EP0661108A2 - Method for optically sorting bulk material - Google Patents
Method for optically sorting bulk material Download PDFInfo
- Publication number
- EP0661108A2 EP0661108A2 EP94250285A EP94250285A EP0661108A2 EP 0661108 A2 EP0661108 A2 EP 0661108A2 EP 94250285 A EP94250285 A EP 94250285A EP 94250285 A EP94250285 A EP 94250285A EP 0661108 A2 EP0661108 A2 EP 0661108A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- color
- test material
- rejects
- values
- areas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/36—Sorting apparatus characterised by the means used for distribution
- B07C5/363—Sorting apparatus characterised by the means used for distribution by means of air
- B07C5/365—Sorting apparatus characterised by the means used for distribution by means of air using a single separation means
- B07C5/366—Sorting apparatus characterised by the means used for distribution by means of air using a single separation means during free fall of the articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/34—Sorting according to other particular properties
- B07C5/342—Sorting according to other particular properties according to optical properties, e.g. colour
- B07C5/3422—Sorting according to other particular properties according to optical properties, e.g. colour using video scanning devices, e.g. TV-cameras
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S209/00—Classifying, separating, and assorting solids
- Y10S209/939—Video scanning
Definitions
- the invention relates to a method for the optical sorting of bulk material according to the preamble of patent claim 1.
- test material is conveyed on tapes and its image is recorded for testing with a diode line camera or a television camera.
- the signal is preferably recorded in flight, e.g. the test material is transferred from one belt to another belt.
- the test material can be examined from several sides with a defined background.
- the color is also recorded during image acquisition.
- the color is used to detect conspicuous areas in the image.
- the image of the test item is evaluated in step-by-step with the image scanning, so that a test item can be classified immediately after it has passed through the measuring station. This makes it possible to eject the parts in flight using flaps or air nozzles.
- a disadvantage of the known methods is that the detection rate for color-heterogeneous products is low if the detection of conspicuous pixels is limited to the detection of color values that are not contained in the product because there are many different color values in the product. If the detection is expanded to include color values which are also contained in the product, an unbearably high proportion of the error-free product is generally detected as a reject even when extending to colors which rarely occur in the product.
- the light of each pixel is blocked by color filters in front of the detection elements of a line e.g. broken down into the three color components red (R), green (G) and blue (B). It is thereby achieved that a detection of conspicuous pixels (points with color values which rarely occur in the fault-free product) is possible by evaluating the color values (intensities of the respective color components) measured by the line elements. The geometry is then evaluated in terms of local clusters of conspicuous pixels.
- the entire range of possible color values in the color space is divided into several sub-areas, the color space being spanned by the different color components that are measured for each pixel.
- the three color components red, green and blue form a three-dimensional color space.
- Allow classifiers ie means for evaluating the measured values on the basis of predetermined criteria a classification of the measured color values, with a classifier concentrating on only one sub-area and thereby recognizing detection areas in this sub-area for the color-heterogeneous product, that is, coherent areas of conspicuous pixels.
- the reject part is detected as a relatively large area of pixels of the color values of the selected sub-area and can be recognized by the classifier by evaluating this detection area.
- the defect-free product within such a sub-area large areas of conspicuous pixels are generally found only in rare cases, and the number of incorrect detections thus remains small. This improvement in the classification is used in practical application by dividing the committee into typical classes and setting up a classifier for each class, with the classifiers working in parallel during the test.
- the distribution of their color values is learned in the sub-areas in which reject parts are suspected by showing reject parts.
- the bulk material preferably moves in flight past an observation head with a light source and a product signal receiver arranged in the vicinity of the light source.
- the reflected light from each pixel of the test material is transmitted through different color filters of adjacent line elements of a camera line, e.g. a CCD line, the receiver divided into the three colors red (R), green (G) and blue (B).
- the line elements thus measure the brightness of the pixels, also called color values, in their respective spectral ranges. This results in a three-dimensional distribution of color values, the evaluation of which is discussed below using one-dimensional examples.
- the test material is measured without rejects in a pre-learning process and the frequency distribution 1 of the color values is determined.
- the test material is also measured without rejects and in a first step a color value range for good test material is determined by placing a threshold 2 based on experience on the frequency distribution 1 of the color values, the intersection between the threshold 2 and the curve of the frequency distribution being derived from the intersection points 1 result in the limits of the test material color value range.
- threshold 2 With the selected setting of threshold 2, pixels will also appear in the case of the error-free test material, which are classified as conspicuous. However, these pixels would erroneously serve as a committee if they clustered into large areas classified. Experience has shown that such an agglomeration in turn occurs preferentially in certain color value ranges. In order to measure these color value ranges, a large area detected in the error-free test material is stored in the learning process and the distribution of its color values is measured. This distribution is introduced as threshold 3 after standardization.
- the color value ranges of the product are divided into sub-ranges.
- each of the classifiers A, B and C working in parallel concentrates only on one sub-area. If the color components of the color-homogeneous reject part are preferably in the selected sub-area, the reject part is detected as a relatively large area and can be recognized by evaluating the detection areas.
- the distributions of the color values of these large areas are measured and introduced as thresholds after their normalization. All color values at which these thresholds 4, 5 and 6 exceed the color value distribution 1 of the test material parts are interpreted as rejects and lead to an error detection.
- the defect-free product large-area detection areas are detected in a color value range covered by a classifier, and the defect-free product is thus classified as a reject.
- these color values in particular, which lead to large-area detection areas in the fault-free product area are learned and recognized as good test material by changing the thresholds.
- the threshold 8 shows the Color value distribution of a reject part. Within the color value range determined by threshold 8, error-free test material is classified as a reject.
- the color value distribution of this large-area detection area is measured in the error-free test material and introduced as a threshold 7 after standardization. All color values at which the threshold 7 exceeds the threshold 8 of the reject part are interpreted as belonging to the test material and thus do not lead to an error detection.
