EP2866837A1 - Administration de médicament biodégradable pour compositions hydrophobes - Google Patents
Administration de médicament biodégradable pour compositions hydrophobesInfo
- Publication number
- EP2866837A1 EP2866837A1 EP13758976.8A EP13758976A EP2866837A1 EP 2866837 A1 EP2866837 A1 EP 2866837A1 EP 13758976 A EP13758976 A EP 13758976A EP 2866837 A1 EP2866837 A1 EP 2866837A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- biodegradable
- repeat units
- dms
- copolymer
- dpo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/34—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7048—Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/445—Non condensed piperidines, e.g. piperocaine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/565—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
- A61K31/567—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol substituted in position 17 alpha, e.g. mestranol, norethandrolone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/12—Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
- A61K38/13—Cyclosporins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/26—Glucagons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0024—Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/107—Emulsions ; Emulsion preconcentrates; Micelles
- A61K9/1075—Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
Definitions
- the present invention relates to biodegradable drug delivery compositions comprising a tribiock copolymer containing a polyester and a polyethylene glycol and a diblock copolymer containing a polyester and an end-capped polyethylene glycol, as well as a pharmaceutically hydrophobic active principle one of which is
- the ratio of tribiock copolymer to diblock copolymer in this formulation is 1 :3 to 1 :8 or 1 :1 to 1 : 9 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1.
- Drug delivery systems such as diblock and tribiock copolymers have been used to deliver a variety of drugs and are generally formulated to deliver specific drugs whether they are hydrophobic drugs or hydrophilic drugs. Depending on the drug solubility these drug formulations differ in polymer concentrations, types of polymers utilized, molecular weights of the polymers and solvents used in the formulations.
- this polymer composition has a polyester oligomer having a molecular weight of between 400 and 10,000 daltons and a biodegradable AB-type, ABA-type or BAB type block copolymer.
- the hydrophobic A part is a polyester, while the hydrophilic B part is a polyethylene glycol having a molecular weight of between 2,400 and 4,999 daltons.
- This polymeric composition is soluble in an aqueous environment.
- U.S. Patent 6, 541 ,033 describes a sustained release pharmaceutical composition based on thermosensitive, biodegradable hydrogels, consisting of a block copolymer of PLA or PLGA and PEG, for the sustained delivery of biologically active agents, such as leptin.
- the sustained release is for a period of a week or more and preferably up to one month.
- Hydrogels containing triblock copolymers are described in U.S. Patent 6,350,812. These hydrogels retain water weight at least equal to the water weight of the copolymer and are soft hydrogels.
- U.S. Patent 7,875,677 provides micelle-forming compositions comprising a hydrophobic drug, a biocompatible block copolymer, which has a hydrophilic protein comprising a polyethylene oxide and a hydrophobic portion having a polyester and a biocompatible water soluble polymer, wherein the water soluble polymer is present in a sufficient amount to make the micelle-forming composition injectable.
- biodegradable drug compositions of the present invention comprise triblock copolymers and diblock copolymers formulated in such a manner that the diblock copolymer serves as a reservoir while the triblock copolymer acts as a frame in the formulations and increases the lifespan of the diblock copolymer.
- the biodegradable drug delivery compositions of the present invention can be long acting formulations, which reduce the initial burst release of the drug and modulate the release rate of the drug or hydrophobic drug over time. This phenomenon is illustrated in the flattening of the drug release curves.
- the present invention provides a biodegradable drug delivery composition
- a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:
- biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1 :3 to 1 :8 or 1 : 1 to 1 :19 or 3:2 to 1 :19 in said biodegradable drug
- composition comprising; and (c) at least one pharmaceutically active principle.
- the present invention provides a biodegradable drug delivery composition
- biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1 :3 to 1 :8 or 1 : 1 to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically active principle.
- the present invention provides a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:
- biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1 :3 to 1 :8 or 1 : 1 to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically hydrophobic active principle.
- the present invention provides a biodegradable drug delivery composition
- a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:
- biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of ⁇ b) is 1 :3 to 1 :8 or 1 : 1 to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.
- the present invention provides a biodegradable drug delivery composition
- a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:
- a v -B "Ax wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 6 to 1090 or 4 to 1090, v and x being ester repeat units and w being ethylene oxide repeat units and v x or v ⁇ x; (b) a biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1 : 3 to 1 :8 or 1 : 1 to 1 :19 or 3:2 to 1 :19 in said biodegradable drug composition; and (c) at least one pharmaceutically active principle.
- the present invention provides a biodegradable drug delivery composition
- a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:
- a biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1 : 3 to 1 :8 or 1 : to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically active principle.
- the present invention provides a biodegradable drug delivery composition
- a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:
- the present invention provides a biodegradable drug delivery composition
- a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:
- a biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1 :3 to 1 :8 or 1 : 1 to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.
- a biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:
- PEGy-PLAz wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the
- biodegradable diblock copolymer of (b) is 1 :3 to 1 :8 or 1 : 1 to 1 : 19 or 3:2 to 1 : 19 in said biodegradable drug composition and wherein the PEG in the diblock is end- capped; and (c) at least one pharmaceutically active principle.
- a biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:
- biodegradable diblock copolymer of (b) is 1 :3 to 1 :8 or 1 : 1 to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG in the diblock is end-capped; and (c) at least one pharmaceutically active principle.
- a biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:
- biodegradable diblock copolymer of (b) is 1 :3 to 1 :8 or 1 : 1 to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG in the diblock is end-capped; and (c) at least one pharmaceutically hydrophobic active principle.
- a biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:
- biodegradable diblock copolymer of (b) is :3 to 1 :8 or 1 : 1 to 1 : 19 or 3:2 to 1 : 19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG in the diblock is end-capped; and (c) at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.
- a biodegradable drug delivery composition comprising: (a) a biodegradable triblock copolymer having the formula:
- a biodegradable diblock copolymer having the formula:
- biodegradable diblock copolymer of (b) is 1 :3 to 1 :8 or 1 : 1 to 1 : 19 or 3:2 to 1 : 19 in said biodegradable drug composition and wherein the PEG in the diblock is end- capped; and (c) at least one pharmaceutically active principle
- a biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:
- a biodegradable diblock copolymer having the formula:
- y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable diblock copolymer of (b) is 1 :3 to 1 :8 or 1 : 1 to 1 :19 or 3:2 to 1 : 9 or 2:3 or 4:1 in said biodegradable drug composition and wherein the PEG in the diblock is end-capped; and (c) at least one pharmaceutically active principle
- a biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:
- a biodegradable diblock copolymer having the formula:
- biodegradable diblock copolymer of (b) is 1 :3 to 1 :8 or 1 : 1 to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG in the diblock is end-capped; and (c) at least one pharmaceutically hydrophobic active principle
- a biodegradable drug delivery composition comprising: (a) a biodegradable triblock copolymer having the formula:
- a biodegradable diblock copolymer having the formula:
- biodegradable diblock copolymer of (b) is 1 :3 to 1 :8 or 1 : 1 to 1 : 19 or 3:2 to 1 : 19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG in the diblock is end-capped; and (c) at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.
- a biodegradable drug delivery composition which comprises: (a) a biodegradable triblock copolymer present in an amount of 3% to 45% (w%/w%) of the total composition having the formula:
- a biodegradable diblock copolymer present in an amount of 8.0% to 50% (w%/w%) of the total composition having the formula:
- biodegradable diblock copolymer of (b) is 1 :3 to 1 :8 or 1 : 1 to 1 : 19 or 3:2 to 1 : 19 in said biodegradable drug composition and wherein the PEG in the diblock is end capped and (c) at least one pharmaceutically active principle is present in an amount of 1% to 20% (w%/w%) of the total composition or the at least one pharmaceutically active principle is present in an amount of 1 to 200 mg/m!.
- a biodegradable drug delivery composition which comprises: ⁇ a) a biodegradable triblock copolymer present in an amount of 3% to 45% (w%/w%) or 2% to 45% (w%/w%) or 1.2% to 30% (w%/w%) of the total composition having the formula:
- a biodegradable diblock copolymer present in an amount of 8.0% to 50% (w%/w%) or 1 % to 28% (w%/w%) of the total composition having the formula:
- biodegradable diblock copolymer of (b) is 1 :3 to 1 :8 or 1 : 1 to 1 : 19 or 3:2 to 1 : 19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG in the diblock is end capped and (c) at least one pharmaceutically active principle is present in an amount of 1 % to 20% (w%/w%) of the total composition or the at least one pharmaceutically active principle is present in an amount of 1 to 200 mg/ml.
