EP2046887A1 - Compositions de polyoléfine photo-réticulables - Google Patents
Compositions de polyoléfine photo-réticulablesInfo
- Publication number
- EP2046887A1 EP2046887A1 EP07800424A EP07800424A EP2046887A1 EP 2046887 A1 EP2046887 A1 EP 2046887A1 EP 07800424 A EP07800424 A EP 07800424A EP 07800424 A EP07800424 A EP 07800424A EP 2046887 A1 EP2046887 A1 EP 2046887A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- composition
- article
- group
- ethylene
- salts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
- C08J3/243—Two or more independent types of crosslinking for one or more polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/06—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
- C09D151/06—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0846—Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
- C08L23/0869—Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen with unsaturated acids, e.g. [meth]acrylic acid; with unsaturated esters, e.g. [meth]acrylic acid esters
- C08L23/0884—Epoxide-containing esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2312/00—Crosslinking
- C08L2312/06—Crosslinking by radiation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2314/00—Polymer mixtures characterised by way of preparation
- C08L2314/06—Metallocene or single site catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31909—Next to second addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31855—Of addition polymer from unsaturated monomers
- Y10T428/31938—Polymer of monoethylenically unsaturated hydrocarbon
Definitions
- the present invention relates to polymer compositions, articles made therefrom, and methods for the production and processing of these compositions and articles. More particularly, the compositions according to the invention are polyolefm-based compositions and are crosslinkable by exposure to ultraviolet radiation.
- the articles according to the invention are coatings and insulating materials. The invention allows on-line crosslinking of the polymer during production of the articles.
- polyolefin resins such as polyethylenes, polypropylenes, copolymers of ethylene and propylene, and compositions based thereon, are widely used in coating and insulation applications. These applications include- heat-sh ⁇ nkable corrosion-protection sleeves for oil and gas pipeline joints; solid and foamed coatings for the corrosion, mechanical and thermal protection of pipelines and pipeline structures; wire and cable insulations and jacketing; and heat- sh ⁇ nkable extruded tubing or molded shapes for the electrical insulation and mechanical protection of wires, cables, connectors, splices and terminations.
- thermoplastic polyolefin res ⁇ n(s) from which it is made
- performance requirements include, but are not limited to, long-term continuous operating temperature, hot deformation resistance, hot set temperature, chemical resistance, tensile strength and impact resistance.
- thermoset characteristic To achieve these requn ements it is necessary to impart some thermoset characteristic to the resin or polymer. This is accomplished by crosslinking the molecular structure of the polymer to some required degree. Crosslmki ⁇ g renders the material resistant to melting and flowing when it is heated to a temperature close to or above the crystalline melting point of the highest melting point polymeric component of the composition.
- This property is also necessary for the production of heat-sh ⁇ nkable articles, such as pipe joint protection sleeves, where crosslinking imparts controlled shrinkage, or heat recovery, characteristics, and prevents the material from melting when it is heated to the temperature necessary to effect heat recovery.
- Crosslinking, or curing, of polyolefin-based coatings or insulating materials is typically accomplished through one of two basic methods: by irradiation, such as exposure to electron beam radiation; or by thermo- chemical reaction, such as that induced by peroxide decomposition or silane condensation.
- irradiation such as exposure to electron beam radiation
- thermo- chemical reaction such as that induced by peroxide decomposition or silane condensation.
- Irradiation of the polymer by electron beam generates free- radicals on the polymer chains which then covalently combine to effect crosslinking of the polymer. It is an instantaneous and clean method, but requires expensive, and potentially dangerous, high voltage "electron-beam" equipment. It also has limitations in terms of the product thickness and configuration that can be crosslinked uniformly.
- Peroxide crosslinking is also a free-radical process but here the free-radicals are chemically generated through decomposition of the peroxide by heat.
- the process is thickness independent but needs substantial amounts of heat to effect crosslinking, is performed at relatively low processing speeds, and is frequently coupled with cumbersome and expensive processing equipment, such as pressurized steam or hot-gas caternary lines.
- a major disadvantage of using the high temperatures required to induce peroxide crosslinking typically 200 to 350 0 C) is potential softening, damage, and oxidative degradation of the polymer.
- Silane crosslinki ⁇ g also known as moisture crosslinking, occurs via hydrolysis and condensation of silane functionality attached to the polymer to be crosslinked.
- the crosslinking operations described above are performed as separate and discrete processes subsequent to melt processing, or forming, of the polymer article. It is, however, advantageous in terms of production efficiency, product throughput, and operating cost to perform the crosslinking operation at the same time as, and on-line with, the polymer processing, or forming, operation, and immediately following solidification of the formed article.
- UV radiation namely radiation in the range of 200 to 500 nanometers wavelength
- photo- crosslinking provides a potential solution to the problems described.
- the UV source required to effect crosslinking is relatively small, more easily configurable, less expensive and safer to use. It offers the potential of a portable crosslinking device which can be moved into position downstream of the polymer melt processing, or forming, operation.
- the device may be positioned between an extruder and a product handling, or wind-up, station of a continuous polymer extrusio ⁇ process, to allow on-line crosslinking of an extruded article, such as sheet, tubing, or wire insulation.
- UV free-radical crosslinking results from a reaction involving a photoinitiator, such as benzophenone, benzyldimethylketal and acylphosphine oxides, which absorbs UV light to dissociate into free radicals which can then initiate the crosslinking or polymerization reaction.
- a photoinitiator such as benzophenone, benzyldimethylketal and acylphosphine oxides
- a multifunctional crosslinking agent such as triallyl cyanurate or t ⁇ methylolpropane triacrylate, may be additionally incorporated to achieve higher levels of crosslinking.
- UV free-radical crosslinking has been that it cannot readily be used for crosslinking thick or solid polymer sections, such as the functional thicknesses required for the pipe coatings, heat-sh ⁇ nkable coverings, and wire and cable insulations described above. This is because of the relatively weak intensity of UV light which results in poor penetration of the radiation through the solid material, compared with electron beam radiation, for example. This is particularly the case with semi-crystalline polymeric materials, such as polyolefins, where the dense crystalline regions are relatively impenetrable to UV radiation.
- UV free-radical crosslinking is also compromised if the resin to be crosshnked comprises additional materials such as filler and stabilizer additives, since these can provide further barriers to penetration by the UV light as well as interfering with the crosslinking reaction by neutralizing the free-radicals required for crosslinking.
- UV free-radical crosslinking is severely inhibited by the presence of oxygen, and for this reason is ideally performed in an inert atmosphere, such as nitrogen.
- UV free-radical crosslinking has been restricted to the curing or polymerization of liquid or low viscosity functional monomers or oligomers, such as acrylates, methacrylates and unsaturated polyesters, in thin (typically less than 0.250 mm., more typically less than 0.100 mm.) coating applications, such as film coatings, paints, inks, and varnishes, or for sealants and pressure sensitive adhesives, whereby the liquid or low viscosity monomers or oligomers are converted to a solid or gel- like material.
- liquid or low viscosity functional monomers or oligomers such as acrylates, methacrylates and unsaturated polyesters
- UV crosslinking by ionic reaction that is anionic or cationic polymerization, and more particularly cationic polymerization
- ionic reaction that is anionic or cationic polymerization, and more particularly cationic polymerization
- onium salts such as aryldiazomum salts, t ⁇ arylsulphonium and diaryliodonium salts, for example.
- the first type generates Lewis acids whilst the last two types produce Bronsted acids, these being preferable as initiating entities for cationic polymerization.
- a very useful feature of cationic polymerization is that the reaction is mostly thickness independent and will continue to proceed to completion "in the dark" after the UV source has been removed.
- the cationic photoinitiation reaction is not inhibited by oxygen as is free- radical photoinitiation.
- Reaction Step 1 On UV irradiation, the cationic photoinitiator interacts with active hydrogen naturally present to produce a strong protonic, or Bronsted, acid, and various aryl sulphur compounds:
- Reaction Step 2 The acid will protonate epoxy, or oxirane, groups, and polymerization then proceeds by ring-opening reaction :
- European Patent 0490854A2 describes one attempt to address the problem of crosslinking relatively thick extruded polyethylene materials by UV radiation (in this case an extruded strip of thickness 0.5 mm.).
- a proprietary benzophenone free-radical photoinitiator having low vapour pressure and high polymer solubility is used in combination with a crosslinking promoter to effect rapid crosslinking of extruded polyethylene.
