EP2054359A2 - Procédé pour l'élimination de composés oxygénés d'une charge de paraffines - Google Patents
Procédé pour l'élimination de composés oxygénés d'une charge de paraffinesInfo
- Publication number
- EP2054359A2 EP2054359A2 EP06788189A EP06788189A EP2054359A2 EP 2054359 A2 EP2054359 A2 EP 2054359A2 EP 06788189 A EP06788189 A EP 06788189A EP 06788189 A EP06788189 A EP 06788189A EP 2054359 A2 EP2054359 A2 EP 2054359A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- oxygenates
- adsorbent bed
- stream
- paraffin
- paraffins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 61
- 230000008569 process Effects 0.000 title claims abstract description 56
- 239000012188 paraffin wax Substances 0.000 title claims abstract description 48
- 239000003463 adsorbent Substances 0.000 claims abstract description 77
- 150000001336 alkenes Chemical class 0.000 claims abstract description 50
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims abstract description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000000741 silica gel Substances 0.000 claims abstract description 12
- 229910002027 silica gel Inorganic materials 0.000 claims abstract description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000010457 zeolite Substances 0.000 claims abstract description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 229910021536 Zeolite Inorganic materials 0.000 claims description 9
- 238000006356 dehydrogenation reaction Methods 0.000 claims description 7
- 238000001179 sorption measurement Methods 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 238000005804 alkylation reaction Methods 0.000 claims description 6
- 230000029936 alkylation Effects 0.000 claims description 5
- 239000002808 molecular sieve Substances 0.000 claims description 3
- 239000012492 regenerant Substances 0.000 claims description 3
- 238000011069 regeneration method Methods 0.000 claims description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 2
- 230000008929 regeneration Effects 0.000 claims description 2
- 150000001768 cations Chemical group 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 abstract description 2
- 229910052708 sodium Inorganic materials 0.000 abstract description 2
- 239000011734 sodium Substances 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 24
- 239000007789 gas Substances 0.000 description 17
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 229930195733 hydrocarbon Natural products 0.000 description 11
- 150000002430 hydrocarbons Chemical class 0.000 description 11
- 238000003786 synthesis reaction Methods 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 10
- XMUJIPOFTAHSOK-UHFFFAOYSA-N undecan-2-ol Chemical compound CCCCCCCCCC(C)O XMUJIPOFTAHSOK-UHFFFAOYSA-N 0.000 description 10
- KYWIYKKSMDLRDC-UHFFFAOYSA-N undecan-2-one Chemical compound CCCCCCCCCC(C)=O KYWIYKKSMDLRDC-UHFFFAOYSA-N 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000005639 Lauric acid Substances 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- XSWSEQPWKOWORN-UHFFFAOYSA-N dodecan-2-ol Chemical compound CCCCCCCCCCC(C)O XSWSEQPWKOWORN-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000002453 autothermal reforming Methods 0.000 description 4
- 238000005341 cation exchange Methods 0.000 description 4
- 230000001627 detrimental effect Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000000629 steam reforming Methods 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001555 benzenes Chemical class 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000003716 rejuvenation Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- SQWOCMZNVYUDSE-UHFFFAOYSA-N [Zr+4].[Zr+4].[Zr+4].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-].[O-]B([O-])[O-] SQWOCMZNVYUDSE-UHFFFAOYSA-N 0.000 description 1
- -1 alkylbenzene sulfonate Chemical class 0.000 description 1
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2/00—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
- C07C2/54—Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
- C07C2/64—Addition to a carbon atom of a six-membered aromatic ring
- C07C2/66—Catalytic processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/12—Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/08—Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/14—Base exchange silicates, e.g. zeolites
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/12—Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
- C07C7/13—Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G25/00—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
- C10G25/02—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G25/00—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
- C10G25/02—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
- C10G25/03—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
- C10G25/05—Removal of non-hydrocarbon compounds, e.g. sulfur compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G29/00—Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
- C10G29/20—Organic compounds not containing metal atoms
- C10G29/205—Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1081—Alkanes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1088—Olefins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1096—Aromatics or polyaromatics
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/30—Aromatics
Definitions
- This invention relates to a process for removing oxygenates from paraffins or paraffin and olefin mixture.
- This invention is in particular useful in removal of oxygenates from C ⁇ o to Cj5 paraffins or a mixture of paraffins and olefins prior to use of these paraffins or olefins or mixtures thereof in further processes or reactions.
