EP2356067A1 - Procédé et dispositif de production d'un gaz brut de synthèse - Google Patents
Procédé et dispositif de production d'un gaz brut de synthèseInfo
- Publication number
- EP2356067A1 EP2356067A1 EP09763885A EP09763885A EP2356067A1 EP 2356067 A1 EP2356067 A1 EP 2356067A1 EP 09763885 A EP09763885 A EP 09763885A EP 09763885 A EP09763885 A EP 09763885A EP 2356067 A1 EP2356067 A1 EP 2356067A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- synthesis
- export
- export gas
- steam generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 122
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 105
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 105
- 239000007789 gas Substances 0.000 claims abstract description 261
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 93
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 93
- 238000006243 chemical reaction Methods 0.000 claims abstract description 79
- 230000008569 process Effects 0.000 claims abstract description 65
- 238000010310 metallurgical process Methods 0.000 claims abstract description 27
- 239000000126 substance Substances 0.000 claims abstract description 18
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 239000007858 starting material Substances 0.000 claims abstract description 7
- 239000001257 hydrogen Substances 0.000 claims abstract description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims abstract description 4
- 239000002918 waste heat Substances 0.000 claims description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 39
- 230000009467 reduction Effects 0.000 claims description 36
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 32
- 239000011593 sulfur Substances 0.000 claims description 32
- 229910052717 sulfur Inorganic materials 0.000 claims description 25
- 238000005137 deposition process Methods 0.000 claims description 17
- 238000006477 desulfuration reaction Methods 0.000 claims description 17
- 230000023556 desulfurization Effects 0.000 claims description 17
- 238000010521 absorption reaction Methods 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 14
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 14
- 230000008021 deposition Effects 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 238000011084 recovery Methods 0.000 claims description 13
- 238000002485 combustion reaction Methods 0.000 claims description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 12
- 238000000926 separation method Methods 0.000 claims description 12
- 238000003723 Smelting Methods 0.000 claims description 11
- 230000006835 compression Effects 0.000 claims description 11
- 238000007906 compression Methods 0.000 claims description 11
- 238000001816 cooling Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000003245 coal Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Inorganic materials S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 238000010926 purge Methods 0.000 claims description 7
- 239000011787 zinc oxide Substances 0.000 claims description 7
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 claims description 6
- 230000008929 regeneration Effects 0.000 claims description 6
- 238000011069 regeneration method Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 238000011946 reduction process Methods 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 claims description 4
- 239000003345 natural gas Substances 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 4
- 229910000805 Pig iron Inorganic materials 0.000 claims description 3
- 239000010426 asphalt Substances 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 239000002737 fuel gas Substances 0.000 claims description 2
- 229930195733 hydrocarbon Natural products 0.000 claims description 2
- 150000002430 hydrocarbons Chemical class 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 239000008188 pellet Substances 0.000 claims description 2
- 241000196324 Embryophyta Species 0.000 description 29
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 238000011282 treatment Methods 0.000 description 9
- 238000001179 sorption measurement Methods 0.000 description 7
- 238000002309 gasification Methods 0.000 description 4
- 239000004435 Oxo alcohol Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000005201 scrubbing Methods 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- JSPLKZUTYZBBKA-UHFFFAOYSA-N trioxidane Chemical compound OOO JSPLKZUTYZBBKA-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- -1 H 2 S Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/12—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0006—Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
- C21B13/0013—Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
- C21B13/002—Reduction of iron ores by passing through a heated column of carbon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/14—Multi-stage processes processes carried out in different vessels or furnaces
- C21B13/143—Injection of partially reduced ore into a molten bath
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0415—Purification by absorption in liquids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0455—Purification by non-catalytic desulfurisation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0475—Composition of the impurity the impurity being carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0485—Composition of the impurity the impurity being a sulfur compound
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/061—Methanol production
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/062—Hydrocarbon production, e.g. Fischer-Tropsch process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/068—Ammonia synthesis
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0872—Methods of cooling
- C01B2203/0883—Methods of cooling by indirect heat exchange
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/146—At least two purification steps in series
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/60—Process control or energy utilisation in the manufacture of iron or steel
- C21B2100/66—Heat exchange
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C2100/00—Exhaust gas
- C21C2100/06—Energy from waste gas used in other processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/122—Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/134—Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/143—Reduction of greenhouse gas [GHG] emissions of methane [CH4]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
Definitions
- the invention relates to a method and a device for generating a hydrogen (H 2 ) and carbon monoxide (CO) containing gas as a starting material for chemical recovery in synthesis processes based on export gas from a metallurgical process, wherein at least a portion of the export gas in subjected to a conversion reactor with the addition of water vapor of a CO conversion and synthesis gas is formed with a defined ratio H 2 to CO.
- H 2 hydrogen
- CO carbon monoxide
- export gas from metallurgical plants can be recycled, in particular thermal utilization, such as e.g. a combustion or the use of pressure can be found by an expansion turbine application.
- thermal utilization such as e.g. a combustion or the use of pressure can be found by an expansion turbine application.
- export gas after a treatment e.g. used for the direct reduction of oxidic materials.
- the combustibility of the export gas and thus the energy content expressed as calorific value is used to generate water vapor, wherein the water vapor to adjust the ratio H 2 to CO in Conversion reactor is used.
- the steam required for the CO conversion can be at least partially generated in the process itself.
- the export gas from a metallurgical process can be used for chemical recovery insofar as it has high contents of CO and H 2 .