- the crosslinking operation needs to be carried out in the melt, in other words before the polymer has solidified or crystallized. This severely restricts the use of this method in most extrusion operations, where it is necessary to shape the polymer and cool the material below its melting point immediately after exiting the extruder die.
- Crosslinking of the polymer in the melt state necessarily fixes the shape of the extrudate or dramatically increases the material viscosity, thereby limiting any downstream sizing or shaping operations that may need to be performed. It is also practically very difficult to insert a UV radiation device between the extruder die and adjacent cooling equipment, such as a water trough or casting stack, without severely impeding the overall extrusion operation.
- Japanese Patent Application 05024109A2 uses a similar free- radical technique to crosslink an extruded polyolefin tube which is then expanded to create a heat-shrinkable tubular product. Again this process is performed in the melt state, so the limitations described above remain unaddressed.
- the present invention overcomes the above-mentioned deficiencies of UV crosslinking and the above-mentioned prior art by providing a means whereby extruded, moulded or formed polyolefin and polyolefin- based materials, of the functional thicknesses required for applications such as pipe coatings, heat-shrinkable coverings and wire and cable insulations, can be crosslinked in the solid state.
- crosslinking is not restricted to being performed as a separate operation subsequent to, the extrusion, moulding or forming operation.
- the present invention provides UV-crosslinkable polyolefin compositions comprising a polyolefin; a source of functionality receptive to crosslinking by UV radiation, preferably a polymer, and more preferably a polyolefin, copolymerized or grafted with said functionality, where said functionality is cationically polymerizable, or a combination of cationically and free-radically polymerizable functionalities; a cationic photoinitiator; an optional free-radical photoinitiator; an optional crosslinking accelerator or sensitizer; and optional additives such as compatibilisers, inorganic fillers, nanofillers, glass and ceramic microspheres, glass fibres, flame retardants, antioxidants, stabilizers, processing aids, foaming agents, peroxides, and pigments.
- the present invention provides a method for manufacturing a UV- crosslinkable polyolefin article, whereby an extruded, moulded or formed article comprising the materials described above is subjected to UV radiation on-line with the extrusion, moulding or forming operation.
- the present invention provides a UV- crossli ⁇ kable polymer composition, comprising : (a) a polyolefin selected from one or more members of the group consisting of polyethylene and polypropylene, and copolymers and terpolymers thereof; (b) cationically polymerizable functional groups; and (c) a cationic photoinitiator in an amount effective to initiate curing of said composition.
- the present invention provides UV- crosslinked articles comprised of a polymer composition, the polymer composition comprising : (a) a polyolefin selected from one or more members of the group consisting of polyethylene and polypropylene, and copolymers and terpolymers thereof; (b) cationically polymerizable functional groups; and (c) a cationic photoinitiator in an amount effective to initiate curing of said composition; wherein the article is crosslinked by exposure to UV radiation and possesses a sufficient degree of crosslinking such that when the article is heated to a temperature above the crystalline melting point of the polyolefin, it is softened but does not become liquid.
- the present invention provides a process for preparing a UV-crosslinked, thermoset article, comprising : (a) forming a blend comprising : ( ⁇ ) a polyolefin selected from one or more members of the group consisting of polyethylene and polypropylene, and copolymers and terpolymers thereof; ( ⁇ ) cationically polyme ⁇ zable functional groups; and (in) a cationic photoinitiator in an amount effective to initiate curing of said composition; (b) melt processing the blend to produce a melt-processed article having a first set of dimensions; (c) cooling the melt-processed article to a solid state; and (d) crosslinking the melt-processed article by exposure to UV radiation to thereby produce said UV-crosshnked, thermoset article, wherein the crosslinking imparts thermoset characteristics to the article such that, when the article is heated to a temperature above the crystalline melting point of the polyolefin, it is softened but does not become
- the process may further comprise the steps of-
- thermoset article heating the UV-crosshnked, thermoset article to a first temperature at which it is softened but not melted; (f) stretching the softened article such that the article is expanded beyond the first set of dimensions; and (g) cooling the stretched article to a second temperature below the temperature at which the article is softened while holding the article in its stretched form.
- Polyolefin Component [0029]
- the polyolefin component is selected from one or more members of the group comprising polyethylene and polypropylene, and copolymers and terpolymers thereof.
- the polyolefin component is selected from the group comprising polyethylene, copolymers of ethylene and terpolymers of ethylene.
- the polyethylene may be selected from the group comprising very low density polyethylene (VLDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), linear medium density polyethylene (LMDPE), high density polyethylene (HDPE) and blends thereof.
- VLDPE very low density polyethylene
- LDPE low density polyethylene
- LLDPE linear low density polyethylene
- MDPE medium density polyethylene
- LLDPE linear medium density polyethylene
- HDPE high density polyethylene
- HDPE high density polyethylene
- MDPE has a density ranging from 0.926 to 0.940 g/cm 3
- HDPE has a density of at least 0.941 g/cm 3
- the density of VLDPE ranges from about 0.880 to 0.910 g/cm 3
- the densities of LLDPE and LMDPE generally fall within the same ranges as LDPE and MDPE, respectively.
- the polyethylene includes ethylene homopolymers, as well as copolymers and terpolymers in which ethylene is copolymerized with one or more higher alpha olefins such as propene, butene, hexene and octene.
- the copolymers of ethylene may also be selected from ethylene propylene, ethylene vinyl acetate, ethylene vinyl alcohol, ethylene methyl acrylate, ethylene ethyl acrylate, and ethylene butyl acrylate.
- the terpolymers of ethylene may also be selected from ethylene methyl, ethyl or butyl acrylates with maleic anhydride or glycidyl methacrylate, ethylene propylene diene terpolymers, and ethylene propylene with maleic anhydride or glycidyl methacrylate.
- the polyolefin component is selected from the group comprising polypropylene, copolymers of propylene and terpolymers of propylene.
- the polypropylene may be selected from the group comprising predominantly isotactic polypropylene.
- the polypropylene includes propylene homopolymers as well as copolymers and terpolymers of propylene with other alpha olefins such as ethylene and butene.
- copolymers and terpolymers of propylene may also be selected from propylene with rmaleic anhydride or glycidyl methacrylate, and ethylene propylene diene terpolymers such as ethylene propylene norbornene
- the polymers comprising the polyolefin component may preferably be manufactured using metallocene catalysts, also known as single-site, stereo-specific or constrained geometry catalysts, and may also comprise a bimodal molecular weight distribution.
- the polyolefin component is added to the composition in an amount ranging from 10 to 98 percent by weight, preferably in the range from 50 to 95 percent by weight.
- the component which comprises cationically polymenzable functional groups may comprise polymers, such as polyolefins, containing cationically polymenzable functional groups such as glycidyl methacrylate-, epoxy-, oxetane- and vinyl ether-based functionalities
- the functional polymers may be selected from polyethylene or polypropylene homopolymers and copolymers grafted, copolyme ⁇ zed or blended with one or more cationically polymenzable functional groups.
- the functional component may be one or more additives comprising functional monomers or oligomers, i.e. monomers or oligomers containing cationically polymenzable functional groups.
- the cationically polyme ⁇ zable functional groups may be selected from the group comprising : glycidyl methacrylates, glycidyl ethers, vinyl ethers, divinyl ethers, epoxides, diepoxides, oxazolines, oxetanes, epoxy acrylates, epoxy silanes, epoxy siloxanes, and polyols, and blends thereof.
- the cationically polyme ⁇ zable functional groups are covalently bonded to the polyolefin component of the composition, described above This may typically be accomplished by direct copolyme ⁇ zation of a functional monomer with the olefin monomer or monomers, or by grafting the functional monomer onto the polyolefin molecule using a peroxide free-radical initiator such as dicumyl peroxide, for example.
- the cationically polyme ⁇ zable functional groups are covalently bonded to polymers other than the polyolefin component of the composition, wherein the polymers to which the functional groups are bonded are blended with said polyolefin component.
- the cationically polyme ⁇ zable functional groups are added as separate functional monomers or oligomers, which may be preferentially grafted to the polyolefin component prior to, or in-situ with, melt processing of the finished article
- a peroxide initiator such as dicumyl peroxide, may be used to promote the grafting reaction, though grafting may also be initiated as a result of UV irradiation of the article.
