EP0450060A1 - Dna sequencing - Google Patents
Dna sequencingInfo
- Publication number
- EP0450060A1 EP0450060A1 EP19910900474 EP91900474A EP0450060A1 EP 0450060 A1 EP0450060 A1 EP 0450060A1 EP 19910900474 EP19910900474 EP 19910900474 EP 91900474 A EP91900474 A EP 91900474A EP 0450060 A1 EP0450060 A1 EP 0450060A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dna molecule
- complementary dna
- incorporated
- subject
- molecule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
Definitions
- This invention relates to DNA sequencing. More particularly, it relates to methods and apparatus for determining the sequence of deoxyribonucleotides within DNA molecules .
- DNA sequencing is an important tool.
- a current goal of the biological community in general is the determination of the complete structure of the DNA of a number of organisms, including man. This information will aid in the understanding, diagnosis, prevention and treatment of disease.
- the DNA to be sequenced is enzymatically copied by the Klenow fragment of DNA polymerase I or by a similar polymerase enzyme such as Taq polymerase or SequenaseTM .
- the enzymatic copying is carried out in quadruplicate.
- a low concentration of a chain terminating dideoxynucleotide is present, a different dideoxynucleotide being present in each of the four reactions (ddATP, ddCTP, ddGTP and ddTTP) .
- the polymerase reaction is terminated, again producing sets of nested fragments. Again, the nested fragments have to be separated from one another by electrophoresis to determine the sequence.
- the present invention provides methods and apparatus for determining the sequence of deoxyribonucleotides in a DNA molecule.
- a key characteristic of this invention is that it determines the DNA sequence without recourse to electrophoresis or other size-based separation techniques.
- the present invention provides a method for determining the deoxyribonucleotide sequence, of a single stranded DNA subject molecule.
- This method involves synthesizing, in the presence of a multitude of identical copies of the subject DNA, the DNA molecule which is complementary to it.
- This synthesis is carried out using deoxyribonucleotide triphosphates (dNTP) in a stepwise serial manner so as to simultaneously build Up numerous copies of the complementary molecule, dNTP by dNTP.
- dNTP deoxyribonucleotide triphosphates
- this invention provides apparatus for carrying out the above-described method.
- this method and apparatus for carrying it out can take many different configurations.
- This invention can be carried out in a single reaction zone with multiple differentiable reporters or in multiple reaction zones with a single reporter in each zone. It can be carried out by detecting the incremental signal change after addition of reporters or by noting each added reporter separately. The various reporters can be measured in the reaction zones while attached to the growing molecule or they can be separated from the molecule and then measured.
- the invention can be practiced to create the growing complementary DNA chain without interruption or it can be practiced in stages wherein a portion of the complementary chain is created and its sequence determined; this portion of the chain is then removed; a sequence corresponding to a region of the removed chain is separately synthesized and used to prime the template chain for subsequent chain growth. The latter method can be repeated as needed to grow out in portions the complete complementary chain.
- Figures 1A and IB are schematic diagrams of the process of this invention on a molecular level.
- Figure 2 is a schematic representation of one form of apparatus for practising the invention.
- the DNA growth takes place in a single reaction zone.
- This embodiment uses separate, distinguishable reporters associated with each of the four nucleotides incorporated into the growing molecule. The four different reporters are measured after each addition to detect which base has just been added to that position of the complementary chain.
- Figure 3 is a schematic representation of another form of apparatus for practising the invention.
- This embodiment employs four reaction zones in which the molecular growth is carried out in quadruplicate. In each of the four zones, a different one of the four nucleotides is associated with a reporter (with the remaining three being unlabeled) so that the identity of the nucleotide incorporated at each stage can be determined.
- Figure 4 is a schematic representation of an adoption of the apparatus for practising the invention particularly adapted for carrying out the invention to grow a series of portions of the complementary molecule as opposed to a single continuous complementary molecule.
- Figures 5 through 8 are pictorial representations of chemical reaction sequences which can be used to synthesize representative labeled nucleotide building blocks for use in the practice of this invention.
- dNTPs of these materials are abbreviated as dATP, dCTP, dGTP and dTTP. When these materials are blocked in their 3'-OH position they are shown as 3 'blockeddATP, 3'blockeddCTP, 3 'blockeddGTP and 3 'bl ⁇ ckeddTTP. Similarly, when they are each tagged or labeled with a common reporter group, such as a single fluorescent group, they are represented as dA'TP, dC'TP, dG'TP and dT'TP.
- a solid support 1 is illustrated with a reactive group A attached to its surface via tether 2. This attachment can be covalent, ionic or the like.
- a second reactive group. X capable of bonding to group A, again via a covalent, ionic or the like bond, is attached to the 5' end of a DNA primer 4.
- This primer has a known DNA sequence. When coupled to the substrate via the A-X bond it forms immobilized primer 5.
- Primer 5 is then hybridized to template DNA strand 6 which is made up of an unknown region 7 inserted between regions 8 and 8 ' . Regions 8 and 8' are located at the 5' and 3' ends of the unknown region and have known sequences.
- the 8' region's known sequence is complementary to the sequence of primer 4 so that those regions hybridize to form immobilized template DNA 9. Therefore the individual dNTPs are serially added to form the DNA sequence complementary to the unknown region of the template. 11 and 12 represent the first two such dNTPs incorporated into the growing molecule. These in turn provide the identity of their complements 11' and 12' respectively. This growth continues until the entire complementary DNA molecule has been constructed. Completion can be noted by identifying the sequence corresponding to the 8 region of template 6. Turning to Figure IB, a variation of this chemistry is shown in that the template 6* carries the reactive group X which bonds to the substrate via the A-X bond to form an immobilized template 5*.
- Device 13 for carrying out the invention is shown schematically.
- Device 13 includes a reaction zone 14 which carries inside it a surface 15.
