. Las matrices de oligonucleótido de alta densidad son particularmente útiles para determinar el perfil de expresión génica para un gran número de ARN en una muestra.
Técnicas para la síntesis de estas matrices usando métodos de síntesis mecánica se describen en, por ejemplo, la patente estadounidense n. º 5.384.261. Aunque generalmente se usa una superficie de matriz plana, la matriz puede fabricarse sobre una superficie de prácticamente cualquier forma o incluso una multiplicidad de superficies. Las matrices pueden ser ácidos nucleicos (o péptidos) sobre perlas, geles, superficies poliméricas, fibras (tal como fibra óptica), vidrio, o cualquier otro sustrato apropiado. Véanse, por ejemplo, las patentes estadounidenses Nos. 5.770.358, 5.789.162, 5.708.153, 6.040.193 y 5.800.992. Las matrices pueden envasarse de tal manera que se permita el diagnóstico u otra manipulación de un dispositivo todo incluido. Véanse, por ejemplo, las patentes estadounidenses Nos.5.856.174 y 5.922.591.
En una realización específica de la técnica de micromatriz, se aplican insertos amplificados por PCR de clones de ADNc a un sustrato en una matriz densa. Los genes sometidos a micromatriz, inmovilizados en el microchip, son adecuados para la hibridación en condiciones rigurosas. Pueden generarse sondas de ADNc marcadas fluorescentemente a través de la incorporación de nucleótidos fluorescentes mediante transcripción inversa de ARN extraído de tejidos de interés. Las sondas de ADNc marcadas aplicadas al chip se hibridan con especificidad a cada punto de ADN sobre la matriz. Tras lavado riguroso para eliminar sondas no unidas específicamente, se explora el chip mediante microscopía láser confocal o mediante otro método de detección, tal como una cámara de CCD. La cuantificación de hibridación de cada elemento sometido a matriz permite la evaluación de la abundancia de ARNm correspondiente.
Con fluorescencia de color doble, se hibridan por parejas a la matriz sondas de ADNc marcadas por separado generadas a partir de dos fuentes de ARN. Por tanto, la abundancia relativa de los transcritos de las dos fuentes que se corresponden con cada gen especificado se determina simultáneamente. La escala miniaturizada de la hibridación proporciona una evaluación conveniente y rápida del patrón de expresión para grandes números de genes. Se ha mostrado que tales métodos tienen la sensibilidad requerida para detectar transcritos raros, que se expresan en algunas copias por célula, y para detectar reproduciblemente al menos aproximadamente diferencias de dos veces en los niveles de expresión (Schena et al., Proc. Natl. Acad. Sci. USA 93:106-49, 1996). Los análisis de micromatriz pueden realizarse mediante equipo disponible comercialmente, siguiendo los protocolos del fabricante, tales como usar la tecnología GenChip de Affymetrix o tecnología de micromatriz de inyección de tinta de Agilent. El desarrollo de métodos de micromatriz para análisis a gran escala de la expresión génica hace posible buscar de manera sistemática marcadores moleculares de clasificación del cáncer y predicción de desenlace en una variedad de tipos de tumor.
Procesamiento de datos
A menudo es útil procesar previamente los datos de expresión génica, por ejemplo, mediante tratamiento de datos que faltan, traducción, ajuste a escala, normalización, ponderación, etc. Los métodos de proyección de múltiples variables, tales como análisis del componente principal (PCA) y análisis de mínimos cuadrados parcial (PLS), son los denominados métodos sensibles de ajuste a escala. Usando el conocimiento y la experiencia anterior sobre el tipo de datos estudiados, la calidad de los datos antes de la obtención del modelo de múltiples variables puede potenciarse mediante el ajuste a escala y/o la ponderación. El ajuste a escala y/o la ponderación adecuados pueden revelar una variación importante e interesante oculta en los datos, y por tanto hacen que la obtención de modelo de múltiples variables posterior sea más eficaz. El ajuste a escala y la ponderación pueden usarse para colocar los datos en la métrica correcta, basándose en el conocimiento y la experiencia del sistema estudiado, y por tanto revelar patrones ya presentes de manera inherente en los datos.
Si es posible, los datos que faltan, por ejemplo huecos en valores de columna, deberían evitarse. Sin embargo, si es necesario, tales datos que faltan pueden sustituirse o “imputarse” con, por ejemplo, el valor medio de una columna
11
5
10
15
20
25
30
35
40
45
50
55
60
65
disquetes, CD-ROM, DVD, ROM, RAM, y otros dispositivos de almacenamiento informático y de memoria. El programa informático que puede usarse para configurar el ordenador para llevar a cabo las etapas de los métodos y/o registrar los resultados también puede proporcionarse por una red electrónica, por ejemplo, por internet, una intranet, u otra red.
Cálculo de riesgo de recidiva
En el presente documento se proporcionan métodos para predecir desenlace de cáncer de mama dentro del contexto del subtipo intrínseco y opcionalmente otras variables clínicas. Desenlace puede referirse a supervivencia específica de la enfermedad o global, supervivencia libre de acontecimiento o desenlace en respuesta a un tratamiento o una terapia particular. En particular, los métodos pueden usarse para predecir la probabilidad de supervivencia libre de enfermedad, a largo plazo. La “predicción de la probabilidad de supervivencia de una paciente con cáncer de mama” pretende evaluar el riesgo de que una paciente muera como resultado del cáncer de mama subyacente. “Supervivencia libre de enfermedad, a largo plazo” pretende significar que la paciente no muere de o padece una reaparición del cáncer de mama subyacente a lo largo de un periodo de al menos cinco años, o al menos diez o más años, tras el diagnóstico o tratamiento inicial.
En una realización, se predice el desenlace basándose en la clasificación de un sujeto según subtipo. Esta clasificación se basa en la obtención del perfil de expresión usando la lista de genes intrínsecos enumerados en la tabla 1. Tal como se trata en el ejemplo 1, el subtipo de tumor según el modelo PAM50 era más indicativo de respuesta a quimioterapia que la clasificación de marcador clínico convencional. Los tumores clasificados como HER2+ usando marcadores clínicos pero no enriquecidos en HER-2 usando el modelo PAM50 tenían una respuesta completa patológica menor (pCR) a un régimen de paclitaxel, 5-fluorouracilo, adriamicina y ciclofosfamida (T/FAC) que los tumores clasificados como HER2+ clínicamente y que pertenecen al subtipo de expresión enriquecido en HER-2. De manera similar, los tumores de tipo basal que no se puntuaron clínicamente como triple-negativos (ER-, PgR-y HER2-) tenían una pCR más alta en comparación con tumores triple-negativos que no eran de tipo basal mediante PAM50. Por tanto, el modelo PAM50 puede usarse para predecir con más precisión la respuesta a la quimioterapia que los marcadores clínicos convencionales.
Además de proporcionar una asignación de subtipo, el modelo bioinformático PAM50 proporciona una medición de la similitud de una muestra de prueba para los cuatro subtipos que se traduce en una puntuación de riesgo de recidiva (ROR) que puede usarse en cualquier población de pacientes independientemente del estado patológico y las opciones de tratamiento. Los subtipos intrínsecos y ROR también tiene valor en la predicción de respuesta completa patológica en mujeres tratadas con, por ejemplo, quimioterapia de taxano y antraciclina neoadyuvante [Rouzier 2005]. Por tanto, en diversas realizaciones, se usa un modelo de riesgo de recidiva (ROR) para predecir el desenlace. Usando estos modelos de riesgo, los sujetos pueden estratificarse en grupos de riesgo de recidiva bajo, medio y alto. El cálculo de ROR puede proporcionar información de pronóstico para orientar las decisiones de tratamiento y/o monitorizar la respuesta a terapia.
En algunas realizaciones descritas en el presente documento, el rendimiento pronóstico de los subtipos intrínsecos y/u otros parámetros clínicos definidos en PAM50 se evalúa utilizando un análisis de modelo de riesgos proporcionales de Cox, que es un método de regresión para datos de supervivencia que proporciona una estimación de la razón de riesgo y su intervalo de confianza. El modelo de Cox es una técnica estadística bien reconocida para explorar la relación entre la supervivencia de una paciente y variables particulares. Este método estadístico permite la estimación del riesgo de individuos dadas sus variables pronósticas (por ejemplo, perfil de expresión de genes intrínsecos con o sin factores clínicos adicionales, tal como se describió en el presente documento). La “razón de riesgo” es el riesgo de muerte a cualquier punto de tiempo dado para pacientes que presentan variables pronósticas particulares. Véase de manera general Spruance et al., Antimicrob. Agents & Chemo. 48:2787-92, 2004.
El modelo de clasificación PAM50 descrito en el presente documento puede entrenarse para determinar el riesgo de recidiva usando distancias de subtipo (o correlaciones) solas, o usando distancias de subtipo con variables clínicas tal como se trató anteriormente. En una realización, la puntuación de riesgo para una muestra de prueba se calcula usando distancias de subtipo intrínseco solas usando la siguiente ecuación:
ROR = 0,05*Basal + 0,11*Her2 + -0,25*LumA + 0,07*LumB + -0,11*Normal,
en la que las variables “Basal”, “Her2”, “LumA”, “LumB” y “Normal” son las distancias al centroide de cada clasificador respectivo cuando se compara el perfil de expresión de una muestra de prueba con centroides construidos usando los datos de expresión génica depositados con el Gene Expression Omnibus (GEO) como número de registro GSE2845. Puede accederse a estos datos en la dirección de internet www.ncbi.nlm.nih.gov/geo; también es posible que puedan usarse otros conjuntos de datos para derivar coeficientes del modelo de Cox similares. Cuando se usa la lista de genes intrínsecos expuesta en la tabla 1 para desarrollar un modelo de predicción a partir de un conjunto de muestras distinto de las muestras usadas para derivar el conjunto de datos depositado como GSE2845, pueden usarse los métodos descritos en el ejemplo 1 o el ejemplo 3 para construir una fórmula para calcular el riesgo de recidiva a partir de este conjunto de muestrasalternativo.
13 5
15
25
35
45
55
65
La puntuación de riesgo también puede calcularse usando una combinación de subtipo de cáncer de mama y las variables clínicas tamaño del tumor (T) y estado de los ganglios linfáticos (N) usando la siguiente ecuación: ROR (completo) = 0,05*Basal + 0,1*Her2 + -0,19*LumA + 0,05*LumB + -0,09*Normal + 0,16*T + 0,08*N, de nuevo cuando se comparan perfiles de expresión de prueba con centroides construidos usando los datos de expresión génica depositados con GEO como número de registro GSE2845.
Aún en otra realización, la puntuación de riesgo para una muestra de prueba se calcula usando distancias de subtipo intrínseco solas usando la siguiente ecuación:
ROR-S = 0,05*Basal + 0,12*Her2 + -0,34*LumA + 0,023*LumB,
en la que las variables “Basal”, “Her2”, “LumA” y “LumB” son tal como se definieron anteriormente y los perfiles de expresión de prueba se comparan con centroides construidos usando los datos de expresión génica depositados con GEO como número de registro GSE2845.
Aún en otra realización, la puntuación de riesgo también puede calcularse usando una combinación de subtipo de cáncer de mama y la variable clínica tamaño del tumor (T) usando la siguiente ecuación (en la que las variables son tal como se describieron anteriormente):
ROR-C = 0,05*Basal + 0,11*Her2 + -0,23*LumA + 0,09*LumB + 0,17*T.