- Examples of functional monomers and oligomers include epoxidized vegetable oils and esters such as epoxidized soybean oil, epoxidized octyl soyate and methyl epoxy hndseedate, epoxidized alpha olefins including those ranging in molecular chain length C 10 to C 30 , epoxidized polybutene, cycloaliphatic epoxides such as 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate and b ⁇ s-3,4-(epoxycyclohexylmethyl) adipate, epoxy acrylates and methacrylates such as bisphenol A epoxy diacrylate and aliphatic epoxy acrylates, epoxy silanes, such as ⁇ -glyc ⁇ doxypropylt ⁇ methoxy silane, oxetanes such as 3-ethyl-3-hydroxymethyl oxetane, and vinyl ethers such as o
- the functional component is added in an amount which is sufficient to provide the composition or a shaped article produced therefrom with thermoset properties, once the composition or article is crosslinked by UV radiation.
- the cationically polyme ⁇ zable functional groups may be added to the composition in an amount ranging from 0.1 to 50 percent by weight, preferably in the range from 1 to 20 percent by weight.
- the cationic photoinitiator may be a radiation-sensitive onium salt, and may be selected from the group comprising radiation-sensitive diazonium, halomum, iodonium, sulphonium and sulphoxonium salts.
- Examples of radiation-sensitive onium salts include aryldiazomum salts, aryliodonium salts, diaryliodonium salts, alkylaryliodonium salts, arylsulphonium salts, t ⁇ arylsulphonium salts, diarylbromomum salts, triarylselenonium salts, thioxanthonium salts, t ⁇ arylsulphoxonium salts, aryloxysulphoxonium salts, dialkylacylsulphoxonium salts, dialkylphenacylsulphonium salts and d ⁇ alkyl-4- hydroxyphenylsulphonium salts.
- the cationic photoinitiator is selected from t ⁇ arylsulphonium hexafluorophosphate, and diaryliodonium hexafluoroantimonate.
- the cationic photomiator may be selected from one or more members of the group comprising iron arene complexes, ferrocenium salts, thiopyrylium salts, sulphonyloxy ketones, acyl silanes and silyl benzyl ethers.
- the cationic photoi ⁇ itiator may be combined with an organic carrier solvent such as an alkyl or alkylene carbonate, acetate or propionate.
- Examples of these include ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, butylene carbonate methyl acetate, ethyl acetate, ethyl propionate, and methyl propionate.
- the cationic photoinitiator is added in an amount effective to initiate UV-crosslinking of the composition or a shaped article produced from the composition.
- the cationic photoinitiator may be added to the composition in an amount ranging from 0.1 to 10 percent by weight, preferably in the range from 0.5 to 5 percent by weight.
- the UV-curable composition according to the invention may further comprise free-radical polymerizable functional groups such as acrylates and methacrylates, preferably covalently bonded to the polyolefin component of the formulation.
- free-radical polymerizable functional groups such as acrylates and methacrylates, preferably covalently bonded to the polyolefin component of the formulation.
- free-radical polymerizable functional groups such as acrylates and methacrylates, preferably covalently bonded to the polyolefin component of the formulation.
- free-radical polymerizable functional groups such as acrylates and methacrylates, preferably covalently bonded to the polyolefin component of the formulation.
- examples include polyolefins modified with acrylates, methacrylates, and glycidyl methacrylates, and polyfunctional monomers and oligomers such as acrylates and methacrylates, including polyester, polyol, epoxy and polyether acrylates and methacrylates.
- the free-radical groups are added in an amount effective to accelerate curing of the composition or a shaped article produced from the composition.
- the free-radical groups may be added to the composition in an amount ranging from 0 to 50 percent by weight, preferably in the range from 1 to 20 percent by weight.
- the UV-curable polymer composition according to the invention may further comprise a free-radical photoinitiator to increase the initiation rate of crossli ⁇ king and to maximize cure. It will be appreciated that the free- radical photoinitiator may optionally be added to the composition, whether or not the composition also includes a free-radically polymerizable component.
- the free-radical photoinitiator may be selected from one or more members of the group comprising benzophenones, acetophenones, benzoin ethers, benzils, benzylketals, benzoyl oximes, aminobenzoates, aminoketones, hydroxyketones, ethylamines, ethanolamines, alkylphenones, anthracenes, anthraquinones, anthrachinones, xanthones, thioxanthones, quinones, fluorenones, peroxides, and acylphosphine oxides.
- free-radical photoinitiators examples include benzophenone, 2,2-diethoxyacetophenone, 1-hydroxycyclohexylphenyl ketone, benzyl dimethylketal, and 2,4,6- trimethylbenzoyldiphenylphosphine oxide.
- the free-radical photoinitiator is added in an amount effective to accelerate curing of the composition or a shaped article produced from the composition.
- the free-radical photoinitiator may be added to the composition in an amount ranging from 0 to 10 percent by weight, preferably in the range from 0.5 to 5 percent by weight.
- the UV-curable polymer composition according to the invention may further comprise an effective amount of a functional additive as a crosslinking accelerator, promoter, sensitizer, or chain transfer agent.
- the functional additive may be selected from the group comprising mono and polyfunctional acrylates and methacrylates, including polyester, polyol, epoxy and polyether acrylates and methacrylates, ally lies, cyanurates, maleimides, thiols, alkoxysilanes, and hydroxyl-containing compounds such as hydroxyketones, alcohols, diols and polyols.
- Examples of specific functional additives include trimethylol propane triacrylate, trimethylol propane trimethacrylate, tetramethylol tetraacrylate, pentaerythritol triacrylate, ethylene glycol dimethacrylate, triallyl cyanurate, trial IyI isocya ⁇ urate, vinyl trimethoxysilane, dimercaptodecane, diallyl maleate, N, N- (m-phenylene)-bismaleimide, 1,4-butanediol, ethylene glycol, polypropylene glycol, 1-hydroxy cyclohexyl phenyl ketone, and polycaprolactone.
- the functional additive is added in an amount effective to accelerate and maximize curing of the composition or a shaped article produced from the composition.
- the functional additive may be added to the composition in an amount ranging from 0.1 to 20 percent by weight, preferably in the range from 0.5 to 5 percent by weight.
- the UV-curable polymer composition according to the invention may further comprise an effective amount of a compatibilizer selected from one or more members of the group comprising : polyethylenes and polypropylenes; ethylene-propylene copolymers; ethylene-propylene diene elastomers; crystalline propylene-ethylene elastomers; thermoplastic polyolefin elastomers; metallocene polyolefins; cyclic olefin copolymers; polyoctenamers; copolymers of ethylene with vinyl acetate, vinyl alcohol, and/or alkyl acrylates; polybutenes; hydrogenated and non-hydrogenated polybutadienes; butyl rubber; polyolefin ionomers; polyolefin nanocomposites; block copolymers selected from the group comprising styrene-butadiene, styrene-butadiene-styrene, styrene-ethylene/
- the compatibilizer is added in an amount effective to enhance miscibility of the composition components and provide optimum mechanical properties of the finished article.
- the compatibilizer may be added to the composition in an amount ranging from 1 to 50 percent by weight, preferably in the range from 1 to 20 percent by weight.
- the UV-curable polymer composition according to the invention may further comprise one or more antioxidants and heat stabilizers to prevent degradation of the composition during melt processing and subsequent heat aging of the final product.
- suitable antioxidants and heat stabilizers include those classes of chemicals known as hindered phenols, hindered amines, phosphites, bisphenols, benzimidazoles, phenylenediamines, and, dihydroquinolines. It should also be noted that these antioxidants and stabilizers, if added in excessive amounts, may become “radiation scavengers", acting to limit the effectiveness of the radiation to induce the desired crosslinking reaction and the resultant degree of crosslinking obtainable for a given radiation dosage. Also, the effectiveness of cationic photoinitiators can be adversely affected by the presence of basic compounds, such as amines, for example.
- antioxidants and stabilizers are dependent upon the required degree of thermal stability required in the final article, but they are typically added in an amount ranging from 0.1 to 5 percent by weight of the total composition.
- the UV-curable polymer composition according to the invention may further comprise one or more foaming agents for the preparation of foamed or thermally insulative formulations.
- suitable foaming agents include one or more members of the group comprising sodium bicarbonate, citric acid, tartaric acid, azodicarbonamide, 4,4-oxybis(benzene sulphonyl)hydrazide, 5-phenyl tetrazole, dinitrosopentamethylene tetramine, p-toluene sulphonyl semicarbazide, carbon dioxide, nitrogen, air, helium, argon, aliphatic hydrocarbons such as butanes, pentanes, hexanes and heptanes, chlorinated hydrocarbons such as dichloromethane and t ⁇ chloroethylene, hydrofluorocarbons such as dichlorot ⁇ fluoroethane, and hollow microspheres, including glass, polymeric or ceramic microspheres.