- a plurality of copies of a subject primed single stranded DNA are immobilized on this surface 15. This is the strand of DNA for which the sequence is desired.
- the immobilized DNA is depicted fancifully on surface 15 as if it were present as a series of separately visible attached strands. As will be appreciated, this is not in fact the case and is only done to guide the reader as to the location of the DNA strands .
- the reaction zone 14 may be configured to permit direct reading of reporter signals emanating from within. Examples of this configuration include equipping the reaction zone to permit measuring fluorescence or luminescence through one or more transparent walls or detecting radionuclide decay.
- Reaction zone 14 is fitted with inlet 16 for the addition of polymerase or another suitable enzyme capable of moderating the templat ⁇ e-directing coupling of nucleotides to one another.
- the reaction zone is ⁇ also accessed by inlet lines, 18a-18d for four differently labeled blocked dNTPs, that is 3'blockeddA'TP, 3 'blockeddC' 'TP, 3 'blockeddG' ' 'TP, and 3'blockeddT' ' ' 'TP. These materials can be added in four separate lines, as shown, or can be premixed, if desired, and added via a single line. Buffer and other suitable reaction medium components are added via line 20.
- the polymerase and the four labeled dNTPs are added to the reaction zone 14 under conditions adequate to permit the enzyme to bring about addition of the one, and only the one, of the four labeled blocked dNTPs which is complementary to the first available template nucleotide following the primer.
- the blocking group present on the 3 '-hydroxyl position of the added dNTP prevents inadvertent multiple additions .
- the liquid in reaction zone 14 is drained through line 22 either to waste, or if desired to storage for reuse.
- the reaction zone and the surface 15 are rinsed as appropriate to remove unreacted, uncoupled labeled blocked dNTPs.
- the first member of the complementary chain is now in place associated with the subject chain attached to surface 15.
- the identity of this first nucleotide can be determined by detecting and identifying the label attached to it.
- This detection and identification can be carried out in the case of a fluorescent label by irradiating the surface with a fluorescence-exciting beam from light source 24 and detecting the resulting fluorescence with detector 26.
- the detected florescence is then correlated to the fluorescence properties of the four different labels present on the four different deoxynucleotide triphosphates to identify exactly which one of the four materials was incorporated at the first position of the complementary chain. This identity is then noted.
- a reaction is carried out to remove the blocking group and label from the 3' position on the first deoxynucleotide triphosphate.
- This reaction is carried out in reaction zone 14.
- a deblocking solution is added via line 28 to remove the 3' hydroxyl labeled blocking group. This then generates an active 3' hydroxyl position on the first nucleotide present in the complementary chain and makes it available for coupling to the 5' position of the second nucleotide.
- removal of the deblocking solution via line 22 and rinsing as needed the four blocked, labeled deoxynucleotide triphosphates, buffer and polymerase are again added and the appropriate second member is then coupled into the growing complementary chain.
- the second member of the chain can be identified based on its label. This process is then repeated as needed until the complementary chain has been completed.
- the sequence of incorporated deoxynucleotides is known, and therefore so is the sequence of the complement which is the subject chain. It will be appreciated that this process is easily automated. It is a series of fluid additions and removals from a reaction zone. This can be easily accomplished by a series of timer-controlled valves and the like. This technology has been well developed in the area of oligonucleotide synthesizers, peptide synthesizers, and the like. In such an automated system, the timing can be controlled by a microprocessor or, in most cases, by a simple programmable timer. The rate and " extent of reaction can be monitored by measurement of the reporter concentration at various stages .
- the labels present in the blocked dNTPs can be incorporated in one of several manners. For one, they can be incorporated directly and irremovably in the deoxynucleotide triphosphate unit itself. Thus, as the complementary chain grows there is a summing of signals and one identifies each added nucleotide by noting the change in signal observed after each nucleotide is added.
- the label is incorporated within the blocking group or is otherwise incorporated in a way which allows it to be removed between each addition. This permits the detection to be substantially simpler in that one is noting the presence of one of the four reporter groups after each addition rather than a change in the sum of a group of reporter groups .
- the presence of reporter signal is noted directly in the reaction zone 14 by the analytical system noted as source 24 and detector 26. It will be appreciated, however, that in embodiments where the reporter group is removed during each cycle, it is possible to read or detect the reporter at a remote site after it has been carried out of the reaction zone 14.
- drain line 22 could be valved to a sample collector (not shown) which would isolate and store the individual delabeling product solutions for subsequent reading.
- the various removed labels could be read as they flowed out of the reaction zone by equipping line 22 with an in-line measurement cell such as source 24' and detector 26' or the like.
- a second embodiment of this invention employs four separate parallel reaction zones. This method has the advantage of requiring only one type of labeling and being able to use it with all four dNTPs.
- Figure 3 shows a schematic representation of a device 30 which has the four reaction zone configuration. In this configuration there are four reaction zones 32a through 32d, each of which resembles the reaction zone 14 in Figure 2. In these cases each of the four reaction zones contains a surface 34a-d to which is immobilized numerous copies of a primed subject single stranded DNA. Each reaction zone is supplied with polymerase via lines 36a-d. Each zone is supplied with suitable reaction medium via lines 38a-38d. The four dNTPs are supplied in blocked form to each zone, as well.
- zone 32a one of the blocked dNTPs is labeled, for example "A'"; in zone 32b a second dNTP is labeled, for example "C”; in zone 32c a third dNTP is labeled, for example "G'”; and in 32d the fourth labeled dNTP "T' M is present.
- These labeled materials are supplied via lines 40a through 40d respectively.
- Unlabeled blocked dNTPs are supplied via lines 42a-d so that each of the four reaction zones contains three unlabeled blocked dNTPs and one labeled blocked dNTP.
- the various labeled and unlabeled dNTP ' s can be premixed. These premixed materials can be added to the various reaction zones via single addition lines.