- the classification system is doubled.
- One system takes over the test task, while the other system measures the current color value distribution of the product.
- the measurement of the current color value distribution is monitored by the checking classifier so that no color values of the rejects are recorded during this measurement.
- the learning classifier with the newly measured distribution is activated for the test task, while the classifier which has been set to test so far takes over the learning task.
- the test object When the signal is recorded, the test object is illuminated, for example, by two lamps from the direction of the line scan camera.
- the optical axis of the line scan camera lies between the two lamps.
- test material is taken up lying on the conveyor belt.
- the tape is not of a uniform color due to dirt and wear.
- shadows form on the conveyor belt, which leads to a significant expansion of the color value distribution when measuring the error-free test material. For this reason, the test material is observed in flight.
- the background has the color of the test material, which has the advantage that the contrast between the background and the test material is low and therefore the color value distribution of the test material is not significantly expanded by edge effects at the transition from the background to the test material.
- This variant provides the best results in terms of color and spatial resolution.
- the background as a rotating roller, which immediately throws away deposits.
- the shadow of the test material on the background becomes diffuse and, depending on the bulk density, harmless if the rotating roller is installed at a suitable distance from the test material.
- the background can be a cylindrical emitter that emits the color of the test material and is surrounded by a transparent rotating roller that throws away the deposits.
- the background is a dark hole, which has the advantage that the test material can be segmented from the background and there is no impairment due to dirt and shadows.
- segmentation of the test material for example, the form for separating good parts and rejects can be used.
- the line scan camera looks into this container through a slit.
- the width of the slot is adapted to the aperture and focal length of the camera lens and to the distance to the focus plane.
- the light of each pixel is broken down into the three colors red (R), green (G) and blue (B).
- the color components are not ideally measured at the same location, but rather at different locations.
- the color sensors are even located side by side, so that the color sensors see different spatial areas of the measurement object with respect to a pixel.
- the color sensors (R, G, B) are arranged horizontally, while the measurement object moves past this horizontal line from top to bottom.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Sorting Of Articles (AREA)
- Spectrometry And Color Measurement (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Epoxy Compounds (AREA)
- Treatment Of Sludge (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zum optischen Sortieren von Schüttgut in einer Farbsortiermaschine, indem dieses über ein Transportband gefördert wird und sich an einem Beobachtungskopf mit einer Lichtquelle und einem in der Nähe der Lichtquelle angeordneten Produktsignalempfänger vorbeibewegt, wobei das reflektierte Licht der Bildpunkte des Prüfgutes durch verschiedene Farbfilter nebeneinanderliegender Nachweiselemente einer Zeile des Empfängers in mehrere Spektralbereiche zerlegt und das Prüfgut aufgrund der Farbwerte (Meßwert der Intensität in der jeweiligen Farbe) sortiert wird. Erfindungsgemäß ist zur Verbesserung der Detektionsrate vorgesehen, daß bei mit Ausschußteilen versetztem Prüfgut jeweils die Farbwerte des Produktes in mehreren ausgewählten Unterbereichen untersucht werden, indem in jedem Unterbereich ein Klassifikator zusammenhängende Flächen von Bildpunkten mit in den jeweiligen Unterbereich fallenden Farbwerten ermittelt und nach vorgegebenen Kriterien aus der Geometrie und der Größe dieser Detektionsflächen eine Klassifizierung durchführt. The invention relates to a method for the optical sorting of bulk material in a color sorting machine, in that it is conveyed via a conveyor belt and moves past an observation head with a light source and a product signal receiver arranged in the vicinity of the light source, the reflected light of the pixels of the test material being passed through different Color filters of adjacent detection elements of a line of the receiver are broken down into several spectral ranges and the test material is sorted on the basis of the color values (measured value of the intensity in the respective color). According to the invention, in order to improve the detection rate, it is provided that, in the case of test material mixed with rejects, the color values of the product are examined in several selected sub-areas, in that a classifier in each sub-area determines connected areas of pixels with color values falling in the respective sub-area and according to predetermined criteria from the Geometry and the size of these detection areas carries out a classification.
Description
Die Erfindung betrifft eine Verfahren zum optischen Sortieren von Schüttgut gemäß Oberbegriff des Patentanspruchs 1.The invention relates to a method for the optical sorting of bulk material according to the preamble of
Es ist bereits bekannt, daß Prüfgut auf Bändern gefördert und dessen Bild zur Prüfung mit einer Diodenzeilenkamera oder einer Fernsehkamera aufgenommen wird. Die Signalaufnahme erfolgt vorzugsweise im Flug, wenn z.B. das Prüfgut von einem Band auf ein anderes Band übergesetzt wird. Bei der Signalaufnahme im Flug kann das Prüfgut von mehreren Seiten bei definiertem Hintergrund begutachtet werden.It is already known that test material is conveyed on tapes and its image is recorded for testing with a diode line camera or a television camera. The signal is preferably recorded in flight, e.g. the test material is transferred from one belt to another belt. When recording signals in flight, the test material can be examined from several sides with a defined background.
Bei der Bildaufnahme wird bei modernen Anlagen auch die Farbe erfaßt. Dabei wird die Farbe dazu genutzt, auffällige Gebiete im Bild zu detektieren.In modern systems, the color is also recorded during image acquisition. The color is used to detect conspicuous areas in the image.
Das Bild des Prüfgutes wird schritthaltend mit der Bildabtastung ausgewertet, so daß unmittelbar nach Durchlauf eines Prüfteils durch die Meßstation dieses klassifiziert werden kann. Damit ist eine Ausschleusung der Teile im Flug mittels Klappen oder Luftdüsen möglich.The image of the test item is evaluated in step-by-step with the image scanning, so that a test item can be classified immediately after it has passed through the measuring station. This makes it possible to eject the parts in flight using flaps or air nozzles.