- the foaming agent is added to the composition in an amount suitable to achieve a desired degree of foaming, which depends somewhat on the intended use of the foamed composition.
- a typical degree of foaming is in the range from 10 to 50 percent by volume.
- the UV-curable polymer composition according to the invention may further comprise one or more fillers and/or flame retardants for improved performance or cost.
- Fillers may be selected from one or more members of the group comprising calcium carbonate, kaolin, clay, mica, talc, silica, wollastonite, ba ⁇ te, wood fibres, glass fibres, glass, polymer and ceramic microspheres, carbon black, nanofillers, and metal oxides such as antimony t ⁇ oxide, silica and alumina.
- Flame-retardants may be selected from one or more members of the group comprising halogenated flame-retardants such as aliphatic, cycloaliphatic and aromatic chlorinated and brominated compounds, and halogen-free flame-retardants such as aluminium trihydrate, organic phosphates, phosphorus-nitrogen compounds, and zinc borate.
- halogenated flame-retardants such as aliphatic, cycloaliphatic and aromatic chlorinated and brominated compounds
- halogen-free flame-retardants such as aluminium trihydrate, organic phosphates, phosphorus-nitrogen compounds, and zinc borate.
- the level of filler or flame-retardant added is dependent upon the cost and performance requirements of the finished article. In the case of metal oxides, preferred levels have been found to be within the range 1 to 20 percent by weight.
- composition according to the invention is prepared by first blending the aforementioned components. This can be performed either as a separate step prior to melt processing of the finished article, or simultaneously with melt processing of the finished article, using a multi- component metering system, for example.
- the components are preferably melt blended by a machine specifically designed for that purpose, such as a continuous single-screw or twin-screw extrusion compounder, kneader, or internal batch mixer.
- a machine specifically designed for that purpose such as a continuous single-screw or twin-screw extrusion compounder, kneader, or internal batch mixer.
- the components are added as pelleted solids. This is typically the supplied form of the polyolefin components or polymeric compatibilisers described above. However, since many of the additives mentioned above, and particularly the antioxidants, stabilizers, fillers and flame-retardants, are naturally occurring powders, it is preferable that a pelleted masterbatch be prepared beforehand using a compatible polymer as the carrier or binder for the additives. Alternatively, it may be possible to combine the compounding and extrusion processing operation into a single step if the extruder used is a so-called compounding extruder, such as a twin-screw extruder, or kneader.
- compounding extruder such as a twin-screw extruder, or kneader.
- a gear pump or static mixing device installed between the end of the extruder screw and the entrance to the extruder die may also be required.
- the functional monomers or oligomers, photoinitiators and crosslinking accelerators are liquids
- the liquid additives may be coated onto the polymer pellets in a multi-component blender installed above the main feed port of the extruder.
- Another method of incorporating liquid additives would be to first imbibe them into a porous polymeric carrier, in which case they can then be effectively handled in the same manner as a solid, pelleted polymer.
- melt processing and forming of the composition is performed by extrusion and moulding techniques commonly used in the industry.
- extruded articles include pipes, pipe coatings, sheet, tubing, foams, and electrical insulation.
- the composition may be co-extruded or laminated with other materials of similar or dissimilar compositions to form laminate structures having discrete but intimately bonded layers, with each layer having different functional properties.
- an adhesive-coated polymer sheet can be produced by co-extruding or laminating the composition with an adhesive.
- the composition may be laminated with less expensive or non-crosslinkable layers, or it may be extruded atop a corrosion-protection layer, or layers, of a steel pipe thereby providing a multilayer pipe coating with a UV crosslinkable top layer.
- Molded articles can be produced by injection, compression or blow molding, and examples include electrical insulating articles such as end-caps, splice connectors, and break-out boots.
- the article is crosslinked by UV radiation.
- the invention allows that this step be accomplished at the same time as, and on line with, the processing and forming step after the material has solidified or crystallized.
- the product does not therefore require a separate, off-line crosslinking step subsequent to the processing or forming operation, thereby significantly reducing processing costs and improving product throughput and manufacturing plant capacity.
- Crosslinking is the formation of permanent covalent bonds between individual polymer chains which act to bind the polymer chains together and prevent them from irreversibly separating during subsequent heating. It is this crosslinked structure which, while retaining the elastomeric nature of the material, renders the material thermoset and resistant to melting which, in turn, is a desirable property for producing heat-shrinkable articles, as discussed below. Crosslinking also provides the article with excellent thermal and hot deformation resistance, allowing it to maintain mechanical toughness and integrity at high service temperatures.
- the UV radiation source comprises a lamp, or a series of lamps, and reflectors positioned along the length above and/or below, or circumferentially around, the formed article.
- the lamps should emit radiation in the wavelength range 100 to 500 nanometres and more particularly in the range 200 to 400 nanometres.
- the emission spectrum of the UV source should match the absorption spectrum of the UV photoinitiator as closely as possible to maximize the generation of photoinitiating species.
- Medium to high pressure mercury vapour lamps are most commonly used, typically either electric arc or microwave discharged.
- Rare gas, such as xenon, lamps can also be used. In the case of mercury lamps, the addition of metal halides can intensify the output of certain specific wavelengths.
- the intensity of the UV radiation dictated by the energy output of the lamp (typically 30 to 200 W/cm), the geometry of the lamp reflectors (typically elliptical or parabolic), the distance of the article from the UV source, and the dosage, which is also related to the rate of conveyance of the article through the UV radiation.
- crosslinked articles produced according to the invention can be rendered heat-shrinkable since they exhibit the thermoset property of not melting when heated to a temperature close to or above the crystalline melting point of the highest melting point component.
- This is important because the crosslinked structure allows the article to be stretched with minimal force and without melting, and to retain its mechanical integrity, when heated to this temperature.
- the hot article is fixed in this stretched state by rapidly cooling it to below the crystalline melting point while holding the article in its stretched position, the re-formed rigid crystalline regions of the polymeric components of the material preventing the article from spontaneously recovering to its original dimensions.
- Stretching of the article can be accomplished by mechanical, pneumatic or hydraulic means. Cooling the article in its stretched state may be accomplished by a cooling medium such as air, water or other heat-transfer medium.
- the degree of crosslinking is quantified through gel fraction and hot tensile strength measurements.
- the gel fraction is the quantity of crosslinked polymer remaining after any uncrosslinked fraction has been removed by refluxing in hot solvent, such as decahydronaphthalene or xylene. This gives information on the extent or amount of the crosslinked network but not the density or strength of the network.
- a high gel fraction does not necessarily indicate robust performance of the crosslinked material above the melting point. For this, a measurement of the tensile strength above the melting point of the polymer is necessary, since crosslinking is primarily restricted to the amorphous regions of the polymer.
- the hot tensile strength therefore, provides information on the mechanical behaviour of the material above the melting point and provides insight into properties such as the heat- recovery characteristics and hot deformation resistance of the crosslinked product.
- E-MA-GMA A functional ethylene terpolymer containing 24% by weight methyl acrylate and 8% by weight glycidyl methacrylate and of density 0.94 g/cm 3 and melt flow index 6 dg/min.
- EPDM ethylene propylene die ⁇ e terpolymer
- melt flow index 1.0 dg/min. a cationic photoinitiator comprising triarylsulphonium hexafluorophosphate in propylene carbonate
- free-radical photoinitiator comprising 1-hydroxy-cyclohexylphenylketone and benzophenone
- a trimethylolpropane triacrylate crosslinking promoter in the amounts shown in Table 1.
- liquid cationic photoinitiator, free-radical photoinitiator and crosslinking promoter were imbibed into a porous HDPE carrier at a ratio of approximately 2: 1 to aid blending with the polymeric components. Blending was accomplished with a tumble blender, ribbon blender, high-speed blender, or multi-component feeding system
- the blended components were fed through a 24' 1 L/D single- screw extruder, equipped with a polyethylene mixing screw and single-layer sheet die, and extruded at a melt temperature of approximately 140 0 C into sheet of thickness approximately 1.2 mm.
- the extruded sheet was fixed to the required dimensions of width, thickness and orientation by passing it through a chilled, 3-roll calendering stack.