- paraffins or olefins or mixtures thereof there are a number of industrial applications for paraffins or olefins or mixtures thereof in the C ⁇ Q to C ⁇ range. Among these uses are as a precursor to linear alkylbenzene benzene (LAB) which is used to produce linear alkylbenzene sulfonate (LAS), the workhorse surfactant of the detergent industry. These paraffins or olefins or mixtures thereof can also be used as precursors to be upgraded to higher value fuels. As concerns over pollution caused by traditional fossil fuels increase and as sources of crude oil decrease, there has been increased interest in other sources of energy. One promising source of energy is the synthetic production of fuels, lubricants and other products from natural gas or coal.
- the gas to fuels process is often referred to as gas-to-liquids or GTL and is often made by the Fischer-Tropsch process. See for example, US 4,973,453, which is incorporated by reference herein.
- the linear paraffins and olefins in the C JQ to C 15 range are of particular value in connection with these processes.
- the synthetic production of hydrocarbons by the catalytic reaction of synthesis gas is well known and is generally referred to as the Fischer-Tropsch reaction.
- the Fischer- Tropsch process was developed in early part of the 20 th century in Germany. It was practiced commercially in Germany during World War II and later has been practiced in South Africa.
- Synthesis gas (primarily hydrogen and carbon monoxide) is produced from coal or natural gas (methane). Then the synthesis gas is converted to liquid hydrocarbons.
- the Fischer- Tropsch reaction for converting synthesis gas has been characterized in some instances by the following general reaction:
- the hydrocarbon products derived from the Fischer-Tropsch reaction range from some methane to high molecular weight paraffinic waxes containing more than 50 carbon atoms.
- Numerous catalysts incorporating active metals, such as iron, cobalt, ruthenium, rhenium, etc. have been used in carrying out the reaction and both saturated and unsaturated hydrocarbons can be produced.
- the synthesis reaction is very exothermic and temperature sensitive whereby temperature control is required to maintain a desired hydrocarbon product selectivity.
- the synthesis gas used in the Fischer-Tropsch reaction may be made from natural gas, gasified coal and other sources.
- a number of basic methods have been employed for producing the synthesis gas ("syngas") utilized as feedstock in the Fischer-Tropsch reaction.
- the numerous methodologies and systems that have been used to prepare synthesis gas include partial oxidation, steam reforming, auto-reforming or autothermal reforming. Both fixed and fluid bed systems have been employed.
- the reforming reactions are endothermic and a catalyst containing nickel is often utilized. Partial oxidation (non-catalytic or catalytic) involves sub-stoichiometric combustion of light hydrocarbons such as methane to produce the synthesis gas.
- the partial oxidation reaction is typically carried out commercially using high purity oxygen. [0009] In some situations these synthesis gas production methods may be combined to form another method.
- a combination of partial oxidation and steam reforming, known as autothermal reforming, wherein air may be used as the oxygen-containing gas for the partial oxidation reaction has also been used for producing synthesis gas heretofore.
- Autothermal reforming the combination of partial oxidation and steam reforming, allows the exothermic heat of the partial oxidation to supply the necessary heat for the endothermic steam reforming reaction.
- the autothermal reforming process can be carried out in a relatively inexpensive refractory lined carbon steel vessel whereby a relatively lower cost is typically involved.
- the Fischer-Tropsch process to produce paraffins and paraffin/olefin mixtures also produces a wide variety of oxygenates. These oxygenates, which include aldehydes, acids, ketones and alcohols, are detrimental in a variety of applications of these paraffins or olefins or mixtures thereof.
- the catalysts used to further process the paraffins and paraffin/olefin mixture to their desired end product are poisoned by oxygenates.
- the oxygenate content needs to be reduced from amounts on the order of 200 to 400 parts per million in an untreated paraffin/and (or) olefins stream, down to as low as 1 part per million or lower in order for the paraffins or olefins or mixtures thereof to be processed without poisoning the adsorbent/catalyst or otherwise being detrimental in the processing of these paraffins or olefins or mixtures thereof.
- hydrocarbons with 3 to 8 carbon atoms were treated by removal of oxygenated contaminants by an adsorbent comprising silica gel.
- the present invention comprises a process for removal of oxygenates from a stream comprising 50 to 99.99 wt-% paraffins and 0 to 50 wt-% olefins comprising passing a feed stream, comprising one or more C ⁇ Q to C 15 feed paraffins and olefins mixture and one or more oxygenates through an adsorbent bed to remove essentially all of the oxygenates; and recovering the paraffins and the olefins, when present.