- a biodegradable drug delivery composition which comprises:(a) a biodegradable triblock copolymer present in an amount of 3.0% to 45% (w% w%) or 2% to 45% (w%/w%) or 1.2% to 30% (w%/w%)of the total composition having the formula:
- a biodegradable diblock copolymer present in an amount of 8.0% to 50% (w%/w%) or 1% to 28% (w%/w%) of the total composition having the formula:
- biodegradable diblock copolymer of (b) is 1 :3 to 1 :8 or 1 : 1 to 1 : 19 or 3:2 to 1 : 19 or 2:3 or 4:1 in said biodegradable drug composition and wherein the PEG in the diblock is end capped and (c) at least one pharmaceutically hydrophobic active principle is present in an amount of 1% to 20% (w%/w%) of the total composition or the at least one pharmaceutically active principle is present in an amount of 1 to 200 mg/ml.
- a biodegradable drug delivery composition which comprises:(a) a biodegradable triblock copolymer present in an amount of 3.0% to 45% (w%/w%) or 2.0% to 45% (w%/w%) or 1.2% to 30% (w%/w%)of the total composition having the formula:
- a biodegradable diblock copolymer present in an amount of 8.0% to 50% (w%/w%) or 1 % to 28% (w%/w%) of the total composition having the formula:
- biodegradable diblock copolymer of (b) is 1 : 3 to 1 :8 or 3:2 to 1 :19 or 1 :1 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition and wherein the PEG in the diblock is end capped and (c) at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine. is present in an amount of 10% to 40% (w%/w%) or 1 % to 40% (w%/w%)of the total composition or the at least one pharmaceutically active principle is present in an amount of 1 to 200 mg/ml or 0.1 to 200 mg/ml.
- the biodegradable drug delivery compositions of the invention can have a lactic acid to ethylene oxide molar ratio in the composition of between 0.5 to 3.5 or from 0.5 to 2.5 or 0.5 to 22.3 for the triblock copolymer and between 2 to 6 or 0.8 to 13 for the diblock copolymer.
- biodegradable drug delivery compositions of the invention can have a lactic acid to ethylene oxide molar ratio in the composition of between 0.5 to 22.3 for the triblock copolymer and between 0.8 to 13 for the diblock copolymer.
- biodegradable drug delivery compositions of the invention can have a lactic acid to ethylene oxide molar ratio in the composition of between 0.5 to 2.5 for the triblock copolymer and between 3 to 5 for the diblock copolymer.
- the biodegradable drug delivery composition is an injectable liquid that when it is inserted into the body of an animal or plant becomes a hardened implant.
- biodegradable delivery drug composition can be used as a spatial formulation such that it can be applied onto or inside the body of an animal or plant. For example, it can be dispensed during surgery to treat a wound or inside a plant to treat a virus.
- biodegradable drug composition is prepared as small solid particles, which are placed directly on the injured site of the body of an animal or plant.
- biodegradable drug composition is in the form of a rod implant.
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3:2 to 1 :19 (a):(b) to form a polymer mixture; and
- a method for preparing the biodegradable drug delivery composition of the invention comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 (a):(b) to form a polymer mixture; and
- a method for preparing the biodegradable drug delivery composition of the invention comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1 : 3 to 1 :8 or 1 : 1 to 1 : 19 or 3.2 to 1 : 19 or 2:3 or 4: 1 or 2.3 to 4.1 (a):(b) to form a polymer mixture; and
- a method for preparing the biodegradable drug delivery composition of the invention comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3.2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 (a): ⁇ b) to form a polymer mixture; and
- biodegradable drug delivery composition of the present invention comprising: (i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3.2 to 1 :19 in (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically active principle to said polymer mixture; and (iii) evaporating said solvent.
- Yet another aspect of the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising: (i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3.2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 in (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically active principle to said polymer mixture; and (iii) evaporating said solvent.
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3.2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 in (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically hydrophobic active principle to said polymer mixture; and (iii) evaporating said solvent.
- Yet another aspect of the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3.2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 in (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine to said polymer mixture; and (iii) evaporating said solvent.
- biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3.2 to 1 :19 (a):b) to form a polymer mixture; (ii) adding at least one pharmaceutically active principle to said polymer mixture; and (iii) evaporating said solvent.
- Yet another aspect of the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising: (i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:
- biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3.2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 (a):b) to form a polymer mixture; (ii) adding at least one pharmaceutically active principle to said polymer mixture; and ⁇ iii) evaporating said solvent.
- Yet another aspect of the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:
- biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3.2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 (a) :b) to form a polymer mixture; (ii) adding at least one pharmaceutically hydrophobic active principle to said polymer mixture; and (iii) evaporating said solvent.
- Yet another aspect of the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:
- biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3.2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1
- the organic solvent can be present in an amount of 40% to 74% (w%/w%) or 30% to 70% (w%/w%) or 26% to 90% (w%/w%) of the total composition. Mixtures of solvents can also be used. Other aspects and embodiments are set forth below, or will readily arise from the following description of the preferred embodiments.
- Fig. 1 is a graph showing the in vitro release rate of the drug from
- This graph shows that formulations based on TB:DB are sustaining the release for more than 30 days.
- Fig. 2 is a graph showing the in vitro cumulative percent release curve from candidate formulations of Figure 1 over time (days). This graph illustrates that the initial burst is reduced and the drug release curve is flattened in the combination of triblock copolymer and diblock copolymer compositions compared to the triblock copolymer composition alone. It should be noted that the 1 :9 curve is overlapping the 1 :4 curve.
- Fig. 3 is a graph showing the injectability of formulations based on 40% P6R1 (TB);dP2R4 ⁇ DB) in various ratios ranging from 1 :0 triblock copolymer to diblock copolymer to 0:1 triblock copolymer to diblock copolymer. This graph illustrates that all formulations are injectable using a classical injection device.
- Fig. 4 is a graph showing the in vitro cumulative percentage release curve from candidate formulations over time (days) of various compositions of the invention.
- the compositions described as numbers 177, 246, 224, 225 and 250 are described in Tablel .
- Fig. 5 is a graph showing the in vitro release rate from candidate formulations in micrograms per hour per gram of formulation (pg/h/gr of formulation)
- the compositions described as numbers 177, 246, 224, 225 and 250 are described in Tablel .
- Fig. 6 is a graph showing the M53 plasma concentration in nanograms per milliliter (ng/ml) over time in days. Day zero is the day that the composition was administered subcutaneousiy.
- the compositions indicated as numbers 177, 246, 224, 225 and 250 are described in Table!
- Fig. 7 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P0.2R5 (4 units of ethylene oxide and 24 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 8 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P0.2R 4 (4 units of ethylene oxide and 58 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 9 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P0.2R22 (4 units of ethylene oxide and 89 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 10 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P0.4R4 (9 units of ethylene oxide and 41 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 11 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P0.4R7 (9 units of ethylene oxide and 67 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 12 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P0.6R1 (13 units of ethylene oxide and 26 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 13 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P0.6R3 (13 units of ethylene oxide and 40 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 14 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P0.6R4 (13 units of ethylene oxide and 55 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 15 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P1 R2 (22 units of ethylene oxide and 47 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 16 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P1 R3 (22 units of ethylene oxide and 68 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 17 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P1 R4 (22 units of ethylene oxide and 88 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 18 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P2R2 (45 units of ethylene oxide and 88 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 19 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on triblockco polymer P2R3 (45 units of ethylene oxide and 157 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 20 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on tribiock copolymer P2R5 (45 units of ethylene oxide and 216 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 21 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on tribiock copolymer P3R1 (68 units of ethylene oxide and 66 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 22 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on tribiock copolymer P3R2 (68 units of ethylene oxide and 54 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 23 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on tribiock copolymer P3R3 (68 units of ethylene oxide and 218 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 24 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on tribiock copolymer P6R0.9 (136 units of ethylene oxide and 125 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 25 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on tribiock copolymer P6R1.6 (136 units of ethylene oxide and 218 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 26 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on tribiock copolymer P6R2 (136 units of ethylene oxide and 272 units of lactic acid) mixed with various diblock copolymers (see Table 2 for details).
- Fig. 27 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P2R4 (45 units of ethylene oxide and 157 units of lactic acid) mixed with diblock copolymer dP0.4R6 (7 units of ethylene oxide and 42 units of lactic acid) at different ratios (see Table 2 for details).
- Fig. 29 is a graph showing the in vitro cumulative percent release of acetaminophen over time (days) from formulations based on triblock copolymer P2R5 (45 units of ethylene oxide and 216 units of lactic acid) mixed with diblock copolymer dP0.2R13 (3 units of ethylene oxide and 39 units of lactic acid) at different ratios (see Table 2 for details).
- Fig. 30 is a graph showing the in vitro release rate of buprenorphine over time (days) from formulations n°33 (10%BN/ 8%P2R2/ 32%dP0.4R10), n°47 (10%BN/ 8%P2R2/ 32%dP1 R3) and n°58 (10%BN/ 10%P0.4R8/ 40%dP1 R2).