- the cooled, solidified sheet was then conveyed at a distance of 5 cm. beneath, and at a speed of 200 cm/mm, through, a UV radiation source comprising a Type D medium pressure mercury lamp operating at a wavelength of 250 to 400 nm. and about 80 W/c m intensity
- UV crosslinked sheet was then tested after 24 hours to determine the degree and density of crosslinking achieved, and for the mechanical properties indicated in Table 2.
- the UV crosslinked sheet was further re-heated to a temperature of approximately 150 0 C and then stretched by approximately 30% in length using a mechanical stretcher. Whilst in this stretched state, the sheet was rapidly cooled to below the crystalline melting points of the polymers comprising the composition in order to fix the sheet at the stretched dimensions.
- the heat-sh ⁇ nkable sheet thus prepared was subsequently laminated with a layer of hot-melt adhesive and heat-recovered over a welded steel pipe joint.
- Example Ia The molten extruded sheet of Example Ia was wrapped circumferentially around the surface of a rotating steel pipe previously coated with an epoxy-based corrosion protection layer, and UV crosslinked using a series of UV lamps positioned circumferentially around the pipe.
- Example Ia The composition of Example Ia was extruded through an annular die, the tube or pipe thus formed being cooled and UV crosslinked as described above.
- the crosslinked tube or pipe may subsequently be rendered heat- shrinkable by re-heating, stretching, and cooling as described above.
- Example Ia The composition of Example Ia was compression moulded into an electrical cable end-cap, cooled and then UV crosslinked. The crosslinked end-cap was subsequently re-heated, stretched and cooled to render the end- cap heat-shrinkable.
- GMA is reduced and the EPDM component is replaced by a HDPE of density 0.947 g/cm 3 and melt flow index 0.28 dg/min.
- Example 9 follows Example 1 except that the EPDM component is replaced by a HDPE of density 0.947 g/cm 3 and melt flow index 0.28 dg/min, and the E-MA-GMA is replaced by an epoxy-acrylate oligomer in order to examine the effect of incorporating the cationically polymerizable functional component as a separate oligomer.
- Example 10 differs from Example 9 in that it also includes dicumyl peroxide as a grafting initiator for said oligomer.
- Examples 2-10 are included for comparative purposes.
- the compositions were prepared by mixing the components indicated in Table 1 using a Brabender laboratory internal mixer set at a temperature of approximately 200 0 C. The mixed compositions were then pressed into plaques of approximate thickness 1.0 mm., and UV crosslinked as described in Example 1. All amounts shown in Table 1 are in parts by weight of the respective compositions.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PL07800424T PL2046887T3 (pl) | 2006-08-02 | 2007-07-19 | Kompozycje poliolefinowe ulegające sieciowaniu pod wpływem światła |
| EP20120156518 EP2457949A1 (fr) | 2006-08-02 | 2007-07-19 | Compositions de polyoléfine photo-réticulable |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US82119806P | 2006-08-02 | 2006-08-02 | |
| US11/680,068 US7744803B2 (en) | 2006-08-02 | 2007-02-28 | Photo-crosslinkable polyolefin compositions |
| PCT/CA2007/001280 WO2008014597A1 (fr) | 2006-08-02 | 2007-07-19 | Compositions de polyoléfine photo-réticulables |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP12156518.8 Division-Into | 2012-02-22 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP2046887A1 true EP2046887A1 (fr) | 2009-04-15 |
| EP2046887A4 EP2046887A4 (fr) | 2010-03-31 |
| EP2046887B1 EP2046887B1 (fr) | 2012-04-18 |
Family
ID=38996816
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP20120156518 Withdrawn EP2457949A1 (fr) | 2006-08-02 | 2007-07-19 | Compositions de polyoléfine photo-réticulable |
| EP20070800424 Not-in-force EP2046887B1 (fr) | 2006-08-02 | 2007-07-19 | Compositions de polyoléfine photo-réticulables |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP20120156518 Withdrawn EP2457949A1 (fr) | 2006-08-02 | 2007-07-19 | Compositions de polyoléfine photo-réticulable |
Country Status (11)
| Country | Link |
|---|---|
| US (2) | US7744803B2 (fr) |
| EP (2) | EP2457949A1 (fr) |
| CN (1) | CN101495561B (fr) |
| AR (1) | AR059657A1 (fr) |
| AT (1) | ATE554130T1 (fr) |
| CA (2) | CA2659548C (fr) |
| DK (1) | DK2046887T3 (fr) |
| ES (1) | ES2382122T3 (fr) |
| MX (1) | MX2009001131A (fr) |
| PL (1) | PL2046887T3 (fr) |
| WO (1) | WO2008014597A1 (fr) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103980594A (zh) * | 2014-04-30 | 2014-08-13 | 中国科学院化学研究所 | 一种用于3d打印的紫外辐射交联聚合物材料及其制备方法和制品 |
| CN104031304A (zh) * | 2014-04-30 | 2014-09-10 | 中国科学院化学研究所 | 一种用于3d打印的紫外光交联聚合物材料及其制备方法和应用 |
Families Citing this family (93)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8597747B2 (en) | 2006-12-15 | 2013-12-03 | Centro, Inc. | Multi-layer rotationally molded low permeation vessels and method for manufacture therof |
| US20090062417A1 (en) | 2007-08-31 | 2009-03-05 | Momentive Performance Materials Gmbh | Process For The Continuous Manufacturing Of Shaped Articles And Use Of Silicone Rubber Compositions In That Process |
| JP4670881B2 (ja) * | 2008-03-14 | 2011-04-13 | 富士ゼロックス株式会社 | 画像記録用組成物、画像記録用インクセット、及び記録装置 |
| US8342672B2 (en) * | 2008-03-24 | 2013-01-01 | Fuji Xerox Co., Ltd. | Recording apparatus |
| US8765832B2 (en) * | 2011-10-14 | 2014-07-01 | Exxonmobil Chemical Patents Inc. | Polyolefin-based crosslinked compositions and methods of making them |
| WO2011041230A1 (fr) * | 2009-10-02 | 2011-04-07 | Exxonmobil Chemical Patents Inc. | Mélanges polymères polyoléfiniques réticulés |
| JP2010000712A (ja) * | 2008-06-20 | 2010-01-07 | Fuji Xerox Co Ltd | 画像記録用組成物、画像記録用インクセット、および記録装置 |
| GB2469789A (en) | 2009-01-21 | 2010-11-03 | Flight Refueling Ltd | A nozzle for a refuelling probe |
| EP2851399B1 (fr) * | 2009-09-29 | 2017-08-16 | Covalon Technologies Inc. | Système et procédé de revêtement de dispositifs médicaux |
| AU2010343054B2 (en) | 2009-12-29 | 2014-02-27 | Saint-Gobain Performance Plastics Corporation | A flexible tubing material and method of forming the material |
| JP2011162685A (ja) * | 2010-02-10 | 2011-08-25 | Hitachi Cable Ltd | 紫外線架橋発泡絶縁電線の製造方法 |
| CN102782031B (zh) * | 2010-03-08 | 2014-11-12 | 北欧化工股份公司 | 包含苯偶酰型电压稳定剂的用于中/高/超高压电缆的聚烯烃组合物 |
| TWI565779B (zh) * | 2010-05-13 | 2017-01-11 | 明基材料股份有限公司 | 黏著劑之組成物及其製造方法 |
| EP2444450A1 (fr) * | 2010-10-19 | 2012-04-25 | Hinterwaldner Consulting & Partner (Gbr) | Compositions destinées à la fabrication de revêtements antiadhésifs |
| US20130197121A1 (en) * | 2010-10-27 | 2013-08-01 | Richard S. King | Method of making crosslinked polymeric material for orthopaedic implants |
| CN102153802B (zh) * | 2011-03-07 | 2013-03-27 | 沭阳优唯新材料有限公司 | 紫外光深度交联无卤阻燃聚烯烃电缆料及其绝缘或护套层的制备方法 |