- the level of oxygenates is below the level that is detectable with standard laboratory procedures, such as gas chromatography.
- a second adsorbent bed comprising a molecular sieve in order to insure completion of removal of the oxygenate impurities.
- a 5 A polishing bed is used to complete their removal from the paraffin-rich stream.
- This invention is particularly useful in purifying the feed streams for certain reactions. Trace amounts of oxygenates can have detrimental effects upon an adsorbent/catalyst.
- processes that are improved by the removal of oxygenates in accordance with the present invention are the dehydrogenation of normal paraffins to olefins and processes for separating normal paraffins from branched and cyclic hydrocarbons.
- one embodiment of the present invention comprises a process for dehydrogenation of normal paraffins to olefins comprising first passing a paraffin stream comprising CJQ to C ⁇ paraffins through at least one adsorbent bed comprising one or more adsorbents selected from the group consisting of silica gel, activated alumina and alkaline or alkaline earth cation exchange X-zeolite wherein the adsorbents remove essentially all oxygenates from the paraffin stream by adsorption , and then passing the paraffin stream to a reactor containing a dehydrogenation catalyst to convert at least a portion of the paraffin stream to olefins.
- Another embodiment of the present invention comprises a process comprising first passing a paraffin stream comprising C ⁇ Q to C 15 paraffins through at least one adsorbent bed comprising one or more adsorbents selected from the group consisting of silica gel, activated alumina and alkaline or alkaline earth cation exchange X-zeolite wherein the adsorbents remove essentially all oxygenates from the paraffin stream by adsorption, and then passing the paraffin stream to an adsorbent bed comprising a molecular sieve to separate n- paraffins from the paraffin stream.
- Another embodiment of the present invention comprises a process comprising of first passing the stream comprising 50 to 99.99% C ⁇ Q to C ⁇ paraffins and 0 to 50% olefins through at least one adsorbent bed comprising one or more adsorbents selected from the group consisting of silica gel, activated alumina and alkaline or alkaline earth cation exchange X-zeolite wherein the adsorbents remove essentially all oxygenates from the stream by adsorption , and then combining the stream with benzene and passing the resulting alkylation stream to a reactor containing a alkylation catalyst to convert at least a portion of the olefins to alkylated benzene.
- adsorbent bed comprising one or more adsorbents selected from the group consisting of silica gel, activated alumina and alkaline or alkaline earth cation exchange X-zeolite wherein the adsorbents remove essentially all oxygenates from
- FIG. 1 shows a feed breakthrough in alumina adsorbent of 1000 ppm each of 2-undecanone, 2-undecanol, decyl alcohol, lauric acid, and 2-dodecanol.
- FIG. 2 shows a feed breakthrough in a silica gel adsorbent of 1000 ppm each of 2-undecanone, 2-undecanol, decyl alcohol, lauric acid, and 2-dodecanol.
- FIG. 3 shows a feed breakthrough in a different silica gel adsorbent of 1000 ppm each of 2-undecanone, 2-undecanol, decyl alcohol, lauric acid, and 2-dodecanol.
- FIG. 4 shows a feed breakthrough of a 13X adsorbent of 1000 ppm each of 2-undecanone, 2-undecanol, decyl alcohol, lauric acid, and 2-dodecanol.
- the present invention comprises a process for removal of oxygenates from a paraffin and olefin mixture or a paraffin-rich stream which comprises passing a feed stream, comprising one or more C ⁇ Q to C 15 feed paraffins or paraffin and olefin mixture and one or more oxygenates through an adsorbent bed to remove essentially all of the oxygenates; and recovering the paraffins or paraffin and olefin mixture.
- a feed stream comprising one or more C ⁇ Q to C 15 feed paraffins or paraffin and olefin mixture and one or more oxygenates through an adsorbent bed to remove essentially all of the oxygenates; and recovering the paraffins or paraffin and olefin mixture.
- the paraffin and olefin mixture referred to herein as olefin-rich streams will comprise up to 50 wt-% olefin with the remainder comprising paraffins, plus impurities.
- the paraffin and olefin mixture or paraffin-rich streams will comprise the oxygenate impurities to be removed by the present invention.
- the streams typically comprise 99 wt-% paraffins and sometimes up to 99.99 wt-% paraffins.
- a typical paraffin-rich or olefin-rich paraffin stream produced in a gas to liquid Fisher-Tropsch process it has been found that numerous hydrocarbon oxygenates are produced, including alcohols, aldehydes, ketones and acids.