- Fig. 31 is a graph showing the plasma concentration of buprenorphine over time (days) in rats injected with formulations n°33 (10%BN/ 8%P2R2/
- Fig. 32 is a graph showing the in vitro release rate of risperidone over time (days) from formulations based on triblock polymer P2R5 (45 units of ethylene oxide and 216 units of lactic acid) mixed with diblock polymer dP0.2R13 (3 units of ethylene oxide and 39 units of lactic acid) at different ratios (see Table 2 for details).
- Fig. 33 is a graph showing the plasma concentration of risperidone and 9-OH risperidone over time (days) in rats injected with formulations n°10 (5%RSP/
- Fig. 34 is a graph showing the plasma concentration of ivermectin over time (days) in dogs injected with formulations n°7 (5%IVM/ 15%P3R3/ 25%dP0.4R5/ DMSO), n°9 (5%IVM/ 15%P2R4/ 25%dP2R3/ DMSO) and n°10 (5%IVM/ 15%P2R5/ 25%dP2R2/ DMSO).
- Fig. 35 is a graph showing the in vitro release rate of medroxyprogesterone acetate (MPA) from candidate formulations in milligrams per gram of formulation per day (mg MPA/gr of formulation/day) The formulations described as numbers 33, 34 and 49 as described in Table 6. In vitro release obtained with Depo-SubQ Provera is shown as a control.
- MPA medroxyprogesterone acetate
- Fig. 36 is a graph showing the in vitro cumulative percent release of medroxyprogesterone acetate over time (days) from formulations described 33, 34 and 49 as described in Table 6. In vitro release obtained with Depo-SubQ Provera is shown as a control.
- Fig. 37 is a graph showing the in vitro release rate of medroxyprogesterone acetate from candidate formulations in milligrams per gram of formulation per day (mg/gr of formulation/day)
- the formulations described as numbers 2, 32 and 36 are described in Table 6.
- In vitro release obtained with Depo-SubQ Provera is shown as a control.
- Fig. 38 is a graph showing the in vitro cumulative percent release of medroxyprogesterone acetate from formulations described 12, 32 and 36 per days are described in Table 6. In vitro release obtained with Depo-SubQ Provera is shown as a control.
- Fig. 39 is a graph showing the plasma concentration of medroxyprogesterone acetate (MPA) in female dogs over time (days) injected with formulations 33, 34 and 49 described in Table 6. Each dog received a single 3 mg/kg dose of MPA.
- MPA medroxyprogesterone acetate
- Fig. 40 is a graph showing the plasma concentration of medroxyprogesterone acetate (MPA) in dogs over time (days) injected with formulations 12, 32 and 36 are described in Table 6.
- MPA medroxyprogesterone acetate
- Fig. 41 is a graph showing the in vitro percent total release of
- MPA medroxyprogesterone acetate
- Fig. 42 is a graph showing the in vitro percent total release of
- MPA medroxyprogesterone acetate
- Fig 43 is a graph showing the in vitro percent total release of
- MPA medroxyprogesterone acetate
- Fig 44 is a graph showing the in vitro percent total release of progesterone (Pro) over time (days) from formulations 1 1 , 13 and 7 described in Table 7.
- Fig, 45 is a graph showing the in vitro percent total release of progesterone (Pro) over time (days) from formulations 10, 12 and 5 described in Table 7 .
- Fig. 46 is a graph showing the in vitro percent total release of Levonorgestrel (Levo) over time (days) from formulations 7, 8 and 9 described in Table 8.
- Fig 47 is a graph showing the in vitro percent total release of Levonorgestrel (Levo) over time (days) from formulations 4, 5 and 6 described in Table 8.
- Fig. 48 is a graph showing the in vitro percent total release of cyclosporine (CSP) over time (days) from formulations 19, 20, 21 , 22, 23 and 24 described in Table 9.
- CSP cyclosporine
- Fig. 49 is a graph showing the in vitro percent total release of Bupivacaine base (Bupi) over time (days) from formulations based on formulations 42, 47, 37, 35 and 34 described in Table 0.
- biodegradable means that the tribiock and diblock copolymers will after a period of time erode or degrade in vivo to form smaller nontoxic components.
- parenteral administration encompasses intramuscular,
- intraperitoneal, intra-abdominal, subcutaneous, intravenous and intraarterial It also encompasses intradermal, intracavernous, intravitreal, intracerebral, intrathecal, epidurall and intraosseous administration.
- plant encompasses all members of the Plant Kingdom.
- Active principle means a drug or medicine for treating various medical illnesses. Thus active principles, drugs and medicines are used interchangeably.
- the term drug or active principle as used herein includes without limitation
- physiologically or pharmacologically active substances that act locally or systemically in the body of an animal or plant. At least one active principle is present in the biodegradable drug composition of the invention.
- disease means any disorder in a human, animal or plant caused by infection, diet, or by faulty functioning of a process.
- implant means that the drug delivery compositions are injectable, are in situ forming and are biodegradable and turn into solid implants when injected into the body.
- the formulations that are synthesized are liquids such that they can be easily injected through a syringe without excessive force.
- spatial formulations encompass any formulations that can be applied on or into the animal or plant body and do not necessarily have to be administered through a syringe.
- peat units are the fundamental recurring units of a polymer.
- end-capped polyethylene glycol refers to PEG's in which one terminal hydroxyl group is reacted and includes alkoxy-capped PEG's, urethane- capped PEG's ester-capped PEG's and like compounds.
- the capping group is a chemical group which does not contain a chemical function susceptible to react with cyclic esters like lactide, glycolactide, caprolactone and the like or other esters and mixtures thereof.
- polyethylene glycol as abbreviated PEG throughout the application, is sometimes referred to as poly(ethylene oxide) or poly(oxyethylene) and the terms are used interchangeably in the present invention.
- PDA poly(lactic acid).
- PLGA poly(lactic-co-glycolic acid).
- T or "TB” refers to a triblock copolymer(s)
- D or "DB” refers to a diblock copolymer(s).
- diblock refers, for example, to an end-capped PEG- polyester coplymer.
- mPEG refers to methoxy polyethylene glycol.
- trimer refers, for example, to a polyester-PEG-polyester copolymer.
- partial suspension means that the pharmaceutically active principle is in a partly soluble and partly solid form.
- hydrophobic when referring to the pharmaceutically active principles means drugs that have poor solubility in aqueous solutions.
- solubility as "the analytical composition of a saturated solution expressed as a proportion of a designated solute in a designated solvent.”
- a substance is said to be soluble if more than 0.1 g of that substance dissolves in 100 ml of distilled water at 250°C. If less than 0.1 g dissolves in 100 ml of distilled water at 250°C the substance is sparingly soluble or insoluble at a particular temperature.
- the LA/EO ratio refers to the molar ratio of lactic acid units to ethylene oxide units that is present in the biodegradable drug delivery composition. It is determined experimentally by N R.
- the LA/EO molar ratio of the combined triblock copolymer can range from 0.5 to 3.5. In another aspect the LA/EO molar ratio in the triblock can range from 0.5 to 2.5 in the biodegradable drug delivery composition described herein. In yet another aspect the LA EO ratio in the triblock can range from 0.5 to 22.3.
- the LA/EO ratio in the diblock can range from 2 to 6. In another aspect the LA EO ratio in the diblock can range from 3 to 5 in the biodegradable drug delivery composition. In another aspect the LA/EO ratio in the diblock can range from 0.8 to 13.
- the degree of polymerization or DP is the number of repeat units in an average polymer chain at time t in a polymerization reaction.
- the degree of polymerization for PEG is about 45 to 170 or it can be 4 to 273 or 3 to 45 or 0.55 to 68
- PLA it can range from about 84 to 327 or it can be 24 to 682 or 7 to 327 or 39.9 to 170.
- the present invention thus relates to a biodegradable drug composition comprising a triblock copolymer and a diblock copolymer.
- w is the degree of polymerization (number of repeat units) for PEG.
- the degree of polymerization for DP-PEG is calculated by dividing the PEG molecular weight by the EO unit molecular weight (44 Da), v + x equals the degree of polymerization (number of repeat units) for PLA.
- DP-PLA is calculated by multiplying DP-PEG by the LA/EO ratio.
- the size of the PEG in the triblock can range from 94 Da to 12,000 Da.
- the polyester in the triblock can be polylactic acid (PLA), polycaprolactone (PCL), polyglycolic acid (PGA) or polyhydroxyalkanoate (PHA).
- the polyester that is used is polylactic acid.
- the triblock copolymer is then combined with a biodegradable diblock copolymer having the formula: C y -A z , wherein A is a polyester and C is an end- capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or from 3 to 327 or 3 to 237.
