EP2548665A1 - Procédé de détermination de l'usure dépendant du mouvement relatif d'un cylindre - Google Patents
Procédé de détermination de l'usure dépendant du mouvement relatif d'un cylindre Download PDFInfo
- Publication number
- EP2548665A1 EP2548665A1 EP11175028A EP11175028A EP2548665A1 EP 2548665 A1 EP2548665 A1 EP 2548665A1 EP 11175028 A EP11175028 A EP 11175028A EP 11175028 A EP11175028 A EP 11175028A EP 2548665 A1 EP2548665 A1 EP 2548665A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rolling
- roll
- stand
- determined
- rolling stock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B38/00—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2267/00—Roll parameters
- B21B2267/24—Roll wear
Definitions
- the present invention further relates to a computer program which comprises machine code which can be processed directly by a computer and whose execution by the computer causes the computer to carry out such a determination method.
- the present invention further relates to a computer adapted to carry out such a determination method.
- the present invention further relates to a rolling mill which comprises at least one roll stand for rolling rolling and which is equipped with such a computer.
- the extent to which wear occurs depends on various parameters. For example, the amount of wear depends on the type of rollers (work roll, back-up roll, etc.), the type of rolling (cold rolling or hot rolling), the arrangement of the rolls in the rolling mill (first, second, third rolling stand of the rolling mill, etc.) or - in the case of a reversing mill - the stitch number, the material of the rolling stock (steel, aluminum, copper, ...), the material of the rolls ( Cast iron, cast steel, high speed steel, ...) etc.
- the wear has an impact on the quality of rolled rolled stock.
- the wear must be taken into account and, if possible, compensated for by appropriate adjustments to the setting - if necessary also with regard to profile and flatness - for flat rolled stock.
- the rollers must be changed from time to time and reground.
- a direct measurement of the roller wear is only possible if the relevant roller is removed from the rolling stand and can be measured. In the ongoing rolling process, however, a direct measurement of the roller wear is not possible.
- the wear model makes the determined wear available to other control systems, for example for the corresponding correction of the employment. It is also known to carry out similar calculations offline.
- the process variables used in this case may be, for example, model-based expected expected quantities.
- the wear can have different wear components, in particular a thermal wear component and a relatively motion-dependent wear component.
- the thermal wear component is essentially due to the intermittent heating of the roller during contact with the hot Rolling and cooling the roller between the contact times caused.
- the relative movement-dependent wear component is caused by the relative movement between rolling stock and roller (lead and lag). In particular, it causes an abrasion of the roller (abrasive wear portion).
- the present invention relates to the determination of the relatively movement-dependent wear component.
- the determination and consideration of the thermal wear component will therefore be discussed in the following.
- DA is the expected relative movement-dependent proportion of wear
- c a constant coefficient of wear
- ⁇ the pressure distribution in the nip
- ⁇ den - for the length of the contact area of rolling stock and roller essentially characteristic - contact angle
- 1 the length of the respective Walzgutabiteses.
- the wear coefficient c is set appropriately. It may depend on the above parameters.
- the object of the present invention is to provide opportunities to determine the relative movement-dependent wear of the roller in a reliable model-based manner.
- the present invention is thus based on the application of the known fact that during rolling there is a region (adhesive zone) in which the rolling stock abuts (adheres) to the roll without relative movement to the roll, while for relative movement-dependent wear on the roll so-called ground length arrives, ie on the length of the roller in which occurs by the pre and lag of the rolling a relative movement between the roll and rolling.
- the known models are used in the prior art only for the determination of rolling force, rolling moment and overfeed. They determine the variables mentioned using the flow properties of the rolling stock, the coefficient of friction between roller and rolling, the desired stitch loss, the geometry of the rolling stock and the like. However, according to the invention, they can also be used for determining the adhesive zone and thus indirectly the sliding zone, whereby the determination of the relative movement-dependent wear can be made on the basis of the sliding zone.
- the further influencing variable depends on the average pressure in the nip (i.e., the quotient of rolling force and contact surface). This procedure often leads to acceptable to good results. However, it leads to better results if the further influencing variable depends on the (exact) pressure distribution in the nip.
- the pressure distribution can be determined, for example, based on the mean yield stress or on the maximum of the flow curve (as a function of the degree of deformation).