- Table 2 shows a summary of the types of oxygenates found in the feed.
- a paraffin-rich or olefin-rich paraffins stream is first passed though an adsorbent bed containing at least one adsorbent selected from the group consisting of silica gel, activated alumina and alkaline or alkaline earth cation exchange X-zeolite.
- the X-zeolite has a Si/Al2 ratio from 2.0 to 3.0.
- An X-zeolite having a Si/Al2 ratio of 2, 2.3 or 2.5 is preferred.
- the adsorbent bed may be exclusively dedicated to treating the paraffin-rich or olefin-rich paraffins stream or it may be integrated with a chemical conversion process that uses the paraffins stream to effect other separations.
- a dedicated adsorbent bed is one where essentially its sole purpose is to remove oxygenates from the paraffins stream regardless of whether only the paraffins stream passes through it or the paraffins stream is combined with a chemical conversion process stream and the combined stream passes through the bed.
- the paraffins stream and a process stream are combined and the adsorbent bed serves to remove at least one component in the process stream.
- paraffins are dehydrogenated, and the dehydrogenation stream is typically passed through an adsorbent bed such as zeolite 13X to remove undesirable aromatics.
- the paraffins stream is preferably fed to the process after dehydrogenation and prior to the adsorption of water and aromatics in the adsorption bed.
- the adsorbent bed When dedicated, the adsorbent bed is typically operated at a temperature between 25 to 60°C and preferably is operated slightly above ambient (4O 0 C). While this adsorbent bed has been found to reduce the level of oxygenates below the level that is measurable by gas chromatography, since it has been found that under some conditions these adsorbent beds become less efficient over time in removal of the oxygenates further measures are needed to insure that all oxygenates are removed. Accordingly, in the preferred embodiments of the invention, a second adsorbent bed operating at an elevated temperature between 150° and 200 0 C containing a 5 A adsorbent has been found to remove any residual oxygenates not removed by the first bed.
- Adsorbent beds that are integrated with a process using the paraffin- rich or olefin-rich paraffins stream are generally operated under conditions suitable for the process.
- a regeneration procedure is followed to remove the adsorbed oxygenates from the adsorbent bed.
- a gas or liquid is sent through the bed, which is maintained at an elevated temperature for a sufficient period of time for the bed to be rejuvenated through the removal of the oxygenates.
- nitrogen was used as the regenerant gas at 3000 GHSV, the bed was first heated to 130 0 C for two hours and then the temperature increased to 250 0 C for three more hours.
- regenerant gases or liquids may be used, such as available process streams.
- the bed may also be regenerated in accordance with the procedure set forth in US 6,225,518 Bl, incorporated herein by reference in its entirety. Usually, due to the low concentration of oxygenates, the integrated adsorbent bed is regenerated or replaced based upon its performance in the process.
- alumina, silica gel, and sodium X types of adsorbents were noted with alumina, silica gel, and sodium X types of adsorbents.
- the alumina tested as an adsorbent was a spherical promoted alumina, sold by UOP LLC, Des Plaines, Illinois as 9139A activated alumina. The adsorbent had a capacity of 21.95 wt-%.
- the adsorbent was Eagle 32-950 silica gel, sold by Eagle Chemical Co, Inc., Mobile, Alabama. The adsorbent had a capacity of 19.76 wt-%.
- the adsorbent used was silica gel Grace 408, sold by W. R. Grace, Grace Davison division, Columbia, Maryland.
- the adsorbent had a capacity of 32.33 wt-%.
- Molsiv adsorbent MRG-E is used and is sold by UOP, Des Plaines, Illinois.
- the adsorbent had a capacity of 23.57 wt-%.