- the single stranded DNA hybridized to a primer and attached to each of surfaces 34a-34d is contacted with polymerase (supplied via lines 36a-36d), buffer (supplied via lines 38a-38d) and the four bases in each of the four reaction zones .
- the blocked dNTP which complements the first base on the subject chain couples.
- this base is labeled.
- this label is incorporated into the growing chain, one can determine the identity of the dNTP which is incorporated at the first position. This determination of the identity of the first unit of the chain can be carried out using signal sources and detectors such as 44a-44d and 46a-46d, respectively.
- Deblocking is carried out by adding deblocking solution to the reaction zone through lines 48a-48d.
- Lines 50a-50d are drain lines for removing material from the reaction zones following each step.
- all of the variations noted with reference to the device described in Figure 2 can also be used including cumulating reporter signals and generating reporter signals away from the reaction zone by removing the reporter groups as part of each of the sequential couplings.
- this embodiment can be readily automated, as well.
- One obvious potential shortcoming of the present invention is that it employs a long sequence of serial reactions. Even if the efficiency and yield of each of these reactions are relatively high, the overall yield becomes the product of a large number of numbers, each of which is somewhat less than 1.00, and thus can become unacceptably low. For example if the yield of a given addition step is 98% and the deblocking is 98% as well, the overall yield after 15 additions is 48 , after 30 additions it is 23% and after 60 additions it is 5.3%.
- This limitation can be alleviated by periodically halting the DNA molecule growth and using the sequence data obtained prior to halting the growth to externally recreate a portion of the molecule which can then be used as a primer for renewed DNA fabrication. This process is illustrated in Figure 4.
- FIG 4 shows a schematic of an automated sequencer 52 employing the present invention.
- Sequencer 52 has a single reaction zone 14 combining the subject primed DNA, immobilized therein such as on surface 15.
- the four 3-blocked DNTP's are fed to the reaction zone through line 18.
- Polymerase and buffers are added via lines 16 and 20, respectively.
- the dNTP 's, polymerase and buffer can be recycled from step to step via lines 54 and 56 and holding vessel 58. All of the valves admitting and removing fluids from reaction zone 14 can be controlled by central computer 60 which functions as a valve control clock.
- This computer 60 can also control the addition of deblocker from line 28, deblocking eluent with cleaved labels (as obtained when the label is present in the blocking group) is removed via line 22 and detected via detector system 24/26 reading label values in detector vessel 62.
- This embodiment illustrates the use of a fluorescent label system and shows the addition of fluorescent sensitizer (flooder) via line 64 to the fluorescent detection zone 62.
- the deblocking solution and detected label are discarded via line 66.
- the signal presented by the label identified by detector 26 is passed to analog/digital converter 68 and therein to a memory in central computer 60 where it is stored.
- the memory in computer 60 contains the sequence of an initial portion of the complementary DNA molecule which has been constructed in association with the subject or target DNA molecule contained within reactor 14. After some number of units have been assembled - typically 25 to 300, or more; preferably 50 to 300, or more; and more preferably 100 to 300, or more - the growing complementary DNA molecule is stripped from the immobilized subject DNA molecule and discarded. This stripping (denaturing) can be done by art-known methods such as by warming the reaction zone to 75°C or higher (preferably 90-95°C) for a few (1-15) minutes.
- the sequence information stored in computer 60 is used to drive DNA synthesizer 70 to externally create a new DNA primer corresponding to at least a portion of the discarded DNA molecule. (The sequence can also be read on printer 72, if desired.)
- This newly constructed DNA primer molecule is fed through line 74 to reaction zone 14 under hybridization conditions so as to join to the complementary region of the subject DNA molecule as a new primer.
- the length of the primer must be adequate to. unambiguously and strongly hybridize with a single region of the subject DNA. As is known in the hybridization art, this can depend upon factors such as the sequence, environmental conditions, and the length of the subject DNA. For efficiency of operation, the primer should ideally be as short as possible.
- Primer lengths typically range from about 10 bases to about 30 bases, although shorter primers would certainly be attractive if they met the above criteria, and longer primers could be used albeit with an increase in cost and time. Good results generally are achieved with primers from 12 to 20 bases long. This gives the molecular growth reaction a "new start" with a large number of properly primed identical molecules. This allows a strong signal to be generated when the next dNTP is coupled.
- the coupling process employed in this invention to incorporate each of the blocked deoxynucleotide triphosphates into the growing complementary chain is an enzyme moderated process.
- Each member of the complementary DNA chain is added using a suitable template-dependent enzyme.
- One enzyme which can be used is Sequenase TM enzyme (an enzyme derived from bacteriophage 7 DNA polymerase that is modified to improve its sequencing properties - see Tabor and
- Sequenase TM examples include but are not limited to
- the coupling conditions which are employed are those known in the art for these enzymes.
- these include temperatures in the range of from about room temperature to about 45 C; a buffer of pH 7 to 8 and preferably pH 7.3 to 7.7; an enzyme concentration of from about 0.01 units per microliter to about 1 unit per microliter and a reaction time of from about 1 to about 20 minutes and preferable 1 to 5 minutes.
- a typical buffer for use with Sequenase TM is made up of
- these typical conditions include temperatures in the range of from about 10 C to about 45 C and preferably from about 15°C to about 40°C; a buffer of pH 6.8 to 7.4 and preferably pH 7.0 to 7.4; an enzyme concentration of from about 0.01 units per microliter to about 1 unit per microliter and preferably from about 0.02 to about 0.15 units per microliter and a reaction time of from about 1 to about 40 minutes.
- a typical buffer for use with Klenow fragment of DNA polymerase I is made up of
- 3 '-blocking groups include: (l) the ability of a polymerase enzyme to accurately and efficiently incorporate the dNTPs carrying the 3 '-blocking groups into the cDNA chain,
- the 3 '-blocking group carries a reporter group, it is desirable that the reporter permit sensitive detection either when part of the cDNA chain before deblocking or subsequent to deblocking in the reaction eluant.
