EP1978131A1 - Moyen de fabrication de couche anti-corrosion sur des surfaces métalliques - Google Patents
Moyen de fabrication de couche anti-corrosion sur des surfaces métalliques Download PDFInfo
- Publication number
- EP1978131A1 EP1978131A1 EP07105237A EP07105237A EP1978131A1 EP 1978131 A1 EP1978131 A1 EP 1978131A1 EP 07105237 A EP07105237 A EP 07105237A EP 07105237 A EP07105237 A EP 07105237A EP 1978131 A1 EP1978131 A1 EP 1978131A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- solution
- agent according
- agent
- nanoparticles
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/34—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
- C23F11/04—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly acid liquids
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
- C23F11/06—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly alkaline liquids
Definitions
- the present invention relates to compositions for the production of anticorrosive coatings on metal surfaces, to processes for the preparation of such compositions and to their use.
- compositions of the invention are used in particular for the production of corrosion-protective conversion layers or passivation layers on metal surfaces, such as the surfaces of pure metal substrates such as zinc, aluminum, magnesium or their alloys and galvanically produced surfaces of zinc or their alloys.
- Metal parts are coated to protect against corrosion, for example, galvanically with base metals, such.
- base metals such as zinc, nickel, chromium, aluminum, magnesium and alloys of the aforementioned, and the corrosion resistance of the metal coating by forming a conversion layer, often a passivation layer further improved.
- the metal surfaces are often treated with solutions containing chromium (VI).
- chromium (VI) compounds due to the high toxicity and carcinogenicity of chromium (VI) compounds, more recent attempts have been made to prepare such conversion layers with chromium (III) -containing solutions. These chromium (III) -containing treatment liquids are added to increase the corrosion protection effect of the prepared conversion layers many times high amounts of cobalt (II) compounds.
- Recent processes produce protective layers with an organosilicon-based binder system to which corrosion inhibiting additives based on molybdenum, tungsten, titanium, zirconium, vanadium and other metals are added.
- the US-A-6,524,403 describes a chromium-free composition for improving the corrosion resistance of zinc or zinc alloy surfaces, which composition contains a source of titanium ions or titanates, an oxidizer and fluorides, and Group II metal compounds, and the composition is substantially free of silicates and silica. Strontium is used in particular as Group II metal.
- the EP 0 760 401 discloses an anticorrosive composition containing an oxidizing agent, a silicate and / or silica and metal cations selected from Ti, Zr, Ce, Sr, V, W and Mo, oxime metal anions thereof and / or fluorometal anions thereof.
- the previously known chromium-free corrosion inhibitors have the disadvantage that they either do not provide sufficient corrosion protection properties of the conversion layers or are not sufficiently stable to use them in a continuous process or both.
- the object of the present invention was to overcome the disadvantages of the known in the prior art means for producing anticorrosive layers or conversion layers on metal surfaces, in particular surfaces of zinc, aluminum, magnesium or their alloys, wherein the means free of chromium and cobalt should be.
- the agent according to the invention is characterized inter alia by containing in situ generated nanoparticles which are stable or at least metastable.
- a conversion layer or passivation layer is formed in the treatment of metal surfaces with the agent according to the invention.
- the nanoparticles generated in situ in the treatment solution are incorporated into the conversion layer during the formation of the conversion layer, thereby resulting in a particularly high corrosion protection effect of the treated metal surfaces.
- these nanoparticles are generated in situ by hydrolysis or oxidation of the substances contained in the starting solution. The nanoparticles are not added to the solution as already existing nanoparticulate particles from outside.
- inventively generated in situ nanoparticles are better incorporated into the conversion layers and thereby these layers are denser and thus more corrosion resistant than those that can be produced by applying a corrosion protection solution were added to the nanoparticles from the outside, for example in the form of a Silica or silicate solution.
- the nanoparticles in the composition according to the invention are generated in situ by physical and / or chemical treatment of the starting solution, resulting in a colloidal solution. By means of a Tyndall lamp, the formation of nanoparticles can be easily detected.
- the nanoparticles have an average particle diameter ⁇ 500 nm.
- the nanoparticles formed in step B) have an average particle diameter ⁇ 250 nm, preferably ⁇ 200 nm, particularly preferably ⁇ 150 nm.
- the nanoparticles are formed from the halogen complex anions and / or oxo cations by hydrolysis or oxidation.