- Each of the figures shows the substantial capacity of these adsorbents for the oxygenates, along with a sharp breakthrough after the capacity of the adsorbent has been achieved. Also, it is noted that lauric acid is strongly adsorbed by the adsorbent in all four cases.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Water Supply & Treatment (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/US2006/028490 WO2008013519A2 (fr) | 2006-07-24 | 2006-07-24 | Procédé pour l'élimination de composés oxygénés d'une charge de paraffines |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2054359A2 true EP2054359A2 (fr) | 2009-05-06 |
| EP2054359A4 EP2054359A4 (fr) | 2009-12-02 |
Family
ID=38981914
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP06788189A Withdrawn EP2054359A4 (fr) | 2006-07-24 | 2006-07-24 | Procédé pour l'élimination de composés oxygénés d'une charge de paraffines |
Country Status (8)
| Country | Link |
|---|---|
| EP (1) | EP2054359A4 (fr) |
| KR (1) | KR101089886B1 (fr) |
| CN (1) | CN101535219B (fr) |
| AU (1) | AU2006346510A1 (fr) |
| BR (1) | BRPI0621924A2 (fr) |
| CA (1) | CA2658601C (fr) |
| MX (1) | MX2009000939A (fr) |
| WO (1) | WO2008013519A2 (fr) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114409509A (zh) * | 2022-01-24 | 2022-04-29 | 福州华为医药技术开发有限公司 | 月桂醇纯化方法、聚多卡醇合成方法及聚多卡醇注射液 |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SG11201509080UA (en) | 2013-06-25 | 2015-12-30 | Exxonmobil Chem Patents Inc | Mitigation of catalyst inhibition in olefin polymerization |
| WO2016094843A2 (fr) | 2014-12-12 | 2016-06-16 | Exxonmobil Chemical Patents Inc. | Système de catalyseur de polymérisation d'oléfine comprenant un support à base d'organosilice mésoporeuse |
| US10047178B2 (en) | 2017-02-07 | 2018-08-14 | Exxonmobil Chemical Patents Inc. | Mitigation of catalyst inhibition in olefin polymerization |
| US11117983B2 (en) | 2017-08-29 | 2021-09-14 | Exxonmobil Chemical Patents Inc. | Carbon dioxide as a catalyst quench agent in solution polymerization, and products made therefrom |
| CN109482143B (zh) * | 2017-09-13 | 2022-05-24 | 正大能源材料(大连)有限公司 | 一种用于净化低碳烯烃的吸附剂及其制备和应用 |
| CN110314674B (zh) * | 2018-03-29 | 2021-10-08 | 中国石油化工股份有限公司 | 一种吸附剂的再生方法 |
| PL3792337T3 (pl) * | 2019-05-14 | 2024-06-10 | Evonik Oxeno Gmbh & Co. Kg | Sposób oczyszczania strumienia węglowodorów z resztkowym butenem |
| GB2613166B (en) * | 2021-11-25 | 2024-07-17 | Plastic Energy Ltd | A method for the removal of impurities from a pyrolysis oil |
| CN115505418A (zh) * | 2022-10-21 | 2022-12-23 | 中国石油化工股份有限公司 | 一种异构烷烃中含氧化合物的脱除方法 |
| EP4471000A1 (fr) * | 2023-05-30 | 2024-12-04 | Uop Llc | Procédé de déshydrogénation de paraffines normales en oléfines |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2531324A (en) * | 1947-10-18 | 1950-11-21 | California Research Corp | Preparation of alkylated aromatic hydrocarbons and sulfonation thereof |
| US2448489A (en) * | 1948-04-14 | 1948-08-31 | Sun Oil Co | Separation of aromatic hydrocarbons by selective adsorption in silica gel |
| US2882244A (en) * | 1953-12-24 | 1959-04-14 | Union Carbide Corp | Molecular sieve adsorbents |
| US4404118A (en) * | 1981-12-28 | 1983-09-13 | Uop Inc. | Regeneration of adsorbents by low temperature hydrogen stripping |
| US4814517A (en) * | 1988-06-09 | 1989-03-21 | Uop | Oxygenate removal in MTBE production |
| US5677260A (en) * | 1995-06-23 | 1997-10-14 | Indian Petrochemicals Corporation Limited | Catalyst composite for dehydrogenation of paraffins to mono-olefins and method for the preparation thereof |
| AU2002247420A1 (en) * | 2002-03-25 | 2003-10-13 | Uop Llc | Process for producing selected phenyl-alkanes with adsorptive separation step |
| US7311815B2 (en) * | 2003-02-20 | 2007-12-25 | Syntroleum Corporation | Hydrocarbon products and methods of preparing hydrocarbon products |
| US7326821B2 (en) * | 2003-06-16 | 2008-02-05 | Exxonmobil Chemical Patents Inc. | Removal of oxygenate from an olefin stream |