- 3 '-blocked dNTPs are used that can be incorporated in a template-dependent fashion and easily deblocked to yield a viable 3 ' -OH terminus.
- the most common 3 '-hydroxyl blocking groups are esters and ethers.
- ester blocking groups such as lower (1-4 carbon) alkanoic acid and substituted lower alkanoic acid esters, for example formyl, acetyl, isopropanoyl, alpha fluoro- and alpha chloroacetyl esters and the like; ether blocking groups such as alkyl ethers; phosphate blocking groups; carbonate blocking groups such as 2-nitrobenzyl; 2,4-dinitrobenzene-sulfenyl and tetrahydrothiofuranyl ether blocking groups.
- Blocking groups can be modified to incorporate reporter moieties, if desired, including radiolabels (tritium, C 14 or F ⁇ ** 2 , for example), enzymes, fluorophores and chromophores .
- selectively-removable amine protection groups include carbamate ⁇ cleavable by acid hydrolysis [t-butyl, 2-(biphenyl)isopropyl] and certain amides susceptible to acid cleavage (formamide, trichloroacetamide) (Greene, 1981) .
- nucleotide derivatives protection of the primary amino groups is performed prior to phosphonation.
- standard amino protecting groups cleavable by ammonolysis may be used.
- the sequencing scheme After successfully incorporating a 3 '-blocked nucleotide into the DNA chain, the sequencing scheme requires the blocking group to be removed to yield a viable 3 '-OH site for continued chain synthesis.
- the deblocking method should:
- the exact deblocking chemistry selected will, of course, depend to a large extent upon the blocking group employed. For example, removal of ester blocking groups from the 3 'hydroxyl function is usually achieved by base hydrolysis. The ease of removal varies widely; generally, the greater the electro-negativity of substituents on the carbonyl carbon, the greater the ease of removal. For example, the highly electronegative group trifluoroacetate is cleaved rapidly from 3' hydroxyls in methanol at pH 7 (Cramer et al. , 1963) and thus would not be stable during coupling at that pH.
- Phenoxyacetate groups are cleaved in less than one minute but require substantially higher pH such as is achieved with NH-/ methanol (Reese and Steward, 1968).
- the ester deblocking rate is advantageously selected so as to exhibit a deblocking rate of less than 10 -3s-1 during the incorporation, and at least 10 ⁇ s during the deblocking stage. Ideally, this rate change is achieved by changing the buffer pH from 7 to about 10, but care must be taken not to denature the DNA.
- hydroxyl blocking groups are cleaved selectively using chemical procedures other than base hydrolysis.
- 2,4-Dinitrobenzenesulfenyl groups are cleaved rapidly by treatment with nucleophiles such as thiophenol and thiosulfate (Letsinger et al., 1964).
- Allyl ethers are cleaved by treatment with Hg(II) in acetone/water (Gigg and Warren, 1968) .
- Tetrahydrothiofuranyl ethers are removed under neutral conditions using Ag(I) or Hg(II) (Cohen and Steele, 1966; Cruse et al . , 1978).
- These protecting groups which are stable to the conditions used in the synthesis of dNTP analogues and in the sequence incorporation steps, have some advantages over groups cleavable by base hydrolysis - deblocking occurs only when the specific deblocking reagent is present and premature deblocking during incorporation is minimized.
- Photochemical deblocking can be used with photochemically-cleavable blocking groups.
- Several blocking groups are available for such an approach.
- the use of o-nitrobenzylethers as protecting groups for 2 '-hydroxyl functions of ribonucleosides is known and demonstrated (Ohtsuka et al. , 1978); removal occurs by irradiation at 260 nm.
- Alkyl o-nitrobenzyl carbonate protecting groups are also cleaved by irradiation at pH 7 (Cama and Christensen, 1978).
- Enzymatic deblocking of 3 '-OH blocking groups is also possible. It has been demonstrated that T4 polynucleotide kinase can convert 3 '-phosphate termini to 3 '-hydroxyl termini that can then serve as primers for DNA polymerase I (Henner et al . , 1983). This 3 '-phosphatase activity is used to remove the 3 '-blocking group of those dNTP analogues that contain a phosphate as the blocking group; the radioactive label enables the incorporation of the nucleotide analogue and the removal of the phosphate group to be followed easily. . If the use of radioisotopes represents too great a drawback, it is possible to use unlabeled phosphate monoesters with a cleavable fluorescent label (see below).
- each dNTP into the complementary chain is noted by detecting a label or reporter group present in or associated with the incorporated dNTP.
- the labels or markers are "innocuous".
- An "innocuous marker or label or reporter” refers to a radioactive, fluorescent, or the like marker or reporter which has physical and chemical properties which do not interfere with either the enzymatic addition of the marked nucleotide to the cDNA, or the subsequent deblocking to yield a viable 3 '-OH terminus .
- One simple labeling approach is to incorporate a radioactive species within the blocking group or in some other location of the dNTP units. This can be done easily by C 14 labeling or P32 labeling.
- Another labeling approach employs fluorescent labels. These can be attached to the dNTP's via the 3 '0H- blocking groups or attached in other positions. There are two general routes available using fluorescent tags:
- the first route is fairly straightforward and can employ a range of known fluorophores such as rhodamines, fluoresceins and the like, typically including those fluorophores known as useful in labeling dNTP's and the like.
- fluorophores such as rhodamines, fluoresceins and the like, typically including those fluorophores known as useful in labeling dNTP's and the like.
- the second route can employ a fluorophore where only a fragment is attached to the dNTP. This can reduce size and minimize steric interference. In the second route, rapid reaction of a normally nonfluorescent probe or molecule with specific functional group(s) found only on the label fragment leads to the formation of a fluorescent addition product. This leads to a signal only when the particular label
- Blocking groups or other label fragment groups containing free thiol functions can be used for this approach.