- the CO to H 2 ratio can be adjusted in a targeted manner under appropriate reaction conditions.
- the known principle of CO conversion is used, wherein the chemical equilibrium of the water gas reaction between CO + H 2 O and CO 2 + H 2 is influenced.
- the metallurgical process is a smelting reduction process which is operated by means of a blast furnace or by means of a melter gasifier which operates in conjunction with at least one reduction unit, in particular a reduction shaft or a fluidized bed reactor, iron raw materials containing iron oxide, in particular iron ore, Pellets or sinter, and aggregates are reduced to form a reducing gas and subsequently melted into liquid pig iron.
- Smelting reduction processes produce a reducing gas in the process, which is used to reduce the feedstock and in particular to reduce mostly oxidic ores, such as iron ores.
- oxidic ores such as iron ores.
- coal or coke is gasified in the processes and a reducing gas is formed.
- the gasification of the coal can take place in a blast furnace or in a melter gasifier, wherein the latter then the reducing gas, optionally after purification, flows into the reduction unit and runs in direct contact with the starting materials of the reduction process.
- the reducing gas is opposite to the flow direction of the feedstock from a fluidized bed reactor to the next ⁇ etechnischt.
- the export gas is obtained from top gas from a blast furnace or a reduction shaft or from offgas from a fluidized bed reactor or from excess gas from a melter gasifier or from mixtures of these gases.
- Top gas is understood to mean the reducing gas after its direct contact with the starting materials and the resulting indirect reduction.
- the person skilled in the art refers to the reducing gas as offgas, which is withdrawn from a fluidized bed reactor, in particular from the last of a series of fluidized bed reactors connected in series. Due to the usually high levels of CO and H 2 in the top gas or in the offgas, this is suitable for use in synthesis processes. Since the amount of reducing gas formed in the melter gasifier is not constant over time, so-called excess gas must be added to the export gas. The amount of excess gas results from the constant reduction gas quantity required in the reduction unit and a system pressure regulation in the melter gasifier.
- the steam in the steam generator by the combustion of at least one further part of the export gas and / or by the use of waste heat from the metallurgical process and / or from the CO conversion and / or from the synthesis processes generated.
- the steam required for the CO conversion can be achieved on the one hand by the combustion of export gas and on the other hand by the use of waste heat.
- export gas By at least partially burning export gas, considerable savings in steam generation can be achieved. It is also advantageous that the combustion reduces toxic components in the export gas.
- waste heat for example, by means of heat exchangers from the metallurgical process, from the CO conversion or from the resulting synthesis crude or from the synthesis processes are used, so that the steam generation can be very energy efficient. It can be one or -A-
- the export gas prior to its use in the conversion reactor in a so-called saturator, preferably hot, add water and thereby increase the water vapor content in the export gas.
- a so-called saturator preferably hot
- condensate from the conversion reactor or the heat exchangers can be used after the conversion reactor.
- top gas and / or offgas in particular dry, dedusted and / or purified by means of a wet dedusting, optionally cooled by means of a waste heat steam generator or a heat exchanger or a conditioning device (eg by injection of water through two-fluid nozzles) and provided as export gas.
- the sensible heat of the export gas can be used by means of heat exchangers, so that a hot or even a largely cold export gas for the CO conversion can be provided.
- dry dedusted and thus hot top gas and / or hot offgas its sensible heat can be used for the CO conversion, so that little or no heating can take place before the CO conversion.
- the export gas before its supply to the conversion reactor or after its removal from the conversion reactor by means of a compressor, optionally after a separation of polyaromatic hydrocarbons from the export gas, compressed.
- the compression causes the pressure for the CO conversion or for possible subsequent treatments of the synthesis crude gas formed in the CO conversion Gas, which is advantageous in most CO conversion process, since the already heated gas does not need to be heated so much.
- the CO-conversion is performed, possibly after a heating of the export gas, in particular at 300-450 0 C.
- CO-heat conversion (for example, with the use of catalysts based on iron / chromium or cobalt basis) offer the advantage that they have no high sensitivity to sulfur or sulfur compounds such as H 2 S, so that up to 100 ppmv sulfur can be used and further therefore also suitable for the sulfur compounds commonly present in export gases.
- export gas from smelting reduction processes has the advantage that these have only very low sulfur contents.
- the sulfur introduced via the raw materials and additives is largely desulfurized by means of the additives and removed from the iron production process via the slag of the smelting reduction plant.
- the content of sulfur in the export gas usually bound as H 2 S and COS significantly lower than in known coal gasification processes. Therefore, no separate desulfurization must take place before the CO conversion, since the export gas already contains sufficiently low amounts of sulfur, sometimes less than 10 ppm.
- the synthesis crude gas is operated by means of one or more preheating unit Waste heat generator cooled to adjust the temperature.
- Waste heat generator cooled to adjust the temperature.
- the waste heat of the synthesis crude gas which is already present with the desired amount ratio H 2 to CO, can be used in conventional heat exchangers or else for the production of water vapor.
- the synthesis gas is first cooled and then subjected to a deposition process, in particular an absorption process, preferably a physical absorption or a chemical absorption or a physical / chemical absorption, in which sulfur and CO 2 from the synthesis gas at least partially, in particular substantially completely, be deposited.
- a deposition process in particular an absorption process, preferably a physical absorption or a chemical absorption or a physical / chemical absorption, in which sulfur and CO 2 from the synthesis gas at least partially, in particular substantially completely, be deposited.