- This combination has a ratio of triblock copolymer to diblock copolymer ranging from 1 :3 to 1 :8 or 1 : 1 to 1 : 19 or 3:2 to 1 : 19 or 2:3 or 4:1 or 2.3 to 4.1 .
- end-capped polyethylene glycols examples include alkoxy capped PEG's such as methoxyPEG or ethoxyPEG, urethane-capped PEG's, ester-capped PEG'S, amine-capped PEG's and amide-capped PEG'S. This list of end-capped PEG's is not exhaustive and a person skilled in the art would recognize additional end-capped PEG's, which are not listed.
- y can, for example, range from 7 to 43 or 3 to 45 or 0.55 to 68 and z can range from 32 to 123 or 7 to 327 or 39.9 to 170.
- y can be 25 and z can be 23, y can be 34.5 and z can be 123 or y can be 45 and z can be 32 he degree of polymerization for DP-PEG is calculated by dividing the PEG molecular weight of the capped PEG by the EO unit molecular weight (44 Da). The DP-PLA is calculated by multiplying DP-PEG by the LA/EO ratio.
- the polyester in the diblock can be polylactic acid (PLA), polycaprolactone (PCL), polyglycolic acid (PGA), poly(lacttc-co-glycolic acid) (PLGA) or
- polyhydroxyalkanoate PHA
- the polyester that is used is polylactic acid.
- the polyester is poly(lactic-co-glycolic acid).
- biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:
- biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1 : 3 to 1 :8 or 1 : to 1 : 19 or 3:2 to 1 : 9 in said biodegradable drug composition; and (c) at least one pharmaceutically active principle.
- the present invention provides a biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:
- biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1: 3 to 1 :8 or 1 :1 to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically hydrophobic active principle.
- biodegradable drug delivery composition comprising(a) a biodegradable triblock copolymer having the formula:
- biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, wherein the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.
- the present invention provides a biodegradable drug delivery composition
- a biodegradable triblock copolymer having the formula: PLA v -PEG w -PLA Xi wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v x or v ⁇ x; a biodegradable diblock copolymer having the formula: mPEG y -PLA Zj wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 327, wherein the ratio of the biodegradable triblock copolymer and the biodegradable diblock copolymer is 1 : 6 in said biodegradable drug composition; and at least one pharmaceutically active principle.
- the present invention provides a biodegradable drug delivery composition
- the present invention provides a biodegradable drug delivery composition
- a biodegradable triblock copolymer having the formula: PLA v -PEG w -PLA Xi wherein v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090 and v x or v ⁇ x; a biodegradable diblock copolymer having the formula: mPEG y -PLA z , wherein y and z are the number of repeat units ranging from 7 to 371 or 3 to 327, wherein the ratio of the biodegradable triblock copolymer and the biodegradable diblock copolymer is 1 : 6 or 2:3 or 3:2 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate
- levonorgestrel levonorgestrel, cyclosporins, progesterone or bupivacaine.
- biodegradable diblock copolymer of (b) is 1 : 4 in said biodegradable drug
- composition comprising; and (c) at least one pharmaceutically active principle.
- biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:
- biodegradable diblock copolymer of (b) is 1 : 4 in said biodegradable drug
- biodegradable drug delivery composition comprising:(a) a biodegradable triblock copolymer having the formula:
- biodegradable diblock copolymer of (b) is 1 : 4 or 2:3 or 3:2 or 4:1 or 2.3 to 4.1 in said biodegradable drug composition; and (c) at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine.
- the ratio of the biodegradable triblock copolymer of (a) and the biodegradable CA diblock copolymer of (b) is 1 : 3 to 1 : 8 or 1 :1 to 1 :19 or 3:2 to 1 :19 in said biodegradable drug composition.
- the ratio of the biodegradable triblock copolymer of and the biodegradable CA diblock copolymer is selected from the group of :3, 1 :4, 1 :5, :6, 1 :7 and 1 :8 or 1 :1 , 1 :2, 1 :3, 1 :4, 1 :5, 1 :6, 1 :7, 1 :8, 1 :9, 1 :10, 1 :11 , 1 :12, 1 :13, 1 :14, 1 :15, 1 :16, 1 :17, 1 :18 and 1 :19. It can also be 3:2 or 2:3 or 4:1. In another aspect the ratio of the triblock to the diblock is 1 :6.
- the length of the polyester chain is defined by its polyester to ethylene oxide molar ratio, which is between 0.5 to 3.5 or 0.5 to 2.5 or 0.5 to 22.3 for the triblock copolymer and 3 to 5 or 2 to 6 or 0.8 to 13 for the diblock copolymer.
- the chain length is defined by the lactic
- the chain length is defined by the polyglycolic acid/ethylene oxide molar ratio or the polycaprolactone/ ethylene oxide molar ratio or the polyhydroxyalkanoate/ethylene oxide molar ratio. If poly(lactic-co-glycolic) acid is used the chain length is defined by the ratio of LA + G/EO.
- the mass of the end-capped polyethylene glycol can range from 164 Da to 2,000 Da or from 100 Da to 2 kDa. It can range in the lower 100 to 300 Da range or in the 1 kDa to 2 kDa range.
- the size of the polyethylene glycol chain ranges from 200 Da to 12 kDa in the biodegradable drug delivery composition or it can range from 400 Da to 12 kDa or 194 Da to 12 kDA.
- the polymers are present in an amount of 20% to 50% (w%/w%) of the total weight of the composition. In another aspect the total weight of the polymers present in the biodegradable drug composition is 30% to 50% (w%/w%) of the total weight of the composition. In yet another aspect the polymers are present in the
- biodegradable drug composition at 40% to 50% (w%/w%) of the total weight of the composition.
- polymers are present in an amount of 5% to 40% (w%/w%) of the total composition or 5% to 50% (w%/w%) of the total composition.
- polymers are present in the biodegradable drug composition at 2.5% to 40% (w%/w%) or 2.5% to 50% (w%/w%) of the total weight of the composition.
- the triblock copolymer is present in an amount of 3.0% to 45% (w%/w%) of the total weight of the composition. In another aspect the triblock copolymer is present in an amount of 6% to 10% (w%/w%) of the total weight of the composition. In yet another aspect the triblock copolymer is present in an amount of 20% to 40% (w%/w%) of the total weight of the composition. In yet another aspect the triblock copolymer is present in an amount of 1.2 % to 30% (w%/w%) of the total weight of the composition or 1.2% to 45% (w%/w%) of the total weight of the composition.
- the triblock copolymer is present in 3.3% to 4.0% (w%/w%) or 3.5% (w%) or 4.0% (w%) or 1.9% to 4.0%(w%/w%) of the total weight of the composition.
- the diblock copolymer can be present in the biodegradable drug composition in an amount of 8% to 50% (w%/w%) of the total weight of the
- the diblock copolymer is present in an amount of 10% to 20% (w%/w%) of the total weight of the composition. In yet another aspect the diblock copolymer is present in an amount of 20% to 40% (w%/w%) of the total weight of the composition. In yet another aspect the diblock copolymer is present in an amount of 1% to 28% (w%/w%) of the total weight of the composition or 1% to 50% (w%/w%) of the total weight of composition. In yet another embodiment the diblock is present in an amount of 2.48% to
- the at least one pharmaceutically active principle is entrapped in the triblock:diblock biodegradable drug delivery composition.
- Representative drugs and biologically active agents to be used in the invention include, without limitation, peptide drugs, protein drugs, desensitizing agents, antigens, vaccines, vaccine antigens, anti-infectives, antibiotics, antimicrobials, antiallergenics, anti-diabetics, steroidal anti-inflammatory agents, decongestants, miotics, anticholinergics, sympathomimetics, sedatives, hypnotics, psychic energizers, tranquilizers, androgenic steroids, estrogens, progestational agents, medroxyprogesterone acetate, humoral agents, prostaglandins, analgesics, corticosteroids,
- the pharmaceutically active principle is a hydrophobic drug having a low solubility or is insoluble in aqueous solutions.
- Hydrophpbioc drugs include, for example, amphotericin, anthralin, beciomethasone, betamethasone, camptothecin, curcumin, dexamethasone, genistein, indomethacin, lidocaine, taxol, tetracycline, tretinoin, therapeutic proteins that are insoluble in water and the like.
- the pharmaceutically active principle is
- medroxyprogesterone acetate levonorgestrel, cyclosporine, progesterone or bupivacaine.
- Veterinary medicaments such as medicines for the treatment of worms or vaccines for animals are also part of the present invention.
- Hydrophobic veterinary drugs can also be formulated in the biodegradable drug compositions as described herein.