Predicción de la respuesta a terapia
El cáncer de mama se trata mediante varias estrategias alternativas que pueden incluir, por ejemplo, cirugía, radioterapia, terapia hormonal, quimioterapia o alguna combinación de las mismas. Tal como se conoce en la técnica, las decisiones del tratamiento para pacientes con cáncer de mama individuales pueden basarse en la receptividad endocrina del tumor, el estado menopáusico de la paciente, la ubicación y el número de ganglios linfáticos de la paciente implicados, el estado de receptor de estrógeno y progesterona del tumor, el tamaño del tumor primario, la edad de la paciente y el estadio de la enfermedad en el diagnóstico. El análisis de una variedad de factores clínicos y ensayos clínicos ha conducido al desarrollo de recomendaciones y directrices de tratamiento para cáncer de mama en estadio temprano por el Panel de Consenso Internacional (“International Consensus Panel”) de la conferencia de St. Gallen (2005). Véase, Goldhirsch et al., Annals Oncol. 16:1569-83, 2005. Las directrices recomiendan que a las pacientes se les ofrezca quimioterapia para enfermedad no sensible endocrina; terapia endocrina como terapia principal para enfermedad sensible endocrina, añadiendo quimioterapia para algunos grupos de riesgo intermedio y todos los de riesgo alto en esta categoría; y tanto quimioterapia como terapia endocrina para todas las pacientes en la categoría de respuesta endocrina incierta excepto las que estén en el grupo de riesgo bajo.
La estratificación de pacientes según el riesgo de recidiva usando el modelo PAM50 y la puntuación de riesgo dados a conocer en el presente documento proporcionan un factor de decisión de tratamiento adicional o alternativo. Los métodos comprenden evaluar el riesgo de recidiva usando el modelo de clasificación PAM50 opcionalmente en combinación con una o más variables clínicas, tales como estado de los ganglios, tamaño del tumor y estado de ER. La puntuación de riesgo puede usarse para orientar las decisiones de tratamiento. Por ejemplo, un sujeto que tiene una puntuación de riesgo bajo puede que no se beneficie de determinados tipos de terapia, mientras que un sujeto que tiene una puntuación de riesgo alto puede estar indicado para una terapia más agresiva.
Los métodos de la divulgación encuentran uso particular en la elección del tratamiento apropiado para pacientes con cáncer de mama en estadio temprano. La mayoría de las pacientes con cáncer de mama diagnosticadas en un estadio temprano de la enfermedad disfrutan de supervivencia a largo plazo tras cirugía y/o radioterapia sin terapia adyuvante adicional. Sin embargo, un porcentaje significativo (aproximadamente el 20%) de estas pacientes padecerá reaparición de la enfermedad o muerte, conduciendo a la recomendación clínica de que algunas o todas las pacientes con cáncer de mama en estadio temprano deben recibir terapia adyuvante. Los métodos de la divulgación encuentran uso en la identificación de esta población de mal pronóstico, de riesgo alto de pacientes con cáncer de mama en estadio temprano y en la determinación de ese modo de qué pacientes se beneficiarían de terapia continuada y/o más agresiva y monitorización estrecha tras el tratamiento. Por ejemplo, las pacientes con cáncer de mama en estadio temprano que se ha evaluado que tienen una puntuación de riesgo alto mediante los métodos dados a conocer en el presente documento pueden seleccionarse para una terapia adyuvante más agresiva, tal como quimioterapia, tras cirugía y/o tratamiento con radiación. En realizaciones particulares, los métodos de la divulgación pueden usarse junto con las directrices de tratamiento establecidas por la conferencia de St. Gallen para permitir a los médicos tomar decisiones de tratamiento del cáncer de mama más informadas.
En diversas realizaciones, el modelo de clasificación PAM50 proporciona información sobre subtipos de cáncer de mama que no puede obtenerse usando ensayos clínicos convencionales tales como inmunohistoquímica u otros análisis histológicos. Por ejemplo, los sujetos que se han clasificado como receptor de estrógeno (ER)-positivos y/o receptor de progesterona (PR)-positivos podrían estar indicados según las directrices convencionales para la terapia
14 5
15
25
35
45
55
65
endocrina. Tal como se trata en el ejemplo 2, el modelo dado a conocer en el presente documento puede identificar un subconjunto de estos casos ER+/PgR+ que se clasifican como de tipo basal, lo que puede indicar la necesidad de terapia más agresiva que no estaría indicada basándose sólo en el estado de ER o PgR.
Por tanto, los métodos dados a conocer en el presente documento también encuentran uso en la predicción de la respuesta de una paciente con cáncer de mama a un tratamiento seleccionado. “Predicción de la respuesta de una paciente con cáncer de mama a un tratamiento seleccionado” pretende significar evaluar la probabilidad de que una paciente experimente un desenlace positivo o negativo con un tratamiento particular. Tal como se usa en el presente documento, “indicativo de un desenlace de tratamiento positivo” se refiere a un aumento de la probabilidad de que la paciente experimente resultados beneficiosos a partir del tratamiento seleccionado (por ejemplo, remisión completa
o parcial, reducción del tamaño del tumor, etc.). “Indicativo de un desenlace de tratamiento negativo” pretende significar un aumento de la probabilidad de que la paciente no se beneficie del tratamiento seleccionado con respecto a la progresión del cáncer de mama subyacente.
En algunas realizaciones, el tiempo relevante para evaluar el pronóstico o el tiempo de supervivencia libre de enfermedad empieza con la eliminación quirúrgica del tumor o la supresión, mitigación o inhibición del crecimiento tumoral. En otra realización, la puntuación de riesgo basada en PAM50 se calcula basándose en una muestra obtenida tras el inicio de la terapia neoadyuvante tal como terapia endocrina. La muestra puede tomarse a cualquier tiempo tras el inicio de la terapia, pero preferiblemente se obtiene tras aproximadamente un mes de modo que la terapia neoadyuvante pueda cambiarse a quimioterapia en pacientes que no responden. Se ha mostrado que un subconjunto de tumores indicados para el tratamiento endocrino antes de la cirugía no responde a esta terapia. El modelo proporcionado en el presente documento puede usarse para identificar tumores agresivos que es probable que no respondan a la terapia endocrina, incluso cuando los tumores son positivos para receptores de estrógeno y/o progesterona. En esta realización, se obtiene una puntuación de riesgo de PAM50 ponderada para la proliferación según la siguiente ecuación: RSp = (-0,0129*Basal) + (0,106*Her2) + (-0,112*LumA) + (0,039*LumB) + (0,069*Normal) + (0,272*Prolif), en la que la puntuación de proliferación (“prolif”) se asigna como la medición media de los siguientes genes (tras la normalización): CCNB1, UBE2C, BIRC5, KNTC2, CDC20, PTTG1, RRM2, MK167, TYMS, CEP55 y CDCA 1. Todas las otras variables son las mismas que las ecuaciones de RS descritas a continuación. Tal como se trata en el ejemplo 2, la evaluación de la puntuación de riesgo tras el inicio de la terapia es más predictivo del desenlace al tratamiento, al menos en una población de pacientes ER+ que están sometiéndose a terapia endocrina neoadyuvante.
Kits
Como se define en el conjunto de reivindicaciones anexas, la presente invención proporciona kits útiles para clasificar subtipos intrínsecos de cáncer de mama y/o proporcionar información de pronóstico. Estos kits descritos aquí comprenden un conjunto de sondas de captura y/o cebadores específicos para los genes intrínsecos enumerados en la tabla 1, así como reactivos suficientes para facilitar la detección y/o la cuantificación del producto de la expresión de genes intrínsecos. El kit puede comprender además un medio legible por ordenador.
En una realización, las sondas de captura están inmovilizadas sobre una matriz. Por “matriz” se pretende decir un soporte sólido o un sustrato con sondas peptídicas o de ácido nucleico unidas al soporte o sustrato. Las matrices comprenden normalmente una pluralidad de diferentes sondas de captura que están acopladas a una superficie de un sustrato en diferentes ubicaciones conocidas. Las matrices comprenden un sustrato que tiene una pluralidad de sondas de captura que pueden unirse específicamente a un producto de expresión de genes intrínsecos. El número de sondas de captura sobre el sustrato varía con el fin para el que la matriz esté prevista. Las matrices pueden ser matrices de baja densidad o matrices de alta densidad y pueden contener 4 o más, 8 o más, 12 o más, 16 o más, 32
o más direcciones, pero como mínimo comprenderán sondas de captura para los 50 genes intrínsecos enumerados en la tabla 1.
Se describen técnicas para la síntesis de estas matrices usando métodos de síntesis mecánica en, por ejemplo, la patente estadounidense No. 5.384.261. La matriz puede fabricarse sobre una superficie de prácticamente cualquier forma o incluso una multiplicidad de superficies. Las matrices pueden ser sondas (por ejemplo, sondas de unión a ácido nucleico) sobre perlas, geles, superficies poliméricas, fibras tales como fibras ópticas, vidrio o cualquier otro sustrato apropiado, véanse las patentes estadounidenses Nos.5.770.358, 5.789.162, 5.708.153, 6.040.193 y
5.800.992. Las matrices pueden envasarse de una manera tal como para permitir el diagnóstico u otra manipulación en el dispositivo. Véase, por ejemplo, las patentes estadounidenses Nos.5.856.174 y 5.922.591.
En otra realización, el kit comprende un conjunto de cebadores oligonucleotídicos suficientes para la detección y/o cuantificación de cada uno de los genes intrínsecos enumerados en la tabla 1. Los cebadores oligonucleotídicos pueden proporcionarse en forma liofilizada o reconstituida, o pueden proporcionarse como un conjunto de secuencias de nucleótidos. En una realización, los cebadores se proporcionan en un formato de microplaca, en el que cada conjunto de cebadores ocupa un pocillo (o múltiples pocillos, como es el caso de replicados) en la microplaca. La microplaca puede comprender además suficientes cebadores para la detección de uno o más genes de mantenimiento tal como se trata a continuación. El kit puede comprender además reactivos e instrucciones suficientes para la amplificación de productos de expresión a partir de los genes enumerados en la tabla 1.
15
5
15
25
35
45
55
65
muestra de referencia y el control negativo. El ADNc de muestra de referencia estaba compuesto por una contribución igual de ARN total de referencia humano (Stratagene, La Jolla, CA) y las líneas celulares de mama MCF7, ME16C y SKBR3. Se realizó la amplificación por PCR con el instrumento LightCycler 480 (Roche Applied Science, Indianápolis, IN) usando una etapa de desnaturalización inicial (95ºC, 8 minutos) seguida por 45 ciclos de desnaturalización (95ºC, 4 segundos), apareamiento (56ºC, 6 segundos con transición de 2,5ºC/s) y extensión (72ºC, 6 segundos con transición de 2ºC/s). Se adquirió la fluorescencia (530 nm) del colorante SYBR Green I de ADNbc cada ciclo tras la etapa de extensión. Se determinó la especificad de la PCR mediante el análisis de la curva de fusión tras la amplificación, se enfriaron las muestras hasta 65ºC y se calentaron lentamente a de 2ºC/s a 99ºC mientras se monitorizaba continuamente la fluorescencia (10 adquisiciones/1ºC). Se determinó el número relativo de copias para cada gen a partir de un conjunto de calibrador intraserial a 10 ng y usando una eficacia de PCR de 1,9. Se normalizó cada uno de los genes del clasificador PAM50 a la media geométrica de 5 genes de mantenimiento.
Micromatriz:
Se realizaron aislamiento, etiquetado e hibridaciones de ARN total en micromatrices 1Av2 humanas de Agilent o matrices 22k humanas de Agilent diseñadas a medida usando el protocolo descrito en Hu et al (6). Todos los datos
de las micromatrices se han depositado en GEO (dirección de internet www.ncbi.nlm.nih.gov/geo/) con el número de registro de GSE10886. En la tabla 4 se facilitan fuentes para todos los conjuntos de datos de entrenamiento y de prueba de micromatriz.