- the further influencing variable may depend on the surface hardness of the roll.
- the relatively movement-dependent wear component depending on the surface hardness and the yield stress of the rolling stock are determined.
- the relatively movement-dependent wear component can be determined as a function of both the pressure distribution in the roll nip and the surface hardness of the roll, optionally with additional consideration of the yield stress of the rolling stock. Other approaches are possible.
- the further influencing variable depends on the surface hardness of the roll
- the surface hardness of the roller is in this case preferably determined as a function of the determined upper temperature.
- a rolling gap lubrication is taken into account in the determination of the sliding zone.
- the determined wear is used as part of the determination of manipulated variables for the first roll stand. Alternatively or additionally, it is possible that the determined wear is used to determine a roll change time. If a determination of a roller change time is made, the determination of the expected wear component may possibly be linked to a future-oriented wear prognosis. Such a wear prediction is in the older European patent application not previously published on the filing date of the present invention 10 174 297.1 (Filing 27.08.2010, title "Operating Procedures for a rolling mill for rolling flat rolling stock with roll wear forecast") the applicant described in detail.
- the flow curve is not tracked exclusively based on the rolling force.
- the coefficient of friction is not tracked exclusively on the basis of the lead.
- the tracking of the flow curve is based on both the rolling force and the overfeed.
- a non-linear optimizer can be used to track the flow curve and the coefficient of friction. Suitable optimizers are known as such.
- the roll stand may be followed by a loop lifter whose role is employed on the rolling stock.
- the peripheral speed of the looper roller corresponds to a very good approximation of the outlet side speed of the rolling stock.
- the length of the rolling stock can also be measured before (after) the rolling and the lead (lag) can be determined on the basis of the recorded length in conjunction with the duration of the rolling pass and the circumferential distance traveled by the roller during this time ,
- the rolling force can - assuming a corresponding measuring device - be detected at each rolling mill.
- detection of the lead is implemented only in some rolling mills.
- first rolling stand in the sense of claim 11 both the flow curve and the coefficient of friction can be tracked.
- second rolling stands in the sense of claim 11 can be tracked based on the rolling force only the flow curve.
- the rolling stock first passes through the second mill stand and only then the first mill stand.
- the second mill stand may be a roughing stand of a roughing mill and the first mill stand may be a finishing stand of a finishing mill.
- the wear model can be adapted offline based on the expected wear determined by the wear model and the measured actual wear.
- the object of the invention is further achieved by a computer program of the type mentioned.
- the computer program is designed in this case such that the processing of the machine code by the computer causes the computer to carry out a determination process with all the steps of a determination method according to the invention.
- the object is further achieved by a computer which is designed such that it carries out such a determination process.
- the object is further achieved by a rolling mill of the type mentioned, which is equipped with such a computer.
- a rolling mill has a plurality of rolling stands 1.
- the rolling mill - for example, in the case of a reversing mill - have only a single stand 1.
- a rolling stock 2 is rolled.
- the rolling stock 2 is made of metal, such as copper, aluminum, brass or steel. It can alternatively be cold rolled or hot rolled in the roll stand 1, whereby in the context of the present invention as a rule a hot rolling takes place.
- the rolling stands 1 have according to FIG. 1 in addition to work rolls 3 support rollers 4 on.
- the rolling stock 2 is therefore a flat rolling stock, ie a strip or heavy plate.
- the support rollers 4 could be dispensed with, in particular for the rolling of profiled, rod-shaped or tubular rolling stock 2, ie only the work rolls 3 could be present.
- the rolling mill is equipped with a computer 5.
- the computer 5 can according to the representation of FIG. 1 control the rolling mill, so be designed as a control computer. However, this is not mandatory.
- the computer 5 is programmed with a computer program 6.
- the computer program 6 can be supplied to the computer 5, for example via a data carrier 7, on which the computer program 6 is stored in machine-readable form.
- the data carrier 7 is in FIG. 1 shown as a USB memory stick.
- this illustration is not intended to be limiting.
- the computer program 6 comprises machine code 8, which can be processed directly by the computer 5.
- the execution of the machine code 8 by the computer 5 causes the computer 5 to carry out a determination process, which is described below in connection with FIG. 2 is explained in more detail.
- the programming with the computer program 6 thus effects a corresponding design of the computer 5.