- Known physical absorption processes are the Rectisol® ® - or Selexolpro- process
- known chemical absorption process are amine scrubbing or the Benfield process and as physical / chemical absorption of Sulfinol mixes is known.
- the synthesis gas is compressed to about 10-35 barg.
- the synthesis gas treated in the deposition process in particular to a temperature of 200 to 400 0 C, heated and optionally desulfurized in a further Feinentschwefelungs-, in particular by means of zinc oxide or activated carbon.
- the additional fine desulfurization stage enables a further reduction of the sulfur content in the synthesis gas to very low residual contents of less than 0.02 ppmv H 2 S, as required, for example, for methanol production with ⁇ 0.1 ppmv.
- By heating the optimum for the desulfurization process temperature of about 200 - 400 0 C is set.
- a fine desulfurization for example, zinc oxide adsorption or activated carbon, etc. may be used.
- the waste heat produced during cooling of the synthesis gas in the heat exchanger is utilized to heat the synthesis gas treated in the deposition process.
- efficient heating of the treated synthesis raw gas can take place.
- a particularly advantageous variant of the method according to the invention provides that the steam arising during cooling in the waste heat steam generator is fed to the conversion reactor for use in the CO conversion. Thus, the energy demand for steam generation can be reduced.
- a special embodiment of the method according to the invention provides that the, in particular in the deposition process treated, synthesis gas is heated by means of a heat exchanger to a temperature of 200 to 450 0 C.
- the heat can be used, which is incurred during cooling of the synthesis gas in the heat exchanger prior to its treatment in the deposition process.
- the synthesis crude gas is thereby necessary for a subsequent synthesis process
- the crude synthesis gas optionally before the further fine desulfurization stage and / or prior to the synthesis process, is compressed by means of a compressor.
- the compression takes place at a pressure level necessary for the respective synthesis process.
- the heating occurring during the compression of the synthesis raw gas reduces the necessary energy supply in order to bring the synthesis raw gas to the process temperatures necessary in the fine desulfurization stage and / or a subsequent synthesis process.
- the separated sulfur is separated from the separated CO 2 in a sulfur regeneration device, wherein the remaining CO 2 in the metallurgical process instead of nitrogen, in particular for gas barriers to the atmosphere, can be used.
- a sulfur regeneration device wherein the remaining CO 2 in the metallurgical process instead of nitrogen, in particular for gas barriers to the atmosphere, can be used.
- the hydrogen sulfide oxidation process LO-CAT II
- the desulfurized CO 2 can now be used in technical applications, such as for gas barriers for sealing process units to the atmosphere or released into the atmosphere.
- the further part of the export gas is cached before its combustion in the steam generator to compensate for volume and / or calorific value fluctuations in the export gas in a gas tank.
- export gas which has a largely constant calorific value and is present in a constant amount.
- the export gas is cached in a gas container, whereby calorific value and volume fluctuations can be compensated.
- a part of the export gas is discharged for use as fuel gas in other heating devices.
- remaining amounts of export gas, which are not used for steam generation or for CO conversion, be recycled, in addition to a thermal utilization and a use of the pressure energy is possible.
- Synthesis processes work at very different pressures, temperatures and with different ratios H 2 to CO.
- the production of methanol requires a ratio H 2 to CO of 2.0 to 2.3 or in other words a ratio (H 2 -CO 2 ) / (CO + CO 2 ) equal to 2.03, while, for example, the oxo-alcohol synthesis requires a ratio of 1, 0 to 1, 2. Due to the flexibility of the process, it is therefore possible to tailor the synthesis gas exactly to the respective synthesis process.
- At least part of the water vapor formed in the steam generator is supplied as an energy carrier to the deposition process, wherein a thermal expulsion of the absorbed CO 2 from the absorption liquid used in the deposition process.
- tail gas of a CO 2 removal device of the metallurgical process is mixed with the other part of the export gas and burned in the steam generator.
- other process gases such as those occurring in devices for CO 2 removal, can also be used to generate steam.
- purge gas is mixed from the synthesis process with the other part of the export gas and burned in the steam generator.
- Purge gas is produced during the recycling of gases in synthesis processes.
- the synthesis process usually only a part of the syngas can be converted, since then the thermodynamic equilibrium is reached. To increase the turnover, therefore, a circulation procedure is required, whereby process water and e.g. Methanol condensed out and separated.
- the unreacted synthesis gas is recycled to the synthesis reactor.
- a part must be discharged as purge gas from the cycle, which can be thermally utilized together with export gas.
- waste heat from the metallurgical process is used to produce steam and the water vapor thus generated is fed to the conversion reactor and / or the separation process.
- This waste heat from the metallurgical process itself and the water vapor thus obtained for the CO conversion or for a Absorption liquid can be used, so that a further increase in efficiency can be achieved.
- the waste heat can be obtained, for example, from hot top gas, offgas or excess gas.
- Metallurgical processes usually require further auxiliary processes, e.g. Provide process materials for the metallurgical process.
- An example is an oxygen production, which is usually coupled with metallurgical processes. Waste heat can therefore also from such auxiliary processes or plants, such. an oxygen production or a synthesis gas treatment can be used for steam generation.
- a special embodiment of the method according to the invention provides that, in addition to or instead of the export gas, partially oxidized hydrocarbons, in particular natural gas, asphalt, coal or naphtha, are used.