Procesamiento previo de datos de micromatriz:
Los datos de micromatriz para el conjunto de entrenamiento (189 muestras) se extrajeron de la base de datos de micromatrices de la Universidad de Carolina del Norte (UNC). Se normalizaron al nivel inferior las intensidades de señal sin procesar de ambos canales mediante chip y se excluyeron las sondas del análisis de datos si no tenían una intensidad de señal de al menos 30 en ambos canales para al menos el 70% de los experimentos. Los datos
normalizados para este conjunto se han colocado en GEO (GSE10886). Se obtuvo el centro mediano del conjunto de entrenamiento y se asignaron símbolos de genes usando la anotación proporcionada por el fabricante. Los símbolos de genes duplicados se agruparon obteniendo el promedio en cada muestra.
Se descargaron datos normalizados para todos los conjuntos de prueba de GEO (GSE2845, GSE6532, GSE4922, GSE2034, GSE10886) o de los datos públicamente disponibles en la dirección de internet bioinformatics.mdanderson.org/pubdata (véase la tabla 5). Se transformaron logarítmicamente todas las medidas de intensidad (razones para los datos del NKI). Antes del cálculo del centroide más cercano, se obtuvo el centro mediano de los conjuntos de datos de Hess et al. (bioinformatics.mdanderson.org/pubdata), van de Vijver et al. (GSE2845), y Wang et al. (GSE2034) para minimizar los efectos de plataforma. El ajuste de esta forma supone una toma de muestras relativamente similar de la población como conjunto de entrenamiento. Los conjuntos de datos de Loi et al. (GSE6532) e Ivshina et al. (GSE4922) se enriquecieron en gran medida para las muestras de ER+ en relación con el conjunto de entrenamiento, por tanto puede violarse la suposición subyacente para estos conjuntos. En estos dos casos, los genes en el conjunto de entrenamiento se centraron a la mediana de las muestras de ER+ (en contraposición a la mediana para todas las muestras). Al igual que con el conjunto de entrenamiento, se asignaron símbolos de genes usando la anotación proporcionada por el fabricante y se agruparon los símbolos de genes duplicados obteniendo el promedio en cada muestra.
Identificación de genes y muestras de subtipo intrínseco prototipo:
Se usó inicialmente un conjunto de genes “intrínsecos” expandido, compuesto principalmente por genes encontrados en 4 estudios previos (1, 6, 9, 11), para identificar muestras de tumor prototipo. Se representó la clase de tipo normal usando “valores normales” verdaderos a partir de mamoplastia de reducción o tejido no implicado a simple vista. Se analizaron 189 tumores de mama a través de 1906 genes “intrínsecos” mediante agrupamiento jerárquico (obtención de centro mediano por característica/gen, correlación de Pearson, agrupamiento promedio) (12) y se analizó el dendograma de muestras usando “SigClust”(13). El algoritmo SigClust identifica estadísticamente grupos significativos/únicos sometiendo a prueba la hipótesis nula de que un grupo de muestras procede de un único grupo, donde un grupo se caracteriza como una distribución normal de múltiples variables. Se ejecutó SigClust en cada nodo del dendograma comenzando en la raíz y deteniéndose cuando la prueba ya no era significativa (p > 0,001).
Reducción del conjunto de genes usando muestras prototipo y qRT-PCR:
2 cánceres de mama de 189 mujeres de las que se había obtenido el perfil mediante qRT-PCR y micromatriz tenían perfiles prototipo tal como se determina mediante SigClust (tabla 2). Se derivó un conjunto de genes minimizado de estas muestras prototipo usando los datos de qRT-PCR para 161 genes que pasaban los criterios de rendimiento de FFPE establecidos en Mullins et al (14). Se emplearon varios métodos de minimización incluyendo los “N” mejores datos estadísticos de la prueba de la t para cada grupo (15), las mejores puntuaciones de índice de agrupamiento
(16) y los genes restantes tras la “contracción” de los datos estadísticos de la prueba de la t modificados (17). Se usó validación cruzada (10% al azar omitido en cada uno de 50 ciclos) para evaluar la robustez de los conjuntos de
17
5
10
15
20
25
30
35
40
45
50
55
60
65
Se evaluaron los factores pronóstico clínicos y moleculares de supervivencia en análisis de una variable y de múltiples variables en 1451 pacientes (tabla 5). En el análisis de una variable, se encontró que todos los subtipos de LumA, LumB y enriquecido en HER-2 eran significativos, como lo eran las variables clínicas ER, T y N. Los subtipos de LumA y enriquecido en HER-2 y las variables clínicas también fueron significativas en los análisis de múltiples variables, lo que sugiere que el modelo más amplio debe incluir información clínica y de subtipo. Al someter a prueba esta hipótesis se reveló que el modelo combinado representa significativamente más variación en supervivencia que cualquiera de las variables clínicas o de subtipo solas (p<0,0001 para ambas pruebas).
Distribución de subtipos biológicos a través de tumores positivos para ER y negativos para ER:
De todos los tumores positivos para ER en el conjunto de prueba de micromatriz combinado, el 73% eran luminales (A y B), el 10% estaban enriquecidos en HER2 y el 5% eran de tipo basal (tabla 6). A la inversa, cuando se consideraban los tumores negativos para ER, aproximadamente el 13% eran luminales (A y B), el 31% estaban enriquecido en HER-2 y el 48% eran de tipo basal. Los tumores identificados como de subtipo de tipo normal estaban divididos casi por igual entre tumores positivos para ER (11%) y negativos para ER (8%). Por tanto, aunque la representación de subtipos cambió notablemente en distribución dependiendo del estado de ER, todos los subtipos estaban representados en ambas categorías de positivos para ER y negativos para ER. Los diagramas de desenlaces para los subtipos en casos positivos para ER solo fueron significativos para la supervivencia libre de recidiva y siguieron las mismas tendencias que se observaron cuando se consideraba toda la enfermedad de mama invasiva.
Subtipos y respuesta a tratamiento neoadyuvante con T/FAC:
El estudio de Hess et al. que realizaron micromatrices en tumores para pacientes a las que se administró un régimen de paclitaxel, 5-fluorouracilo adriamicina y ciclofosfamida (T/FAC) (19) permitió la investigación de la relación entre los subtipos de PAM50, marcadores clínicos y cómo se relaciona cada uno con una respuesta patológica completa (pCR). Para el estado de HER2, el 64% de los tumores que eran positivos para HER2 mediante el ensayo clínico (FISH+ y/o IHC 3+, denominado HER2+clin) se clasificaron en el subtipo de expresión enriquecido en HER-2, estando el resto de HER2+clin asociado principalmente con los subtipos luminales. Los tumores que eran HER2+clin pero no del subtipo de expresión enriquecido en HER-2 tenían una tasa de pCR baja (16%) frente a los que eran HER2+clin y subtipo de expresión enriquecido en HER-2 (52%).
Otra distinción clínica relevante es la clasificación de tumores “triple negativos” (ER-, PgR-y HER2-), de los cuales el 65% se denominaron de tipo basal por PAM50, denominándose el resto enriquecido en HER-2 (15%), LumA (4%), LumB (4%) y de tipo normal (12%). La clasificación de PAM50 de tipo basal parece ser superior al triple negativo clínico con respecto a la tasa de pCR porque los tumores de tipo basal que no se clasificaron como triples negativos tuvieron un 50% de pCR en comparación con los tumores triples negativos que no eran de tipo basal por PAM50 (22% de pCR, tabla 7).
Predicción de riesgo basada en subtipo biológico:
Se desarrolló un clasificador de riesgo supervisado para predecir desenlaces dentro del contexto de los subtipos intrínsecos y variables clínicas. Se seleccionó una cohorte no tratada del conjunto de datos de micromatriz de NKI para entrenar el modelo de riesgo de recidiva (ROR) y seleccionar puntos de corte. Se validaron dos modelos de Cox (uno basado en el subtipo solo y otro basado en el subtipo, el tamaño del tumor y el estado de los ganglios) usando el conjunto de prueba de micromatriz combinado. Excluyendo las variables clínicas, el modelo sólo de subtipo funcionó bien en la estratificación de pacientes en grupos de riesgo de recidiva bajo, medio y alto (índice de c=0,65 [0,61-0,69]); sin embargo, el modelo completo (subtipo, tamaño del tumor, estado de los ganglios) funcionó mejor (índice de c=0,70 [0,66-0,74]) y, en la práctica, el estadio es un parámetro que es necesario tener en cuenta (figura 2). La figura 3 muestra la probabilidad de supervivencia libre de recidiva a los 5 años representada gráficamente como una escala lineal continua usando el modelo completo.
Se aplicó el clasificador PAM50, sometido a ensayo mediante qRT-PCR, a una cohorte tratada de manera heterogénea archivada entre 1976 y 1995. Las clasificaciones de subtipo siguieron las mismas tendencias de supervivencia que las observadas en los datos de micromatriz y la puntuación de ROR fue significativa para predicciones de recidiva a largo plazo. Este conjunto de muestras de edad anciana también se puntuó para marcadores clínicos convencionales (ER y HER2) mediante inmunohistoquímica (IHC) y se comparó con la prueba basada en expresión génica. El análisis de ESR1 y ERBB2 mediante la expresión génica mostró alta sensibilidad y especificidad en comparación con el ensayo de IHC.
Discusión
Se desarrolló el clasificador PAM50 usando un conjunto de muestras y genes derivado estadísticamente y se validó a través de múltiples cohortes y plataformas con el intento de suministrar una prueba de diagnóstico clínico para los subtipos intrínsecos de cáncer de mama. Los conjuntos de prueba grandes y diversos permitieron la evaluación del
19
Tabla 5. Análisis de múltiples variables y de una variable usando 1451 muestras de un conjunto de prueba de micromatriz combinado con datos clínicos
- Variable
- Una variable Múltiples variables* (subtipo) Múltiples variables* (clínico) Múltiples variables*†‡ (subtipo + clínico)
- Coeficiente
- Valor de p Coeficiente Valor de p Coeficiente Valor de p Coeficiente Valor de p
- De tipo basal
- 0,14 0,25 0,12 5,10E-01 - -0,11 5,50E01
- Enriquecido en HER
- 0,62 1,00E-08 0,53 1,60E-03 - 0,35 4,00E02
- LumA
- -0,94 1,00E-22 -0,67 6,20E-05 - -0,64 1,60E04
- LumB
- 0,42 5,60E-06 0,3 5,50E-02 - 0,24 1,30E01
- Estado de ER
- -0,47 1,80E-06 - - -0,5 5,50E-07 -0,37 3,00E03
- Tamaño del tumor
- 0,62 3,50E-12 - - 0,54 6,10E-09 0,47 5,30E07
- Estado de los ganglios
- 0,37 2,80E-05 - - 0,24 1,10E-02 0,19 5,00E02
- *Clase de tipo normal usada como estado de referencia ^Las variables significativas están en cursiva † p = 4e-10 (mediante la prueba de razón de verosimilitud) para comparación con el modelo de subtipo‡ = 2e-13 (mediante la prueba de razón de verosimilitud) para comparación con el modelo clínico
Tabla 6. Distribución de subtipos intrínsecos mediante estado de ER
- Conjunto de prueba
- Estado de ER No. muestras de % de LumA % de LumB % enriquecido HER2 de en % de basal tipo % de tipo normal
- UNC
- Positivo para ER 137 44% 35% 7% 4% 9%
- Negativo para ER
- 107 7% 5% 19% 51% 18%
- Hess et al
- Positivo para ER 82 44% 32% 10% 1% 13%
- Negativo para ER
- 51 2% 2% 41% 51% 4%
- Ivshina et al
- Positivo para ER 211 42% 29% 11% 8% 9%
- Negativo para ER
- 34 9% 15% 35% 38% 3%
- Loi et al
- Positivo para ER 349 39% 38% 8% 7% 8%
- Negativo para ER
- 45 18% 9% 33% 27% 13%
- van de Vijver et al
- Positivo para ER 225 39% 31% 14% 4% 12%
52
PAM50 de nivel inicial no predijo los desenlaces con neoadyuvante o a largo plazo de manera muy eficaz (tabla 11).