- FIG. 2 - see supplementary FIG. 1 - Sets the computer 5 in a step S1 for a particular roller 3, 4 - for example, the upper work roll 3 of in FIG. 1 middle rolling mill 1 - the wear d to an initial value d0.
- the initial value d0 can be made available to the computer 5, for example, by an operator 9 or otherwise.
- One way of otherwise providing the initial value d0 is, for example, that the initial value d0 is automatically transmitted to the computer 5 from a grinding shop in which the respective roller 3, 4 has been reground.
- the control computer 5 becomes known rolling stock W1, which describes the rolling stock 2 to be rolled.
- the rolling stock sizes W1 include, for example, the chemical composition, the temperature and geometric data of the rolling stock 2.
- the geometric data and, as a rule, also the temperature are related to the state in which the rolling stock 2 enters the rolling stand 1 under consideration.
- the geometric data may in particular include its width and its thickness.
- the rolling stock sizes W1 can be known to the computer 5 in an analogous manner to the initial value d0.
- the computer 5 rolling stand sizes W2 are known, which describe the rolling stand 1 and its rollers 3, 4.
- the roll stand sizes W2 include, for example, the installation location of the considered roll 3, that is, for example, in the first, second, third, etc. rolling stand 1 of a multi-stand rolling mill.
- the roll stand sizes include W2 the material of the roll 3 (for example, high speed steel HSS), the type of roll 3 (work roll, back-up roll, intermediate roll, etc.) and the static geometric data (width and diameter) of the considered roller 3.
- the roll stand data W2 the computer 5 to the rolling stock data W1 analogous manner become known.
- the computer 5 receives process variables P during the rolling of the rolling stock 2 in the rolling stand 1 under consideration.
- the process variables P describe the rolling process in the rolling stand 1 under consideration. For example, they can be detected completely or partially by means of corresponding measuring sensors and supplied to the computer 5.
- the rolling force FW can be detected by means of appropriate load cells easily.
- the speed nW of the considered roller 3 can be detected by means of appropriate sensors, so that in conjunction with the - known - diameter of the considered roller 3 immediately gives the peripheral speed.
- the process variables P can be determined in whole or in part by calculation. For example, the lead can often only be determined by calculation.
- the lead over can also be determined by the ratio of this speed to the peripheral speed of the roll 3 under consideration. In this case, therefore, it also represents a quantity based on measurements.
- the speed of the rolling stock 2 running out of the roll stand 1 can be detected, for example, via the rotational speed nS of a loop lifter roll 10, which is positioned behind the rolling mill 1 under consideration to the rolling stock 2.
- Other process variables P for example a setting of the roll stand 1 or a lubrication between roll 3 and rolling stock 2, can be known, for example, on the basis of a pass schedule calculation.
- a step S5 the computer 5 uses the process variables P in conjunction with the rolling stock sizes W1 and the rolling stand sizes W2 to determine a roll gap model 11 by means of a roll gap model 11 Glide zone 13 (see FIG. 3 ) and its length L.
- the sliding zone 13 corresponds - see FIG. 3 - That region of the roll gap within which the rolling stock 2 slides relative to the roller 3 on the roll surface.
- the rolling stock speed at the location considered is either (namely in the inlet side area) smaller than the peripheral speed of the roller 3 or (namely in the outlet side area) greater than the peripheral speed of the roller concerned 3.
- the sliding zone 13 is in contrast to one Adhesive zone 14, within which the Walzgutieriieriieriieriieriieriieriieriieriieriieriieria at the considered location is equal to the peripheral speed of the considered roller 3.
- the sliding zone 13 and the adhesive zone 14 together form a contact region 15 of the roller 3, within which the roller 3 contacts the rolling stock 2.
- the sliding zone 13 and the detention zone 14 are in FIG. 3 - Purely technical drawing - distinguished by the fact that a speed of the rolling stock 2 is indicated in the inlet-side sliding zone 13 with a small and in the outlet side sliding zone 13 with a large arrow, while the speed of the rolling material 2 indicated in the adhesive zone 14 with an arrow medium size is.
- the computer 5 preferably takes into account, inter alia, a roller gap lubrication.
- the adhesive zone 14 and / or the contact region 15 a Walzenabplattung be taken into account.