| CN102161801B (zh) * | 2011-03-07 | 2013-03-27 | 沭阳优唯新材料有限公司 | 紫外光深度交联三元乙丙橡胶电缆料及其绝缘或护套层的制备方法 |
| CN102181099B (zh) * | 2011-03-07 | 2013-03-27 | 黑龙江省润特科技有限公司 | 紫外光深度交联无卤阻燃乙丙橡胶电缆料及其绝缘或护套层的制备方法 |
| CN103502279B (zh) * | 2011-04-26 | 2015-07-22 | 3M创新有限公司 | 具有混合光交联体系的压敏粘合剂 |
| CN103649164B (zh) * | 2011-05-18 | 2016-11-02 | 因特里斯伍有限公司 | 热固性和热塑性纤维及其通过uv固化的制备 |
| CN103917372B (zh) * | 2011-09-15 | 2015-11-25 | 斯特塔西有限公司 | 控制所分配的打印材料的密度 |
| KR101377840B1 (ko) * | 2011-10-18 | 2014-03-26 | (주)엘지하우시스 | 입자 프리징이 없는 전자종이용 접착 필름 형성용 조성물 및 이에 의해 제조된 접착 필름 |
| US8906468B2 (en) * | 2011-10-27 | 2014-12-09 | Ppg Industries Ohio, Inc. | Low gloss UV-cured coatings for aircraft |
| WO2013067678A1 (fr) * | 2011-11-07 | 2013-05-16 | Lanxess Deutschland Gmbh | Composés ignifugeants durcissables aux uv, procédé de durcissement de ceux-ci aux uv, et leur utilisation |
| CN102417654B (zh) * | 2011-11-30 | 2013-03-27 | 深圳市长园特发科技有限公司 | 一种辐射交联聚烯烃高弹泡棉及其制备方法 |
| KR101355995B1 (ko) * | 2012-02-28 | 2014-01-29 | 한국과학기술원 | 내열성 광학 실록산 수지 조성물 |
| JP6078967B2 (ja) * | 2012-03-29 | 2017-02-15 | 大日本印刷株式会社 | 太陽電池モジュール用封止材シート |
| SG11201407915VA (en) | 2012-06-06 | 2014-12-30 | Saint Gobain Performance Plast | Thermoplastic elastomer tubing and method to make and use same |
| KR20150067219A (ko) * | 2012-09-29 | 2015-06-17 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 접착제 조성물 및 접착 테이프 |
| CN103012939B (zh) * | 2012-09-29 | 2016-03-02 | 深圳市沃尔核材股份有限公司 | 一种紫外光交联热缩管材料及紫外光交联热缩管的生产方法 |
| WO2014093484A1 (fr) | 2012-12-11 | 2014-06-19 | Immunolight, Llc | Liaison de substrats induite par un rayonnement ionisant |
| US8901194B2 (en) * | 2013-02-13 | 2014-12-02 | Lion Copolymer Geismar, Llc | Ambient light curable ethylene propylene diene terpolymer rubber coating devoid of thermally activated accelerators |
| US10106699B2 (en) * | 2013-02-20 | 2018-10-23 | Wisconsin Alumni Research Foundation | Inimer-containing random copolymers and crosslinked copolymer films for dense polymer brush growth |
| US10654948B2 (en) | 2013-03-13 | 2020-05-19 | Chevron Phillips Chemical Company Lp | Radically coupled resins and methods of making and using same |
| US10577440B2 (en) | 2013-03-13 | 2020-03-03 | Chevron Phillips Chemical Company Lp | Radically coupled resins and methods of making and using same |
| EP2992044B1 (fr) * | 2013-05-03 | 2022-01-12 | Uponor Innovation AB | Tuyau en polyoléfine |
| US20160168414A1 (en) * | 2013-07-31 | 2016-06-16 | Dow Global Technologies Llc | Aqueous coating composition with improved durability |
| ES2750647T3 (es) | 2013-10-15 | 2020-03-26 | Dow Global Technologies Llc | Mezclas de poliolefinas compatibilizadas |
| CN105705605B (zh) * | 2013-11-05 | 2018-07-31 | 三菱化学株式会社 | 粘合剂组合物 |
| US20160312007A1 (en) * | 2013-12-20 | 2016-10-27 | Borealis Ag | Polyolefin composition for medium/high/extra high voltage cables |
| CN103865146B (zh) * | 2014-02-12 | 2016-03-30 | 安徽合聚阻燃新材料股份有限公司 | 一种过氧化物预交联低烟无卤阻燃辐照交联聚烯烃复合材料及其制备方法 |
| US9982099B2 (en) * | 2014-04-16 | 2018-05-29 | Costas Tzoganakis | Method for modifying polyolefin to increase long chain branching |
| GB2525453A (en) | 2014-04-23 | 2015-10-28 | Uponor Innovation Ab | Polyolefin pipe |
| CN103910923A (zh) * | 2014-04-29 | 2014-07-09 | 苏州新区华士达工程塑胶有限公司 | 改性发泡聚乙烯 |
| FR3024797B1 (fr) * | 2014-08-07 | 2016-07-29 | Nexans | Cable comprenant une couche reticulee |
| CN104497392A (zh) * | 2014-12-09 | 2015-04-08 | 黑龙江省润特科技有限公司 | 一种紫外光交联聚烯烃发泡材料及其制备方法 |
| EP3234431B1 (fr) | 2014-12-17 | 2020-05-27 | Saint-Gobain Performance Plastics Corporation | Tube composite et son procédé de fabrication et d'utilisation |
| WO2016106062A1 (fr) | 2014-12-23 | 2016-06-30 | Bridgestone Americas Tire Operations, Llc | Mélanges polymères durcissables par un rayonnement actinique, mélanges polymères durcis, et procédés connexes |
| US10252449B1 (en) | 2015-01-23 | 2019-04-09 | Centro, Inc. | Rotational molding with pre-formed shapes |
| GB201506876D0 (en) | 2015-04-22 | 2015-06-03 | Uponor Innovation Ab | Polyolefin pipe |
| GB2539201B (en) * | 2015-06-08 | 2022-04-06 | Plastipack Limted | Sheet material |
| EP3380557B1 (fr) * | 2015-11-24 | 2019-10-16 | Basell Polyolefine GmbH | Films de polyoléfine soufflée |
| WO2017105960A1 (fr) | 2015-12-17 | 2017-06-22 | Bridgestone Americas Tire Operations, Llc | Cartouches de fabrication additive et procédés pour produire des produits polymères durcis par fabrication additive |
| FR3045634B1 (fr) * | 2015-12-18 | 2020-01-31 | Nexans | Composition polymere comprenant un liquide dielectrique presentant une polarite amelioree |
| WO2017139884A1 (fr) | 2016-02-15 | 2017-08-24 | Macro Technology Inc. | Film barrière multicouche |
| AU2017234286B2 (en) | 2016-03-15 | 2020-12-24 | Adaptive 3D Technologies | Thiourethane polymers, method of synthesis thereof and use in additive manufacturing technologies |
| CN106117466A (zh) * | 2016-07-28 | 2016-11-16 | 塑成科技(北京)有限责任公司 | 一种含有ldpe的光敏材料及其制备方法 |
| CN106118036A (zh) * | 2016-07-28 | 2016-11-16 | 塑成科技(北京)有限责任公司 | 一种含有pvc和ps的光敏材料及其制备方法 |
| CN106118035A (zh) * | 2016-07-28 | 2016-11-16 | 塑成科技(北京)有限责任公司 | 一种含有hdpe的光敏材料及其制备方法 |
| JP2018030954A (ja) * | 2016-08-25 | 2018-03-01 | パナソニックIpマネジメント株式会社 | ポリオレフィン樹脂組成物、およびこれを用いたポリオレフィン樹脂成形体、並びに、これを用いた掃除機 |
| CN106433538A (zh) * | 2016-08-31 | 2017-02-22 | 深圳市华星光电技术有限公司 | 一种可见光固化型封框胶组合物 |
| CA2977581A1 (fr) | 2016-09-02 | 2018-03-02 | Zurn Industries, Llc | Collier de compression a dilatation a froid moule par injection |
| US11543065B2 (en) | 2016-09-02 | 2023-01-03 | Zurn Industries, Llc | Extruded cold-expansion compression collar |
| US11541581B2 (en) | 2016-09-02 | 2023-01-03 | Zurn Industries, Llc | Injection molded cold-expansion compression collar |
| CN109690699B (zh) | 2016-09-09 | 2020-05-12 | 莱尼电缆有限公司 | 诸如电缆的连接装置和用于制备其的聚合物组合物 |
| EP3510096B1 (fr) * | 2016-09-09 | 2023-11-01 | LEONI Kabel GmbH | Éléments en forme de brin et composition polymère pour leur préparation |
| US11248111B2 (en) | 2016-09-09 | 2022-02-15 | Leoni Kabel Gmbh | Conjunction device such as a cable and polymer composition for preparing same |
| WO2018046097A1 (fr) | 2016-09-09 | 2018-03-15 | Leoni Kabel Gmbh | Composition polymère à souplesse et propriété ignifuge élevées |
| US10669412B2 (en) | 2016-09-09 | 2020-06-02 | Leoni Kabel Gmbh | Elongated article with good flexibility and high flame retardancy |
| EP3532267B1 (fr) | 2016-10-27 | 2023-03-01 | Bridgestone Americas Tire Operations, LLC | Procédés de production de produits polymères durcis par fabrication additive |
| US11054076B2 (en) | 2016-11-04 | 2021-07-06 | Zurn Industries, Llc | Reinforcing ring with sleeve |
| CN107624515A (zh) * | 2017-10-24 | 2018-01-26 | 建瓯市元润塑料有限公司 | 黑木耳户外栽培菌袋及其制备与使用方法 |
| JP7059598B2 (ja) * | 2017-12-04 | 2022-04-26 | 日立金属株式会社 | 被覆材料、ケーブル、及びケーブルの製造方法 |