Sin embargo, los tumores que se designaron de alto riesgo al mes mostraron correlaciones significativas con malos desenlaces en los cuatro criterios de valoración examinados, es decir mala respuesta clínica (P=0,02), descenso del 5 estadio TNM patológico bajo (p=0,02), valor de Ki67 desfavorable al fin del tratamiento (P=0,0001) y recidiva (p=0,001) (tabla 12).
Por tanto, puede usarse la aplicación de la puntuación de riesgo y subtipo intrínseco basados en PAM50 para muestras de tumor recogidas de cánceres de mama ER+ primarios que se someten a tratamiento prequirúrgico con 10 un agente para los siguientes fines:
1) Predicción de ausencia de respuesta a la terapia endocrina neoadyuvante
2) Determinación del pronóstico para pacientes con cáncer de mama ER+ que se someten posteriormente a 15 tratamiento endocrino adyuvante.
Tabla 8. Grupo de riesgo ponderado por proliferación y subtipo de PAM50 que cambia al mes tras el tratamiento.
- Categoría de cambio
- Número Porcentaje
- Cambios de subtipo intrínseco de PM50
- De LumA a LumA
- 18 31,0
- De LumA a LumB
- 1 1,7
- De LumA a no Lum
- 0 0
- De LumB a LumA
- 29 50,0
- De LumB a LumB
- 6 10,3
- De LumB a no Lum
- 1 1,7
- De no Lum a no Lum
- 1 1,7
- De no Lum a LumA
- 0 0
- De no Lum a LumB
- 2 3,4
- Total
- 58 100
- Puntuación de riesgo de PAM50 ponderada por proliferación
- De baja a baja
- 5 8,6
- De baja a media
- 1 1,7
- De baja a alta
- 0 0
- De media a baja
- 7 12,1
- De media a media
- 12 20,7
- De media a alta
- 1 1,7
- De alta a baja
- 11 19
- De alta a media
- 14 24,1
- De alta a alta
- 7 12,1
- Total
- 58 100
20 Tabla 9. Interacciones entre designaciones de subtipo intrínseco de PAM50 de nivel inicial y desenlaces de terapia endocrina neoadyuvante.
- Subtipo o puntuación en el nivel inicial
- Criterio de valoración de fin del estudio Número/total % de desenlaces favorables Valor de P interacción en la
- Subtipo
- Respuesta clínica CR+PR frente a SD+PD 0,54
56
- LumA
- 28/76 60,71
- LumB
- 42/76 69,05
- No Lum†
- 6/76 50,00
- Tamaño del tumor patológico*≤2 cm frente a >2 cm
- 0,29
- LumA
- 29/78 37,79
- LumB
- 43/78 48,84
- No Lum†
- 6/78 16,67
- Ki67 en log normal# ≤ log 1,0 frente a >1,0
- 0,03
- LumA
- 30/29 66,67
- LumB
- 43/79 37,21
- No Lum†
- 6/79 33,33
- Recidiva Sí frente a No
- 0,262
- LumA
- 30/78 90,00
- LumB
- 42/78 90,4762
- No Lum†
- 6/78 66,67
- * Puesto que todas las pacientes tenían enfermedad en estadio clínico 2 o 3, el estadio patológico del tumor uno y cirugía se consideraron como evidencia de descenso del estadio TNM satisfactorio. Se supone que los tumores que evolucionaron durante la terapia y se sometieron a quimioterapia neoadyuvante tienen un tamaño T patológico mayor de 2 cm al final del estudio. # Ki67 de fin del estudio se define como o bien la muestra quirúrgica o bien el valor al mes si la paciente evolucionó con terapia endocrina neoadyuvante y se sometió a quimioterapia o no se sometió a cirugía. †No luminal se refiere a muestras designadas de tipo basal o enriquecidas en HER2. No se incluye de tipo normal en este análisis porque se supone que estas muestras no contienen suficientes células tumorales para la subtipificación adecuada.
Tabla 10. Interacciones entre designaciones de subtipo intrínseco de PAM50 al mes con tratamiento y desenlaces de terapia endocrina neoadyuvante.
- Subtipo de PAM50 al mes
- Criterio de valoración de fin del estudio Número/total % de desenlaces favorables Valor de P en la interacción
- Subtipo
- Respuesta clínica CR+PR frente a SD + PD 0,01
- LumA
- 45/56 75,56
- LumB
- 9/56 44,44
- No Lum†
- 2/56 0
- Tamaño del tumor patológico*≤2 cm frente a >2 cm
- 0,41
- LumA
- 46/57 47,83
57
- LumB
- 9/57* 22,22
- No Lum†
- 2/57 50,00
- Ki67 en log normal# ≤ log 1,0 frente a >1,0
- 0,0003
- LumA
- 47/58 61,70
- LumB
- 9/58 0
- No Lum†
- 2/58 0
- Recidiva Sí frente a No
- 0,009
- LumA
- 45/53 93,62
- LumB
- 7/53 57,14
- No Lum†
- 2/53 50,00
- * Puesto que todas las pacientes tenían enfermedad en estadio clínico 2 o 3, el estadio patológico del tumor uno y cirugía se consideraron como evidencia de descenso del estadio TNM satisfactorio. Se supone que los tumores que evolucionaron durante la terapia y se sometieron a quimioterapia neoadyuvante tienen un tamaño T patológico mayor de 2 cm al final del estudio. # Ki67 de fin del estudio se define como o bien la muestra quirúrgica o bien el valor al mes si la paciente evolucionó con terapia endocrina neoadyuvante y se sometió a quimioterapia o no se sometió a cirugía. †No luminal se refiere a muestras designadas de tipo basal o enriquecidas en HER2. No se incluye de tipo normal en este análisis porque se supone que estas muestras no contienen suficientes células tumorales para la subtipificación adecuada.
Tabla 11. Interacciones entre designaciones de puntuación de riesgo ponderado por proliferación de PAM50 de nivel inicial y desenlaces de terapia endocrina neoadyuvante
- Puntuación de riesgo, con proliferación en nivel inicial
- Criterio de valoración de fin del estudio Número/total % de desenlaces favorables Valor de P en la interacción †
- Respuesta clínica CR+PR frente a SD + PD
- 0,4573
- Baja
- 9/76 44,44
- Media
- 28/76 67,79
- Alta
- 39/76 66,67
- Tamaño del tumor patológico* ≤2 cm frente a >2 cm
- 1,0
- Baja
- 9/78 44,44
- Media
- 29/78 41,38
- Alta
- 37/78 42,50
- Ki67 en log normal# ≤ log 1,0 frente a>1,0
- 0,03431
- Baja
- 9/79 77,78
58
- Media
- 30/79 56,67
- Alta
- 40/79 35,00
- Recidiva Sí frente a No
- 0,1191
- Baja
- 9/74 77,78
- Media
- 29/74 96,67
- Alta
- 36/74 84,62
- * Puesto que todas las pacientes tenían enfermedad en estadio clínico 2 o 3, el estadio patológico del tumor uno y cirugía se consideraron como evidencia de descenso del estadio TNM satisfactorio. Se supone que los tumores que evolucionaron durante la terapia y se sometieron a quimioterapia neoadyuvante tienen un tamaño T patológico mayor de 2 cm al final del estudio. # Ki67 de fin del estudio se define como o bien la muestra quirúrgica o bien el valor al mes si la paciente evolucionó con terapia endocrina neoadyuvante y se sometió a quimioterapia o no se sometió a cirugía. †No luminal se refiere a muestras designadas de tipo basal o enriquecidas en HER2. No se incluye de tipo normal en este análisis porque se supone que estas muestras no contienen suficientes células tumorales para la subtipificación adecuada.
Tabla 12. Interacciones entre puntuación de riesgo ponderada por proliferación de PAM50 al mes con tratamiento y desenlaces de terapia endocrina neoadyuvante
- Puntuación de riesgo ponderada por proliferación de PAM50 al mes
- Criterio de valoración de fin del estudio Número/total % de desenlaces favorables Valor de P en la interacción
- Respuesta clínica CR+PR frente a SD + PD
- 0,02
- Baja
- 21/56 80,95
- Media
- 27/56 70,37
- Alta
- 8/56 25,00
- Tamaño del tumor patológico*≤2 cm frente a >2 cm
- 0,02
- Baja
- 23/57 47,83
- Media
- 26/57 53,85
- Alta
- 8/57 0
- Ki67 en log normal# ≤ log 1,0 frente a >1,0
- 0,0001
- Baja
- 23/58 78,26
- Media
- 27/58 40,74
- Alta
- 8/58 0
- Recidiva Sí frente a No
- 0,001
- Baja
- 23/56 95,65
59
Modelos de riesgo de recidiva para pronóstico en cáncer de mama negativo para ganglios
Se sometieron a prueba modelos de Cox usando el subtipo intrínseco solo y junto con variables clínicas. La tabla 13
5 muestra los análisis de múltiples variables de estos modelos en una cohorte independiente de pacientes no tratadas (véase el ejemplo 1). En el modelo A, se encontró que los subtipos, el tamaño del tumor (T1 o mayor) y el grado histológico eran factores significativos para ROR. Se encontró que la gran mayoría de los tumores de tipo basal (95,9%) eran de grado medio o alto, y por tanto, en el modelo B, que es un análisis sin grado, el tipo basal se convierte en significativo. El modelo C muestra la significación de los subtipos en la población negativa para
10 ganglios. Todos los modelos que incluyeron el subtipo y las variables clínicas fueron significativamente mejores que cualquiera de las variables clínicas solas (P<0,0001) o el subtipo solo (P<0,0001). Se entrenó un clasificador de recidiva para predecir desenlaces dentro del contexto de los subtipos intrínsecos y variables clínicas. Se seleccionó una cohorte de tratamiento no sistémico, negativa para ganglios (n=141) del conjunto de datos de micromatriz de Vijver et al. (2002) para entrenar el modelo de ROR y para seleccionar puntos de corte. Hubo una clara mejoría en la
15 reducción con subtipo (ROR-S) en relación con el modelo de variables clínicas disponibles sólo (véase Parker et al. (2009) J Clin Oncol 27(8):1160-1167). Una combinación de variables clínicas y subtipo (ROR-C) también es una mejora significativa con respecto a cualquier factor pronóstico individual. Sin embargo, la información sobre el grado no mejoró significativamente el índice C en el modelo combinado, lo que indica que el valor pronóstico del grado se ha sustituido por la información proporcionada por el modelo de subtipo intrínseco. Cuando se usa ROR-C para
20 ROR en un conjunto de prueba pronóstico de pacientes no tratadas negativas para ganglios, sólo el grupo de LumA contenía pacientes con bajo riesgo y la distinción de tres clases de riesgo bajo, medio y alto fue pronóstico. Además, las puntuaciones de RORC tienen una relación lineal con probabilidad de recidiva a los 5 años.