| US20040267071A1 (en) * | 2003-06-30 | 2004-12-30 | Chevron U.S.A. Inc. | Process for the oligomerization of olefins in Fischer-Tropsch derived feeds |
-
2006
- 2006-07-24 AU AU2006346510A patent/AU2006346510A1/en not_active Abandoned
- 2006-07-24 WO PCT/US2006/028490 patent/WO2008013519A2/fr not_active Ceased
- 2006-07-24 MX MX2009000939A patent/MX2009000939A/es active IP Right Grant
- 2006-07-24 EP EP06788189A patent/EP2054359A4/fr not_active Withdrawn
- 2006-07-24 BR BRPI0621924-1A patent/BRPI0621924A2/pt not_active Application Discontinuation
- 2006-07-24 CN CN2006800554773A patent/CN101535219B/zh not_active Expired - Fee Related
- 2006-07-24 CA CA2658601A patent/CA2658601C/fr not_active Expired - Fee Related
- 2006-07-24 KR KR1020097003134A patent/KR101089886B1/ko not_active Expired - Fee Related
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114409509A (zh) * | 2022-01-24 | 2022-04-29 | 福州华为医药技术开发有限公司 | 月桂醇纯化方法、聚多卡醇合成方法及聚多卡醇注射液 |
Also Published As
| Publication number | Publication date |
|---|---|
| BRPI0621924A2 (pt) | 2011-12-20 |
| MX2009000939A (es) | 2009-04-14 |
| CN101535219A (zh) | 2009-09-16 |
| WO2008013519A2 (fr) | 2008-01-31 |
| WO2008013519A3 (fr) | 2009-05-14 |
| CA2658601C (fr) | 2012-09-18 |
| AU2006346510A1 (en) | 2008-01-31 |
| CN101535219B (zh) | 2013-02-13 |
| EP2054359A4 (fr) | 2009-12-02 |
| KR20090051048A (ko) | 2009-05-20 |
| CA2658601A1 (fr) | 2008-01-31 |
| KR101089886B1 (ko) | 2011-12-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7576248B2 (en) | Process for removal of oxygenates from a paraffin stream | |
| US6124517A (en) | Olefin purification by adsorption of acetylenics and regeneration of adsorbent | |
| EP0964904B1 (fr) | Purification d'olefines par absorption d'impuretes acetyleniques et regeneration d'adsorbant | |
| ZA200502095B (en) | Process for the removal of oxygen from olefin-containing process streams. | |
| CA2658601C (fr) | Procede pour l'elimination de composes oxygenes d'une charge de paraffines | |
| JP2020111566A (ja) | メルカプタン、ジスルフィド及びc5炭化水素の存在下でc4炭化水素流から多不飽和炭化水素を除去する方法 | |
| WO2003048087A1 (fr) | Purification de charges de polyolefines au moyen d'adsorbants multiples | |
| JPH0434976B2 (fr) | ||
| EA014132B1 (ru) | Способ получения очищенного природного газа | |
| CN102822321B (zh) | 用于将轻循环油烷基化和氢化的方法和设备 | |
| BR112016013610B1 (pt) | método para reduzir enxofre presente como enxofre ou compostos de enxofre em um fluxo de alimentação de hidrocarboneto | |
| EP3374059A1 (fr) | Adsorbant de cuivre pour lit de protection de convertisseur d'acétylène | |
| US20060034742A1 (en) | Method of collecting mercaptans contained in a gaseous feed | |
| WO2011078810A1 (fr) | Procédé destiné à réduire l'indice de brome d'un hydrocarbure | |
| EA020582B1 (ru) | Способ получения жидкого топлива и система для получения жидкого топлива | |
| CN87103330A (zh) | 吸附分离原料流的烯烃氢化方法 | |
| RU2422422C2 (ru) | Способ удаления оксигенатов из потока парафинов | |
| US6680419B2 (en) | Process enhancing adsorbent capacity for acetylenic compounds | |
| US20030105379A1 (en) | Treatment of adsorbent to enhance adsorbent capacity for acetylenic compounds | |
| Li et al. | Coupling alkane dehydrogenation with hydrogenation reactions on cation-exchanged zeolites |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20090119 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
| R17D | Deferred search report published (corrected) |
Effective date: 20090514 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07C 7/12 20060101ALI20090907BHEP Ipc: C07C 2/64 20060101AFI20090907BHEP |
|
| A4 | Supplementary search report drawn up and despatched |
Effective date: 20091104 |
|
| DAX | Request for extension of the european patent (deleted) | ||
| 17Q | First examination report despatched |
Effective date: 20100401 |
|
| RBV | Designated contracting states (corrected) |
Designated state(s): ES IT |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20100812 |