- the roll gap model 11 can be used for determining the contact region 15 and the adhesive zone 14, in particular the roll gap model 11 can be used. Corresponding roll gap models 11 are known per se. By way of example, the above-mentioned technical article by Garber et al. directed.
- a step S6 the computer 5 determines a relative movement-dependent wear component dA.
- the computer 5 determines the relative movement-dependent wear component dA in step S6 taking into account the sliding zone 13 determined in step S5.
- the relatively movement-dependent wear component dA is proportional to the length L of the sliding zone 13.
- the computer 5 determines further wear components, in particular a thermal wear component dT.
- a thermal wear component dT is generally important for the determination of the second wear components. However, as a rule, it is not necessary to distinguish between sliding zone 13 and detention zone 14.
- the determination of the thermal wear component dT can be carried out in particular according to the method described in the European patent application mentioned above 10 174 341.7 is explained in detail.
- a step S8 the computer 5 updates the wear d by adding the relative movement-dependent wear component dA and, if applicable, the further wear components dT to the previously accumulated wear d.
- the computer 5 utilizes the determined wear d.
- the computer 5 if he according to the representation of FIG. 1 controls the rolling mill, the determined wear d in the context of the determination of manipulated variables S for the considered rolling stand 1 use.
- the computer 5 can compare the determined wear d with a maximum permissible wear and if necessary issue a warning message to the operator 9, in that an exchange of the roller 3 under consideration must take place at a roller change time determined as a function of the wear d.
- Other approaches are possible.
- step S10 the computer 5 checks whether the rolling of the rolling stock 2 has ended. If this is not the case, the computer 5 returns to step S4 so that it again executes the steps S4 to S10.
- the computer 5 executes the relative movement-dependent wear component dA and possibly also the further wear components dT only for one rolling stock section 16 which during the relevant pass through the loop consisting of steps S4 to S10 in the considered rolling mill 1 is rolled.
- the determination of the further influencing variable Z can take place in various ways. The following will be in connection with FIG. 4 a possible procedure for determining the further influencing variable Z explained.
- FIG. 4 determines the computer 5 in a step S21 on the basis of the process variables P, the Walzgutieren W1 and the roll stand W2 such as the temperature and the chemical composition of the rolling material 2 in conjunction with the geometry of the rolled material 2 and the desired stitch loss, a pressure distribution in the nip.
- this can be Roll nip model 11 can be used.
- the design of the roll gap model 11 is known to the person skilled in the art.
- a step S22 the computer 5 uses the process variables P, the rolling stock sizes W1 and the rolling stand sizes W2, such as the roll diameter, the roll speed, the rolling stock geometry and the rolling stock temperature, to determine an upper temperature of the roll 3 under consideration.
- Corresponding roller models are known to the person skilled in the art.
- the computer 5 determines, depending on the upper temperature of the roller 3, a surface hardness of the roller 3 under consideration.
- the determination of the pressure distribution in the nip is relatively computationally intensive.
- the procedure of FIG. 4 is therefore preferably according to FIG. 5 designed.
- the computer After accepting the process variables P, the computer checks whether the process variables P have changed in a step S31. If this is the case, the computer 5 determines the pressure distribution in the nip in step S21 and stores it in a memory 17 in a step S32 (see FIG FIG. 1 ). If the process variables P have not changed, the computer 5 proceeds from step S31 to a step S33, in which the computer 5 reads the pressure distribution in the roll gap from the memory 17 without re-determination.
- step S31 When the step S31 is processed for the first time, it must be ensured that the computer transfers to steps S21 and S32. This can be achieved, for example, by the computer 5 setting the process variables P to meaningless values during the initialization, ie even before the first section 16 of the rolling stock 2 is rolled, for example by setting the rolling force FW at the value 0.
- the coefficient of friction and / or the yield stress are preferably updated from time to time. If the friction coefficient and / or the yield stress are updated outside of the determination method according to the invention-for example, within the framework of a rolling force model or a pass schedule calculation-it is possible to transfer these values to the determination method according to the invention.
- the determination method for determining the wear d can be adapted.
- the FIG. 6 and 7 show two preferred approaches.
- the computer 5 determines the pressure distribution on the basis of the process variables P, the rolling stock sizes W1 and the rolling stand sizes W2 by means of the roll gap model 11 in a step S41 in the nip, an expected rolling force FW 'and an expected lead v'.