Tabla 13. Modelos de supervivencia libre de recidiva (no tratada) 25
- Variable
- Modelo A Modelo B Modelo C
- Razón de riesgo
- p Razón de riesgo p Razón de riesgo p
- De tipo basal*
- 1,33 0,33 1,79 0,3 1,58 0,066
- Enriquecido en HER*
- 2,53 0,00012 3,25 <0,0001 2,9 <0,0001
- LumB*
- 2,43 <0,0001 2,88 <0,0001 2,54 <0,0001
- Estado de ER†
- 0,83 0,38 0,83 0,34 0,83 0,32
- Tamaño del tumor‡
- 1,36 0,034 1,43 0,012 1,57 0,001
- Estado de los ganglios§
- 1,75 0,035 1,72 0,041 - -
- Grado histológico||
- 1,4 0,0042 - - - -
- Completo frente a subtipo¶
- <0,0001 <0,0001 <0,0001
- Completo frente a clínico#
- <0,0001 <0,0001 <0,0001
- *Clase luminal A usada como estado de referencia en análisis de múltiples variables. †Razones de riesgo para ER usando marcador positivo en el numerador. ‡Tamaño ≤ 2 cm frente a > 2 cm. §Cualquier ganglio positivo. ||Grado codificado como una variable ordinal con tres niveles. ¶Los valores de P significativos indican predicción mejorada en relación con subtipo solo.#Los valores de P significativos indican predicción mejorada en relación con datos clínicos solos.
Subtipos y predicción de respuesta a tratamiento neoadyuvante con T/FAC
El estudio de Hess et al. (2006) que realizó micromatriz sobre tumores de pacientes tratadas con T/FAC permitió la
30 investigación de la relación entre los subtipos y marcadores clínicos y cómo se relaciona cada uno con pCR>. La tabla 14 muestra los análisis de múltiples variables de los subtipos junto con marcadores moleculares clínicos (ER. PR, HER2) y o bien con (modelo A) o bien sin (modelo B) grado histológico. Las únicas variables significativas en el contexto de este estudio fueron los subtipos intrínsecos. Se encontró un 94% de sensibilidad y un 97% de valor
61
predictivo negativo para identificar pacientes que no responden a quimioterapia cuando se usa el modelo de ROR-S para predecir pCR. La relación entre puntuaciones de riesgo alto y una probabilidad más alta de pCR es compatible con la conclusión de que los tumores positivos para ER indolentes (LumA) responden menos a quimioterapia. Sin embargo, a diferencia de ROR para pronóstico, parece alcanzarse una meseta para el ROR frente a la probabilidad de pCR, lo que confirma la presencia de resistencia a quimioterapia significativa entre los tumores de riesgo más alto.
Tabla 14. Modelos de respuesta neoadyuvante
- Variable
- Modelo A Modelo B Modelo C
- Razón de probabilidades
- P Razón de probabilidades P Razón de probabilidades P
- De tipo basal*
- 1,33 0,33 1,79 0,3 1,58 0,066
- Enriquecido en HER*
- 2,53 0,00012 3,25 <0,0001 2,9 <0,0001
- LumB*
- 2,43 <0,0001 2,88 <0,0001 2,54 <0,0001
- Estado de ER†
- 0,83 0,38 0,83 0,34 0,83 0,32
- Estado de PR†
- 1,36 0,034 1,43 0,012 1,57 0,001
- Grado histológico‡
- 1,4 0,0042 - - - -
- Completo frente a subtipo§
- <0,0001 <0,0001 <0,0001
- Completo frente a clínico||
- <0,0001 <0,0001 <0,0001
- *Clase luminal A usada como estado de referencia en análisis de múltiples variables. †Razones de riesgo para ER, PR y HER2 son marcadores positivos en el numerador. ‡Grado codificado como una variable ordinal con tres niveles. §Los valores de P significativos indican predicción mejorada en relación con subtipo solo.||Los valores de P significativos indican predicción mejorada en relación con datos clínicos solos.
10 Ejemplo 4.
En este estudio, se usó qRT-PCR y puntos de corte previamente establecidos (véase el ejemplo 1) para evaluar el valor pronóstico del clasificador PAM50 en el grupo de mujeres común, clínicamente importante que son positivas
15 para receptor de estrógeno y se trataron con tamoxifeno como su única terapia sistémica adyuvante. A diferencia de la mayoría de informes previos, esta cohorte del estudio tratada homogéneamente incluye una gran proporción de pacientes positivas para ganglios linfáticos. El seguimiento a largo plazo detallado disponible permite la evaluación no sólo de la supervivencia libre de recidiva, sino también del riesgo de muerte específica por enfermedad de cáncer de mama, en comparación con todos los factores de riesgo clinicopatológicos convencionales.
20 Métodos
Pacientes:
25 La cohorte del estudio se deriva de pacientes femeninas con cáncer de mama invasivo, recién diagnosticadas en la provincia de la Columbia Británica (British Columbia) en el periodo entre 1986 y 1992. Se cortó tejido en diversos hospitales alrededor de la provincia, se congeló y se envió al laboratorio de receptor de estrógeno (ER) central en el Hospital de Vancouver (Vancouver Hospital); en este estudio se usa la parte del material recibido que se fijó en formalina y se incrustó en parafina como referencia histológica. La información clínica vinculada a las muestras
30 incluye edad, histología, grado, tamaño del tumor, número de ganglios axilares implicados, invasión linfática o vascular, estado de ER mediante el método DCC, tipo de terapia sistémica adyuvante local e inicial, fechas de diagnóstico, primeria reaparición local, regional o distante, fecha y causa de la muerte. Las características de esta cohorte de pacientes se han descrito previamente en detalle en un estudio basado en la población que valida el modelo de pronóstico ADJUVANT [Olivotto 2005], y se usaron los mismos bloques fuente para montar micromatrices
35 de tejido que se han caracterizado para la expresión de ER [Cheang 2006] y HER2 [Chia 2008]. Para este estudio, se seleccionaron pacientes que tenían tumores positivos para ER mediante inmunohistoquímica, y recibieron
62
de al menos 25 ng/l, y se procedió al análisis mediante PCR. El molde era de calidad técnicamente suficiente (basándose en controles de genes de mantenimiento internos) para qRT-PCR en 806. Entre estos casos, un total de 711 muestras proporcionaron datos cuantitativos de qRT-PCR de alta calidad para al menos 49 de los genes discriminadores de PAM50, y se incluyeron en análisis clínicos y de supervivencia posteriores. Las características clínicas para estos 711 pacientes se presentan en la tabla 15.
Tabla 15
- Parámetro clínico
- Serie de TAM completa Luminal A Luminal B Her2 Basal Normal
- Tamaño de la muestra
- N 711 329 312 58 3 9
- Edad (en años)
- Mediana [RIC] 67 67 68 66 65 66
- Premenopáusica
- Sí 18 9 7 2 0 0
- No
- 678 315 297 56 3 7
- Desconocido/embarazada
- 15 5 8 0 0 2
- Cirugía
- Mastectomía completa 428 187 196 36 3 6
- Mastectomía parcial
- 274 139 111 21 0 3
- Otros
- 9 3 5 1 0 0
- Disección del ganglio axilar
- Sí 675 308 298 57 3 9
- No
- 36 21 14 1 0 0
- Radioterapia de la mama/pared del pecho
- Sí 372 180 153 34 0 5
- No
- 339 149 159 24 3 4
- Tamoxifeno adyuvante
- Sí 711 329 312 58 3 9
- No
- 0 0 0 0 0 0
- Quimioterapia adyuvante
- Sí 0 0 0 0 0 0
- No
- 711 329 312 58 3 9
- Tamaño del tumor (cm)
- Mediana [RIC] 2,2 2,0 2,5 2,5 2,5 3,0
- Estadio T (clínico)
- T0/IS 0 0 0 0 0 0
- T1
- 298 155 113 24 3 3
- T2
- 346 147 169 27 0 3
- T3
- 18 10 5 3 0 0
- T4
- 28 9 15 1 0 3
- TX
- 21 8 10 3 0 0
- 0
- 199 83 91 18 0 7
64
- No. de ganglios positivos
- 1-3 328 162 139 24 1 2
- 4-9
- 111 49 51 10 1 0
- +10
- 26 8 16 2 0 0
- Desconocido
- 47 27 15 4 1 0
- Grado
- Grado 1: bien diferenciado 24 20 2 1 0 1
- Grado 2: moderadamente diferenciado
- 306 169 119 13 0 5
- Grado 3: escasamente diferenciado
- 338 117 173 43 2 3
- Desconocido
- 43 23 18 1 1 0
- Subtipo histológico
- NOS ductal 642 289 288 54 3 8
- Lobular
- 54 30 19 4 0 1
- Mucinoso
- 7 4 3 0 0 0
- Tubular
- 5 5 0 0 0 0
- Medular
- 2 1 1 0 0 0
- Apocrino
- 1 0 1 0 0 0
- Invasión linfovascular
- Sí 444 184 215 39 1 5
- No
- 230 122 84 18 2 4
- Desconocido
- 37 23 13 1 0 0
- Estado del receptor de estrógeno clínico (DCC)
- Perdido 6 4 2 0 0 0
- Negativo (0-9 fmol/g)
- 9 3 2 4 0 0
- Positivo (>10 fmol/mg)
- 696 322 308 54 3 9
- ER inmunohistoquímico
- Negativo 0 0 0 0 0 0
- Positivo
- 711 329 312 58 3 9
Basándose en el centroide de PAM50 más cercano, se asignó un total de 329 (46,3%) de estos casos positivos para ER clínicamente como subtipos de cáncer de mama intrínsecos luminal A, 312 (43,8%) como luminal B, 58 (8,2%) como enriquecido en HER-2, 3 (0,4%) como de tipo basal y 9 (1,3%) como de tipo normal mediante la expresión
5 génica (tabla 13). Para los nueve casos asignados como de tipo normal, se revisó la histología, usando los núcleos de micromatriz de tejido tomados de la misma área del bloque fuente. En ocho de estos nueve casos, estaban ausentes células cancerosas invasivas viables o eran poco comunes en un núcleo inmediatamente adyacente, lo que concuerda con el perfil de expresión de tipo normal que representa una toma de muestras de tumor inadecuada. Por tanto se excluyeron los casos de tipo normal de análisis adicionales.
10 El subtipo biológico intrínseco era fuertemente pronóstico mediante el análisis de Kaplan-Meier (figura 4). En la población de la Columbia Británica en el tiempo de la adquisición de muestras para este estudio, muchos pacientes con un perfil de riesgo clínicamente bajo no recibieron terapia sistémica adyuvante [Olivotto 2005]. Por el contrario, los que recibieron tamoxifeno adyuvante que son los sujetos en este estudio comprendían un grupo de riesgo clínico
15 superior, con tasas de supervivencia libre de recidiva distante a 10 años global del 62% y tasas de supervivencia específica de la enfermedad de cáncer de mama del 72%. Los que se determinó que tenían un perfil luminal A
65
mediante el ensayo PAM50 tenían un desenlace significativamente mejor (supervivencia libre de recidiva a 10 años al 74%, supervivencia específica de la enfermedad = 83%) que tumores luminal B, enriquecido en HER-2 o de tipo basal.
5 Todos los casos en este estudio eran positivos para receptor de estrógeno mediante inmunohistoquímica evaluada centralmente [Cheang 2006], y el 98,7% también era positivo mediante ensayo bioquímico recubierto con dextranocarbón clínico. A pesar de esto, el panel de qPCR de PAM50 asignó el 10% de casos a subtipos no luminales, la mayoría a enriquecido en HER-2, tal como se observó previamente cuando se consultan conjuntos de datos publicados para la expresión de los genes de PAM50 (ejemplo 2).