Ein Nachteil der bekannten Verfahren besteht darin, daß die Detektionsrate bei farblich heterogenen Produkten gering ist, wenn man sich bei der Detektion auffälliger Bildpunkte auf die Detektion von Farbwerten beschränkt, die nicht im Produkt enthalten sind, weil sehr viele unterschiedliche Farbwerte im Produkt vorkommen. Erweitert man die Detektion auf Farbwerte, die auch im Produkt enthalten sind, wird im allgemeinen schon bei Erweiterungen auf selten im Produkt vorkommende Farben ein unerträglich hoher Anteil des fehlerfreien Produktes als Ausschuß detektiert.A disadvantage of the known methods is that the detection rate for color-heterogeneous products is low if the detection of conspicuous pixels is limited to the detection of color values that are not contained in the product because there are many different color values in the product. If the detection is expanded to include color values which are also contained in the product, an unbearably high proportion of the error-free product is generally detected as a reject even when extending to colors which rarely occur in the product.
Es ist Aufgabe der Erfindung, das Verfahren zum optischen Sortieren von Schüttgut dahingehend zu verbessern, daß bei farblich heterogenem Schüttgut zu detektierende Fremdkörper mit einer sehr geringen Fehlerquote erkannt werden.It is an object of the invention to improve the method for the optical sorting of bulk material in such a way that foreign bodies to be detected with color-heterogeneous bulk material are recognized with a very low error rate.
Zur Lösung dieser Aufgabe dient das Verfahren mit den kennzeichnenden Merkmalen des Patentanspruchs 1.The method with the characterizing features of
Bei der Bildaufnahme wird das Licht jedes Bildpunktes durch Farbfilter vor den Nachweis-Elementen einer Zeile z.B. in die drei Farbkomponenten rot (R), grün (G) und blau (B) zerlegt. Dadurch wird erreicht, daß eine Detektion auffälliger Bildpunkte (Punkte mit Farbwerten, die selten im fehlerfreien Produkt vorkommen) durch Auswertung der von den Zeilenelementen gemessenen Farbwerte (Intensitäten der jeweiligen Farbkomponenten) möglich ist. Anschließend wird eine Auswertung der Geometrie in Hinblick auf lokale Anhäufungen von auffälligen Bildpunkten durchgeführt.During the image acquisition, the light of each pixel is blocked by color filters in front of the detection elements of a line e.g. broken down into the three color components red (R), green (G) and blue (B). It is thereby achieved that a detection of conspicuous pixels (points with color values which rarely occur in the fault-free product) is possible by evaluating the color values (intensities of the respective color components) measured by the line elements. The geometry is then evaluated in terms of local clusters of conspicuous pixels.
Zunächst wird die gesamte Bandbreite der möglichen Farbwerte im Farbraum in mehrere Unterbereiche unterteilt, wobei der Farbraum durch die verschiedenen Farbkomponenten aufgespannt wird, die für jeden Bildpunkt gemessen werden. Beispielsweise wird durch die drei Farbkomponenten rot, grün und blau ein dreidimensionaler Farbraum gebildet. Klassifikatoren, d.h. Mittel zum Auswerten der Meßwerte aufgrund vorgegebener Kriterien, erlauben eine Klassifizierung der gemessenen Farbwerte, wobei sich ein Klassifikator nur auf einen Unterbereich konzentriert und dabei in diesem Unterbereich bei dem farblich heterogenen Produkt Detektionsflächen erkennt, also zusammenhängende Flächen von auffälligen Bildpunkten.First, the entire range of possible color values in the color space is divided into several sub-areas, the color space being spanned by the different color components that are measured for each pixel. For example, the three color components red, green and blue form a three-dimensional color space. Allow classifiers, ie means for evaluating the measured values on the basis of predetermined criteria a classification of the measured color values, with a classifier concentrating on only one sub-area and thereby recognizing detection areas in this sub-area for the color-heterogeneous product, that is, coherent areas of conspicuous pixels.
Liegen die Farbwerte eines farblich homogenen Ausschußteils bevorzugt in dem ausgewählten Unterbereich, wird das Ausschußteil als relativ großflächiges Gebiet von Bildpunkten der Farbwerte des ausgewählten Unterbereichs detektiert und kann durch Auswertung dieser Detektionsfläche vom Klassifikator erkannt werden. Andererseits werden bei dem fehlerfreien Produkt innerhalb eines solchen Unterbereiches im allgemeinen nur in seltenen Fällen großflächige Gebiete von auffälligen Bildpunkten gefunden, und damit bleibt die Zahl der Fehldetektionen gering. Diese Verbesserung in der Klassifikation nutzt man in der praktischen Anwendung dadurch, daß der Ausschuß in typische Klassen unterteilt und für jede Klasse ein Klassifikator eingerichtet wird, wobei die Klassifikatoren bei der Prüfung parallel arbeiten.If the color values of a color-homogeneous reject part are preferably in the selected sub-area, the reject part is detected as a relatively large area of pixels of the color values of the selected sub-area and can be recognized by the classifier by evaluating this detection area. On the other hand, in the case of the defect-free product within such a sub-area, large areas of conspicuous pixels are generally found only in rare cases, and the number of incorrect detections thus remains small. This improvement in the classification is used in practical application by dividing the committee into typical classes and setting up a classifier for each class, with the classifiers working in parallel during the test.
In einem bevorzugten Ausführungsbeispiel wird in den Unterbereichen, in denen Ausschußteile vermutet werden, durch Vorzeigen von Ausschußteilen die Verteilung derer Farbwerte gelernt.In a preferred embodiment, the distribution of their color values is learned in the sub-areas in which reject parts are suspected by showing reject parts.
Die Erfindung wird im folgenden anhand von Zeichnungen näher erläutert:
- Fig. 1
- zeigt beispielhaft eine eindimensionale Farbwertverteilung mit den Bereichen für gutes Prüfgut.