- the additional gases instead of or in addition to the export gas, a redundant process can be achieved, so that even with a planned shutdown of the metallurgical process or in case of disturbances, the operation of the synthesis process can be maintained.
- the device according to the invention provides that the export gas source is conductively connected to the conversion reactor, so that at least part of the export gas in the conversion reactor can be subjected to CO conversion with the addition of water vapor.
- a synthesis gas is formed with a defined ratio H 2 to CO.
- the export gas source is connected in line with the steam generator, so that a further part of the export gas in the steam generator can be at least partially burned to form steam and the water vapor formed can be fed to the conversion reactor via a steam line.
- the conversion reactor can be supplied by means of steam from a waste heat recovery system.
- a possible variant of the device according to the invention provides that a separation device is provided for separating sulfur and CO 2 from the synthesis gas, which is connected to the conversion reactor via a crude gas line.
- a separation device known devices are used, which are constructed for example of an absorption and a stripping column. Such devices can be found in the prior art.
- a steam line which leads from the steam generator or waste heat recovery system to the separation device is provided so that water vapor or alternatively also energy in the form of a hot gas stream can be supplied to the separation device.
- the energy required for the mostly thermal expulsion of the CO 2 can be applied by the supply of water vapor or waste heat, so that no additional energy source is needed.
- a heat exchanger and / or a preheater and / or a water cooler and / or a waste heat steam generator is or are provided for cooling the synthesis raw gas derived from the conversion reactor in the crude gas line.
- cooling is necessary, whereby the dissipated heat can be dissipated in a heat exchanger or used for steam generation.
- gas-gas heat exchangers or liquid-gas heat exchangers can be used, the latter enabling a greater cooling of the synthesis gas.
- a fine desulfurization stage in particular based on zinc oxide or activated carbon, is provided for the separation of residual sulfur from the synthesis gas already treated in the separation apparatus.
- Such Feinentschwefelungs syndromen can as zinc oxide adsorption or activated carbon processes which take place in adsorption columns.
- An advantageous embodiment of the device according to the invention provides that at least one compressor, in particular a single-stage or multistage compressor, for compression of the export gas prior to introduction into the conversion reactor and / or a compressor for compression of the synthesis raw gas prior to introduction into the separator or are provided in the desulfurization or is.
- Multi-stage compressors are used primarily when higher densities are needed. During compression, the compressed gas heats up.
- An advantage of the split on two compressors is given by the fact that after the deposition of CO 2 and sulfur only a part of the syngas (eg about 55% for a methanol production) must be compressed to the pressure required for the synthesis process, as a large Part of the synthesis gas in the form of CO 2 in the separator (eg about 45% for a methanol production) is already deposited.
- the separation device is connected in terms of line with the fine desulfurization, this compound optionally by preheating leads, so that the synthesis gas can be heated prior to its introduction into the desulfurization.
- the synthesis gas can be adjusted to a temperature which is optimal for the desulfurization stage and / or the synthesis process, energy-efficient heating of the gas taking place through the use of the waste heat.
- a sulfur regeneration device for the regeneration of sulfur from the separated in the deposition device mixture of sulfur and CO 2 .
- Sulfur is deposited as a filter cake
- the deposition device can
- the export gas source is a smelting reduction plant and comprises in particular a blast furnace or a melter gasifier with at least one reduction unit.
- Such metallurgical aggregates produce export gas in an amount and quality sufficient for chemical utilization, whereby the method according to the invention is used. Due to the possibility of adjusting the export gas in terms of its composition such systems are particularly well suited as an export gas source.
- the reduction unit is designed as a blast furnace or as a reduction shaft or as a fluidized bed reactor or as at least two series-connected fluidized bed reactors.
- the reducing gases generated in the reduction units are withdrawn after the reaction with the feedstocks to be reduced from the aggregates.
- a CO and H 2 -rich gas is produced which can be used as export gas after dedusting and / or scrubbing.
- a possible variant of the device according to the invention provides that a gas container is provided for temporarily storing the further part of the export gas before its combustion in the steam generator, so that volume and / or calorific value variations in the export gas can be compensated.
- the volume of the gas container is chosen such that, despite plant-induced fluctuations in the export gas quantity or its composition, a largely constant supply of the steam generator can be ensured.
- a tar removal device for removing polyaromatic hydrocarbons from the export gas is provided, which is arranged in the connecting line between the export gas source and the conversion reactor. This allows unwanted inventory parts which may adversely affect gas processing (eg compaction) and chemical recovery.
- the waste heat recovery and / or the heat exchanger and / or the preheater for generating water vapor are provided and connected in line with the conversion reactor, so that water vapor formed can be fed to the conversion reactor.
- the waste heat can be used to generate steam.
- the synthesis plants can be provided with waste heat steam generators (for example, in the case of isothermal process control of the synthesis process), so that waste heat from the synthesis processes for steam generation can also be used.
- Fig. 1 scheme of the method according to the invention on the basis of a smelting reduction plant according to the type "COREX ®"
- Fig. 2 Schematic of the method according to the invention on the basis of a smelting reduction plant according to the type "FINEX ®"
- Fig. 3 Scheme of the inventive method based on a blast furnace
- the part A comprises the melt reduction plant
- plant part B comprises the plant for the production of Syntheserrohgases and the synthesis products
- part of the plant C relates to the steam generation.