10 Para esta cohorte de mujeres clínicamente positivas para receptor de estrógeno, tratadas uniformemente con tamoxifeno como su única terapia sistémica adyuvante, se construyó un modelo de Cox de múltiples variables para someter a prueba el valor independiente del subtipo PAM50 frente a la edad de la paciente y los factores clinicopatológicos convencionales de tamaño del tumor, estado de los ganglios, grado histológico y expresión de
15 HER2 (tabla 16). El subtipo biológico intrínseco permaneció significativo en el modelo de múltiples variables, al igual que el estado de los ganglios y el tamaño del tumor, pero el grado y el estado de HER2 clínico, significativos en el análisis de una variable en esta cohorte, no contribuyó con información de pronóstico independiente significativa para supervivencia o bien libre de recidiva o bien específica de la enfermedad en el modelo de múltiples variables incorporando el resultado de PAM50.
20 Tabla 16: análisis de una variable y múltiples variables de modelo de Cox incorporando el subtipo biológico PAM50 para supervivencia libre de recidiva y específica de la enfermedad de cáncer de mama entre (A) 604 mujeres con cáncer de mama positivo para ER, tratado con tamoxifeno con datos completos para todas las covariables para supervivencia libre de recidiva y (B) supervivencia específica de la enfermedad de cáncer de mama (BCDSS;
25 excluye 2 casos con causa de la muerte desconocida).
- Criterio de valoración clínico
- supervivencia libre de recidiva de una variable supervivencia libre de recidiva de múltiples variables
- razón de riesgo (IC del 95%)
- valor de p razón de riesgo (IC del 95%) valor de p
- edad (continuo)
- 1,00 (0,990-1,02) 0,53 0,996 (0,9811,01) 0,62
- grado (1 o 2) frente a 3
- 1,45 (1,12-1,89) 0,0047 1,11 (0,8461,46) 0,45
- porcentaje de ganglios positivos
- 0 frente a (>0 a <25%)
- 1,66 (1,15-2,39) 0,0070 1,76 (1,22-2,55) 0,0028
- 0 frente a ≥ 25%
- 2,98 (2,10-4,22) 7,3E-10 2,85 (2,00-4,06) 6,3E-9
- tamaño del tumor ≤ 2 cm frente a > 2 cm
- 2,02 (1,55-2,65) 2,5E-7 1,71 (1,30-2,24) 1,3E-4
- HER2 (IHC) {0, 1 o 2 + FISH negativo} frente a {2 + FISH positivo o 3 +}
- 1,52(1,04-2,23) 0,032 1,24 (0,8131,88) 0,32
- Subtipo PAM50
- luminal A frente a luminal B
- 1,73 (1,31-2,28) 1,0E-4 1,62 (1,22-2,16) 9,2E-4
- luminal A frente a enriquecido en HER2
- 1,86 (1,18-2,92) 0,0074 1,53 (0,9292,52) 0,095
- luminal A frente a de tipo basal
- 76,4 (9,79-597) 3,5E-5 62,5 (7,87-496) 9,2E-5
B.
- Criterio de clínico
- valoración BCDSS de una variable BCDSS de múltiples variables
- razón de riesgo (IC del 95%)
- valor de p razón de riesgo (IC del 95%) valor de p
66
- edad (continuo)
- 1,02 (0,999-1,03) 0,069 1,01 (0,9881,02) 0,56
- grado (1 o 2) frente a 3
- 1,43 (1,07-1,91) 0,015 1,05 (0,7751,42) 0,76
- porcentaje de ganglios positivos
- 0 frente a (>0 a <25%)
- 1,56 (1,03-2,37) 0,034 1,68 (1,11-2,56) 0,015
- 0 frente a ≥ 25%
- 3,22 (2,19-4,73) 2,4E-9 3,04 (2,06-4,48) 2,3E-8
- tamaño del tumor ≤ 2 cm frente a > 2 cm
- 2,29 (1,69-3,10) 8,0E-8 1,90 (1,40-2,58) 4,3E-5
- HER2 (IHC) {0, 1 o 2 + FISH negativo} frente a {2 + FISH positivo o 3 +}
- 1,54 (1,01-2,35) 0,043 1,19 (0,7551,86) 0,46
- Subtipo PAM50
- luminal A frente a luminal B
- 2,05 (1,50-2,80) 6,0E-6 1,90 (1,37-2,62) 1,0E-4
- luminal A frente a enriquecido en HER2
- 2,20 (1,33-3,64) 0,0021 1,85 (1,07-3,20) 0,028
- luminal A frente a de tipo basal
- 104 (13,1-832) 1,2E-5 91,1 (11,2-743) 2,5E-5
Puede calcularse una puntuación de riesgo de recidiva (ROR) a partir del panel de qPCR de PAM50. Las puntuaciones tanto de ROR-S (basada sólo en la obtención del subtipo molecular a partir del panel de PAM50) como de ROR-C (que combina información del subtipo y del tamaño del tumor) son altamente pronósticas en una
5 población tratada de manera homogénea con tamoxifeno adyuvante, para una serie que contiene grandes números de casos positivos para ganglios, y para el criterio de valoración de supervivencia específica a cáncer de mama (figura 5).
Tal como se muestra en la figura 6, el algoritmo de ROR-C no sólo es altamente pronóstico entre pacientes
10 negativas para ganglios, sino que revela diferencias incluso más amplias en supervivencia específica de la enfermedad entre pacientes positivas para ganglios. El algoritmo identifica el 16% de pacientes positivas para ER clínicamente (tratadas con tamoxifeno adyuvante pero sin quimioterapia) quienes, a pesar de ser positivas para ganglios, se clasifican como de riesgo bajo, y estas mujeres tiene una tasa de supervivencia específica de la enfermedad a 10 años del 89%.
15 Como variable continua, ROR-C tiene una interacción significativa con el porcentaje de ganglios linfáticos positivos, e interacción significativa límite con el estadio ganglionar (tabla 17). El estadio ganglionar es un factor pronóstico significativo entre pacientes con valores de ROR-C de moderados a altos (>23,5), pero entre pacientes con puntuaciones de ROR-C bajas, los desenlaces son buenos independientemente del estado de los ganglios (figura 7
20 y figura 8).
Tabla 17: Prueba de interacción entre la puntuación de ROR-C derivada de PAM50 y derivada del tamaño del tumor, expresada como variable continua, y estado de los ganglios linfáticos axilares (A) expresado como % de ganglios positivos o (B) categorizado por el estadio ganglionar (en el que el grupo de referencia es negativo para ganglios, N
25 cat2 = 1-3 ganglios axilares implicados, y N cat3 = 4 o más ganglios axilares implicados). El modelo en la tabla 17A usa la proporción de ganglios positivos y la interacción es significativa. El modelo en la tabla 17B usa un estado de los ganglios de 3 niveles (N-, 1-3 pos, >3 pos) y la interacción está en el límite.
Tabla 17A 30
- Variable
- Sólo efectos principales Interacción
- Riesgo
- valor de p Riesgo valor de p
- ROR-C
- 1,75 1,60E-11 1,73 8,8E-11
- % de ganglios pos.
- 1,56 2,50E-10 1,43 0,000017
67
Claims (1)
-
imagen1 imagen2
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US5750808P | 2008-05-30 | 2008-05-30 | |
| US57508P | 2008-05-30 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| ES2650610T3 true ES2650610T3 (es) | 2018-01-19 |
Family
ID=41202871
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| ES13180605.1T Active ES2650610T3 (es) | 2008-05-30 | 2009-06-01 | Perfiles de expresión génica para predecir desenlaces en cáncer de mama |
| ES09770678.2T Active ES2457534T3 (es) | 2008-05-30 | 2009-06-01 | Perfiles de expresión génica para predecir desenlaces en cáncer de mama |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| ES09770678.2T Active ES2457534T3 (es) | 2008-05-30 | 2009-06-01 | Perfiles de expresión génica para predecir desenlaces en cáncer de mama |
Country Status (13)
| Country | Link |
|---|---|
| US (7) | US9631239B2 (es) |
| EP (2) | EP2664679B1 (es) |
| JP (3) | JP5740302B2 (es) |
| AU (1) | AU2009262894B2 (es) |
| CA (1) | CA2725760C (es) |
| CY (1) | CY1114993T1 (es) |
| DK (1) | DK2297359T3 (es) |
| ES (2) | ES2650610T3 (es) |
| HR (1) | HRP20140140T1 (es) |
| PL (1) | PL2297359T4 (es) |
| PT (1) | PT2297359E (es) |
| SI (1) | SI2297359T1 (es) |
| WO (1) | WO2009158143A1 (es) |
Families Citing this family (72)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2580969Y2 (ja) | 1993-11-01 | 1998-09-17 | 株式会社イナックス | 便器自動洗浄装置 |
| PL2297359T4 (pl) | 2008-05-30 | 2014-07-31 | Univ North Carolina Chapel Hill | Profile ekspresji genów do przewidywania skutków raka piersi |
| ES2546089T3 (es) * | 2009-01-23 | 2015-09-18 | Bergen Teknologioverforing As | Métodos para determinar un pronóstico de supervivencia para una paciente con cáncer de mama |
| US9771618B2 (en) | 2009-08-19 | 2017-09-26 | Bioarray Genetics, Inc. | Methods for treating breast cancer |
| CA2817220C (en) * | 2009-11-22 | 2015-10-20 | Azure Vault Ltd. | Automatic chemical assay classification |
| MX2012011167A (es) * | 2010-03-31 | 2013-02-07 | Sividon Diagnostics Gmbh | Metodo para prediccion de recurrencia de cancer de mama bajo tratamiento endocrino. |
| US20140162887A1 (en) * | 2011-02-04 | 2014-06-12 | Bioarray Therapeutics, Inc. | Methods of using gene expression signatures to select a method of treatment, predict prognosis, survival, and/or predict response to treatment |
| AU2012229123B2 (en) * | 2011-03-15 | 2017-02-02 | British Columbia Cancer Agency Branch | Methods of treating breast cancer with anthracycline therapy |
| ES2714582T3 (es) | 2011-07-28 | 2019-05-29 | Myriad Int Gmbh | Procedimiento de predicción de la respuesta a la quimioterapia en un paciente que padece o está en riesgo de desarrollar un cáncer de mama recurrente |
| CN103997894B (zh) | 2011-07-29 | 2016-08-24 | 麦迪韦逊前列腺治疗股份有限公司 | 乳癌的治疗 |
| CA2857191A1 (en) * | 2011-11-28 | 2013-06-06 | National Research Council Of Canada | Paclitaxel response markers for cancer |
| EP2785873A4 (en) * | 2011-11-30 | 2015-11-11 | Univ North Carolina | METHOD FOR THE TREATMENT OF BREAST CANCER WITH TAXAN THERAPY |
| IN2014MN02418A (es) * | 2012-05-22 | 2015-08-14 | Nanostring Technologies Inc | |
| US9002438B2 (en) | 2012-05-30 | 2015-04-07 | Lucerno Dynamics | System for the detection of gamma radiation from a radioactive analyte |