- Fig. 2
- zeigt ein eindimensionales Beispiel zur Klassifizierung mit parallelen Klassifikatoren bei der Erkennung von Ausschuß, dessen Farbwerte sich mit den Farbwerten des Produktes überlappen.
- Fig. 3
- zeigt ein eindimensionales Beispiel zur Korrektur eines Klassifikators durch das Nachlernen.
- Fig. 4
- zeigt ein Beispiel für die Farbverfälschung an Objektkanten bei Verwendung einer Kamera mit Bildpunkten, bei denen die Farbsensoren nebeneinander liegen.
- Fig. 1
- shows an example of a one-dimensional color value distribution with the areas for good test material.
- Fig. 2
- shows a one-dimensional example of classification with parallel classifiers in the detection of rejects, whose color values overlap with the color values of the product.
- Fig. 3
- shows a one-dimensional example for the correction of a classifier by re-learning.
- Fig. 4
- shows an example of the color falsification at object edges when using a camera with pixels, in which the color sensors are next to each other.
In einer Farbsortiermaschine bewegt sich das Schüttgut bevorzugt im Flug an einem Beobachtungskopf mit einer Lichtquelle und einem in der Nähe der Lichtquelle angeordneten Produktsignalempfänger vorbei. Das reflektierte Licht jedes Bildpunktes des Prüfgutes wird durch verschiedene Farbfilter nebeneinanderliegender Zeilenelemente einer Kamerazeile, z.B. einer CCD-Zeile, des Empfängers in die drei Farben rot (R), grün (G) und blau (B) zerlegt. Die Zeilenelemente messen somit in ihren jeweiligen Spektralbereichen die Helligkeiten der Bildpunkte, auch Farbwerte genannt. Somit ergibt sich eine dreidimensionale Verteilung von Farbwerten, deren Auswertung im folgenden anhand von eindimensionalen Beispielen diskutiert wird.In a color sorting machine, the bulk material preferably moves in flight past an observation head with a light source and a product signal receiver arranged in the vicinity of the light source. The reflected light from each pixel of the test material is transmitted through different color filters of adjacent line elements of a camera line, e.g. a CCD line, the receiver divided into the three colors red (R), green (G) and blue (B). The line elements thus measure the brightness of the pixels, also called color values, in their respective spectral ranges. This results in a three-dimensional distribution of color values, the evaluation of which is discussed below using one-dimensional examples.
Bezogen auf Fig. 1 wird in einem Vorlernprozeß das Prüfgut ohne Ausschußteile vermessen und die Häufigkeitsverteilung 1 der Farbwerte ermittelt.With reference to FIG. 1, the test material is measured without rejects in a pre-learning process and the
In einem Nachlernprozeß wird ebenfalls das Prüfgut ohne Ausschußteile vermessen und in einem ersten Schritt ein Farbwertbereich für gutes Prüfgut festgelegt, indem eine erfahrungsgemäße Schwelle 2 über die Häufigkeitsverteilung 1 der Farbwerte gelegt wird, wobei sich aus den Schnittpunkten zwischen der Schwelle 2 und der Kurve der Häufigkeitsverteilung 1 die Grenzen des Prüfgutfarbwertbereiches ergeben.In a re-learning process, the test material is also measured without rejects and in a first step a color value range for good test material is determined by placing a
Bei der gewählten Einstellung von Schwelle 2 werden auch beim fehlerfreien Prüfgut Bildpunkte vorkommen, die als auffällig eingestuft werden. Diese Bildpunkte würden aber, wenn sie sich zu großflächigen Gebieten zusammenballen, irrtümlich als Ausschuß klassifiziert. Die Erfahrung zeigt nun, daß eine solche Ballung wiederum bevorzugt in gewissen Farbwertbereichen vorkommt. Um diese Farbwertbereiche zu messen, werden in dem Nachlernprozeß ein im fehlerfreien Prüfgut detektiertes großflächiges Gebiet abgespeichert und die Verteilung dessen Farbwerte gemessen. Diese Verteilung wird nach einer Normierung als Schwelle 3 eingeführt. Alle Farbwerte, bei denen die Schwelle 3 die Farbwertverteilung 1 der Prüfgutteile übersteigt, d.h. die Farbwerte in dem Intervall zwischen den Schnittpunkten der Schwelle 3 mit der Kurve der Farbwertverteilung 1, werden als dem Prüfgut zugehörig interpretiert und führen damit nicht zu einer Fehlerdetektion.With the selected setting of
Bei der Messung von mit Ausschußteilen versetztem Prüfgut werden die Farbwertbereiche des Produktes in Unterbereiche eingeteilt. Bezogen auf Fig. 2 konzentriert sich bei diesem Beispiel jeder der parallel arbeitenden Klassifikatoren A, B und C nur auf einen Unterbereich. Liegen die Farbanteile des farblich homogenen Ausschußteils bevorzugt in dem ausgewählten Unterbereich, wird das Ausschußteil als relativ großflächiges Gebiet detektiert und kann durch Auswertung der Detektionsflächen erkannt werden. Auch hier werden die Verteilungen der Farbwerte dieser großflächigen Gebiete gemessen und nach ihrer Normierung als Schwellen eingeführt. Alle Farbwerte, bei denen diese Schwellen 4, 5 und 6 die Farbwertverteilung 1 der Prüfgutteile übersteigen, werden als Ausschuß interpretiert und führen zu einer Fehlerdetektion.When measuring test material with rejects, the color value ranges of the product are divided into sub-ranges. With reference to FIG. 2, in this example each of the classifiers A, B and C working in parallel concentrates only on one sub-area. If the color components of the color-homogeneous reject part are preferably in the selected sub-area, the reject part is detected as a relatively large area and can be recognized by evaluating the detection areas. Here, too, the distributions of the color values of these large areas are measured and introduced as thresholds after their normalization. All color values at which these
Es ist ebenfalls möglich, daß bei einem fehlerfreien Produkt großflächige Detektionsgebiete in einem durch einen Klassifikator abgedeckten Farbwertbereich detektiert werden und somit das fehlerfreie Produkt als Ausschuß klassifiziert wird. In einem weiteren Nachlernprozeß werden speziell diese Farbwerte, die zu großflächigen Detektionsgebieten im fehlerfreien Produktbereich führen, gelernt und durch Veränderung der Schwellen als gutes Prüfgut erkannt. Bezogen auf Fig. 3 zeigt die Schwelle 8 die Farbwertverteilung eines Ausschußteils. Innerhalb des durch die Schwelle 8 bestimmten Farbwertbereiches wird fehlerfreies Prüfgut als Ausschuß klassifiziert. Durch den Nachlernprozeß wird die Farbwertverteilung dieses großflächigen Detektionsgebietes im fehlerfreien Prüfgut gemessen und nach einer Normierung als Schwelle 7 eingeführt. Alle Farbwerte, bei denen die Schwelle 7 die Schwelle 8 des Ausschußteils übersteigt, werden als dem Prüfgut zugehörig interpretiert und führen damit nicht zu einer Fehlerdetektion.It is also possible that in the case of a defect-free product, large-area detection areas are detected in a color value range covered by a classifier, and the defect-free product is thus classified as a reject. In a further learning process, these color values in particular, which lead to large-area detection areas in the fault-free product area, are learned and recognized as good test material by changing the thresholds. 3, the
Nach dem Lernen wird zur automatischen Prüfung des Produktes übergegangen.After learning, the product is automatically checked.