- the process variables P usually include, inter alia, the rolling force FW and the advance v.
- the rolling force FW is usually detected by measurement.
- this rolling force FW ie the actual rolling force, is not used in the course of step S41.
- a flow curve of the rolling stock 2 is used instead, which enters both into the determination of the pressure distribution and in the determination of the expected rolling force FW 'and the expected lead v'. Due to the dependence of the relative movement-dependent wear component dA on the pressure distribution in the roll gap, therefore, the relatively movement-dependent wear component dA is determined as a function of the flow curve. Dependence is indirect in this case. Alternatively, a direct dependency might be possible.
- the computer 5 can therefore according to FIG. 6 in a step S42, compare the expected rolling force FW 'determined by it with the actual rolling force FW. If (significant) deviations occur, the computer 5 proceeds to a step S43. In step S43, the computer 5 traces the flow curve as a function of the detected rolling force FW and the expected rolling force FW '.
- FIG. 7 essentially goes by FIG. 6 out. However, steps S42 and S43 are replaced by steps S46 and S47.
- the lead advance v is also available as the actual measured variable, ie it is detected.
- the determination of the expected advance v 'of the step S41 takes place without utilization of the actual advance v. Instead, the expected lead v 'is determined using the flow curve and a coefficient of friction of the rolling stock 2 relative to the roller 3 under consideration.
- the determination of the expected Rolling force FW ' is carried out as already described using the flow curve.
- the friction coefficient is - as well as the flow curve - in the determination of the relative movement-dependent wear dA.
- the coefficient of friction enters into the determination of the sliding zone 13.
- the computer 5 proceeds to step S47.
- the calculator 5 traces the flow curve and the coefficient of friction as a function of the rolling force FW, the expected rolling force FW ', the lead v and the expected lead v'.
- the tracking can be done in particular by means of a non-linear optimizer (not shown in the FIG).
- FIG. 8 it is possible for some rolling stands 1 of a multi-stand rolling train to have both the rolling force FW and the lead v as measured process variables P, while for other rolling stands 1 of the rolling train only the rolling force FW, but not the lead v is available as a measured variable , As shown by FIG. 8 For example, in the case of the front rolling stands 1, only the respective rolling force is detected, while in the rear rolling stands 1 both the respective rolling force FW and - via the speeds nS, nH of looper rolls 10 and a reel 18 - the respective lead v are detected.
- FIG. 9 Here is a modification of FIG. 7 .
- FIG. 10 a modification of FIG. 6 .
- the tracking friction value is provided in a step S51 for other rolling stands 1.
- the friction coefficient provided is accepted by a rolling stand 1, in which no overfeed is detected, and a separate coefficient of friction is determined therefrom.
- the coefficient of friction may be scaled at a suitable factor in step S56.
- the rolling stock 2 first passes through those rolling stands 1 in which only the rolling force FW, but not also the overfeed, is written, and only then the rolling stands 1, in which both the rolling force FW and the lead v are detected.
- the front rolling stands 1 can be roughing a roughing
- the rear rolling stands 1 finishing stands of a finishing train are detected.
- the present invention has many advantages.
- the procedure according to the invention makes possible a good and reliable prediction of the relatively movement-dependent wear component dA.
- the wear model 12 can in this case according to the representation of FIG. 1 include the roll gap model 11 with.
- the roll gap model 11 may be located outside of the wear model 12 - for example within a stitch plan calculation.
- there is an improved sensitivity to process changes for example, variations in the roll gap lubrication or other changes in the coefficient of friction between rolling stock 2 and considered roller 3.
- the influence of the rolling gap lubrication on the wear d can be better modeled.