- the blocking group or other label fragment can contain a metal-binding ligand, e.g. a carboxylic acid group which will react with added rare earth metal ions such as europium or terbium ions to yield a fluorescent species.
- This dNTP can be incorporated and the fluorescence measured and removed according to the methods described below.
- One method involves the use of a fluorescent tag attached to the base moiety.
- the tag may be chemically cleaved (either separately from or simultaneously with the deblocking step) and measured either in the reaction zone before deblocking or in the reaction eluant after cleavage.
- the fluorescent moiety or other innocuous label can be attached to the dNTP through a spacer or tether.
- the tether can be cleavable if desired to release the fluorophore or other label on demand.
- Typical tethers are from about 2 to about 20, and preferably from about 3 to about 10 atoms in length.
- the C-8 position of the purine structure presents an ideal position for attachment of a label.
- Sarfati et al . (1987) describes a derivatization of deoxyadenosine at C-8 of the purine to prepare, ultimately, an 8-substituted biotin aldylamino dATP.
- the Sarfati et al . (1987) approach can be used to prepare the appropriate fluorescent, rather than biotinylated, analogues.
- a number of approaches are possible to produce fluorescent derivatives of thymidine and deoxycytidine.
- One quite versatile scheme is based on an approach used by Prober et al . (1987) to prepare ddNTPs with fluorescent tags. Structures A, B, C and D below illustrate the type of fluorescent dNTPs that result from these synthetic approaches.
- the synthetic routes have a great flexibility in that the linker can be varied with respect to length or functionality.
- the terminal fluorescent moiety can also be varied according to need.
- the labels so incorporated in the growing cDNA chain are detected by conventional analytical methods .
- increased detection sensitivity is a major advantage of the present method.
- the signal is based on a low level of fluorophores and is superimposed on a background of scatter from the gel and glass plates. This decreases sensitivity and often constrains current methods to the use of laser illumination to maximize sensitivity (Smith et al., 1986; Prober et al . , 1987; Ansorge et al . , 1986) .
- Detection of fluorophores is readily achievable in commercial non-excited spectrofluorometers , such as are sold by Perkin-Elmer.
- LED light- emitting diodes
- Typical LEDs include:
- Red LED emitting at approximately 650 nm
- Green LED emitting at approximately 540 nm
- Blue LED emitting at approximately 450 nm
- the solution containing cleaved blocking groups or nucleotides is directly injected into a field ionization mass spectrometer. Identification of the particular nucleotide incorporated or cleaved is achieved by monitoring the relative abundance of molecular ion peaks corresponding to the specific nucleotides or blocking groups; for example, four distinct acetyl blocking groups differing by one mass unit (replacement of 0 to 3 hydrogens by deuterium) could be detected by monitoring a small “window. "
- Immobilization of Subject DNA In the present invention, single stranded subject DNA or its primer is immobilized.
- One approach to this immobilization is to attach the DNA to a solid substrate.
- DNA and RNA are commonly attached noncovalently through ionic interactions along their length to various types of membranes (Southern, 1975; Maniatis, Fritsch, and Sambrook, 1982; Chuvpilp and Kravchenko, 1984).
- polynucleotides are covalently attached along their length to membranes (Goldberg, et al . , 1979), resins (Seed, 1982; Arndt-Jovin, et al .
- the inner quartz or glass surface can be advantageously functionalized using silanizing reagents such as triethoxysilylpropylamine or dichlorodi ethylsilane. This is followed by covalent attachment of a long-chain alkylamine to these functionalizing groups.
- the single stranded subject DNA is attached to the long chain amine.
- immobilization is carried out by attaching the subject DNA to a plastic surface.
- a thin polypropylene chamber wall designed to pass Cer'enkov radiation from 32P, for example, can serve as a suitable substrate for DNA immobilization.
- a plastic surface it is preferable to use the method of Kremsky et al .
- the reaction zone has one or more openings covered with a membrane such as an ultrafiltration membrane, for example, Amicon's PM-5 or PM-10 membranes which have nominal molecular weight cut offs of 5000 and 10,000 respectively.
- a membrane such as an ultrafiltration membrane, for example, Amicon's PM-5 or PM-10 membranes which have nominal molecular weight cut offs of 5000 and 10,000 respectively.
- the single stranded DNA is suspended in liquid in the reaction zone.
- the labeled and unlabeled dNTPs and other coupling reagents are flowed into the zone. Materials are removed from the zone through such a filter which retains the DNA chains.
- the polymerase or other enzyme which is used to effect coupling is generally of a size to be retained by the membrane. This scheme works for chemical but not enzymatic deblocking, since in enzymatic deblocking the polymerase and phosphatase must be cycled separately through the cell.
- the DNA can be immobilized on particles of resin or polymer microspheres and these particles retained within the chamber.
- the filter material is unimportant as long as the DNA is attached to resin particles which are of a size that cannot penetrate the filter pores .
- oligonucleotides or polynucleotides are linked through their 5' end to cellulose (Gilha , 1968; Clerici et al . 1979), Sephacryl (Langdale and Malcolm, 1985), or latex microspheres (Kremsky et al., 1987).
- the DNA is available for interactions with other nucleic acids or proteins .
- the DNA is coupled covalently to streptavidin-agarose beads by an alkylbiotinylated oligonucleotide (Kremsky et al., 1987).
- the single-stranded DNA is coupled to DBM paper such as a filter in the presence of a protecting strand. After coupling, the protecting strand is released, leaving the immobilized template and priming site free for successive enzymatic reactions (Hansen et al . , 1987) .
- This method and the other single-point methods described above are useful for immobilizing DNA while leaving it free for interactions with enzymes used in DNA sequencing- Examples
- the organic layer is separated and the aqueous layer washed with 2 x 200 ml CH 2 C1 2
- the combined CH-Cl- extracts are dried over magnesium sulfate (MgSO.), filtered and evaporated to dryness under vacuum at room temperature.