| US9939533B2 (en) | 2012-05-30 | 2018-04-10 | Lucerno Dynamics, Llc | System and method for the detection of gamma radiation from a radioactive analyte |
| WO2013188600A1 (en) | 2012-06-12 | 2013-12-19 | Washington University | Copy number aberration driven endocrine response gene signature |
| WO2014005010A2 (en) | 2012-06-29 | 2014-01-03 | Nanostring Technologies, Inc. | Methods of treating breast cancer with gemcitabine therapy |
| CN102719547B (zh) * | 2012-07-02 | 2013-10-09 | 厦门大学 | 检测her2基因表达水平的实时荧光定量pcr试剂盒 |
| ES2945036T3 (es) | 2012-08-16 | 2023-06-28 | Veracyte Sd Inc | Pronóstico del cáncer de próstata mediante biomarcadores |
| WO2014031859A2 (en) * | 2012-08-24 | 2014-02-27 | University Of Utah Research Foundation | Compositions and methods relating to blood-based biomarkers of breast cancer |
| WO2014071218A2 (en) * | 2012-11-02 | 2014-05-08 | University Of Utah Research Foundation | Biomarkers for breast cancer and methods of using same |
| WO2014075067A1 (en) * | 2012-11-12 | 2014-05-15 | Nanostring Technologies, Inc. | Methods to predict breast cancer outcome |
| US20150376714A1 (en) | 2013-02-01 | 2015-12-31 | Sividon Diagnostics Gmbh | Method for predicting the benefit from inclusion of taxane in a chemotherapy regimen in patients with breast cancer |
| US20160115551A1 (en) * | 2013-05-13 | 2016-04-28 | Nanostring Technologies, Inc. | Methods to predict risk of recurrence in node-positive early breast cancer |
| KR102241973B1 (ko) | 2013-08-19 | 2021-04-19 | 비온테크 디아그노스틱스 게엠베하 | 종양의 분자 서브타이핑을 위한 방법 및 키트 |
| PL2959021T3 (pl) * | 2013-08-19 | 2018-11-30 | Biontech Diagnostics Gmbh | Sposoby i zestawy do podtypowania molekularnego guzów |
| EP3036712A4 (en) * | 2013-08-20 | 2017-04-19 | The Ohio State Innovation Foundation | Methods for predicting prognosis |
| AU2014317843A1 (en) * | 2013-09-09 | 2016-03-24 | British Columbia Cancer Agency Branch | Methods and kits for predicting outcome and methods and kits for treating breast cancer with radiation therapy |
| KR101560880B1 (ko) | 2013-10-15 | 2015-10-19 | 이화여자대학교 산학협력단 | 유방암의 예후 판단을 위한 정보를 제공하는 방법 |
| WO2015084968A1 (en) * | 2013-12-03 | 2015-06-11 | University Of Massachusetts | System and methods for predicting probable relationships between items |
| WO2015126898A1 (en) * | 2014-02-18 | 2015-08-27 | Dignity Health | Lkb1 related diagnostics and treatments of cancer |
| WO2015179312A1 (en) * | 2014-05-17 | 2015-11-26 | The Regents Of The University Of California | Centromere/kinetochore protein genes for cancer diagnosis, prognosis and treatment selection |
| CN113403373B (zh) | 2014-11-21 | 2025-04-11 | 布鲁克空间生物学公司 | 无酶且无扩增的测序 |
| SG11201704177SA (en) | 2014-11-24 | 2017-06-29 | Nanostring Technologies Inc | Methods and apparatuses for gene purification and imaging |
| JP2018500895A (ja) * | 2014-12-09 | 2018-01-18 | キングス・カレッジ・ロンドン | タキサン療法による乳癌治療 |
| CA2970469A1 (en) | 2014-12-12 | 2016-06-16 | Amy Christian Peterson | Method for predicting response to breast cancer therapeutic agents and method of treatment of breast cancer |
| CN107430133B (zh) * | 2015-02-27 | 2020-03-27 | 延世大学校产学协力团 | 用于测定乳腺癌预后以及是否使用化疗的装置和方法 |
| WO2017062505A1 (en) * | 2015-10-05 | 2017-04-13 | Cedars-Sinai Medical Center | Method of classifying and diagnosing cancer |
| WO2017096457A1 (en) * | 2015-12-07 | 2017-06-15 | Ontario Institute For Cancer Research (Oicr) | Gene signature of residual risk following endocrine treatment in early breast cancer |
| CA3022377A1 (en) | 2016-04-29 | 2017-11-02 | Board Of Regents, The University Of Texas System | Targeted measure of transcriptional activity related to hormone receptors |
| CN109715825B (zh) | 2016-05-16 | 2023-01-06 | 纳米线科技公司 | 用于检测样品中目标核酸的方法 |
| US10934590B2 (en) | 2016-05-24 | 2021-03-02 | Wisconsin Alumni Research Foundation | Biomarkers for breast cancer and methods of use thereof |
| US11414708B2 (en) | 2016-08-24 | 2022-08-16 | Decipher Biosciences, Inc. | Use of genomic signatures to predict responsiveness of patients with prostate cancer to post-operative radiation therapy |
| WO2018074865A2 (ko) * | 2016-10-21 | 2018-04-26 | 서울대학교병원 | 유방암 예후 예측용 조성물 및 방법 |
| JP6730525B2 (ja) | 2016-11-21 | 2020-07-29 | ナノストリング テクノロジーズ,インコーポレイティド | 化学組成物とそれを利用する方法 |
| ES2674327B2 (es) * | 2016-11-28 | 2018-12-17 | Geicam - Grupo Español De Investigacion En Cancer De Mama | CES: un índice quimioendocrino basado en PAM50 para el cáncer de mama con receptores hormonales positivos con un riesgo intermedio de recidiva |
| KR101874716B1 (ko) * | 2016-12-14 | 2018-07-04 | 연세대학교 산학협력단 | 유방암 분자아형 분류방법 및 이를 이용한 유방암 분자아형 분류 디바이스 |
| WO2018160925A1 (en) * | 2017-03-02 | 2018-09-07 | President And Fellows Of Harvard College | Methods and systems for predicting treatment responses in subjects |
| US11873532B2 (en) * | 2017-03-09 | 2024-01-16 | Decipher Biosciences, Inc. | Subtyping prostate cancer to predict response to hormone therapy |
| JP2020523991A (ja) * | 2017-06-16 | 2020-08-13 | ナントミクス,エルエルシー | Praegnant転移性乳癌コホートにおける不良アウトカムの予後指標因子 |
| EP3679160A4 (en) | 2017-09-08 | 2021-05-19 | Myriad Genetics, Inc. | Method of using biomarkers and clinical variables for predicting chemotherapy benefit |
| IT201700109459A1 (it) * | 2017-09-29 | 2019-03-29 | Univ Degli Studi Di Perugia | Metodo per effettuare prognosi del cancro della mammella, kit ed uso di questi |
| CN111316366A (zh) * | 2017-11-08 | 2020-06-19 | 皇家飞利浦有限公司 | 用于同时多变量特征选择、特征生成和样本聚类的方法 |
| WO2019165366A1 (en) * | 2018-02-23 | 2019-08-29 | Beth Israel Deaconess Medical Center | Drug efficacy evaluations |
| EP3794146B1 (en) | 2018-05-14 | 2025-12-10 | Bruker Spatial Biology, Inc. | Method for identifying a predetermined nucleotide sequence |
| KR101966589B1 (ko) * | 2018-06-20 | 2019-04-05 | 연세대학교 산학협력단 | 유방암 분자아형 분류방법 및 이를 이용한 유방암 분자아형 분류 디바이스 |
| AU2019370860A1 (en) * | 2018-11-04 | 2021-06-24 | Pfs Genomics, Inc. | Methods and genomic classifiers for prognosis of breast cancer and predicting benefit from adjuvant radiotherapy |
| CN109801680B (zh) * | 2018-12-03 | 2023-02-28 | 广州中医药大学(广州中医药研究院) | 基于tcga数据库的肿瘤转移复发预测方法及系统 |
| WO2020178399A1 (en) | 2019-03-05 | 2020-09-10 | Norwegian University Of Science And Technology (Ntnu) | Breast cancer signature genes |
| CN109913551A (zh) * | 2019-03-26 | 2019-06-21 | 深圳大学 | 乳腺癌分型的核酸组合物、乳腺癌分型试剂盒及其使用方法 |
| US12357250B2 (en) | 2019-04-02 | 2025-07-15 | Lucerno Dynamics, Llc | System and method of using temporal measurements of localized radiation to estimate the magnitude, location, and volume of radioactive material in the body |
| CN111508555A (zh) * | 2020-04-15 | 2020-08-07 | 淮南师范学院 | 一组用于度量生物分子集的网络拓扑学特性的方法 |
| KR102507489B1 (ko) * | 2020-12-24 | 2023-03-08 | 가톨릭대학교 산학협력단 | 진단 분류 장치 및 방법 |
| CN112626218A (zh) * | 2021-01-07 | 2021-04-09 | 浙江科技学院 | 一种用于预测胰腺癌转移风险的基因表达分类器、体外诊断试剂盒 |
| CN112735529B (zh) * | 2021-01-18 | 2024-07-30 | 中国医学科学院肿瘤医院 | 乳腺癌预后模型的构建方法及应用方法、电子设备 |
| RU2762317C1 (ru) * | 2021-02-24 | 2021-12-17 | Федеральное государственное бюджетное научное учреждение "Томский национальный исследовательский медицинский центр Российской академии наук" (Томский НИМЦ) | Способ прогнозирования статуса рецептора эпидермального фактора роста her2/neu в основном опухолевом узле у больных раком молочной железы |
| IL306090A (en) * | 2021-03-25 | 2023-11-01 | Oncxerna Therapeutics Inc | Targeted cancer treatments |
| CN114300139A (zh) * | 2022-01-13 | 2022-04-08 | 澳门科技大学 | 一种乳腺癌预后模型的构建及其应用方法和存储介质 |
| CA3262307A1 (en) * | 2022-06-21 | 2023-12-28 | Bioventures Llc | MOLECULAR SUBTYPING METHODS FOR TUMORS FROM ARCHIVAL TISSUE |
| CN115144599B (zh) * | 2022-09-05 | 2023-01-06 | 西湖大学 | 蛋白组合在制备对儿童甲状腺癌进行预后分层的试剂盒中的用途及其试剂盒、系统 |
| US12308126B1 (en) * | 2024-02-13 | 2025-05-20 | Institut Curie | Device and method for predicting a relapse of a cancer for a patient |
| EP4621073A1 (en) | 2024-03-22 | 2025-09-24 | Istituto Europeo di Oncologia S.r.l. | Method for prognosis of breast cancer |
Family Cites Families (41)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4683202A (en) | 1985-03-28 | 1987-07-28 | Cetus Corporation | Process for amplifying nucleic acid sequences |
| US4843155A (en) | 1987-11-19 | 1989-06-27 | Piotr Chomczynski | Product and process for isolating RNA |
| US5800992A (en) | 1989-06-07 | 1998-09-01 | Fodor; Stephen P.A. | Method of detecting nucleic acids |
| US6040138A (en) | 1995-09-15 | 2000-03-21 | Affymetrix, Inc. | Expression monitoring by hybridization to high density oligonucleotide arrays |
| US20040235039A1 (en) | 1990-03-20 | 2004-11-25 | Regents Of The University Of California | Chromosome-specific staining to detect genetic rearrangements |
| CA2118806A1 (en) | 1991-09-18 | 1993-04-01 | William J. Dower | Method of synthesizing diverse collections of oligomers |
| US6025126A (en) | 1991-10-28 | 2000-02-15 | Arch Development Corporation | Methods and compositions for the detection of chromosomal aberrations |
| US5384261A (en) | 1991-11-22 | 1995-01-24 | Affymax Technologies N.V. | Very large scale immobilized polymer synthesis using mechanically directed flow paths |
| AU675054B2 (en) | 1991-11-22 | 1997-01-23 | Affymetrix, Inc. | Combinatorial strategies for polymer synthesis |
| US5856174A (en) | 1995-06-29 | 1999-01-05 | Affymetrix, Inc. | Integrated nucleic acid diagnostic device |