- the present invention is preferably applied to hot rolling of flat stock 2. However, it is also applicable to the cold rolling of flat rolling 2. Also, it is both during hot and cold rolling of andersierim rolling stock 2, for example, rod-shaped rolling 2 or 2 profiled rolling applicable. Furthermore, it has not been discussed above whether the relative movement-dependent wear component dA (and optionally also the further wear components dT are determined in the width direction with or without spatial resolution in the case of a flat rolled stock 2. Of course, both approaches are possible.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP11175028.7A EP2548665B1 (fr) | 2011-07-22 | 2011-07-22 | Procédé de détermination de l'usure dépendant du mouvement relatif d'un cylindre |
| PL11175028T PL2548665T3 (pl) | 2011-07-22 | 2011-07-22 | Sposób określania zależnego od ruchu względnego zużycia walca |
| CN201210257089.0A CN102886385B (zh) | 2011-07-22 | 2012-07-23 | 用于轧辊的与相对运动相关的磨损度的测定方法 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP11175028.7A EP2548665B1 (fr) | 2011-07-22 | 2011-07-22 | Procédé de détermination de l'usure dépendant du mouvement relatif d'un cylindre |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2548665A1 true EP2548665A1 (fr) | 2013-01-23 |
| EP2548665B1 EP2548665B1 (fr) | 2014-02-12 |
Family
ID=44999659
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP11175028.7A Active EP2548665B1 (fr) | 2011-07-22 | 2011-07-22 | Procédé de détermination de l'usure dépendant du mouvement relatif d'un cylindre |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP2548665B1 (fr) |
| CN (1) | CN102886385B (fr) |
| PL (1) | PL2548665T3 (fr) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015167018A1 (fr) | 2014-05-01 | 2015-11-05 | L'oreal | Nébuliseur |
| US9371630B1 (en) | 2014-12-19 | 2016-06-21 | Caterpillar Inc. | Determination of undercarriage idler and roller wear based on final drive speed |
| US9475526B2 (en) | 2014-08-23 | 2016-10-25 | Caterpillar Inc. | Track link having a wear sensing device |
| US9557244B2 (en) | 2014-11-10 | 2017-01-31 | Caterpillar Inc. | Thrust bias detection system |
| US9592866B2 (en) | 2014-11-06 | 2017-03-14 | Caterpillar Inc. | Track assembly having a wear monitoring system |
| US9868482B2 (en) | 2014-10-29 | 2018-01-16 | Caterpillar Inc. | Track roller assembly with a wear measurement system |
| US11919059B2 (en) | 2019-01-28 | 2024-03-05 | Primetals Technologies Germany Gmbh | Changing the effective contour of a running surface of a working roll during hot rolling of rolling stock in a roll stand to form a rolled strip |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN205659983U (zh) * | 2016-06-15 | 2016-10-26 | 日照宝华新材料有限公司 | 一种esp生产线用长公里数轧制辊 |
| CN106694572B (zh) * | 2017-02-28 | 2018-12-04 | 中冶华天工程技术有限公司 | 基于轧辊磨损检测的在线轧制工艺调整系统及方法 |
| EP3685930B1 (fr) | 2019-01-28 | 2021-11-24 | Primetals Technologies Germany GmbH | Changement local de la fente de laminage dans la zone marginale d'une bande laminée |
| CN114589205B (zh) * | 2022-04-08 | 2023-03-28 | 燕山大学 | 一种确定板带轧制过程在线换辊时间节点的方法 |
| CN116020873A (zh) * | 2023-01-07 | 2023-04-28 | 首钢京唐钢铁联合有限责任公司 | 一种冷轧辊的检测方法、设备和存储介质 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SU1329858A1 (ru) * | 1986-01-03 | 1987-08-15 | Криворожский Филиал Киевского Института Автоматики Им.Хху Съезда Кпсс | Устройство дл автоматического контрол износа валков стана гор чей прокатки |
| JPH02255207A (ja) * | 1989-03-30 | 1990-10-16 | Kawasaki Steel Corp | 熱間仕上圧延における圧延ロール表面性状の監視方法 |
| JPH03138013A (ja) * | 1989-10-24 | 1991-06-12 | Kawasaki Steel Corp | 板材圧延におけるワークロールベンディング制御方法 |
| EP1017434A2 (fr) | 1996-10-22 | 2000-07-12 | Hemocleanse, Inc. | Procede de dialyse peritoneale a ecoulement continu (cfpd) avec regulation de la pression intraperitoneale |
| EP1017429A2 (fr) | 1997-09-19 | 2000-07-12 | Baxter Aktiengesellschaft | Eponge a base de fibrine |
| JP2001353513A (ja) * | 2000-04-13 | 2001-12-25 | Nippon Steel Corp | 圧延機のワークロール摩耗量の予測方法 |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0417920A (ja) * | 1990-05-11 | 1992-01-22 | Furukawa Electric Co Ltd:The | 圧延機の圧延ロール寿命測定方法 |
| CN101507978B (zh) * | 2009-03-20 | 2012-08-22 | 燕山大学 | 冷连轧机基于机理与工况相结合的工作辊磨损预报方法 |
-
2011
- 2011-07-22 PL PL11175028T patent/PL2548665T3/pl unknown