- the crude 5 '-dimethoxytrityl-3 'thymidine H-phosphonate II is then treated with 2% benzenesulfonic acid in CH ⁇ Cl- -.methanol (MeOH) (7:3) (200 ml) for one hour.
- the solution is washed with 10% sodium bicarbonate (NaHCO-) and water, dried over magnesium sulfate and evaporated to dryness.
- the crude 3 '-thymidine- H-phosphonate III is recrystallized from ethanol/ether.
- the mixtu-re is stirred for 12 hours at 4 C, neutralized with NaHCO.. solution,- and added to 150 ml water.
- the aqueous solution is washed with benzene (2 x 100 ml) and ether ( 2 x 100 ml), and diluted to 0.8 liters with water and charged on a 2.5 x 50 cm column of DEAE-cellulose.
- the products are eluted using a linear gradient of pH 8.5 ammonium bicarbonate solution (0.05 to 0.25 M) .
- the fractions collected are analyzed by HPLC to determine the desired product-containing fractions, and these are evaporated to dryness under vacuum. The residue is repeatedly re-evaporated with water to remove salts .
- the 5 '-monophosphate IV (16 mmole) is then dissolved in 30 ml of dimethylformamide (DMF) and treated with N,N'-carbonyldiimidazole (30 mmole) at room temperature for one hour.
- the reaction is quenched by addition of 5 ml methanol, and 60 ml of a 0.5M solution of bis (tri-n-butyl-ammonium) pyrophosphate in DMF is added dropwise over 10 minutes.
- the solution is diluted with water to 1 liter and treated with 100 ml of a solution of 0.1 M iodine (I-.) in 5% pyridine/water. After one hour, the solution is deposited on a DEAE-cellulose column from Sigma (5x50cm) or Sephradex from Pharmacia. The column is washed with water and eluted with triethylammonium bicarbonate solution
- the 5 '-triphosphate-3 '-phosphate thymidine product V is obtained by evaporation of the appropriate fractions collected.
- Example 3 Quartz Surface Immobilization of Subject DNA Four 25 microliter volume quartz cuvette reaction chambers are prepared. These chambers are configured like chamber 32 in Figure 3 with the exception that they use their inner walls as the surface to which the DNA is affixed. The inner surfaces are cleaned and dried.
- Triethoxysilylpropylamine (5 microliter in 20 microliter CHC1-.) is added and held at 5°C for 120 minutes under anhydrous conditions . This couples the triethoxysilylpropylamine to the surface and gives an amine character to the surface.
- the subject DNA is then attached to the amine surface.
- This is carried out by first attaching a long chain alkyl amine (n-octylamine) to the base at the 5' end of the subject DNA molecule or to the base at the 5 ' end of a suitable primer, such as an M13 primer for example the 17-mer dGTAAAACGACGGCCAGT, and then joining the alkylamine to the aminopropyl ⁇ ilane surface groups by reaction with glutaraldehyde (1.5 equivalents, 25°C, 120 minutes).
- a suitable primer such as an M13 primer for example the 17-mer dGTAAAACGACGGCCAGT
- Other functional groups pendant to the base moiety or attached to the 5' position can also be used [for example: aldehydes or carboxylic acids (Kremsky et al) ] for covalent immobilization on derivatized quartz or glass surfaces.
- Example 4 Incorporation of Labeled Nucleotide Analogs into DNA
- the 25 microliter reaction zones are charged with a reaction mixture which contains three Units of Sequenase TM enzyme.
- the reaction mixture also contains an appropriate buffer for this enzyme (20 mM Tris-HCl pH 7.5, 10 mM MgCl, 25 mM NaCl, 0.01 M dithiothreitol), the i single-stranded primed subject DNA is present at a concentration of approximately 0.1 M attached to the surface of the reaction chamber at its 5' end, (see Example 3), three unlabeled, 3 '-blocked deoxynucleotide triphosphate (dNTP) analogs at a concentration of 1.5 micromolar each, and one 3 '-blocked, fluorescently labeled dNTP analog of Example 2 at a concentration of 30 micromolar are each present in each of the four reaction zones. In each zone a different one of the four dNTPs is labeled.
- the reaction
- the identity of the added dNTP is determined by exciting the fluorophores present in the one cuvette which incorporated its fluorescently-labeled dNTP.
- the fluorescent group is removed before measurement.
- the 2 ,4-dinitrobenzenesulfenyl fluorescent blocking groups are removed with a deblocking reagent which consists of 0.1 M pyridine/pyridinium chloride buffer (pH 7.8) containing thiourea 0.05 M.
- the deblocking reaction is allowed to proceed for one minute at 40 C-
- the reaction chamber is then drained and washed twice with 100 mM Tris-HCl buffer, pH 6.5.
- the release of the fluorescent blocking group is measured in the initial eluate from the reaction chamber using a flow-through cell. Depending on the cell in which the fluorescent group is present, the identity of the nucleotide which has been added to the DNA chain is determined.
- the blocking group were a dansylcadaverine type ester such as in reaction scheme 4 , it could be removed by treatment with 50% methanol/50% water pH 10.0 for one minute.
- Example 6 Enzymatic Deblocking
- the blocking group can also be removed enzymaticall .
- the deblocker fed into the reaction chamber contains 100 mM Tris-HCl (pH 6.5) 10 mM MgCl-, 5 mM 2-mercaptoethanol, and one Unit T4 polynucleotide kinase.
- the reaction proceeds for one minute at a temperature of 37 C.
- the 3 ' -phosphatase activity of T4 polynucleotide kinase converts 3 '-phosphate termini to 3 '-hydroxyl termini which then serve as primers for further synthesis.
- a simple clock mechanism or microprocessor driven timer circuit can be used to actuate a plurality of electrically controlled valves in. sequence to add the various reagents for adding building blocks, deblocking and the like with the result that the sequence of the target DNA single strand can be obtained with minimum involvement of lab personnel .