- a smelting unit such as a melter gasifier 1 pig iron RE is reduced from the reduced in the reduction unit 2 feedstocks and to produce a introduced, where in direct contact of the reducing gas with the feedstock at least partial reduction to sponge iron occurs. Further details on the treatment of the reducing gas prior to its entry into the reduction unit 2 will not be discussed in more detail, since this belongs to the prior art and is well known to the person skilled in the art.
- the reduction gas is withdrawn after reduction in the reduction unit 2 as a top gas TG from the reduction unit 2 and at least one dry dedusting 3 or a wet dedusting 4 supplied and cleaned. It is also possible to combine a pre-cleaning in the dry dedusting 3 with a subsequent wet dedusting 4.
- the top gas can also be used for waste heat recovery 5, e.g. a heat exchanger or a waste heat steam generator, fed and thereby cooled.
- the purified and possibly cooled top gas is provided as an export gas to the plant part B.
- Plant part A serves as export gas source.
- this export gas source may also serve another same or other metallurgical plant or combustors for the partial oxidation of natural gas, steam reformer based on natural gas or Flugstromvergaser for gasification of coal as a gas source.
- the export gas is first compressed in a compressor 6, such as a compressor, whereby a pressure necessary for the conversion reactor 7 or the CO conversion is set.
- a compressor 6 such as a compressor
- polyaromatic hydrocarbons can be separated from the export gas by means of a tar removal device.
- the CO conversion takes place with the addition of steam, which is supplied via the steam line 9 from the steam generator 10 to the conversion reactor 7, wherein there is a shift of the proportions CO and H 2 comes.
- the reaction can be controlled selectively, wherein the synthesis gas is generated.
- the synthesis gas is first cooled by means of the heat exchanger 1 1, 12, and the preheater 13, which may also be designed as a heat exchanger, and optionally by means of another water cooler 14, these units are arranged in the crude gas line 19.
- the hot synthesis gas can be cooled by means of a waste heat steam generator 15 and thereby used to generate water vapor.
- the cooled synthesis gas is then fed to a separator 16 for separating sulfur and CO 2 from the synthesis gas, wherein the separated sulfur and CO 2 are fed to a desulfurization stage 17.
- the sulfur is separated from the CO 2 to form a sulfur cake SK.
- the now almost sulfur-free CO 2 can be used as a process gas in metallurgical processes, such as in gas barriers, or be released into the atmosphere.
- the purified synthesis gas we are now supplied after compression in a compressor 18 of the preheater 13, wherein the purified synthesis gas is heated using the waste heat from the synthesis gas after leaving the conversion reactor 7.
- the now heated synthesis crude gas is optionally fed to a fine desulfurization stage 20, wherein in adsorption columns based on a zinc oxide adsorption or an activated carbon method, sulfur or hydrogen sulfide (H 2 S) is separated.
- this adsorption treatment is carried out at temperatures of about 200 to 400 0 C.
- the desulfurized and hot synthesis gas can be further heated by means of the heat exchanger 12 as needed, with an advantageous for the subsequent chemical recovery temperature of about 200 to 450 0 C is set.
- the compressed export gas can via a Bypass line 21 are passed to the conversion reactor or the heat exchanger 11.
- Both the conversion reactor 7 and the separator 16 require large amounts of water vapor for operation.
- the export gas source is connected to a steam generator 10 via a line.
- water vapor is generated by means of the heat of combustion of the export gas and fed to the conversion reactor 7 and the deposition device 16 via steam lines 9a and 9b.
- the steam ducts 9a and 9b can also be supplied via an additional steam duct 9c, this being steam that originates from the waste heat from the metallurgical process, the gas treatment or the synthesis process, and e.g. was generated by means of waste heat steam generator using hot process media.
- the plant part C includes not only the steam generator 10 but also a gas container 22 for temporarily storing the part of the export gas which is provided for combustion in the steam generator 10, wherein quantity and / or calorific value variations in the export gas can be compensated. In the event that excess export gas should be present, this can also be provided via a derivative 23 for other purposes, e.g. used in coal drying plants, fine coal drying plants or ore drying plants. Condensates formed in the separation device 16 can be returned to the steam generator 10 via a condensate line 24.
- the purified and heated raw synthesis gas can be used, for example, as a starting material for the production of methane, methanol, oxo alcohols or also Fischer-Tropsch fuels in chemical synthesis processes SPrSP 4 , whereby the raw synthesis gas is in each case tuned to the synthesis process.
- Purge gas from the synthesis process can be mixed with the further part of the export gas via a purge gas line 30 and fed to the gas container 22 and subsequently burned in the steam generator 10.
- Figure 2 shows a view similar to Figure 1 system, wherein the part A is formed by a FINEX ® -Schmelzreduktionsstrom.
- the reducing gas formed in the melter gasifier is passed through the fluidized bed reactors R1, R2, R3 and R4 and flows in the opposite direction to the flow direction of the fine ore, which is reduced in the fluidized bed reactors R1, R2, R3 and R4 and then melted in the melter gasifier 1.
- the reducing gas is withdrawn from the fluidized-bed reactor R4 as offgas OG, cooled in a heat exchanger 29 and made available as export gas after dedusting.
- the tail gas of a CO 2 removal plant 28, such as a pressure swing adsorption plant (PSA or VPSA plant) can be supplied together with export gas to the gas tank 22 and used for steam generation in the steam generator 10.