Bei der Prüfung, die sich über Tage hinziehen kann, ist mit systematischen driftartigen Veränderungen des Produktes zu rechnen. Diese Änderungen führen zu einer mit der Zeit nachlassenden Systemleistung. Um dies zu vermeiden, wird das Klassifikationssystem verdoppelt. Ein System übernimmt die Prüfaufgabe, während das andere System die aktuelle Farbwertverteilung des Produktes mißt. Die Messung der aktuellen Farbwertverteilung wird durch den prüfenden Klassifikator überwacht, damit bei dieser Messung keine Farbwerte des Ausschusses erfaßt werden. Nach Erfassung einer repräsentativen Zahl von Meßwerten wird der lernende Klassifikator mit der neu gemessenen Verteilung für die Prüfaufgabe aktiviert, während der bis jetzt auf Prüfen eingestellte Klassifikator die Lernaufgabe übernimmt.During the test, which can take days, systematic drift-like changes in the product can be expected. These changes result in system performance degrading over time. To avoid this, the classification system is doubled. One system takes over the test task, while the other system measures the current color value distribution of the product. The measurement of the current color value distribution is monitored by the checking classifier so that no color values of the rejects are recorded during this measurement. After a representative number of measured values has been recorded, the learning classifier with the newly measured distribution is activated for the test task, while the classifier which has been set to test so far takes over the learning task.
Diese Anpassung ist nur möglich, wenn ein detektierter, als auffällig eingestufter Farbpunkt nicht in jedem Fall zu einer Ausschußentscheidung führt. Würde ein detektierter Farbpunkt immer zu einer Ausschußentscheidung führen, könnte der lernende Klassifikator keine neuen Farbwerte übernehmen, da bei einer Ausschußentscheidung die neu gelernte Farbwertverteilung verworfen wird. Da bei dem System aber detektierte Farbpunkte nur dann als Ausschuß klassifiziert werden, wenn sie eine größere zusammenhängende Fläche bilden, kann die gemessene Häufigkeit auch bei detektierten Farbwerten angepaßt werden. Umgekehrt kann das System mit dieser Anpassung zum Ausschuß gehörende Farbwerte detektieren, die bei einer früheren Messung in der Farbwertverteilung des Produktes vertreten waren und bei der aktuell gemessenen Verteilung nicht mehr enthalten sind.This adjustment is only possible if a detected color point classified as conspicuous does not always lead to a committee decision. If a detected color point would always lead to a reject decision, the learning classifier could not adopt new color values, since the newly learned color value distribution is rejected when a reject decision is made. Since color points detected in the system are only classified as rejects if they form a larger coherent area, the measured frequency can can also be adjusted for detected color values. Conversely, with this adjustment, the system can detect color values belonging to the committee that were present in the color value distribution of the product in an earlier measurement and are no longer included in the currently measured distribution.
Bei der Signalaufnahme wird das Prüfgut beispielsweise von zwei Lampen aus Richtung der Zeilenkamera beleuchtet. Zwischen den beiden Lampen liegt die optische Achse der Zeilenkamera. Bei dieser Anordnung kommt der Gestaltung des Hintergrundes eine wesentliche Bedeutung zu, weil der Hintergrund die Farbwertverteilung des fehlerfreien Produktes möglichst nicht erweitern sollte. Eine Erweiterung würde die Detektionsleistung senken.When the signal is recorded, the test object is illuminated, for example, by two lamps from the direction of the line scan camera. The optical axis of the line scan camera lies between the two lamps. With this arrangement, the design of the background is of great importance because the background should not expand the color value distribution of the error-free product if possible. An extension would lower the detection performance.
Diese Forderung läßt sich nicht verwirklichen, wenn das Prüfgut auf dem Transportband liegend aufgenommen wird. Wegen Verschmutzung und Abnutzung hat das Band keine einheitliche Farbe. Zusätzlich bilden sich Schatten auf dem Transportband aus, was insgesamt zu einer wesentlichen Erweiterung der Farbwertverteilung beim Messen des fehlerfreien Prüfgutes führt. Aus diesem Grund wird das Prüfgut im Flug beobachtet.This requirement cannot be met if the test material is taken up lying on the conveyor belt. The tape is not of a uniform color due to dirt and wear. In addition, shadows form on the conveyor belt, which leads to a significant expansion of the color value distribution when measuring the error-free test material. For this reason, the test material is observed in flight.