| CN112135863A (zh) | 2018-04-06 | 2020-12-25 | 埃克森美孚化学专利公司 | 热塑性硫化橡胶组合物 |
| CN109322564B (zh) * | 2018-08-30 | 2021-04-13 | 宁波帅特龙集团有限公司 | 一种外把手衬垫 |
| CN109370062B (zh) * | 2018-09-21 | 2021-01-12 | 上海金发科技发展有限公司 | 一种抗落球冲击、良外观的长玻纤增强聚丙烯材料及其制备方法和应用 |
| CN109354759B (zh) * | 2018-10-17 | 2021-01-01 | 杭州以田科技有限公司 | 紫外光交联型低烟无卤阻燃电缆料母粒及其制备方法和应用 |
| JP7107185B2 (ja) * | 2018-11-20 | 2022-07-27 | 日立金属株式会社 | 電線、同軸電線、ケーブル、及び電線の製造方法 |
| WO2020110958A1 (fr) * | 2018-11-27 | 2020-06-04 | 三井化学株式会社 | Composition de copolymère à base d'oléfine cyclique, vernis, et corps réticulé |
| DE202019102584U1 (de) * | 2019-05-08 | 2020-08-11 | Rehau Ag + Co | Formteil und vernetzbare Zusammensetzung zur Bildung des Formteils |
| CN110105644B (zh) * | 2019-06-06 | 2021-07-27 | 江苏通用科技股份有限公司 | 一种降低轮胎胎面胶气孔率的制备方法 |
| CN114242318B (zh) * | 2019-06-20 | 2025-08-19 | 广西纵览线缆集团有限公司 | 隔热复合电缆 |
| CN110343317A (zh) * | 2019-07-12 | 2019-10-18 | 余修军 | 一种ixpe泡棉及制备方法 |
| CN110607020B (zh) * | 2019-09-20 | 2020-11-06 | 江苏德威新材料股份有限公司 | 一种抗uvled光衰辐照交联聚乙烯绝缘料及其制备方法 |
| CN110577697A (zh) * | 2019-09-20 | 2019-12-17 | 江苏德威新材料股份有限公司 | 一种抗uvled光衰辐照交联聚乙烯绝缘母粒及其制备方法和应用 |
| CN111073158A (zh) * | 2019-12-31 | 2020-04-28 | 金旸(厦门)新材料科技有限公司 | 一种高硬度聚丙烯热缩套基材及其制备方法 |
| CN112063035B (zh) * | 2020-08-25 | 2022-11-11 | 广东聚石化学股份有限公司 | 一种硅烷自然光交联无卤阻燃电缆材料及其制备方法 |
| IT202000023443A1 (it) | 2020-10-05 | 2022-04-05 | Prolab Mat S R L | Rete sequenziale polimerica compenetrante o semi-compenetrante e processo per ottenerla |
| JPWO2023188315A1 (fr) * | 2022-03-31 | 2023-10-05 | ||
| CN115011021B (zh) * | 2022-07-01 | 2023-04-11 | 安徽建筑大学 | 一种磁悬浮列车线缆用耐应力、抗蠕变、耐高温、高绝缘的护套材料及其制造方法和应用 |
| CN114957848B (zh) * | 2022-07-12 | 2023-05-05 | 广东聚石化学股份有限公司 | 一种高效的紫外光交联黑色低烟无卤电缆料及其制备方法和应用 |
| CN116013593A (zh) * | 2022-10-13 | 2023-04-25 | 天合光能股份有限公司 | 一种电缆及其护套组合物 |
| CN119119620B (zh) * | 2024-11-14 | 2025-03-11 | 安徽冠泓塑业有限公司 | 塑料管加工用增强增韧的复合聚乙烯材料及其制备方法 |
Family Cites Families (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4310469A (en) * | 1978-12-29 | 1982-01-12 | General Electric Company | Diaryliodonium salts |
| US4279717A (en) * | 1979-08-03 | 1981-07-21 | General Electric Company | Ultraviolet curable epoxy silicone coating compositions |
| US4374066A (en) * | 1979-09-28 | 1983-02-15 | General Electric Company | Method for making triarylsulfonium salts |
| US4758629A (en) * | 1986-05-28 | 1988-07-19 | E. I. Du Pont De Nemours And Company | Thermoplastic compositions of crystalline polyolefin and ethylene-containing copolymer |
| US5073643A (en) * | 1990-08-30 | 1991-12-17 | Polyset Corporation | High yield synthesis of hydroxyl-containing cationic photoinitiators |
| SE500503C2 (sv) | 1990-12-07 | 1994-07-04 | Inst Polymerutveckling Ab | Förfarande och bestrålningsenhet för kontinuerlig tvärbindning av polyeten |
| JPH0524109A (ja) | 1991-07-18 | 1993-02-02 | Hitachi Cable Ltd | 熱収縮チユーブの製造方法 |
| CA2127746A1 (fr) * | 1993-07-09 | 1995-01-10 | Dedo Suwanda | Procede continu pour l'obtention de produits polyethylene reticules et orientes |
| US5709948A (en) * | 1995-09-20 | 1998-01-20 | Minnesota Mining And Manufacturing Company | Semi-interpenetrating polymer networks of epoxy and polyolefin resins, methods therefor, and uses thereof |
| US6054007A (en) * | 1997-04-09 | 2000-04-25 | 3M Innovative Properties Company | Method of forming shaped adhesives |
| DE69834092T2 (de) * | 1997-12-02 | 2006-09-21 | Ciba Speciality Chemicals Holding Inc. | Polyolefinmaterialien mit verbesserter Oberflächenhaltbarkeit und Verfahren zu ihrer Herstellung durch Strahlung |
| US6562415B2 (en) * | 1998-01-21 | 2003-05-13 | Dupont Dow Elastomers L.L.C. | UV curable elastomer composition |
| US6265460B1 (en) * | 1998-06-29 | 2001-07-24 | 3M Innovative Properties Company | Hot-melt adhesive composition, heat-bonding film adhesive and adhering method using hot-melt adhesive composition |
| EP1020479B1 (fr) * | 1999-01-16 | 2005-08-10 | Goldschmidt GmbH | Photoinitiateurs pour le durcissement cationique |
| CA2396978C (fr) * | 2000-01-13 | 2009-04-07 | Uv Specialties, Inc. | Compositions conductibles transparentes qui peut secher aux u.v. |
| KR20030017566A (ko) | 2000-06-28 | 2003-03-03 | 스미또모 가가꾸 고교 가부시끼가이샤 | 절연재료용 수지 조성물, 접착제용 수지 조성물 및 접착시트 |
| AU2002361588A1 (en) | 2001-11-21 | 2003-06-10 | 3M Innovative Properties Company | Plastic transport and storage pallet comprising a polymeric composition |
| WO2003070833A2 (fr) | 2002-02-15 | 2003-08-28 | Ppg Industries Ohio, Inc. | Compositions durcissables par rayonnement contenant des copolymeres alternes de monomeres du type isobutylene |
| JP2005520007A (ja) * | 2002-03-08 | 2005-07-07 | レンセラール ポリテクニック インスティチュート | カチオン系光重合のための促進物質 |
| KR100813953B1 (ko) * | 2002-04-22 | 2008-03-14 | 삼성전자주식회사 | 대전방지성을 갖는 광경화성 수지 조성물 |
| US8044110B2 (en) * | 2003-05-29 | 2011-10-25 | Prysmian Cavi E Sistemi Energia S.R.L. | Optical fiber with polymeric coating crosslinked in the presence of both radical and cationic photoinitiators |
| US6998425B2 (en) * | 2003-12-23 | 2006-02-14 | General Electric Company | UV curable coating compositions and uses thereof |
| DE102004061986A1 (de) | 2004-12-23 | 2006-07-06 | Rehau Ag + Co. | Vernetzungsverfahren zur Herstellung von dampfsterilisierbaren mehrschichtigen Portschläuchen |
| DE102004061987A1 (de) | 2004-12-23 | 2006-07-06 | Rehau Ag + Co. | UV-vernetzbare Materialzusammensetzung zur Herstellung von dampfsterilisierbaren mehrschichtigen Schläuchen |
| DE102004061982A1 (de) | 2004-12-23 | 2006-07-06 | Rehau Ag + Co. | Materialzusammensetzung zur UV-Vernetzung |
| US7456231B2 (en) * | 2005-02-02 | 2008-11-25 | Shawcor Ltd. | Radiation-crosslinked polyolefin compositions |
| DE602008006294D1 (de) * | 2007-03-01 | 2011-06-01 | Prs Mediterranean Ltd | Verfahren zur herstellung kompatibilisierter polymermischungen und artikeln |
-
2007
- 2007-02-28 US US11/680,068 patent/US7744803B2/en not_active Expired - Fee Related
- 2007-07-19 CA CA2659548A patent/CA2659548C/fr not_active Expired - Fee Related
- 2007-07-19 EP EP20120156518 patent/EP2457949A1/fr not_active Withdrawn
- 2007-07-19 EP EP20070800424 patent/EP2046887B1/fr not_active Not-in-force
- 2007-07-19 CN CN2007800284891A patent/CN101495561B/zh not_active Expired - Fee Related
- 2007-07-19 DK DK07800424T patent/DK2046887T3/da active
- 2007-07-19 CA CA2908284A patent/CA2908284C/fr not_active Expired - Fee Related
- 2007-07-19 PL PL07800424T patent/PL2046887T3/pl unknown
- 2007-07-19 MX MX2009001131A patent/MX2009001131A/es active IP Right Grant
- 2007-07-19 AT AT07800424T patent/ATE554130T1/de active
- 2007-07-19 WO PCT/CA2007/001280 patent/WO2008014597A1/fr not_active Ceased
- 2007-07-19 ES ES07800424T patent/ES2382122T3/es active Active
- 2007-08-02 AR ARP070103422 patent/AR059657A1/es not_active Application Discontinuation
-
2010
- 2010-05-14 US US12/780,399 patent/US7923121B2/en not_active Expired - Fee Related