- PSA or VPSA plant pressure swing adsorption plant
- FIG. 3 shows a plant which is in principle the same, the plant part A being formed by a blast furnace with connected supply units.
- the top gas from the blast furnace 25 is first dedusted in a dry dedusting 26, optionally subsequently further purified in a wet dedusting 27 and made available as export gas for the plant part B or C.
- the tail gas of a CO 2 removal plant 28 can also be supplied together with export gas to the gas container 22 and used for steam generation in the steam generator 10.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Industrial Gases (AREA)
- Carbon And Carbon Compounds (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Manufacture Of Iron (AREA)
Abstract
L'invention concerne un procédé et un dispositif de production d'un gaz contenant un hydrogène (H2) et du monoxyde de carbone (CO), comme matière première d'une valorisation chimique p.ex. dans les procédés de synthèse à base de gaz de dégagement issus d'un procédé métallurgique. Une partie du gaz de dégagement est soumise, par adjonction de vapeur d'eau, à une conversion en CO, ce qui permet d'obtenir un gaz brut de synthèse ayant un rapport H2 / CO défini. Le procédé selon l'invention permet de générer dans au moins un générateur de vapeur au moins partiellement la vapeur d'eau nécessaire à la conversion en CO.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT0182208A AT507632A1 (de) | 2008-11-21 | 2008-11-21 | Verfahren und vorrichtung zur erzeugung eines syntheserohgases |
| PCT/EP2009/064494 WO2010057767A1 (fr) | 2008-11-21 | 2009-11-03 | Procédé et dispositif de production d'un gaz brut de synthèse |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2356067A1 true EP2356067A1 (fr) | 2011-08-17 |
Family
ID=41647136
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP09763885A Withdrawn EP2356067A1 (fr) | 2008-11-21 | 2009-11-03 | Procédé et dispositif de production d'un gaz brut de synthèse |
Country Status (14)
| Country | Link |
|---|---|
| US (1) | US8821760B2 (fr) |
| EP (1) | EP2356067A1 (fr) |
| JP (1) | JP2012509456A (fr) |
| KR (1) | KR20110097875A (fr) |
| CN (1) | CN102256894B (fr) |
| AR (1) | AR074367A1 (fr) |
| AT (1) | AT507632A1 (fr) |
| AU (1) | AU2009317452B2 (fr) |
| BR (1) | BRPI0921381A2 (fr) |
| CA (1) | CA2744280C (fr) |
| RU (1) | RU2515325C2 (fr) |
| TW (1) | TW201026601A (fr) |
| UA (1) | UA106053C2 (fr) |
| WO (1) | WO2010057767A1 (fr) |
Families Citing this family (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102199433A (zh) * | 2011-03-05 | 2011-09-28 | 何巨堂 | 一种以co2为燃烧过程控温组分的煤炭化工艺 |
| AT511243B1 (de) * | 2011-03-17 | 2013-01-15 | Siemens Vai Metals Tech Gmbh | Hüttentechnische anlage mit effizienter abwärmenutzung |
| AT511892B1 (de) * | 2011-08-31 | 2013-07-15 | Siemens Vai Metals Tech Gmbh | Verfahren zur aufbereitung von abgasen aus anlagen zur roheisenherstellung und/oder von synthesegas |
| EP2574683A1 (fr) | 2011-09-29 | 2013-04-03 | L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Processus et installation pour la fabrication de fer |
| AT511992B1 (de) * | 2011-09-29 | 2013-12-15 | Siemens Vai Metals Tech Gmbh | Verfahren und vorrichtung zur herstellung von wasserstoff aus bei der roheisenerzeugung anfallenden gasen |
| DE102012010542A1 (de) * | 2011-12-20 | 2013-06-20 | CCP Technology GmbH | Verfahren und anlage zur erzeugung von synthesegas |
| CN104412056A (zh) * | 2011-12-27 | 2015-03-11 | 伊尔技术有限公司 | 利用炉顶煤气再循环的高炉 |
| EP2650385A1 (fr) * | 2012-04-12 | 2013-10-16 | Siemens VAI Metals Technologies GmbH | Procédé et dispositif de fabrication de fonte brute liquide et/ou d'éponge de fer |
| KR101376138B1 (ko) * | 2012-12-27 | 2014-03-19 | 주식회사 포스코 | 용철제조장치 및 용철제조방법 |
| US10065857B2 (en) * | 2013-03-12 | 2018-09-04 | Midrex Technologies, Inc. | Systems and methods for generating carbon dioxide for use as a reforming oxidant in making syngas or reformed gas |
| DE102013013443A1 (de) * | 2013-08-12 | 2015-02-12 | CCP Technology GmbH | C-Konverter mit Filterfunktion |
| CN104154765B (zh) * | 2014-08-28 | 2017-01-11 | 安徽省六安市佳瑞粉末冶金有限公司 | 一种天然气隧道窑排烟余热回收循环管路热电热水供应系统及其运行方法 |
| NL2014786B1 (en) * | 2015-05-11 | 2017-01-26 | Dahlman Renewable Tech B V | Method and systems for treating synthesis gas. |