- the nanoparticles thus consist essentially of the oxides of the metals or metalloids.
- the formation of nanoparticles in situ by the physical and / or chemical treatment is carried out by bringing the initially present equilibrium state of the starting solution in an imbalance state and the system in a stabilized metastable state.
- the conversion from the equilibrium state to an imbalance state can be effected by changing the temperature, changing the ion concentration, changing the pH, changing the pressure, supersaturating the solution, stirring the Solution, adding an oxidizing agent and / or adding a reducing agent done.
- the formation of the nanoparticles takes place in situ by supersaturation of the solution and / or stirring of the solution.
- composition of the invention may be provided in various forms and stages of completion prior to the treatment of metal surfaces as a commercial product.
- the agent of the invention is provided as a concentrate which is to be diluted before use.
- the product according to the invention is suitable as a commercial product as soon as the aqueous solution containing oxo-cations and halogen complex anions has been prepared according to step A) and the nanoparticles according to B) have been formed in situ .
- an oxidative substance is added, selected from hydrogen peroxide, organic peroxides, alkali metal peroxides, persulfates, perborates, nitrates and mixtures thereof, the addition of hydrogen peroxide as oxidative substance is particularly preferred.
- the addition of the oxidative substance is expediently carried out before the use of the agent according to the invention for the production of anticorrosion coatings, wherein the agent according to the invention can already be provided with the oxidative substance contained therein or the oxidative substance is added shortly before the use of the agent according to the invention at the manufacturer of the anticorrosive coatings ,
- the addition of the oxidative substance prior to the use of the agent according to the invention for the production of anticorrosive coatings causes i.a. Pre-passivation of the metallic surface, in particular a zinc or zinc alloy surface, which is advantageous because the treatment solution can be extremely aggressive against the metallic surface and could at least partially dissolve it.
- the pH is adjusted by means of an acid or base to a value in the range from 0.5 to 5.0, preferably in the range from 1.0 to 3.0, more preferably adjusted in the range of 1.3 to 2.0.
- a value in the range from 0.5 to 5.0 preferably in the range from 1.0 to 3.0, more preferably adjusted in the range of 1.3 to 2.0.
- the agent according to the invention is prepared by the formation of nanoparticles according to step B) at a temperature in the range of room temperature to 100 ° C, preferably in the range of 30 ° C to 80 ° C, more preferably in the range from 35 ° C to 50 ° C is performed.
- a temperature in the range of room temperature to 100 ° C, preferably in the range of 30 ° C to 80 ° C, more preferably in the range from 35 ° C to 50 ° C is performed.
- a temperature in the range of room temperature to 100 ° C, preferably in the range of 30 ° C to 80 ° C, more preferably in the range from 35 ° C to 50 ° C is performed.
- a temperature in the range of room temperature to 100 ° C, preferably in the range of 30 ° C to 80 ° C, more preferably in the range from 35 ° C to 50 ° C is performed.
- Too low a temperature nanoparticles are formed at an uneconomically slow rate.
- the agent is prepared by adding the halogen complex anions b) to the aqueous solution in step A) in the form of their metal salts, preferably their alkali metal salts, more preferably their sodium and potassium salts.
- their metal salts preferably their alkali metal salts, more preferably their sodium and potassium salts.
- halogen complex anions b) fluoroanions selected from BF 4 1- , TiF 6 2- , ZrF 6 2- , SiF 6 2- , AIF 6 3- and mixtures thereof.
- further metal salts are added to the aqueous solution in stage A), preferably salts of the metals B, Ti, Zr, Si and / or Al.
- the metals are added in the form of the metal halides, metal nitrates and / or metal sulfates.
- the aqueous solution prepared in step A) contains the oxo cations in a concentration of 0.1 to 0.5 wt .-%, preferably in a concentration of 0.1 to 0.3 wt. -%.
- the aqueous solution prepared in step A) contains the halogen complex anions in a concentration of 0.1 to 3.0 wt .-%, preferably in a concentration of 0.5 to 2.0 wt .-%.
- the agent of the invention may be provided as a concentrate to be diluted before use.
- the agent according to the invention may already be in the concentration or dilution suitable for the application to be provided.
- the solution obtained in step B) is expediently diluted with water in a ratio of 1: 3 to 1: 5 before or after the addition of an oxidative substance in step C).