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103980594A (zh) * | 2014-04-30 | 2014-08-13 | 中国科学院化学研究所 | 一种用于3d打印的紫外辐射交联聚合物材料及其制备方法和制品 |
| CN104031304A (zh) * | 2014-04-30 | 2014-09-10 | 中国科学院化学研究所 | 一种用于3d打印的紫外光交联聚合物材料及其制备方法和应用 |
| CN104031304B (zh) * | 2014-04-30 | 2016-02-24 | 中国科学院化学研究所 | 一种用于3d打印的紫外光交联聚合物材料及其制备方法和应用 |
| CN103980594B (zh) * | 2014-04-30 | 2016-02-24 | 中国科学院化学研究所 | 一种用于3d打印的紫外辐射交联聚合物材料及其制备方法和制品 |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2008014597A1 (fr) | 2008-02-07 |
| EP2457949A1 (fr) | 2012-05-30 |
| CA2908284A1 (fr) | 2008-02-07 |
| AR059657A1 (es) | 2008-04-23 |
| CN101495561A (zh) | 2009-07-29 |
| MX2009001131A (es) | 2009-02-10 |
| US7744803B2 (en) | 2010-06-29 |
| EP2046887A4 (fr) | 2010-03-31 |
| DK2046887T3 (da) | 2012-05-14 |
| US20100222447A1 (en) | 2010-09-02 |
| US20080045619A1 (en) | 2008-02-21 |
| ATE554130T1 (de) | 2012-05-15 |
| CA2908284C (fr) | 2017-12-12 |
| CA2659548C (fr) | 2016-01-05 |
| EP2046887B1 (fr) | 2012-04-18 |
| CA2659548A1 (fr) | 2008-02-07 |
| CN101495561B (zh) | 2013-02-06 |
| ES2382122T3 (es) | 2012-06-05 |
| PL2046887T3 (pl) | 2012-09-28 |
| US7923121B2 (en) | 2011-04-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2659548C (fr) | Compositions de polyolefine photo-reticulables | |
| JP5894710B2 (ja) | 架橋性エチレン系ポリマー組成物中の過酸化物のマイグレーションを低減するための方法 | |
| US6455637B1 (en) | Crosslinked compositions containing silane-modified polyolefins and polypropylenes | |
| EP1688458B1 (fr) | Compositions polyoléfiniques réticulées par rayonnement | |
| US6465547B1 (en) | Crosslinked compositions containing silane-modified polypropylene blends | |
| CA2325217C (fr) | Compositions de polypropylene thermoretrecissables reticulees | |
| CN107771199B (zh) | 使用在管式反应器中制得且任选地经支化剂改性的高熔融强度乙烯类聚合物制得交联电缆绝缘材料的方法 | |
| EP2226355B1 (fr) | Compositions de polyoléfine réticulées par l'humidité | |
| US20030050401A1 (en) | Crosslinked, predominantly polypropylene-based compositions | |
| KR101357170B1 (ko) | 개선된 기계적 특성을 갖는 난연성 폴리머 조성물 | |
| KR102401729B1 (ko) | 과산화물 개시제와 가교결합된 폴리올레핀을 제조하기 위한 조성물 및 방법 | |
| WO2021085819A1 (fr) | Résine de polyoléfine déréticulée et composition de résine la contenant | |
| EP1328572B1 (fr) | Compositions de polypropylene reticulees et thermoretractables | |
| US5068270A (en) | Composition for water proof sheets | |
| CN112424278A (zh) | 一种包含第一烯烃聚合物和第二烯烃聚合物的可交联的聚烯烃组合物 | |
| CN119546648A (zh) | 用于导体的可逆交联涂层和方法 | |
| US5137947A (en) | Composition for water proof sheets | |
| CA2382762C (fr) | Composes reticules contenant des melanges de polyolefines modifies au silane | |
| JPH0445109A (ja) | 架橋可能なエチレン−ビニルアルコールアクリレートポリマーの製法 | |
| JPS6143377B2 (fr) | ||
| JPH0820703A (ja) | 柔軟性シラングラフトマー及び絶縁電線の製造方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20090224 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
| A4 | Supplementary search report drawn up and despatched |
Effective date: 20100225 |
|
| 17Q | First examination report despatched |
Effective date: 20100824 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602007022130 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C08L0023040000 Ipc: C08J0003240000 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: C09D 151/06 20060101ALI20110824BHEP Ipc: C08L 23/06 20060101ALI20110824BHEP Ipc: C08J 3/24 20060101AFI20110824BHEP Ipc: C08L 23/16 20060101ALI20110824BHEP Ipc: C08L 51/06 20060101ALI20110824BHEP Ipc: C08L 23/10 20060101ALI20110824BHEP |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| DAX | Request for extension of the european patent (deleted) | ||
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 554130 Country of ref document: AT Kind code of ref document: T Effective date: 20120515 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2382122 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120605 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602007022130 Country of ref document: DE Effective date: 20120614 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20120418 |
|
| REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120818 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120719 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120820 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120731 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| 26N | No opposition filed |
Effective date: 20130121 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120731 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602007022130 Country of ref document: DE Effective date: 20130121 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120418 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120719 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120718 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120719 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070719 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20150722 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20150827 Year of fee payment: 9 Ref country code: GB Payment date: 20150727 Year of fee payment: 9 Ref country code: DK Payment date: 20150728 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20150710 Year of fee payment: 9 Ref country code: BE Payment date: 20150731 Year of fee payment: 9 Ref country code: FR Payment date: 20150630 Year of fee payment: 9 Ref country code: SE Payment date: 20150731 Year of fee payment: 9 Ref country code: TR Payment date: 20150702 Year of fee payment: 9 Ref country code: AT Payment date: 20150729 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20150723 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150930 Year of fee payment: 9 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602007022130 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20170131 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20160801 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 554130 Country of ref document: AT Kind code of ref document: T Effective date: 20160719 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160719 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160801 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160801 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170201 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160720 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170331 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160719 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160719 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160719 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160731 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160719 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160720 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181130 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160719 |