| CN105000534B (zh) * | 2015-07-02 | 2017-04-12 | 西北化工研究院 | 一种以料浆气化与天然气转化为基础联合制备合成气的方法 |
| KR102083539B1 (ko) * | 2017-08-23 | 2020-04-23 | 주식회사 포스코 | 용선 제조 설비 및 용선 제조 방법 |
| EP3453773A1 (fr) * | 2017-09-06 | 2019-03-13 | Primetals Technologies Austria GmbH | Récupération de gaz de réduction du gaz de sommet saturé |
| RU176514U1 (ru) * | 2017-11-22 | 2018-01-22 | Федеральное государственное унитарное предприятие "Крыловский государственный научный центр" | Моноблок конвертора природного газа с теплообменным оборудованием и высокотемпературным парогенератором |
| CN109181784B (zh) * | 2018-09-27 | 2020-06-12 | 中国成达工程有限公司 | 一种将粗合成气中多组分复杂有机硫转化为硫化氢的装置及工艺 |
| CN111253973A (zh) * | 2018-11-30 | 2020-06-09 | 浙江天禄环境科技有限公司 | 一种气化还原制备合成气的方法和系统 |
| CN111268645B (zh) * | 2020-01-21 | 2022-04-08 | 华烁科技股份有限公司 | 一种含有co的原料气变换及热回收方法 |
| CN111471489A (zh) * | 2020-04-01 | 2020-07-31 | 华东理工大学 | 一种含碳固体废弃物制备合成气的方法及装置 |
| CN116888281A (zh) * | 2020-12-18 | 2023-10-13 | 保尔沃特股份公司 | 用于dri制造的智能氢气生产 |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3905806A (en) | 1973-02-20 | 1975-09-16 | Armco Steel Corp | Method for the direct reduction of iron ores |
| US3844766A (en) * | 1973-12-26 | 1974-10-29 | Midland Ross Corp | Process for reducing iron oxide to metallic sponge iron with liquid or solid fuels |
| US4108636A (en) * | 1974-08-13 | 1978-08-22 | Thyssen Purofer Gmbh | Method of the direct reduction of iron ore |
| US4062673A (en) * | 1975-12-22 | 1977-12-13 | Robert Ames Norton | Flash smelting of iron with production of hydrogen of hydrogenation quality |
| US4160863A (en) | 1977-04-07 | 1979-07-10 | Bristol-Myers Company | Process for the preparation of the crystalline monohydrate of 7-[D-α-aα-(p-hydroxyphenyl)acetamido]-3-methyl-3-cephem-4-carboxylic acid |
| US4160663A (en) * | 1978-02-21 | 1979-07-10 | Jack Hsieh | Method for the direct reduction of iron ore |
| US4531973A (en) | 1980-04-08 | 1985-07-30 | Nixon Ivor G | Metallurgical processes |
| GB2076858B (en) * | 1980-04-08 | 1985-08-21 | Nixon Ivor Gray | Metallurgical processes utilising particular fuels |
| JPS60139790A (ja) | 1983-12-28 | 1985-07-24 | Jgc Corp | 固形廃棄物分解ガスの精製法 |
| DE3515250A1 (de) * | 1985-04-27 | 1986-10-30 | Hoesch Ag, 4600 Dortmund | Verfahren zur herstellung von chemierohstoffen aus koksofengas und huettengasen |
| DE3600432A1 (de) | 1985-05-21 | 1987-02-05 | Gutehoffnungshuette Man | Verfahren zum vergasen eines kohlenstoffhaltigen brennstoffs, insbesondere kohle |
| UA6004A1 (uk) * | 1985-05-21 | 1994-12-29 | Ман Гутехоффнунгсхютте Гмбх | Спосіб одержання електроенергії із вуглеутримаючого палива |
| UA42803C2 (uk) | 1995-10-10 | 2001-11-15 | Фоест-Альпіне Індустріанлагенбау Гмбх | Спосіб прямого відновлення дрібнозернистого матеріалу у формі часток, що містить оксид заліза, та установка для здійснення цього способу |
| AT406379B (de) * | 1995-10-10 | 2000-04-25 | Voest Alpine Ind Anlagen | Verfahren zur direktreduktion von teilchenförmigem eisenoxidhältigem material und anlage zur durchführung des verfahrens |
| JP3415748B2 (ja) * | 1996-07-15 | 2003-06-09 | 株式会社荏原製作所 | 有機性廃棄物の二段ガス化方法及び装置 |
| AT406271B8 (de) * | 1997-08-18 | 2000-05-25 | Voest Alpine Ind Anlagen | Verfahren und anlage zur direktreduktion von teilchenförmigem eisenoxidhältigem material |
| GB0024672D0 (en) * | 2000-10-09 | 2000-11-22 | Cromptons Leisure Machines Ltd | A prize vending machine |
| WO2002030553A2 (fr) * | 2000-10-13 | 2002-04-18 | Oroboros Ab | Procede de reduction d"emissions nettes de gaz a effet de serre provenant de gaz de degagement industriels carbones et combustible de moteur a compression produit a partir desdits gaz de degagement |
| US6685754B2 (en) | 2001-03-06 | 2004-02-03 | Alchemix Corporation | Method for the production of hydrogen-containing gaseous mixtures |
| FR2891277B1 (fr) | 2005-09-28 | 2008-01-11 | Air Liquide | Procede de conversion de gaz hydrocarbones en liquides mettant en oeuvre un gaz de synthese a flaible ratio h2/co |
| EP1939138A1 (fr) | 2006-12-08 | 2008-07-02 | Shell Internationale Researchmaatschappij B.V. | Processus d'augmentation du rapport molaire d'hydrogène/de monoxyde de carbone dans un gaz de synthèse |
-
2008
- 2008-11-21 AT AT0182208A patent/AT507632A1/de not_active Application Discontinuation
-
2009
- 2009-11-03 AU AU2009317452A patent/AU2009317452B2/en not_active Ceased