- Viral medicaments for plants such as those viruses from Potyviridae,
- Geminiviridae the Tospovirus genus of Bunyaviridiae and Banana streak virus are also encompassed by the present invention.
- medicaments for tobacco mosaic virus, turnip crinkle, barley yellow dwarf, ring spot watermelon and cucumber mosaic virus can be used in the biodegradable drug delivery composition of the invention.
- Hydrophobic viral medicaments for plants can also be formulated in the biodegradable drug compositions as described herein.
- drugs or biologically active agents that can be released in an aqueous environment can be utilized in the described delivery system.
- various forms of the drugs or biologically active agents may be used. These include without limitation forms such as uncharged molecules, molecular complexes, salts, ethers, esters, amides, etc., which are biologically activated when injected into the animal or plant or used as a spatial formulation such that it can be applied on or inside the body of an animal or plant or as a rod implant.
- the pharmaceutically effective amount of an active principle or hydrophobic active principle may vary depending on the active principle, the extent of the animal's or plants medical condition and the time required to deliver the active principle or hydrophobic active principle.
- the lower limit of the active principle or hydrophobic active principle incorporated into the delivery system is dependent simply upon the activity of the active principle or hydrophobic active principle and the length of time needed for treatment.
- active principles or hydrophobic active principles may be present in the biodegradable drug delivery composition from 10 to 200 mg/ml.
- the drugs should be present in the amount of 10 to 40 g/ml. .
- the drugs should be present in the amount of 10 to 500 mg/ml.
- the active principle can be loaded as high as 100 to 200 mg per ml.
- the pharmaceutically active principle is present in an amount of 1 % to 20% (w%/w%) of the total weight of the composition. In another aspect the active principle is present in 1 % to 4% (w%/w%) of the total weight of the composition. In another aspect the active principle is present in 2% to 4% (w%/w%) of the total weight of the composition. In yet another aspect the active principle, which is a small molecule, is present in an amount of 10% to 20% (w%/w%) of the total weight of the composition. In another aspect the active principle is present in an amount of 10% to 40% (w%/w%) of the total composition. In another embodiment the pharmaceutically active hydrophobic active principle is present in the amounts of 1% to 40% (w%/w%).
- the medroxyprogesterone acetate can be present in an amount of 10% to 40% (w%/w%) of the total weight of the biodegradable drug delivery compositions; the progesterone can be present in an amount of 20% to 40%
- the cyclosporine can be present in an amount of 5% to 21.1 % (w%/w%) of the total weight of the biodegradable drug delivery compositions; levonorgestrel can be present in an amount of 10% to 20% (w%/w%) of the total weight of the
- biodegradable drug delivery compositions and the bupivacaine can be present in an amount of 1% to 15% (w%/w%) of the total weight of the biodegradable drug delivery compositions.
- the pharmaceutically effective amount can be released gradually over an extended period of time.
- This slow release can be continuous or discontinuous, linear or nonlinear and can vary due to the composition of the triblock copolymer and diblock copolymer.
- the higher the lactic acid content of the triblock and diblock copolymers in comparison with the polyethylene glycol content, as well as the amount of triblock and diblock copolymers present in the biodegradable drug composition the longer the release of the active principle or hydrophobic active principle or drug.
- the higher the LA/EO molar ratio and the greater weight percentage of the triblock and diblock copolymers the longer it will take for the active principle or hydrophobic active principle to be released from the drug composition.
- the active principle or hydrophobic active principle can be released for a duration of between 7 days to 1 year or longer depending upon the type of treatment needed and the biodegradable drug delivery composition used.
- the biodegradable drug delivery composition can deliver the active principle or hydrophobic active principle for at least 7 days.
- the biodegradable drug delivery composition can deliver the active principle or hydrophobic active principle for at least 30 days.
- the biodegradable drug delivery composition can deliver the active principle or hydrophobic active principle for at least 90 days.
- the biodegradable drug delivery composition can deliver an active principle or hydrophobic active principle for 1 year or longer.
- the biodegradable drug delivery composition can be an injectable liquid or a partial suspension at room temperature and be injected through a syringe without excessive force. But these biodegradable drug delivery compositions are also in situ forming and biodegradable and turn into solid implants when injected into the animal or plant.
- the biodegradable drug composition is produced as a solid, prepared as small particles and used as a powder which is sprinkled on the injured site.
- the drug delivery composition is a rod implant, which can be implanted under the skin or in another compartment in the body.
- the drug delivery composition can be prepared and applied as a film.
- the biodegradable delivery drug composition can be used as a spatial formulation such that it can be applied onto or inside the body of an animal or plant. It can be applied anywhere on the body, including in the eye.
- the biodegradable drug composition can be produced as a partial suspension, the drug being in between the state of being partly soluble and partly solid.
- the biodegradable drug delivery composition can further comprise a pharmaceutically acceptable carrier, adjuvant or vehicle.
- An acceptable carrier can be saline, buffered saline and the like. It can be added to the biodegradable drug delivery composition after its formulation with the drug and diblock copolymer and triblock copolymer.
- the adjuvant can be formulated simultaneously when mixing the drug.
- the adjuvants that can be used are alum, aluminum phosphate, calcium phosphate, MPLTM, CpG motifs, modified toxins, saponins, endogenous stimulatory adjuvants such as cytokines, Freunds complete and incomplete adjuvants, ISCOM type adjuvants, muramyl peptides and the like.
- the vehicle can be any diluent, additional solvent, filler or binder that may alter the delivery of the active principle when needed in the biodegradable drug delivery composition. Examples include small amounts of triglycerides such as triacetin or tripropionin.
- the amount that can be used in the present biodegradable drug deliver compositions of the present invention can vary from 12% to 20% (w%/w%).
- a triacetin can be added in the formulation at 17.0% (w%/w%).
- tripropionin (abbreviated herein as Tripro) can be added at 16% (w%/w%).
- benzyl alcohol can be added at 15% to 35% (w%/w%).
- a method for preparing the biodegradable drug delivery composition of the invention is also encompassed by the invention.
- This method comprises: (i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula: A v -B w -A x, wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 090 or 6 to 1090; and (b) a biodegradable diblock copolymer having the formula: C y -A z , wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237 in a ratio of 1 : 3 to 1 :8 or 1 : 1 to 1 : 19 or 3:2 to 1 :19 triblock to diblock to form a polymer mixture; and adding at least one pharmaceutically active principle to said polymer mixture.
- a method for preparing the biodegradable drug delivery composition of the invention comprises: (i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula: A v -B w -A x , wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 090 or 6 to 090; and (b) a biodegradable diblock copolymer having the formula: C y -A Zi wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237 in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 triblock to diblock to form a polymer mixture; and adding at least one pharmaceutically hydrophobic active principle to said polymer mixture
- a method for preparing the biodegradable drug delivery composition of the invention is also encompassed by the invention. This method comprises: (i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:
- A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090; and (b) a biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237 in a ratio of1 : 3 to :8 or 1 :1 to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 triblock to diblock to form a polymer mixture; and adding at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate, levonorgestrel, cyclosporine, progesterone or bupivacaine to said polymer mixture.
- a method for preparing the biodegradable drug delivery composition of the invention comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:
- biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3:2 to 1 :19 (a):(b) to form a polymer mixture; and
- biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 (a):(b) to form a polymer mixture; and
- a method for preparing the biodegradable drug delivery composition of the invention comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:
- biodegradable diblock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1 (a):(b) to form a polymer mixture; and
- the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 137 in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3:2 to 1 :19 (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically active principle to said polymer mixture; and (iii) evaporating said solvent.
- the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising: (i) dissolving in an organic solvent (a) a biodegradable ABA type biock copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 137 in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1
- the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 137 in a ratio of 1 : 3 to 1 :8 or 1 :1 to 1 :19 or 3:2 to 1 :19 or 2:3 or 4:1 or 2.3 to 4.1
- (a):(b) to form a polymer mixture (ii) adding at least one pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate levonorgestrel, cyclosporine, progesterone or bupivacaine to said polymer mixture; and (Hi) evaporating said solvent
- the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising: (i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1 :4 (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically active principle to said polymer mixture; and (iii) evaporating said solvent.
- the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula: A v -Bw"A x
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1 :4 (a):(b) to form a polymer mixture; (ii) adding at least one pharmaceutically
- the present invention provides a method for preparing the biodegradable drug delivery composition of the present invention said method comprising-.(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula:
- A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237, y being the number of ethylene oxide repeat units and z the number of ester repeat units, in a ratio of 1 :4 or 2:3 or 3:2 or 4:1 (a):(b) to form a polymer mixture; (ii) adding at least one
- pharmaceutically hydrophobic active principle one of which is medroxyprogesterone acetate levonorgestrel, cyclosporine, progesterone or bupivacaine to said polymer mixture; and (iii) evaporating said solvent.