In einer ersten Ausführungsvariante hat der Hintergrund die Farbe des Prüfgutes, was den Vorteil hat, daß der Kontrast zwischen Hintergrund und Prüfgut gering ist und daher die Farbwertverteilung des Prüfgutes durch Randeffekte am Übergang vom Hintergrund zu Prüfgut nicht wesentlich erweitert wird. Diese Ausführungsvariante liefert hinsichtlich Farb- und Ortsauflösung die besten Ergebnisse.In a first embodiment variant, the background has the color of the test material, which has the advantage that the contrast between the background and the test material is low and therefore the color value distribution of the test material is not significantly expanded by edge effects at the transition from the background to the test material. This variant provides the best results in terms of color and spatial resolution.
Der Nachteil der Verschmutzung wird vermieden, indem der Hintergrund als rotierende Rolle ausgeführt wird, welche Ablagerungen sofort wegschleudert. Der Schatten des Prüfgutes auf dem Hintergrund wird diffus und je nach Schüttungsdichte unschädlich, wenn die rotierende Rolle in einem angepaßten Abstand zum Prüfgut installiert wird. Bei großer Schüttungdichte des Prüfgutes wird eine zu starke Abdunkelung des Hintergrundes durch eine zusätzliche Beleuchtung des Hintergrundes vermieden. Alternativ kann der Hintergrund ein zylindrischer Strahler sein, der in der Farbe des Prüfgutes strahlt und von einer transparenten rotierenden Rolle umgeben ist, welche die Ablagerungen wegschleudert.The disadvantage of contamination is avoided by designing the background as a rotating roller, which immediately throws away deposits. The shadow of the test material on the background becomes diffuse and, depending on the bulk density, harmless if the rotating roller is installed at a suitable distance from the test material. When the bulk density of the test material is high an excessive darkening of the background is avoided by additional lighting of the background. Alternatively, the background can be a cylindrical emitter that emits the color of the test material and is surrounded by a transparent rotating roller that throws away the deposits.
In einer zweiten Ausführungsvariante ist der Hintergrund ein dunkles Loch, was den Vorteil hat, daß sich das Prüfgut vom Hintergrund segmentieren läßt und keine Beinträchtigung durch Verschmutzung und Schattenbildung entsteht. Bei einer Segmentierung des Prüfgutes kann zum Beispiel die Form zur Trennung von Gutteilen und Ausschuß genutzt werden.In a second embodiment, the background is a dark hole, which has the advantage that the test material can be segmented from the background and there is no impairment due to dirt and shadows. In the case of segmentation of the test material, for example, the form for separating good parts and rejects can be used.
Zur Realisierung des dunklen Loches wird ein möglichst großer Behälter mit reflektionsarmen Wandungen gebaut. Die Zeilenkamera blickt durch einen Schlitz in diesen Behälter. Der Schlitz ist hinsichtlich seiner Breite an Blende und Brennweite des Kameraobjektivs sowie an den Abstand zur Schärfeebene angepaßt.To create the dark hole, the largest possible container with low-reflection walls is built. The line scan camera looks into this container through a slit. The width of the slot is adapted to the aperture and focal length of the camera lens and to the distance to the focus plane.
Bei der Bildaufnahme wird das Licht jedes Bildpunktes in die drei Farben rot (R), grün (G) und blau (B) zerlegt. Abhängig von dem gewählten Abtastprinzip und der Justage der Kamera werden die Farbkomponenten nicht idealerweise am gleichen Ort, sondern ortsversetzt gemessen. Bei gängigen Farbkameras liegen die Farbsensoren sogar örtlich nebeneinander, so daß die Farbsensoren hinsichtlich eines Bildpunktes unterschiedliche Ortsbereiche des Meßobjektes sehen. Bezogen auf Fig. 4 sind die Farbsensoren (R, G, B) waagerecht angeordnet, während sich das Meßobjekt von oben nach unten an dieser waagerechten Zeile vorbeibewegt. Der Hintergrund erzeugt in diesem Beispiel bei den jeweiligen Farbsensoren die Signalpegel R = 0, G = 0 und B = 0, während das Meßobjekt die Signalpegel R = 100, G = 50 und B = 20 bewirkt. In Fig. 4 mißt hier nur das Sensor-Tripel Xn, Yn die richtige Farbe des Meßobjektes. Bei allen anderen Tripeln werden Farbwerte gemessen, die mindestens einen Farbwert enthalten, der dunkler als der entsprechende Farbwert des Prüfgutes ist. So mißt zum Beispiel das Tripel Xn, Yn-1 die Pegel R = 50, G = 25 und B = 10. Um diese Störungen zu vermeiden, werden Bildpunkte, deren Farbwerte um einen einstellbaren Faktor dunkler als die des entsprechenden Nachbarpunktes sind, unterdrückt, indem die Signalpegel gespeichert werden und ein Vergleich der horizontalen und vertikalen Nachbarpunkte durchgeführt wird.During the image acquisition, the light of each pixel is broken down into the three colors red (R), green (G) and blue (B). Depending on the selected scanning principle and the adjustment of the camera, the color components are not ideally measured at the same location, but rather at different locations. In conventional color cameras, the color sensors are even located side by side, so that the color sensors see different spatial areas of the measurement object with respect to a pixel. With reference to FIG. 4, the color sensors (R, G, B) are arranged horizontally, while the measurement object moves past this horizontal line from top to bottom. In this example, the background generates the signal levels R = 0, G = 0 and B = 0 for the respective color sensors, while the measurement object produces the signal levels R = 100, G = 50 and B = 20. In Fig. 4, only the sensor triple Xn, Yn measures the correct color of the measurement object. For all other triples, color values are measured that contain at least one color value that is darker than the corresponding color value of the test material. So measure to Example the triple Xn, Yn-1 the levels R = 50, G = 25 and B = 10. To avoid these disturbances, pixels whose color values are darker by an adjustable factor than those of the corresponding neighboring point are suppressed by the signal levels are saved and a comparison of the horizontal and vertical neighboring points is carried out.