| US5854033A (en) | 1995-11-21 | 1998-12-29 | Yale University | Rolling circle replication reporter systems |
| EP0880598A4 (en) | 1996-01-23 | 2005-02-23 | Affymetrix Inc | RAPID EVALUATION OF NUCLEIC ACID ABUNDANCE DIFFERENCE, WITH A HIGH-DENSITY OLIGONUCLEOTIDE SYSTEM |
| DE69829402T2 (de) | 1997-10-31 | 2006-04-13 | Affymetrix, Inc. (a Delaware Corp.), Santa Clara | Expressionsprofile in adulten und fötalen organen |
| US6020135A (en) | 1998-03-27 | 2000-02-01 | Affymetrix, Inc. | P53-regulated genes |
| EP1631689A2 (en) | 2003-05-28 | 2006-03-08 | Genomic Health, Inc. | Gene expression markers for predicting response to chemotherapy |
| CA2848463A1 (en) | 2004-04-09 | 2005-10-27 | Genomic Health, Inc. | Gene expression markers for predicting response to chemotherapy |
| WO2006010150A2 (en) | 2004-07-15 | 2006-01-26 | University Of Utah Research Foundation | Housekeeping genes and methods for identifying the same |
| JP2006141210A (ja) | 2004-11-16 | 2006-06-08 | Hitachi Ltd | キメラ遺伝子の検出方法 |
| EP1954708A4 (en) | 2005-11-23 | 2009-05-13 | Univ Utah Res Found | Methods and compositions involving intrinsic genes |
| JP5700911B2 (ja) | 2005-12-23 | 2015-04-15 | ナノストリング テクノロジーズ,インコーポレーテッド | 配向され、固定化された巨大分子を含む組成物とその製造法 |
| EP1963531B1 (en) | 2005-12-23 | 2011-09-21 | Nanostring Technologies, Inc. | Nanoreporters and methods of manufacturing and use thereof |
| US7892740B2 (en) | 2006-01-19 | 2011-02-22 | The University Of Chicago | Prognosis and therapy predictive markers and methods of use |
| WO2008111990A1 (en) * | 2006-06-14 | 2008-09-18 | Cellpoint Diagnostics, Inc. | Rare cell analysis using sample splitting and dna tags |
| EP2041307A2 (en) | 2006-07-13 | 2009-04-01 | Siemens Healthcare Diagnostics GmbH | Prediction of breast cancer response to taxane-based chemotherapy |
| CA2687292C (en) | 2007-04-10 | 2017-07-04 | Nanostring Technologies, Inc. | Methods and computer systems for identifying target-specific sequences for use in nanoreporters |
| US20090105167A1 (en) | 2007-10-19 | 2009-04-23 | Duke University | Predicting responsiveness to cancer therapeutics |
| PL2297359T4 (pl) | 2008-05-30 | 2014-07-31 | Univ North Carolina Chapel Hill | Profile ekspresji genów do przewidywania skutków raka piersi |
| ES2614810T3 (es) | 2008-08-14 | 2017-06-02 | Nanostring Technologies, Inc | Nanoindicadores estables |
| EP3216874A1 (en) | 2008-09-05 | 2017-09-13 | TOMA Biosciences, Inc. | Methods for stratifying and annotating cancer drug treatment options |
| WO2010039275A1 (en) | 2008-10-03 | 2010-04-08 | Oligonix, Inc. | Method, array and system for detecting intergenic fusions |
| US20110286960A1 (en) | 2008-11-02 | 2011-11-24 | Optimata Ltd. | Cancer therapy by docetaxel and granulocyte colony-stimulating factor (g-csf) |
| ES2546410T3 (es) | 2009-08-06 | 2015-09-23 | John Wayne Cancer Institute | Diagnosis de cáncer de mama, y otros tipos de cáncer, de tipo basal primario y metastásico |
| US20110129822A1 (en) | 2009-12-01 | 2011-06-02 | Precision Therapeutics, Inc. | Multi drug response markers for breast cancer cells |
| WO2011130495A1 (en) | 2010-04-14 | 2011-10-20 | Nuvera Biosciences, Inc. | Methods of evaluating response to cancer therapy |
| AU2012229123B2 (en) | 2011-03-15 | 2017-02-02 | British Columbia Cancer Agency Branch | Methods of treating breast cancer with anthracycline therapy |
| WO2012135340A2 (en) | 2011-03-28 | 2012-10-04 | Nanostring Technologies, Inc. | Compositions and methods for diagnosing cancer |
| EP2785873A4 (en) | 2011-11-30 | 2015-11-11 | Univ North Carolina | METHOD FOR THE TREATMENT OF BREAST CANCER WITH TAXAN THERAPY |
| IN2014MN02418A (es) | 2012-05-22 | 2015-08-14 | Nanostring Technologies Inc | |
| WO2014005010A2 (en) | 2012-06-29 | 2014-01-03 | Nanostring Technologies, Inc. | Methods of treating breast cancer with gemcitabine therapy |
| WO2014075067A1 (en) | 2012-11-12 | 2014-05-15 | Nanostring Technologies, Inc. | Methods to predict breast cancer outcome |
| AU2014317843A1 (en) | 2013-09-09 | 2016-03-24 | British Columbia Cancer Agency Branch | Methods and kits for predicting outcome and methods and kits for treating breast cancer with radiation therapy |
-
2009
- 2009-06-01 PL PL09770678T patent/PL2297359T4/pl unknown
- 2009-06-01 EP EP13180605.1A patent/EP2664679B1/en active Active
- 2009-06-01 AU AU2009262894A patent/AU2009262894B2/en active Active
- 2009-06-01 EP EP09770678.2A patent/EP2297359B1/en active Active
- 2009-06-01 ES ES13180605.1T patent/ES2650610T3/es active Active
- 2009-06-01 DK DK09770678.2T patent/DK2297359T3/en active
- 2009-06-01 SI SI200930853T patent/SI2297359T1/sl unknown
- 2009-06-01 US US12/995,450 patent/US9631239B2/en active Active
- 2009-06-01 PT PT97706782T patent/PT2297359E/pt unknown
- 2009-06-01 CA CA2725760A patent/CA2725760C/en active Active
- 2009-06-01 JP JP2011511893A patent/JP5740302B2/ja not_active Expired - Fee Related
- 2009-06-01 HR HRP20140140AT patent/HRP20140140T1/hr unknown
- 2009-06-01 ES ES09770678.2T patent/ES2457534T3/es active Active
- 2009-06-01 WO PCT/US2009/045820 patent/WO2009158143A1/en not_active Ceased
-
2014
- 2014-02-17 CY CY20141100112T patent/CY1114993T1/el unknown
-
2015
- 2015-01-30 JP JP2015016407A patent/JP6140202B2/ja not_active Expired - Fee Related
- 2015-11-03 US US14/931,597 patent/US20160168645A1/en not_active Abandoned
- 2015-11-03 US US14/931,594 patent/US20160153051A1/en not_active Abandoned
-
2017
- 2017-04-28 JP JP2017090336A patent/JP2017127330A/ja active Pending
-
2019
- 2019-03-14 US US16/353,590 patent/US20190264290A1/en not_active Abandoned
- 2019-10-18 US US16/656,984 patent/US20200040407A1/en not_active Abandoned
-
2022
- 2022-03-23 US US17/702,567 patent/US20220213563A1/en not_active Abandoned
-
2023
- 2023-01-23 US US18/158,396 patent/US20230250484A1/en active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| CA2725760A1 (en) | 2009-12-30 |
| US20230250484A1 (en) | 2023-08-10 |
| WO2009158143A1 (en) | 2009-12-30 |
| PL2297359T3 (pl) | 2014-07-31 |
| EP2664679B1 (en) | 2017-11-08 |
| CA2725760C (en) | 2019-07-02 |
| ES2457534T3 (es) | 2014-04-28 |
| US20160168645A1 (en) | 2016-06-16 |
| DK2297359T3 (en) | 2014-02-24 |
| EP2297359A1 (en) | 2011-03-23 |
| PL2297359T4 (pl) | 2014-07-31 |
| JP2011524162A (ja) | 2011-09-01 |
| CY1114993T1 (el) | 2016-12-14 |
| EP2664679A1 (en) | 2013-11-20 |
| US20110145176A1 (en) | 2011-06-16 |
| US20190264290A1 (en) | 2019-08-29 |
| HRP20140140T1 (en) | 2014-05-23 |
| AU2009262894B2 (en) | 2014-01-30 |
| PT2297359E (pt) | 2014-03-19 |
| JP2015119716A (ja) | 2015-07-02 |
| JP5740302B2 (ja) | 2015-06-24 |
| US20160153051A1 (en) | 2016-06-02 |
| JP2017127330A (ja) | 2017-07-27 |
| US20220213563A1 (en) | 2022-07-07 |
| AU2009262894A1 (en) | 2009-12-30 |
| JP6140202B2 (ja) | 2017-05-31 |
| US20200040407A1 (en) | 2020-02-06 |
| US9631239B2 (en) | 2017-04-25 |
| EP2297359B1 (en) | 2013-11-13 |
| SI2297359T1 (sl) | 2014-05-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| ES2650610T3 (es) | Perfiles de expresión génica para predecir desenlaces en cáncer de mama | |
| ES2763931T3 (es) | Genes Nano46 y métodos para predecir el resultado del cáncer de mama | |
| US8202968B2 (en) | Predicting lung cancer survival using gene expression | |
| US20110177971A1 (en) | Method for diagnosing the stage of a thyroid tumor | |
| US8911940B2 (en) | Methods of assessing a risk of cancer progression | |
| JP2015530072A (ja) | ゲムシタビン療法による乳癌の治療方法 | |
| ES2527062T3 (es) | Supervivencia y recurrencia del cáncer de próstata | |
| ES2965535T3 (es) | Métodos de diagnóstico y tratamiento de pacientes con carcinoma cutáneo de células epidermoides | |
| Nagahata et al. | Expression profiling to predict postoperative prognosis for estrogen receptor‐negative breast cancers by analysis of 25,344 genes on a cDNA microarray | |
| WO2009037090A1 (en) | Molecular markers for tumor cell content in tissue samples | |
| CN117165688A (zh) | 用于尿路上皮癌的标志物及其应用 | |
| KR20170032892A (ko) | 난소암의 예후 예측용 유전자 선별방법 | |
| BR112020012280A2 (pt) | composições e métodos para diagnosticar cânceres de pulmão usando perfis de expressão de gene | |
| CN110607370B (zh) | 一种用于人体肿瘤分子分型的基因组合及其应用 | |
| US20120149027A1 (en) | Method for Determining the Risk of Metastasis as an Indicator for Diagnostic Imaging | |
| TWI670498B (zh) | 一種用以評估大腸直腸癌肝轉移病患之預後的方法 | |
| AU2014202370B2 (en) | Gene Expression Profiles to Predict Breast Cancer Outcomes | |
| Peng et al. | 1463eP Gas metabolite patterns to identify oral squamous cell carcinoma | |
| Costa et al. | 1462eP Nomogram-based risk prediction of oropharyngeal squamous cell carcinoma involving the KIF13B c.* 3163G> A variant | |
| IT202300019611A1 (it) | Metodo di diagnosi molecolare per classificare un campione biologico sulla base della cellularita’ | |
| AU2004219989B2 (en) | Expression profiling of tumours | |
| WO2013049038A1 (en) | Assessment of risk of local recurrence of cancer using telomere health | |
| Gaur | Multigene Assays: The Changing Paradigm of Personalized Medicine in Breast Cancer | |
| JP2010130993A (ja) | 乳癌の悪性度の評価方法ならびに該評価方法に用いるアレイおよびキット | |
| Akram | Advances in Breast Cancer Pathology 17 |