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Instrument et procédé permettant de déterminer la séquence de nucléotides se trouvant dans une molécule d'ADN, sans l'emploi d'une étape d'électrophorèse sur gel. Le procédé emploie une séquence d'ADN monocaténaire amorçée inconnue, laquelle est immobilisée ou piégée à l'intérieur d'une chambre à l'aide d'une polymérase, de sorte que l'ADN complémentaire formé de manière séquentielle peut être contrôlé à chaque addition d'un nucléotide bloqué, par mesure de la présence d'un marqueur inoffensif sur des désoxyribonucléotides spécifiés. L'invention concerne également un procédé de détermination de la séquence de nucléotides d'ADN inconnue à l'aide de désoxynucléotides bloqués. Le dNTP (désoxyribonucléotide-triphosphate) bloqué comporte un marqueur inoffensif, de sorte que son identité peut être facilement déterminée. L'instrument et les procédés de l'invention permettent d'obtenir une détermination précise et rapide d'une séquence de nucléotides d'ADN sans électrophorèse sur gel.Instrument and method for determining the nucleotide sequence found in a DNA molecule, without the use of a gel electrophoresis step. The method employs an unknown primed single-stranded DNA sequence, which is immobilized or trapped inside a chamber using a polymerase, so that the complementary DNA formed sequentially can be checked each time addition of a blocked nucleotide, by measuring the presence of a harmless marker on specified deoxyribonucleotides. The invention also relates to a method for determining the unknown DNA nucleotide sequence using blocked deoxynucleotides. The blocked dNTP (deoxyribonucleotide-triphosphate) has a harmless marker, so its identity can be easily determined. The instrument and methods of the invention make it possible to obtain an accurate and rapid determination of a DNA nucleotide sequence without gel electrophoresis.
Description
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US42732189A | 1989-10-26 | 1989-10-26 | |
| US427321 | 1999-10-26 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0450060A1 true EP0450060A1 (en) | 1991-10-09 |
Family
ID=23694359
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP19910900474 Withdrawn EP0450060A1 (en) | 1989-10-26 | 1990-10-26 | Dna sequencing |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP0450060A1 (en) |
| CA (1) | CA2044616A1 (en) |
| WO (1) | WO1991006678A1 (en) |
Families Citing this family (718)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5547839A (en) | 1989-06-07 | 1996-08-20 | Affymax Technologies N.V. | Sequencing of surface immobilized polymers utilizing microflourescence detection |
| WO1992016657A1 (en) * | 1991-03-13 | 1992-10-01 | E.I. Du Pont De Nemours And Company | Method of identifying a nucleotide present at a defined position in a nucleic acid |
| AU1999092A (en) * | 1991-05-24 | 1992-12-30 | Walter Gilbert | Method and apparatus for rapid nucleic acid sequencing |
| US5516633A (en) * | 1991-08-15 | 1996-05-14 | Amersham Life Science, Inc. | DNA sequencing with a T7-type gene 6 exonuclease |
| GB9208733D0 (en) * | 1992-04-22 | 1992-06-10 | Medical Res Council | Dna sequencing method |
| GB9210168D0 (en) * | 1992-05-12 | 1992-06-24 | Cemu Bioteknik Ab | Method of sequencing dna |
| US5795714A (en) | 1992-11-06 | 1998-08-18 | Trustees Of Boston University | Method for replicating an array of nucleic acid probes |
| US6194144B1 (en) | 1993-01-07 | 2001-02-27 | Sequenom, Inc. | DNA sequencing by mass spectrometry |
| EP0689610B1 (en) * | 1993-03-19 | 2002-07-03 | Sequenom, Inc. | Dna sequencing by mass spectrometry via exonuclease degradation |
| FR2703052B1 (en) * | 1993-03-26 | 1995-06-02 | Pasteur Institut | New method of nucleic acid sequencing. |
| US6153379A (en) * | 1993-06-22 | 2000-11-28 | Baylor College Of Medicine | Parallel primer extension approach to nucleic acid sequence analysis |
| US7001722B1 (en) | 1993-06-22 | 2006-02-21 | Baylor College Of Medicine | Parallel primer extension approach to nucleic acid sequence analysis |
| US6401267B1 (en) | 1993-09-27 | 2002-06-11 | Radoje Drmanac | Methods and compositions for efficient nucleic acid sequencing |
| PL180521B1 (en) * | 1993-09-27 | 2001-02-28 | Arch Dev Corp | Methods and kits for identifying nucleotide sequences in a target nucleic acid PL PL PL PL PL PL PL |
| GB9401200D0 (en) * | 1994-01-21 | 1994-03-16 | Medical Res Council | Sequencing of nucleic acids |
| FR2718753B1 (en) * | 1994-04-15 | 1996-07-19 | Pasteur Institut | Method for counting repeated mono-, di- and trinucleotides in a eukaryotic genome and kit allowing the implementation of this method. |
| US5604097A (en) | 1994-10-13 | 1997-02-18 | Spectragen, Inc. | Methods for sorting polynucleotides using oligonucleotide tags |
| USRE43097E1 (en) | 1994-10-13 | 2012-01-10 | Illumina, Inc. | Massively parallel signature sequencing by ligation of encoded adaptors |