- composition according to the invention for the production of anticorrosive coatings is carried out by direct treatment of the metal surfaces with the agent, preferably by immersing or pivoting the objects with metal surfaces in the or the agent.
- Application by dipping or panning is preferably carried out at a temperature of the treatment bath in the range of 20 to 100 ° C, preferably 30 to 70 ° C, more preferably 40 to 60 ° C, and most preferably about 50 ° C.
- the most suitable treatment time for the production of anticorrosive coatings by immersing or pivoting the objects with metal surfaces in the treatment or the treatment varies depending on various parameters, such as.
- the composition of the treatment solution, the treatment temperature, the type of metal surface and the degree of corrosion protection desired is in the range of 10 to 120 seconds, preferably in the range of 20 to 60 seconds.
- compositions according to the invention and comparative compositions an aqueous solution of oxo anions a) is prepared.
- the halogen complex anion component b in this example a fluoroanion component
- this solution is subjected to physical and / or chemical treatment by vigorous stirring (propeller stirrer, 700 to 1000 rpm).
- the formation of nanoparticles is checked by means of a Tyndall lamp.
- the solution obtained is made up to 1 l with water.
- the previously prepared solution is diluted 1 to 4 with water (1 liter of solution plus 3 liters of water) before use for the preparation of anticorrosion coatings. Subsequently, 1 liter of 10% H 2 O 2 solution is added and the pH is adjusted to 1.5 to 1.8 with NaOH or HNO 3 .
- the individual components of the solutions prepared (5 Liter of solution per batch) and the physical and / or chemical treatments are given in Table 1 below. ⁇ b> Table 1 ⁇ / b> Treatment soln. No.
- Table 1 shows that without treatment of the solutions by stirring (solutions 1b to 11b) no Tyndall effect was observed and thus no formation of nanoparticles was achieved. The same was observed when the fluoroanion component was used in the form of its free acid with and without stirring (solutions 2a, 2b, 4a, 4b, 7a, 7b, 9a, 9b, 11a and 11b).
- Galvanized sheets were treated with the previously prepared and shown in Table 1 treatment solutions by immersion in the solutions for 60 seconds at 50 ° C. The sheets were then rinsed with water and subjected to a corrosion test according to DIN 50021 SS (salt spray test) for drumware and the duration of occurrence of i) first signs of corrosion and ii) 5% white rust compared. The results are shown in Table 2.
- Table 2 ⁇ / b> Treatment soln. No. first signs of corrosion 5% white rust 1a (invention) 8 h 24 hours 1b (Comp. Ex.) 3 h 8 h 2a (Comp. Ex.) 2 h 7 h 2b (Comp.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical Treatment Of Metals (AREA)
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP07105237.7A EP1978131B2 (fr) | 2007-03-29 | 2007-03-29 | Moyen de fabrication de couche anti-corrosion sur des surfaces métalliques |
| ES07105237T ES2388302T5 (es) | 2007-03-29 | 2007-03-29 | Agentes para fabricar capas de protección contra la corrosión sobre superficies metálicas |
| PCT/EP2008/053346 WO2008119675A1 (fr) | 2007-03-29 | 2008-03-20 | Moyen de réalisation de couches de protection contre la corrosion sur des surfaces métalliques |
| KR1020097020409A KR101493458B1 (ko) | 2007-03-29 | 2008-03-20 | 금속 표면 위에 항-부식층의 제조를 위한 제제 |
| US12/593,632 US8764916B2 (en) | 2007-03-29 | 2008-03-20 | Agent for the production of anti-corrosion layers on metal surfaces |
| CN2008800104018A CN101668881B (zh) | 2007-03-29 | 2008-03-20 | 在金属表面形成防蚀层的试剂 |
| BRPI0809299-0A2A BRPI0809299A2 (pt) | 2007-03-29 | 2008-03-20 | Agente para produção de camadas anticorrosão em superfícies metálicas |
| JP2010500230A JP5279811B2 (ja) | 2007-03-29 | 2008-03-20 | 金属表面に抗腐食層を生成する剤 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP07105237.7A EP1978131B2 (fr) | 2007-03-29 | 2007-03-29 | Moyen de fabrication de couche anti-corrosion sur des surfaces métalliques |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP1978131A1 true EP1978131A1 (fr) | 2008-10-08 |