- Another embodiment provides a method for preparing the biodegradable drug delivery composition of the invention, said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula: A v -B w -Ax wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090; and (b) a biodegradable diblock copolymer having the formula: C y -A z , wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237 in a ratio of 1 :6 triblock to diblock to form a polymer mixture; adding at least one pharmaceutically active principle to said polymer mixture; and evaporating said solvent.
- a biodegradable ABA type block copolymer having the formula: A v -B
- biodegradable drug delivery composition of the invention, comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula: A v -B w -A x wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090; and (b) a biodegradable diblock copolymer having the formula: C y -A z , wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237 in a ratio of 1 :6 triblock to diblock to form a polymer mixture; adding at least one pharmaceutically hydrophobic active principle to said polymer mixture; and evaporating said solvent.
- no solvent is present
- Another embodiment provides a method for preparing the biodegradable drug delivery composition of the invention, said method comprising:(i) dissolving in an organic solvent (a) a biodegradable ABA type block copolymer having the formula: Av-B w -Ax wherein A is a polyester and B is polyethylene glycol and v, w and x are the number of repeat units ranging from 4 to 1090 or 6 to 1090; and (b) a biodegradable diblock copolymer having the formula: C y -A z , wherein A is a polyester and C is an end-capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237 in a ratio of 1 :6 or 2:3 or 3:2 or 4:1 or 2.3 to 4.1 triblock to diblock to form a polymer mixture; adding at least one pharmaceutically
- hydrophobic active principle one of which is medroxyprogesterone acetate levonorgestrel, cyclosporine, progesterone or bupivacaine to said polymer mixture; and evaporating said solvent.
- no solvent is present in the
- the organic solvent that can be used in the method decribed herein is selected from the group of: benzyl alcohol, benzyl benzoate, diethylene glycol dimethyl ether (Diglyme), diethylene glycol monoethyl ether (DEGMEE), dimethyl isosorbide (DMI), dimethyl sulfoxide (D SO), ethyl acetate, ethyl benzoate, ethyl lactate, ethylene glycol monoethyl ether acetate, glycerol formal, methyl ethyl ketone, methyl isobutyl ketone, N-ethyl-2-pyrrolidone, N-methyl-2-pyrrolidone ⁇ N P), pyrrolidone-2, tetraglycol, triacetin, tributyrin, tripropionin (tripro), or triethylene glycol dimethyl ether ⁇ triglyme) and mixtures thereof.
- benzyl alcohol benzyl be
- the organic solvent is present in an amount of 40% to 74% (w%/w%) of the total composition. In another aspect the organic solvent used in the preparation of the biodegradable drug delivery composition is present in an amount of 50% to 60% (w%/w%) of the total composition. In yet another aspect the solvent used in the preparation of the biodegradable drug delivery composition is present in an amount of 60% to 70% (w%/w%) of the total composition. In yet another aspect, the solvent used in the preparation of the biodegradable drug delivery system is present in the amount of 30%% to 70% (w%/w%) of the total composition. In another embodiment the organic solvent is present in the amount of 30% to 90% (w%/w%) of the total composition.
- medroxyprogesterone acetate is the active principle 30% to 70% (w%/w%) of the total composition of solvent is used; when progesterone is the active principle 40% to 80% (w%/w%) of the total composition of solvent is used; when cyclosporine is the active principle 55% to 72.9% (w%/w%) of the total composition of solvent is used; when levonorestrel is the active principle 70% to 90% (w%/w%) of the total composition of solvent is used; and when bupivacaine base is the active principle 62.5 % to 80% (w%/w%) of the total composition of solvent is used.
- Some mPEG-OH are contaminated with a small amount of OH-PEG-OH.
- the final product would be mPEG-PLA contaminated with a small amount of PLA- PEG-PLA, which is encompassed by the present invention. This contamination is less than 2%.
- the polyester can be polylactic acid (PLA), polycaprolactone (PCL), polyglycolic acid (PGA) or polyhydroxyalkanoate (PHA).
- PHA polylactic acid
- PCL polycaprolactone
- PGA polyglycolic acid
- PHA polyhydroxyalkanoate
- the polyester that is used is poly(lactic) acid.
- the triblock copolymer is then combined with a biodegradable dibiock copolymer having the formula: C y -A z , wherein A is a polyester and C is an end- capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237.
- the polyester can be polylactic acid (PLA), polycaprolactone (PCL), polyglycolic acid (PGA), poly(lactic-co-glycolic acid (PLGA) or
- polyhydroxyalkanoate PHA
- polyester that is used is poly(lactic) acid.
- the pharmaceutically active principle is then combined with the triblock and dibiock
- the polyester can be polylactic acid (PLA), polycaprolactone (PCL), polyglycolic acid (PGA) or polyhydroxyalkanoate (PHA).
- PHA polylactic acid
- PCL polycaprolactone
- PGA polyglycolic acid
- PHA polyhydroxyalkanoate
- the polyester that is used is poly(lactic) acid.
- the triblock copolymer is then combined with a biodegradable dibiock copolymer having the formula: C y -A z , wherein A is a polyester and C is an end- capped polyethylene glycol and y and z are the number of repeat units ranging from 7 to 371 or 3 to 237.
- the polyester can be polylactic acid (PLA), polycaprolactone (PCL), polyglycolic acid (PGA), poly(lactic-co-glycolic acid (PLGA) or polyhydroxyalkanoate (PHA).
- the polyester that is used is poly(lactic) acid.
- the pharmaceutically hydrophobic active principle is then combined with the triblock and diblock and can be medroxyprogesterone acetate levonorgestrel, cyclosporine, progesterone or bupivacaine base.
- biodegradable CA diblock copolymer of (b) is 1 : 3 to 1 : 8 in said biodegradable drug composition.
- the ratio of the biodegradable triblock copolymer of and the biodegradable CA diblock copolymer is selected from the group of 1 :3, 1 :4, 1 ;5, 1 :6, 1 :7 and 1 :8. or 1 :1 , 1 :2, 1 :3, 1 :4, 1 :5, 1 :6, 1 :7, 1 :8, 1 :9, 1 :10, 1 :11 , 1 :12, 1 :13, 1 :14, 1 :15, 1 :16, 1 :17, 1 :18 and 1 :19.
- the ratio of the triblock to the diblock is 1 :6. It can also be 3:2 or 2:3 or 4:1 or 2.3 to 4.1.
- the length of the polyester chain is defined by its polyester to ethylene oxide molar ratio, which is between 0.5 to 3.5 or 0.5 to 2.5 or 0.5 to 22.3 for the triblock and 3 to 5 or 2 to 6 or 0.8 to 13 for the diblock.
- the mass of the end-capped polyethylene glycol can range from 100 Da to 2 kDa or 164 Da to 2 kDa. It can range in the 100 to 300 Da range or in the 1 kDa to 2 kDa range.
- the size of the polyethylene glycol chain ranges from 200 Da to 2 kDa in the biodegradable drug delivery composition or it can range from 400 Da to 12 kDa or 194 Da to 12 kDa.
- Copolymers were synthesized according to the method described in the U.S. Patent No. 6,350,812, incorporated herein by reference, with minor modifications. Typically, the necessary amount of PEG (gives the triblock coploymer) or methoxy- PEG (gives the diblock copolymer) was heated at 65°C and dried under vacuum for 2 hours in a reactor vessel. DL-lactide (corresponding to the targeted LA/EO molar ratio) and zinc lactate (1/1000 of amount of lactide) were added. The reaction mixture was first dehydrated by three short vaccum/N2 cycles. The reaction mixture was heated at 140°C and rapidly degassed under vacuum. The reaction was conducted for four days at 140°C under constant nitrogen flow (0.2 bar).
- the reaction was cooled to room temperature and its content was dissolved in acetone and then subjected to precipitation with ethanol.
- the product obtained was subsequently dried under reduced pressure.
- the final product was characterized by 1 H NMR for its lactate content.
- the triblock PLA-PEG-PLA polymers described herein were labeled PxRy where x represent the size of the PEG chain in kDa and y is the LA/EO molar ratio.
- the diblock mPEG-PLA polymers described herein were labeledPxRy where x represent the size of the PEG chain in kDa and y is the LA/EO molar ratio.
- the formulations described herein were based on organic solution of polymers containing as the drug, the peptide M53, a GLP-1 analogue. Typically, 0.4 grams of polymers, corresponding to a mix of a diblock copolymer and a triblock copolymer in defined mass ratio, were dissolved in 0.57 grams of a biocompatible solvent at room temperature overnight under constant magnetic stirring. The solvent was either a single solvent or a combination of solvents. The next day, 20 mg of drug was added to the polymer solution and stirred until complete dissolution. When the drug was not soluble in the solvent, a suspension of the drug in a polymer solution was obtained. Alternatively, the drug was dissolved or suspended in the biocompatible solvent and the polymer(s) added subsequently. The formulations were loaded in a syringe before use.