- 2009-11-03 CN CN2009801461816A patent/CN102256894B/zh not_active Expired - Fee Related
- 2009-11-03 CA CA2744280A patent/CA2744280C/fr not_active Expired - Fee Related
- 2009-11-03 EP EP09763885A patent/EP2356067A1/fr not_active Withdrawn
- 2009-11-03 WO PCT/EP2009/064494 patent/WO2010057767A1/fr not_active Ceased
- 2009-11-03 US US13/130,628 patent/US8821760B2/en not_active Expired - Fee Related
- 2009-11-03 KR KR1020117014323A patent/KR20110097875A/ko not_active Ceased
- 2009-11-03 RU RU2011125340/05A patent/RU2515325C2/ru not_active IP Right Cessation
- 2009-11-03 BR BRPI0921381A patent/BRPI0921381A2/pt not_active IP Right Cessation
- 2009-11-03 UA UAA201106357A patent/UA106053C2/uk unknown
- 2009-11-03 JP JP2011536813A patent/JP2012509456A/ja active Pending
- 2009-11-13 TW TW098138596A patent/TW201026601A/zh unknown
- 2009-11-18 AR ARP090104450A patent/AR074367A1/es not_active Application Discontinuation
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2010057767A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| US20110284800A1 (en) | 2011-11-24 |
| AR074367A1 (es) | 2011-01-12 |
| TW201026601A (en) | 2010-07-16 |
| KR20110097875A (ko) | 2011-08-31 |
| WO2010057767A9 (fr) | 2010-12-29 |
| WO2010057767A1 (fr) | 2010-05-27 |
| AT507632A1 (de) | 2010-06-15 |
| AU2009317452B2 (en) | 2014-02-20 |
| UA106053C2 (uk) | 2014-07-25 |
| US8821760B2 (en) | 2014-09-02 |
| RU2515325C2 (ru) | 2014-05-10 |
| CA2744280A1 (fr) | 2010-05-27 |
| BRPI0921381A2 (pt) | 2015-12-29 |
| AU2009317452A1 (en) | 2010-05-27 |
| CN102256894A (zh) | 2011-11-23 |
| JP2012509456A (ja) | 2012-04-19 |
| RU2011125340A (ru) | 2012-12-27 |
| CA2744280C (fr) | 2016-10-25 |
| CN102256894B (zh) | 2013-11-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2356067A1 (fr) | Procédé et dispositif de production d'un gaz brut de synthèse | |
| AT504863B1 (de) | Verfahren und anlage zur erzeugung von elektrischer energie in einem gas- und dampfturbinen (gud) - kraftwerk | |
| EP2459754B1 (fr) | Réduction directe par gaz de reformage comprenant le recyclage des gaz réducteurs usés et la décarbonisation de la fraction gazeuse recyclée pour usage comme comburant du reformeur | |
| AT507525B1 (de) | Verfahren und vorrichtung zum betrieb eines schmelzreduktionsverfahrens | |
| EP2686455B1 (fr) | Procédé de régulation de la puissance calorifique pour gaz brûlés dégagés d'installations de production de fonte ou pour gaz de synthèse | |
| AT511892B1 (de) | Verfahren zur aufbereitung von abgasen aus anlagen zur roheisenherstellung und/oder von synthesegas | |
| AT509224B1 (de) | Verfahren und vorrichtung zur regelung der temperatur von prozessgasen aus anlagen zur roheisenherstellung für die nutzung einer entspannungsturbine | |
| DE3202220A1 (de) | Anlage zur direktreduktion von eisenoxid zu metallischem eisen | |
| AT507713B1 (de) | Verfahren und vorrichtung zur herstellung von roheisen oder flüssigen stahlvorprodukten | |
| DE102011112093A1 (de) | Verfahren und Anlage zur kohlendioxidarmen, vorzugsweise kohlendioxidfreien, Erzeugung eines flüssigen kohlenwasserstoffhaltigen Energieträgers und/oder zur Direktreduktion von Metalloxiden | |
| DE202011105262U1 (de) | Anlage zur kohlendioxidarmen, vorzugsweise kohlendioxidfreien Erzeugung eines flüssigen kohlenwasserstoffhaltigen Energieträgers und/oder zur Direktreduktion von Metalloxiden | |
| DE3135914A1 (de) | Verfahren und vorrichtung zur direktreduktion von eisenoxyd | |
| AT405652B (de) | Verfahren zur direktreduktion von teilchenförmigem eisenhältigem material sowie anlage zur durchführung des verfahrens | |
| AT500513B1 (de) | Verfahren zur erzeugung von wasserstoff und nutzbarer wärme aus heizwertarmen brennstoffen | |
| DE3718942A1 (de) | Verfahren und einrichtung zur erzeugung veredelten synthetischen brennstoffgases aus kohle | |
| DE3206536A1 (de) | Verfahren zur umwandlung eines wasserstoff, leichte kohlenwasserstoffe und oxide des kohlenstoffs enthaltenden gasgemisches |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20110511 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS VAI METALS TECHNOLOGIES GMBH |
|
| DAX | Request for extension of the european patent (deleted) | ||
| 17Q | First examination report despatched |
Effective date: 20130107 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20150602 |