- 2011-07-22 EP EP11175028.7A patent/EP2548665B1/fr active Active
-
2012
- 2012-07-23 CN CN201210257089.0A patent/CN102886385B/zh active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SU1329858A1 (ru) * | 1986-01-03 | 1987-08-15 | Криворожский Филиал Киевского Института Автоматики Им.Хху Съезда Кпсс | Устройство дл автоматического контрол износа валков стана гор чей прокатки |
| JPH02255207A (ja) * | 1989-03-30 | 1990-10-16 | Kawasaki Steel Corp | 熱間仕上圧延における圧延ロール表面性状の監視方法 |
| JPH03138013A (ja) * | 1989-10-24 | 1991-06-12 | Kawasaki Steel Corp | 板材圧延におけるワークロールベンディング制御方法 |
| EP1017434A2 (fr) | 1996-10-22 | 2000-07-12 | Hemocleanse, Inc. | Procede de dialyse peritoneale a ecoulement continu (cfpd) avec regulation de la pression intraperitoneale |
| EP1017429A2 (fr) | 1997-09-19 | 2000-07-12 | Baxter Aktiengesellschaft | Eponge a base de fibrine |
| JP2001353513A (ja) * | 2000-04-13 | 2001-12-25 | Nippon Steel Corp | 圧延機のワークロール摩耗量の予測方法 |
Non-Patent Citations (3)
| Title |
|---|
| VON E. A. GARBER ET AL.: "Effect of Sliding and Rolling Friction on the Energy-Force Parameters during Hot Rolling in Four-High Stands", RUSSIAN METALLURGY (METALLY, vol. 6, 2007, pages 484 - 491, XP009155149, DOI: doi:10.1134/S0036029507060080 |
| VON MATTHIAS KURZ ET AL.: "Adaptive Rolling Model for a Cold Strip Tandem Mill", AISE, 2001 |
| VON P. G. STEVENS ET AL.: "Increasing work-roll life by improved roll-cooling practice", JOURNAL OF THE IRON AND STEEL INSTITUTE, January 1971 (1971-01-01), pages 1 - 11, XP009155191 |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015167018A1 (fr) | 2014-05-01 | 2015-11-05 | L'oreal | Nébuliseur |
| US10286418B2 (en) | 2014-05-01 | 2019-05-14 | L'oreal | Nebulizer |
| US9475526B2 (en) | 2014-08-23 | 2016-10-25 | Caterpillar Inc. | Track link having a wear sensing device |
| US9868482B2 (en) | 2014-10-29 | 2018-01-16 | Caterpillar Inc. | Track roller assembly with a wear measurement system |
| US9592866B2 (en) | 2014-11-06 | 2017-03-14 | Caterpillar Inc. | Track assembly having a wear monitoring system |
| US9557244B2 (en) | 2014-11-10 | 2017-01-31 | Caterpillar Inc. | Thrust bias detection system |
| US9371630B1 (en) | 2014-12-19 | 2016-06-21 | Caterpillar Inc. | Determination of undercarriage idler and roller wear based on final drive speed |
| US11919059B2 (en) | 2019-01-28 | 2024-03-05 | Primetals Technologies Germany Gmbh | Changing the effective contour of a running surface of a working roll during hot rolling of rolling stock in a roll stand to form a rolled strip |
| US12285790B2 (en) | 2019-01-28 | 2025-04-29 | Primetals Technologies Germany Gmbh | Changing the effective contour of a running surface of a working roll during hot rolling of rolling stock in a roll stand to form a rolled strip |
Also Published As
| Publication number | Publication date |
|---|---|
| PL2548665T3 (pl) | 2014-07-31 |
| CN102886385A (zh) | 2013-01-23 |
| EP2548665B1 (fr) | 2014-02-12 |
| CN102886385B (zh) | 2015-04-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2548665B1 (fr) | Procédé de détermination de l'usure dépendant du mouvement relatif d'un cylindre | |
| AT501314B1 (de) | Verfahren und vorrichtung zum kontinuierlichen herstellen eines dünnen metallbandes | |
| EP1485216B1 (fr) | Procede de determination assiste par ordinateur pour des valeurs de consigne destinees a des actionneurs de profil et de planeite | |
| EP2195127B1 (fr) | Procédé d'exploitation permettant d'introduire un produit à laminer dans une cage d'un laminoir, dispositif de commande, support de données et laminoir conçu pour laminer un produit à laminer en forme de bande | |
| EP2170535B1 (fr) | Procédé de réglage d'un état d'un produit à laminer, en particulier d'un ruban de préparation | |
| EP2588257B1 (fr) | Procédé pour faire fonctionner un laminoir pour laminer des produits plats à laminer avec pronostic de l'usure des cylindres | |
| EP3107666B1 (fr) | Précommande simple du pas de filetage d'un ébaucheur | |
| EP2697002B1 (fr) | Procédé de commande pour train de laminoir | |
| EP2527053A1 (fr) | Procédé de commande pour une voie de laminage | |
| EP2527052A1 (fr) | Procédé de fonctionnement pour une voie de laminage | |
| DE102008011275A1 (de) | Betriebsverfahren für eine mehrgerüstige Walzstraße mit Banddickenermittlung anhand der Kontinuitätsgleichung | |