- Example 3- The Formulations that were prepared
- the formulations described herein were based on organic solution of polymers prepared as in Example 1 , containing as the drug, acetaminophen. Typically, 0.4 grams of polymers, corresponding to a mix of a diblock copolymer and a triblock copolymer in defined mass ratio, were dissolved in 0.55 grams of dimethyl sulfoxide at room temperature overnight under constant magnetic stirring. The next day, 50 mg of acetaminophen was added to the polymer solution and stirred until complete dissolution. The formulations were loaded in a syringe before use. The composition of the various formulations is shown in Table 2 below, where the solvent used is D SO.
- Figures 7 to 26 illustrate the results of these formulations which show all possible combinations of 15 triblock copolymers with 20 diblocks copolymers.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Gastroenterology & Hepatology (AREA)
- Immunology (AREA)
- Dermatology (AREA)
- Molecular Biology (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Inorganic Chemistry (AREA)
- Endocrinology (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Dispersion Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201261665192P | 2012-06-27 | 2012-06-27 | |
| PCT/IB2013/001547 WO2014001904A1 (fr) | 2012-06-27 | 2013-06-27 | Administration de médicament biodégradable pour compositions hydrophobes |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2866837A1 true EP2866837A1 (fr) | 2015-05-06 |
| EP2866837B1 EP2866837B1 (fr) | 2022-12-14 |
Family
ID=49117888
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP13758976.8A Active EP2866837B1 (fr) | 2012-06-27 | 2013-06-27 | Administration de médicament biodégradable pour compositions hydrophobes |
Country Status (23)
| Country | Link |
|---|---|
| US (5) | US20150150987A1 (fr) |
| EP (1) | EP2866837B1 (fr) |
| JP (1) | JP6134788B2 (fr) |
| KR (1) | KR102189442B1 (fr) |
| CN (1) | CN104582733B (fr) |
| AU (1) | AU2013282891B2 (fr) |
| BR (1) | BR112014031773B1 (fr) |
| CA (1) | CA2877083C (fr) |
| CL (1) | CL2014003531A1 (fr) |
| CO (1) | CO7160098A2 (fr) |
| CR (1) | CR20140581A (fr) |
| CU (1) | CU24287B1 (fr) |
| EA (1) | EA031522B1 (fr) |
| ES (1) | ES2938586T3 (fr) |
| IL (1) | IL236472B (fr) |
| IN (1) | IN2014DN11063A (fr) |
| MA (1) | MA37809B1 (fr) |
| MX (1) | MX353280B (fr) |
| SG (1) | SG11201408658PA (fr) |
| TN (1) | TN2014000520A1 (fr) |
| UA (1) | UA113549C2 (fr) |
| WO (2) | WO2014001905A1 (fr) |
| ZA (1) | ZA201409291B (fr) |
Families Citing this family (40)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9301920B2 (en) | 2012-06-18 | 2016-04-05 | Therapeuticsmd, Inc. | Natural combination hormone replacement formulations and therapies |
| RS62297B1 (sr) | 2011-11-23 | 2021-09-30 | Therapeuticsmd Inc | Prirodne kombinovane hormonske supstitucione formulacije i terapije |
| US20150196640A1 (en) | 2012-06-18 | 2015-07-16 | Therapeuticsmd, Inc. | Progesterone formulations having a desirable pk profile |
| US20130338122A1 (en) | 2012-06-18 | 2013-12-19 | Therapeuticsmd, Inc. | Transdermal hormone replacement therapies |
| US10806697B2 (en) | 2012-12-21 | 2020-10-20 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
| US10806740B2 (en) | 2012-06-18 | 2020-10-20 | Therapeuticsmd, Inc. | Natural combination hormone replacement formulations and therapies |
| US11266661B2 (en) | 2012-12-21 | 2022-03-08 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
| US10568891B2 (en) | 2012-12-21 | 2020-02-25 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
| US11246875B2 (en) | 2012-12-21 | 2022-02-15 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
| US10471072B2 (en) | 2012-12-21 | 2019-11-12 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
| US9180091B2 (en) | 2012-12-21 | 2015-11-10 | Therapeuticsmd, Inc. | Soluble estradiol capsule for vaginal insertion |
| US10537581B2 (en) | 2012-12-21 | 2020-01-21 | Therapeuticsmd, Inc. | Vaginal inserted estradiol pharmaceutical compositions and methods |
| UA119324C2 (uk) * | 2013-04-02 | 2019-06-10 | Теміс Медікер Лімітед | Композиції фармацевтично активних речовин, що містять моноетиловий ефір діетиленгліколю або інші алкільні похідні |
| CA2919892C (fr) | 2013-08-12 | 2019-06-18 | Pharmaceutical Manufacturing Research Services, Inc. | Comprime extrude anti-abus a liberation immediate |
| US9492444B2 (en) | 2013-12-17 | 2016-11-15 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded extended release abuse deterrent pill |
| US10172797B2 (en) | 2013-12-17 | 2019-01-08 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded extended release abuse deterrent pill |
| WO2015110915A2 (fr) * | 2014-01-27 | 2015-07-30 | Medincell | Analogues rétro-inverso de spadine à effets antidépresseurs accrus |
| JP2017516768A (ja) | 2014-05-22 | 2017-06-22 | セラピューティックスエムディー インコーポレーテッドTherapeuticsmd, Inc. | 天然の併用ホルモン補充療法剤及び療法 |
| DK3169315T3 (da) | 2014-07-17 | 2020-08-10 | Pharmaceutical Manufacturing Res Services In | Væskefyldt doseringsform til forhindring af misbrug med øjeblikkelig frigivelse |
| WO2016054197A1 (fr) * | 2014-09-30 | 2016-04-07 | University Of Tennessee Research Foundation | Forme de gélification in situ pour l'administration de médicaments à action prolongée |
| EP3209282A4 (fr) | 2014-10-20 | 2018-05-23 | Pharmaceutical Manufacturing Research Services, Inc. | Forme galénique anti-abus de remplissage de liquide à libération prolongée |
| FR3027522B1 (fr) | 2014-10-27 | 2016-12-09 | I Ceram | Composition poreuse chargee en principe actif |
| US10328087B2 (en) | 2015-07-23 | 2019-06-25 | Therapeuticsmd, Inc. | Formulations for solubilizing hormones |
| AU2016355236C1 (en) * | 2015-11-16 | 2022-09-22 | Medincell | A method for morselizing and/or targeting pharmaceutically active principles to synovial tissue |
| US10286077B2 (en) | 2016-04-01 | 2019-05-14 | Therapeuticsmd, Inc. | Steroid hormone compositions in medium chain oils |
| US9931349B2 (en) | 2016-04-01 | 2018-04-03 | Therapeuticsmd, Inc. | Steroid hormone pharmaceutical composition |
| US11766400B2 (en) * | 2016-10-24 | 2023-09-26 | Yale University | Biodegradable contraceptive implants |
| JP2020511483A (ja) | 2017-03-20 | 2020-04-16 | テバ・ファーマシューティカルズ・インターナショナル・ゲーエムベーハーTeva Pharmaceuticals International GmbH | 徐放性オランザピン製剤 |
| TWI795422B (zh) * | 2017-07-17 | 2023-03-11 | 法商麥迪榭爾公司 | 用於調節至少一種活性成份之藥物釋放動力學的可生物降解之藥物傳遞之組合物混合物 |
| GB2568526A (en) | 2017-11-20 | 2019-05-22 | Rebio Tech Oy | Composition |
| CN108078911A (zh) * | 2017-12-08 | 2018-05-29 | 复旦大学 | 用于动物避孕的热致水凝胶缓释兽药注射剂及其制备方法 |
| EP4438618A3 (fr) | 2018-08-22 | 2025-01-01 | Bacainn Biotherapeutics, Ltd. | Compositions de cyclosporine et méthodes d'utilisation |
| GB201900258D0 (en) | 2019-01-08 | 2019-02-27 | Medincell | Pharmaceutical composition |
| BR112022004535A2 (pt) | 2019-09-13 | 2022-06-07 | Medincell S A | Formulações de entrega de fármaco |
| CN111700876A (zh) * | 2020-03-12 | 2020-09-25 | 上海市肿瘤研究所 | 一种治疗系统性红斑狼疮的载药递送给药系统及其制备方法 |
| WO2022129417A1 (fr) | 2020-12-16 | 2022-06-23 | Medincell | Méthodes et compositions pour le traitement prophylactique du virus sars-cov-2 (covid-19) |
| FI20215186A1 (en) | 2021-02-19 | 2022-08-20 | Rebio Tech Oy | Compositions for ophthalmic treatment |
| AU2022236485A1 (en) | 2021-03-17 | 2023-08-24 | Medincell S. A. | Long acting injectable formulation comprising risperidone and biodegradable polymers |
| CA3217538A1 (fr) * | 2021-04-30 | 2022-11-03 | Medincell Sa | Nouvelle formulation |
| WO2025081046A1 (fr) * | 2023-10-11 | 2025-04-17 | The Brigham And Women's Hospital, Inc. | Suspension injectable de médicaments hydrophobes à très forte charge destinée à une administration de médicament à long terme |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB8416234D0 (en) * | 1984-06-26 | 1984-08-01 | Ici Plc | Biodegradable amphipathic copolymers |
| HU222501B1 (hu) * | 1991-06-28 | 2003-07-28 | Endorecherche Inc. | MPA-t vagy MGA-t tartalmazó nyújtott hatóanyag-felszabadulású gyógyászati készítmény és eljárás előállítására |