Claims (10)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE4345106 | 1993-12-28 | ||
| DE4345106A DE4345106C2 (en) | 1993-12-28 | 1993-12-28 | Process for the optical sorting of bulk goods |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP0661108A2 true EP0661108A2 (en) | 1995-07-05 |
| EP0661108A3 EP0661108A3 (en) | 1997-02-12 |
| EP0661108B1 EP0661108B1 (en) | 1999-11-03 |
Family
ID=6506597
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP94250285A Expired - Lifetime EP0661108B1 (en) | 1993-12-28 | 1994-11-25 | Method for optically sorting bulk material |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US5586663A (en) |
| EP (1) | EP0661108B1 (en) |
| JP (1) | JP3517292B2 (en) |
| AT (1) | ATE186242T1 (en) |
| BR (1) | BR9405268A (en) |
| CA (1) | CA2136779C (en) |
| DE (2) | DE4345106C2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19511534A1 (en) * | 1995-03-29 | 1996-10-02 | Fraunhofer Ges Forschung | Detecting 3=D fault locations with automatic monitoring of specimen surfaces using camera |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5577733A (en) * | 1994-04-08 | 1996-11-26 | Downing; Dennis L. | Targeting system |
| DE19511901A1 (en) * | 1995-03-31 | 1996-10-02 | Commodas Gmbh | Device and method for sorting bulk goods |
| JPH0943058A (en) * | 1995-05-23 | 1997-02-14 | Olympus Optical Co Ltd | Apparatus for classifying color and apparatus for examining unevenness of color |
| EP0775533A3 (en) * | 1995-11-24 | 1998-06-17 | Elpatronic Ag | Sorting method |
| DE19609916A1 (en) * | 1996-03-14 | 1997-09-18 | Robert Prof Dr Ing Massen | Optical process for identifying materials, especially recycled plastics |
| ATE291969T1 (en) | 1999-04-30 | 2005-04-15 | Binder Co Ag | METHOD AND DEVICE FOR SORTING WASTE PAPER |
| BR0311359A (en) * | 2002-05-28 | 2007-04-27 | Satake Usa Inc | light source for sorting machine |
| WO2007112591A1 (en) * | 2006-04-04 | 2007-10-11 | 6511660 Canada Inc. | System and method for identifying and sorting material |
| US20110068051A1 (en) * | 2009-05-22 | 2011-03-24 | 6358357 Canada Inc. | Ballistic separator |
| US9234843B2 (en) * | 2011-08-25 | 2016-01-12 | Alliance For Sustainable Energy, Llc | On-line, continuous monitoring in solar cell and fuel cell manufacturing using spectral reflectance imaging |
| DE102012001868B4 (en) | 2012-01-24 | 2018-03-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for setting up a system for the optical identification of objects, laboratory image recording system for carrying out such a method and arrangement comprising the laboratory image recording system and the installation |
| US10480935B2 (en) | 2016-12-02 | 2019-11-19 | Alliance For Sustainable Energy, Llc | Thickness mapping using multispectral imaging |
| DE102023113725A1 (en) | 2023-05-25 | 2024-11-28 | Multivac Sepp Haggenmüller Se & Co. Kg | Optimization of good or bad product detection for packaging machines |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3560758A (en) * | 1968-01-08 | 1971-02-02 | Conductron Corp | Color identification system taking into account the color and reflecting of the base material |
| DE2544703C3 (en) * | 1975-10-07 | 1978-04-06 | Dr.-Ing. Rudolf Hell Gmbh, 2300 Kiel | Method and circuit arrangement for recognizing the colors of a colored surface |
| US4122951A (en) * | 1977-02-28 | 1978-10-31 | Alaminos Jose I L | Machine for the automatic detection of blemishes in olives and other fruits |
| US4246098A (en) * | 1978-06-21 | 1981-01-20 | Sunkist Growers, Inc. | Method and apparatus for detecting blemishes on the surface of an article |
| IT1205622B (en) * | 1982-12-21 | 1989-03-23 | Illycaffe Spa | PROCEDURE TO MAKE A SELECTION IN A GRANULIFORM MATERIAL AND MACHINE TO IMPLEMENT THE PROCEDURE |
| GB2151018B (en) * | 1983-12-06 | 1987-07-22 | Gunsons Sortex Ltd | Sorting machine and method |
| JPS63119887A (en) * | 1986-11-06 | 1988-05-24 | カネボウ株式会社 | Selector |
| DE3802681C2 (en) * | 1987-01-30 | 1997-01-09 | Fuji Photo Film Co Ltd | Method for classifying color templates and device therefor |
| US5085325A (en) * | 1988-03-08 | 1992-02-04 | Simco/Ramic Corporation | Color sorting system and method |
| EP0342354A3 (en) * | 1988-04-15 | 1992-01-08 | Tecnostral S.A. Industria E Tecnologia | Color sorting apparatus |
| JPH0670590B2 (en) * | 1988-09-10 | 1994-09-07 | 倉敷紡績株式会社 | Color order determination method |
| NL8803112A (en) * | 1988-12-19 | 1990-07-16 | Elbicon Nv | METHOD AND APPARATUS FOR SORTING A FLOW OF ARTICLES DEPENDING ON OPTICAL PROPERTIES OF THE ARTICLES. |
| US5062714A (en) * | 1990-02-12 | 1991-11-05 | X-Rite, Incorporated | Apparatus and method for pattern recognition |
| DE4210157C2 (en) * | 1992-03-27 | 1994-12-22 | Bodenseewerk Geraetetech | Process for sorting broken glass |
-
1993
- 1993-12-28 DE DE4345106A patent/DE4345106C2/en not_active Expired - Fee Related
-
1994
- 1994-11-25 DE DE59408885T patent/DE59408885D1/en not_active Expired - Fee Related
- 1994-11-25 EP EP94250285A patent/EP0661108B1/en not_active Expired - Lifetime
- 1994-11-25 AT AT94250285T patent/ATE186242T1/en not_active IP Right Cessation
- 1994-11-28 CA CA002136779A patent/CA2136779C/en not_active Expired - Fee Related
- 1994-12-27 BR BR9405268A patent/BR9405268A/en not_active IP Right Cessation
- 1994-12-28 US US08/365,489 patent/US5586663A/en not_active Expired - Lifetime
- 1994-12-28 JP JP33871294A patent/JP3517292B2/en not_active Expired - Fee Related
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19511534A1 (en) * | 1995-03-29 | 1996-10-02 | Fraunhofer Ges Forschung | Detecting 3=D fault locations with automatic monitoring of specimen surfaces using camera |
| DE19511534C2 (en) * | 1995-03-29 | 1998-01-22 | Fraunhofer Ges Forschung | Method and device for detecting 3D defects in the automatic inspection of surfaces with the aid of color-capable image evaluation systems |