| EP1978131B1 EP1978131B1 (fr) | 2012-06-06 |
| EP1978131B2 EP1978131B2 (fr) | 2019-03-06 |
Family
ID=38222536
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP07105237.7A Active EP1978131B2 (fr) | 2007-03-29 | 2007-03-29 | Moyen de fabrication de couche anti-corrosion sur des surfaces métalliques |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US8764916B2 (fr) |
| EP (1) | EP1978131B2 (fr) |
| JP (1) | JP5279811B2 (fr) |
| KR (1) | KR101493458B1 (fr) |
| CN (1) | CN101668881B (fr) |
| BR (1) | BRPI0809299A2 (fr) |
| ES (1) | ES2388302T5 (fr) |
| WO (1) | WO2008119675A1 (fr) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2100986A1 (fr) * | 2008-03-04 | 2009-09-16 | Mazda Motor Corporation | Agent de traitement de conversion chimique et matériau métallique traité en surface |
| CN103205739A (zh) * | 2013-04-28 | 2013-07-17 | 东南大学 | 一种提高钢材耐磨性的表面化学处理方法 |
| US10400337B2 (en) | 2012-08-29 | 2019-09-03 | Ppg Industries Ohio, Inc. | Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ES2372146T3 (es) * | 2009-09-23 | 2012-01-16 | Atotech Deutschland Gmbh | Solución de tratamiento para generar capas de conversión negras libres de cromo y de cobalto. |
| SG11201501408RA (en) | 2012-08-29 | 2015-03-30 | Ppg Ind Ohio Inc | Zirconium pretreatment compositions containing molybdenum, associated methods for treating metal substrates, and related coated metal substrates |
| WO2014169222A2 (fr) * | 2013-04-12 | 2014-10-16 | University Of Virginia Patent Foundation | Revêtements de métal et d'alliage métallique résistant à la corrosion contenant des concentrations sursaturées d'éléments inhibiteurs de corrosion et procédés et systèmes de formation de ces revêtements |
| DE102013107506A1 (de) | 2013-07-16 | 2015-01-22 | Thyssenkrupp Rasselstein Gmbh | Verfahren zur Passivierung von bandförmigem Schwarzblech |
| DE102015113878B4 (de) | 2015-08-21 | 2023-03-16 | Thyssenkrupp Ag | Verfahren zur thermischen Behandlung eines mit einer Konversionsschicht beschichteten Schwarzblechs |
| WO2018006270A1 (fr) * | 2016-07-05 | 2018-01-11 | 深圳市恒兆智科技有限公司 | Agent de revêtement par conversion d'aluminium sans chrome, matériau d'aluminium et procédé de traitement de revêtement |
| RU2729485C1 (ru) | 2016-08-24 | 2020-08-07 | Ппг Индастриз Огайо, Инк. | Железосодержащая композиция очистителя |
| US11008254B2 (en) | 2019-08-08 | 2021-05-18 | Specialty Granules Investments Llc | Building materials comprising agglomerated particles |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0358338A2 (fr) * | 1988-08-12 | 1990-03-14 | Alcan International Limited | Procédé et composition pour traitement de surface |
| JPH04132636A (ja) * | 1990-09-21 | 1992-05-06 | Nippon Sheet Glass Co Ltd | 酸化チタン被膜の製造方法 |
| WO2001086016A2 (fr) * | 2000-05-11 | 2001-11-15 | Henkel Corporation | Agent de traitement de surface metallique |
| US6524403B1 (en) * | 2001-08-23 | 2003-02-25 | Ian Bartlett | Non-chrome passivation process for zinc and zinc alloys |
Family Cites Families (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6193815B1 (en) * | 1995-06-30 | 2001-02-27 | Henkel Corporation | Composition and process for treating the surface of aluminiferous metals |
| JP3523383B2 (ja) | 1995-08-21 | 2004-04-26 | ディップソール株式会社 | 液体防錆皮膜組成物及び防錆皮膜形成方法 |
| DE10010758A1 (de) * | 2000-03-04 | 2001-09-06 | Henkel Kgaa | Korrosionsschutzverfahren für Metalloberflächen |
| JP3851106B2 (ja) * | 2000-05-11 | 2006-11-29 | 日本パーカライジング株式会社 | 金属表面処理剤、金属表面処理方法及び表面処理金属材料 |
| US6749694B2 (en) † | 2002-04-29 | 2004-06-15 | Ppg Industries Ohio, Inc. | Conversion coatings including alkaline earth metal fluoride complexes |
| JP4167046B2 (ja) * | 2002-11-29 | 2008-10-15 | 日本パーカライジング株式会社 | 金属表面処理剤、金属表面処理方法及び表面処理金属材料 |
| JP4205939B2 (ja) * | 2002-12-13 | 2009-01-07 | 日本パーカライジング株式会社 | 金属の表面処理方法 |
| JP4402991B2 (ja) * | 2004-03-18 | 2010-01-20 | 日本パーカライジング株式会社 | 金属表面処理用組成物、金属表面処理用処理液、金属表面処理方法および金属材料 |
| JP2008174807A (ja) † | 2007-01-19 | 2008-07-31 | Nippon Hyomen Kagaku Kk | クロムを含まない金属表面処理液 |
-
2007
- 2007-03-29 EP EP07105237.7A patent/EP1978131B2/fr active Active
- 2007-03-29 ES ES07105237T patent/ES2388302T5/es active Active
-
2008
- 2008-03-20 CN CN2008800104018A patent/CN101668881B/zh active Active