| US5518730A (en) * | 1992-06-03 | 1996-05-21 | Fuisz Technologies Ltd. | Biodegradable controlled release flash flow melt-spun delivery system |
| KR0180334B1 (ko) * | 1995-09-21 | 1999-03-20 | 김윤 | 블럭 공중합체 미셀을 이용한 약물전달체 및 이에 약물을 봉입하는 방법 |
| FR2741628B1 (fr) * | 1995-11-29 | 1998-02-06 | Centre Nat Rech Scient | Nouveaux hydrogels a base de copolymeres trisequences et leur application notamment a la liberation progressive de principes actifs |
| US6541033B1 (en) | 1998-06-30 | 2003-04-01 | Amgen Inc. | Thermosensitive biodegradable hydrogels for sustained delivery of leptin |
| KR20030057549A (ko) * | 2000-11-09 | 2003-07-04 | 아스트라제네카 아베 | 블록 공중합체를 포함하는 경구용 약학 조성물 |
| KR100446101B1 (ko) * | 2000-12-07 | 2004-08-30 | 주식회사 삼양사 | 수난용성 약물의 서방성 제형 조성물 |
| DE60220519T2 (de) | 2001-04-20 | 2007-09-27 | The University Of British Columbia, Vancouver | Mizellares arzneistoffverabreichungssystem für hydrophobe arzneistoffe |
| US6592899B2 (en) | 2001-10-03 | 2003-07-15 | Macromed Incorporated | PLA/PLGA oligomers combined with block copolymers for enhancing solubility of a drug in water |
| US7649023B2 (en) * | 2002-06-11 | 2010-01-19 | Novartis Ag | Biodegradable block copolymeric compositions for drug delivery |
| DE602004007802T2 (de) * | 2003-06-26 | 2008-04-17 | Mediolanum Pharmaceuticals Ltd. | Subcutane implantate mit begrenzter initialer wirkstoff-freisetzung und deren anschliessende lineare veränderliche verlängerte freisetzung |
| US20050112170A1 (en) * | 2003-11-20 | 2005-05-26 | Hossainy Syed F. | Coatings for implantable devices comprising polymers of lactic acid and methods for fabricating the same |
| US20080247987A1 (en) * | 2005-08-04 | 2008-10-09 | Angiotech International Ag | Block Copolymer Compositions and Uses Thereof |
| CN101273963A (zh) * | 2007-11-22 | 2008-10-01 | 山东蓝金生物工程有限公司 | 一种含激素类抗癌药的温控缓释注射剂 |
| US8846068B2 (en) * | 2008-04-18 | 2014-09-30 | Warsaw Orthopedic, Inc. | Methods and compositions for treating post-operative pain comprising a local anesthetic |
| WO2010059001A2 (fr) * | 2008-11-21 | 2010-05-27 | 주식회사 삼양사 | Composition de micelles polymères pour le traitement de cellules cancéreuses résistantes |
| CN101810560B (zh) * | 2009-02-20 | 2013-07-10 | 北京大学 | 环孢a聚合物胶束组合物 |
| CA2822854C (fr) * | 2010-12-29 | 2020-01-07 | Medincell | Compositions biodegradables d'administration de medicaments |
-
2013
- 2013-06-27 ES ES13758976T patent/ES2938586T3/es active Active
- 2013-06-27 KR KR1020157002309A patent/KR102189442B1/ko active Active
- 2013-06-27 MX MX2014015902A patent/MX353280B/es active IP Right Grant
- 2013-06-27 EA EA201492172A patent/EA031522B1/ru not_active IP Right Cessation
- 2013-06-27 SG SG11201408658PA patent/SG11201408658PA/en unknown
- 2013-06-27 CU CUP2014000148A patent/CU24287B1/xx unknown
- 2013-06-27 UA UAA201413827A patent/UA113549C2/uk unknown
- 2013-06-27 BR BR112014031773-9A patent/BR112014031773B1/pt active IP Right Grant
- 2013-06-27 WO PCT/IB2013/001549 patent/WO2014001905A1/fr not_active Ceased
- 2013-06-27 AU AU2013282891A patent/AU2013282891B2/en active Active
- 2013-06-27 CA CA2877083A patent/CA2877083C/fr active Active
- 2013-06-27 MA MA37809A patent/MA37809B1/fr unknown
- 2013-06-27 US US14/410,994 patent/US20150150987A1/en not_active Abandoned
- 2013-06-27 EP EP13758976.8A patent/EP2866837B1/fr active Active
- 2013-06-27 IN IN11063DEN2014 patent/IN2014DN11063A/en unknown
- 2013-06-27 JP JP2015519379A patent/JP6134788B2/ja active Active
- 2013-06-27 CN CN201380044335.7A patent/CN104582733B/zh active Active
- 2013-06-27 WO PCT/IB2013/001547 patent/WO2014001904A1/fr not_active Ceased
-
2014
- 2014-12-15 TN TN2014000520A patent/TN2014000520A1/fr unknown
- 2014-12-16 CR CR20140581A patent/CR20140581A/es unknown
- 2014-12-17 ZA ZA2014/09291A patent/ZA201409291B/en unknown
- 2014-12-24 CL CL2014003531A patent/CL2014003531A1/es unknown
- 2014-12-25 IL IL236472A patent/IL236472B/en active IP Right Grant
- 2014-12-26 CO CO14284191A patent/CO7160098A2/es unknown
-
2018
- 2018-07-30 US US16/049,580 patent/US20190160171A1/en not_active Abandoned
-
2019
- 2019-11-22 US US16/692,487 patent/US20200085958A1/en not_active Abandoned
-
2020
- 2020-09-18 US US17/025,826 patent/US20210008216A1/en not_active Abandoned
-
2022
- 2022-05-19 US US17/748,464 patent/US20220354956A1/en not_active Abandoned
Non-Patent Citations (2)
| Title |
|---|
| None * |
| See also references of WO2014001904A1 * |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20220354956A1 (en) | Biodegradable drug delivery for hydrophobic compositions | |
| US20220202942A1 (en) | Biodegradable drug delivery compositions | |
| HK1248146A1 (en) | Biodegradable drug delivery compositions | |
| HK1248146B (en) | Biodegradable drug delivery compositions | |
| HK1190925A (en) | Biodegradable drug delivery compositions | |
| HK1190925B (en) | Biodegradable drug delivery compositions | |
| HK1208374B (en) | Biodegradable drug delivery for hydrophobic compositions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20150122 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1208374 Country of ref document: HK |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| 17Q | First examination report despatched |
Effective date: 20190108 |
|
| 17Q | First examination report despatched |
Effective date: 20190122 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602013083057 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: A61K0047340000 Ipc: A61K0009100000 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61K 38/13 20060101ALI20220531BHEP Ipc: A61K 31/57 20060101ALI20220531BHEP Ipc: A61K 31/565 20060101ALI20220531BHEP Ipc: A61K 31/445 20060101ALI20220531BHEP Ipc: A61K 47/34 20060101ALI20220531BHEP Ipc: A61K 9/10 20060101AFI20220531BHEP |
|
| INTG | Intention to grant announced |
Effective date: 20220624 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MEDINCELL S.A. |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013083057 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1537253 Country of ref document: AT Kind code of ref document: T Effective date: 20230115 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2938586 Country of ref document: ES Kind code of ref document: T3 Effective date: 20230412 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20221214 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230314 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1537253 Country of ref document: AT Kind code of ref document: T Effective date: 20221214 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230315 |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230516 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230414 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230414 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013083057 Country of ref document: DE |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
| 26N | No opposition filed |
Effective date: 20230915 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
| REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230630 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230627 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230627 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230627 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230627 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230630 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250610 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20250616 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20250611 Year of fee payment: 13 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130627 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130627 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20250702 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20250613 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20250701 Year of fee payment: 13 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 |