| US6064478A (en) * | 1995-03-29 | 2000-05-16 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Method of and apparatus for automatic detection of three-dimensional defects in moving surfaces by means of color vision systems |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2136779A1 (en) | 1995-06-29 |
| JPH08206611A (en) | 1996-08-13 |
| DE59408885D1 (en) | 1999-12-09 |
| HK1013038A1 (en) | 1999-08-13 |
| DE4345106C2 (en) | 1995-11-23 |
| EP0661108A3 (en) | 1997-02-12 |
| DE4345106A1 (en) | 1995-06-29 |
| JP3517292B2 (en) | 2004-04-12 |
| ATE186242T1 (en) | 1999-11-15 |
| CA2136779C (en) | 2004-04-06 |
| EP0661108B1 (en) | 1999-11-03 |
| US5586663A (en) | 1996-12-24 |
| BR9405268A (en) | 1995-09-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0661108B1 (en) | Method for optically sorting bulk material | |
| DE69637172T2 (en) | HIGH-SPEED SORTING APPARATUS FOR FOOD TRANSPORT FOR THE OPTICAL INSPECTION AND SORTING OF LARGE VOLUME FOODS | |
| DE69610925T2 (en) | DEVICE FOR EXAMINING BOTTLE THREADS AND METHOD FOR THE OPERATION THEREOF | |
| DE2937335C2 (en) | Method and device for the optical inspection of objects | |
| DE69822608T2 (en) | Binarization method in a character recognition system | |
| DE3906281A1 (en) | METHOD AND DEVICE FOR OPTICALLY CHECKING THE APPEARANCE OF CHIP-LIKE COMPONENTS AND SORTING THE CHIP-LIKE COMPONENTS | |
| DE2549457A1 (en) | DEVICE FOR AUTOMATIC MONITORING OF FINISHED PRODUCTS FOR FACTORY DEFECTS | |
| DE69331662T2 (en) | METHOD AND DEVICE FOR THE AUTOMATIC EVALUATION OF GRAIN GRAINS AND OTHER GRANULAR PRODUCTS | |
| DE3587927T2 (en) | Method and device for the automatic examination of tablets. | |
| EP1030740A1 (en) | Method and device for identifying and sorting objects conveyed on a belt | |
| DE2820661C2 (en) | ||
| DE3614400C1 (en) | Method and device for controlling a color sorting machine | |
| EP0500490B1 (en) | Procedure and device to measure a dimension of an object and application of the procedure | |
| DE69413482T2 (en) | Arrangement for checking hollow glass containers | |
| DE4340918C2 (en) | Method and device for generating a uniform amplitude signal in a product stream to be sorted | |
| EP0620050B1 (en) | Device and method for sorting products and articles according to quality and size | |
| EP0669527A1 (en) | Method for extracting reusable bottles from their usage circuit | |
| DE112005000828B4 (en) | Apparatus and method for testing semiconductor wafers | |
| WO2001023869A1 (en) | Device and method for inspecting the surface of a continuously fed ribbon material | |
| WO2017216124A1 (en) | Sorting device and corresponding sorting method | |
| DE3514313A1 (en) | METHOD AND DEVICE FOR INSPECTING AND SORTING GLASS CONTAINERS | |
| WO2019185184A1 (en) | Device and method for the optical position detection of transported objects | |
| DE4434475A1 (en) | Method and device for quality control of an object | |
| DE19504932A1 (en) | Image processing controlled sorting of loose objects | |
| DE19500591C2 (en) | Sorting machine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: H.F. & PH.F. REEMTSMA GMBH & CO |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
| 17P | Request for examination filed |
Effective date: 19970306 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: H.F. & PH.F. REEMTSMA GMBH |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| 17Q | First examination report despatched |
Effective date: 19990121 |
|
| GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19991103 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991103 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19991103 |
|
| REF | Corresponds to: |
Ref document number: 186242 Country of ref document: AT Date of ref document: 19991115 Kind code of ref document: T |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19991103 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991125 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991125 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991130 |
|
| ITF | It: translation for a ep patent filed | ||
| REF | Corresponds to: |
Ref document number: 59408885 Country of ref document: DE Date of ref document: 19991209 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 20000103 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: GERMAN |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20000203 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20000203 |
|
| ET | Fr: translation filed | ||
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| NLS | Nl: assignments of ep-patents |
Owner name: REEMTSMA CIGARETTENFABRIKEN GMBH |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: CA |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20071104 Year of fee payment: 14 Ref country code: DE Payment date: 20071122 Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20071127 Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20071121 Year of fee payment: 14 Ref country code: FR Payment date: 20071108 Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20071130 Year of fee payment: 14 |
|
| BERE | Be: lapsed |
Owner name: *REEMTSMA CIGARETTENFABRIKEN G.M.B.H. Effective date: 20081130 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20081125 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090601 |
|
| NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20090601 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081125 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090731 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081130 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090603 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081125 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081130 |