| EP2662158A1 (fr) | Procédé de traitement de produits à laminer et laminoir | |
| DE3422762C2 (fr) | ||
| EP2595768B1 (fr) | Procédé de détermination de l'usure d'un cylindre pour le laminage de produits à laminer | |
| EP3917694B1 (fr) | Changement local de la fente de laminage dans la zone marginale d'une bande laminée | |
| DE10211623A1 (de) | Rechnergestütztes Ermittlungverfahren für Sollwerte für Profil-und Planheitsstellglieder | |
| EP3685930B1 (fr) | Changement local de la fente de laminage dans la zone marginale d'une bande laminée | |
| DE102009043400A1 (de) | Verfahren zur modellbasierten Ermittlung von Stellglied-Sollwerten für die asymmetrischen Stellglieder der Walzgerüste einer Warmbreitbandstraße | |
| EP3851217A1 (fr) | Adaptation améliorée d'un modèle de cylindre | |
| EP4061552B1 (fr) | Procédé, dipositif de contrôle et laminoir pour le réglage d'une température de sortie d'une bande métallique quittant un train de laminage | |
| DE102018200939A1 (de) | Tandem-Walzwerksteuervorrichtung und Tandem-Walzwerksteuerverfahren | |
| EP1059126A2 (fr) | Procédé pour régler la tension entre les cages de laminoir de trains de laminoirs pour acier en barres, fils ou profilés | |
| DE10206758B4 (de) | Bandkanten-Planheitssteuerung | |
| EP3448592B2 (fr) | Procede de laminage d'un produit de laminage | |
| EP4119247B1 (fr) | Prise en compte de la densité dépendante de l'état lors de la résolution d'une équation de conduction thermique |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
| 17P | Request for examination filed |
Effective date: 20130605 |
|
| RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| INTG | Intention to grant announced |
Effective date: 20130822 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 651894 Country of ref document: AT Kind code of ref document: T Effective date: 20140215 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502011002141 Country of ref document: DE Effective date: 20140327 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140212 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140612 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140512 |
|
| REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140612 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011002141 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20141113 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502011002141 Country of ref document: DE Effective date: 20141113 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140722 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140731 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502011002141 Country of ref document: DE Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140722 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE Effective date: 20151105 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150722 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150722 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140513 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110722 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140731 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20160624 Year of fee payment: 6 Ref country code: TR Payment date: 20160624 Year of fee payment: 6 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160721 Year of fee payment: 6 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 651894 Country of ref document: AT Kind code of ref document: T Effective date: 20160722 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160722 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180330 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170731 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140212 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170722 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502011002141 Country of ref document: DE Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE Free format text: FORMER OWNER: PRIMETALS TECHNOLOGIES GERMANY GMBH, 91052 ERLANGEN, DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170722 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250722 Year of fee payment: 15 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20250722 Year of fee payment: 15 |