- 2008-03-20 US US12/593,632 patent/US8764916B2/en active Active
- 2008-03-20 KR KR1020097020409A patent/KR101493458B1/ko active Active
- 2008-03-20 JP JP2010500230A patent/JP5279811B2/ja active Active
- 2008-03-20 WO PCT/EP2008/053346 patent/WO2008119675A1/fr not_active Ceased
- 2008-03-20 BR BRPI0809299-0A2A patent/BRPI0809299A2/pt not_active IP Right Cessation
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0358338A2 (fr) * | 1988-08-12 | 1990-03-14 | Alcan International Limited | Procédé et composition pour traitement de surface |
| JPH04132636A (ja) * | 1990-09-21 | 1992-05-06 | Nippon Sheet Glass Co Ltd | 酸化チタン被膜の製造方法 |
| WO2001086016A2 (fr) * | 2000-05-11 | 2001-11-15 | Henkel Corporation | Agent de traitement de surface metallique |
| US6524403B1 (en) * | 2001-08-23 | 2003-02-25 | Ian Bartlett | Non-chrome passivation process for zinc and zinc alloys |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2100986A1 (fr) * | 2008-03-04 | 2009-09-16 | Mazda Motor Corporation | Agent de traitement de conversion chimique et matériau métallique traité en surface |
| US10400337B2 (en) | 2012-08-29 | 2019-09-03 | Ppg Industries Ohio, Inc. | Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates |
| CN103205739A (zh) * | 2013-04-28 | 2013-07-17 | 东南大学 | 一种提高钢材耐磨性的表面化学处理方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| BRPI0809299A2 (pt) | 2014-10-14 |
| JP5279811B2 (ja) | 2013-09-04 |
| KR101493458B1 (ko) | 2015-02-13 |
| WO2008119675A1 (fr) | 2008-10-09 |
| KR20100014685A (ko) | 2010-02-10 |
| ES2388302T3 (es) | 2012-10-11 |
| CN101668881A (zh) | 2010-03-10 |
| ES2388302T5 (es) | 2019-10-18 |
| EP1978131B1 (fr) | 2012-06-06 |
| CN101668881B (zh) | 2011-08-24 |
| EP1978131B2 (fr) | 2019-03-06 |
| US20100126633A1 (en) | 2010-05-27 |
| US8764916B2 (en) | 2014-07-01 |
| JP2010532816A (ja) | 2010-10-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1978131B1 (fr) | Moyen de fabrication de couche anti-corrosion sur des surfaces métalliques | |
| EP2907894B1 (fr) | Procédé de fabrication d'un substrat avec passivation exempte de chrome VI et de cobalt | |
| EP2507408B1 (fr) | Procédé de prétraitement à étapes multiples pour des composants métalliques présentant des surfaces en zinc et en fer | |
| DE102008014465B4 (de) | Mittel zur optimierten Passivierung auf Ti-/Zr-Basis für Metalloberflächen und Verfahren zur Konversionsbehandlung | |
| DE60110470T2 (de) | Korrosionsschutzüberzüge für aluminium und aluminiumlegierungen | |
| DE102005059314B4 (de) | Saure, chromfreie wässrige Lösung, deren Konzentrat, und ein Verfahren zur Korrosionsschutzbehandlung von Metalloberflächen | |
| DE69525475T2 (de) | Verfahren und lösung zur gewährleistung eines konversionsüberzugs auf einer metalloberfläche | |
| DE69429627T2 (de) | Metallbehandlung mit saurer, seltene erden ionen enthaltenden reinigungslösungen | |
| EP3676419B1 (fr) | Procédé amélioré de phosphatage sans nickel des surfaces métalliques | |
| WO1992006226A1 (fr) | Procede de passivation posterieure de surfaces metalliques phosphatees | |
| EP1611266B1 (fr) | Procede de fabrication de pieces modifiees en surface | |
| EP1816234B1 (fr) | Procédé et composition aqueuse pour la passivation du zinc ou des alliages à base de zinc | |
| EP3070188A2 (fr) | Procede de revetement d'une broche inseree par compression et broche inseree par compression | |
| AT514229A1 (de) | Verfahren zur Oberflächenbehandlung eines metallischen Substrats | |
| WO1999043868A1 (fr) | Solution aqueuse et procede pour phosphater des surfaces metalliques | |
| DE69022386T2 (de) | Elektrode mit elektrokatalytischer Beschichtung. | |
| EP1678345B1 (fr) | Couches de conversion colorees sans chrome formees sur des surfaces metalliques | |
| DE2715291B2 (de) | Verfahren zur Herstellung eines amorphen, leichten, fest haftenden Phosphatüberzugs auf Eisenmetalloberflächen | |
| EP0943695B1 (fr) | Fil à base de zinc et d'aluminium et son usage en projection thermique comme protection contre la corrosion | |
| EP0531360B1 (fr) | Nettoyage de surfaces en aluminium | |
| DE19905479A1 (de) | Verfahren zur Phospatisierung von Zink- oder Aluminiumoberflächen | |
| EP3456864A1 (fr) | Prétraitement d'aluminium, en particulier d'alliages d'aluminium, à deux étapes comprenant le bain de décapage et le traitement de conversion | |
| EP3392373A1 (fr) | Compositions comprenant des amines aromatiques primaires destinées au prétraitement de protection anti-corrosion de composants métalliques | |
| DE3429532A1 (de) | Verfahren zur passivierung von blei- und bleihaltigen oberflaechen | |
| AT526943A4 (de) | Reinigungslösung sowie verfahren zu deren herstellung |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
| 17P | Request for examination filed |
Effective date: 20081004 |
|
| AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ATOTECH DEUTSCHLAND GMBH |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 561091 Country of ref document: AT Kind code of ref document: T Effective date: 20120615 Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007009986 Country of ref document: DE Effective date: 20120802 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120606 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2388302 Country of ref document: ES Kind code of ref document: T3 Effective date: 20121011 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120606 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120907 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121006 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121008 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 |
|
| PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
| PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
| PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
| 26 | Opposition filed |
Opponent name: EWALD DOERKEN AG Effective date: 20130305 |
|
| PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
| 26 | Opposition filed |
Opponent name: HENKEL AG & CO. KGAA Effective date: 20130306 |
|
| R26 | Opposition filed (corrected) |
Opponent name: EWALD DOERKEN AG Effective date: 20130305 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502007009986 Country of ref document: DE Effective date: 20130305 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120906 |
|
| PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
| BERE | Be: lapsed |
Owner name: ATOTECH DEUTSCHLAND G.M.B.H. Effective date: 20130331 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130329 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130329 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130329 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502007009986 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
| APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
| APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
| APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120606 |
|
| APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130329 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20070329 |
|
| PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
| R26 | Opposition filed (corrected) |
Opponent name: EWALD DOERKEN AG Effective date: 20130305 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
| PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
| R26 | Opposition filed (corrected) |
Opponent name: HENKEL AG & CO. KGAA Effective date: 20130306 |
|
| APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
| APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
| PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
| 27A | Patent maintained in amended form |
Effective date: 20190306 |
|
| AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502007009986 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Ref document number: 2388302 Country of ref document: ES Kind code of ref document: T5 Effective date: 20191018 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250327 Year of fee payment: 19 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20250318 Year of fee payment: 19 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20250324 Year of fee payment: 19 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20250321 Year of fee payment: 19 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20250415 Year of fee payment: 19 |