| SE9500342D0 (en) * | 1995-01-31 | 1995-01-31 | Marek Kwiatkowski | Novel chain terminators, the use thereof for nucleic acid sequencing and synthesis and a method of their preparation |
| WO1996027025A1 (en) * | 1995-02-27 | 1996-09-06 | Ely Michael Rabani | Device, compounds, algorithms, and methods of molecular characterization and manipulation with molecular parallelism |
| US5830655A (en) | 1995-05-22 | 1998-11-03 | Sri International | Oligonucleotide sizing using cleavable primers |
| EP0745686A1 (en) | 1995-06-01 | 1996-12-04 | Roche Diagnostics GmbH | The use of DNA polymerase 3'-intrinsic editing activity |
| EP0745688B1 (en) * | 1995-06-01 | 2007-02-14 | Roche Diagnostics GmbH | The use of DNA polymerase having 3'-intrinsic editing activity |
| GB9620209D0 (en) | 1996-09-27 | 1996-11-13 | Cemu Bioteknik Ab | Method of sequencing DNA |
| US6133436A (en) * | 1996-11-06 | 2000-10-17 | Sequenom, Inc. | Beads bound to a solid support and to nucleic acids |
| ATE375403T1 (en) | 1996-11-06 | 2007-10-15 | Sequenom Inc | DNA DIAGNOSTICS USING MASS SPECTROMETRY |
| GB9626815D0 (en) | 1996-12-23 | 1997-02-12 | Cemu Bioteknik Ab | Method of sequencing DNA |
| US7622294B2 (en) | 1997-03-14 | 2009-11-24 | Trustees Of Tufts College | Methods for detecting target analytes and enzymatic reactions |
| US20030027126A1 (en) | 1997-03-14 | 2003-02-06 | Walt David R. | Methods for detecting target analytes and enzymatic reactions |
| ATE269908T1 (en) * | 1997-04-01 | 2004-07-15 | Manteia S A | METHOD FOR SEQUENCING NUCLEIC ACIDS |
| JP2002503954A (en) * | 1997-04-01 | 2002-02-05 | グラクソ、グループ、リミテッド | Nucleic acid amplification method |
| EP0985142A4 (en) | 1997-05-23 | 2006-09-13 | Lynx Therapeutics Inc | System and apparaus for sequential processing of analytes |
| RU2198221C2 (en) * | 1997-07-28 | 2003-02-10 | Медикал Биосистемз Лтд. | Method of polynucleotide sequencing and device for its realization |
| EP1082458A1 (en) | 1998-05-01 | 2001-03-14 | Arizona Board Of Regents | Method of determining the nucleotide sequence of oligonucleotides and dna molecules |
| US7875440B2 (en) * | 1998-05-01 | 2011-01-25 | Arizona Board Of Regents | Method of determining the nucleotide sequence of oligonucleotides and DNA molecules |
| US6780591B2 (en) * | 1998-05-01 | 2004-08-24 | Arizona Board Of Regents | Method of determining the nucleotide sequence of oligonucleotides and DNA molecules |
| AR021833A1 (en) | 1998-09-30 | 2002-08-07 | Applied Research Systems | METHODS OF AMPLIFICATION AND SEQUENCING OF NUCLEIC ACID |
| WO2000029444A1 (en) | 1998-11-16 | 2000-05-25 | Genway Biotech, Inc. | Generation of antibodies using polynucleotide vaccination in avian species |
| AU2180200A (en) | 1998-12-14 | 2000-07-03 | Li-Cor Inc. | A heterogeneous assay for pyrophosphate detection |
| NO986133D0 (en) | 1998-12-23 | 1998-12-23 | Preben Lexow | Method of DNA Sequencing |
| PT1159453E (en) * | 1999-03-10 | 2008-08-29 | Asm Scient Inc | A method for direct nucleic acid sequencing |
| WO2000058507A1 (en) * | 1999-03-30 | 2000-10-05 | Solexa Ltd. | Polynucleotide sequencing |
| US20060275782A1 (en) | 1999-04-20 | 2006-12-07 | Illumina, Inc. | Detection of nucleic acid reactions on bead arrays |
| US6620584B1 (en) | 1999-05-20 | 2003-09-16 | Illumina | Combinatorial decoding of random nucleic acid arrays |
| US6818395B1 (en) | 1999-06-28 | 2004-11-16 | California Institute Of Technology | Methods and apparatus for analyzing polynucleotide sequences |
| US7501245B2 (en) | 1999-06-28 | 2009-03-10 | Helicos Biosciences Corp. | Methods and apparatuses for analyzing polynucleotide sequences |
| US6908736B1 (en) | 1999-10-06 | 2005-06-21 | Medical Biosystems, Ltd. | DNA sequencing method |
| GB9923644D0 (en) | 1999-10-06 | 1999-12-08 | Medical Biosystems Ltd | DNA sequencing |
| EP1244782A2 (en) * | 1999-12-23 | 2002-10-02 | Axaron Bioscience AG | Method for carrying out the parallel sequencing of a nucleic acid mixture on a surface |
| US7611869B2 (en) | 2000-02-07 | 2009-11-03 | Illumina, Inc. | Multiplexed methylation detection methods |
| US7582420B2 (en) | 2001-07-12 | 2009-09-01 | Illumina, Inc. | Multiplex nucleic acid reactions |
| JP3442338B2 (en) | 2000-03-17 | 2003-09-02 | 株式会社日立製作所 | DNA analyzer, DNA base sequencer, DNA base sequence determination method, and reaction module |
| EP1182267B1 (en) | 2000-03-30 | 2012-01-18 | Toyota Jidosha Kabushiki Kaisha | Method of determining base sequence of single nucleic acid molecule |
| AU2001254771A1 (en) * | 2000-04-03 | 2001-10-15 | Axaron Bioscience Ag | Novel method for the parallel sequencing of a nucleic acid mixture on a surface |
| GB0016472D0 (en) * | 2000-07-05 | 2000-08-23 | Amersham Pharm Biotech Uk Ltd | Sequencing method and apparatus |
| EP3034627B1 (en) | 2000-10-06 | 2019-01-30 | The Trustees of Columbia University in the City of New York | Massive parallel method for decoding dna and rna |
| US9708358B2 (en) | 2000-10-06 | 2017-07-18 | The Trustees Of Columbia University In The City Of New York | Massive parallel method for decoding DNA and RNA |
| EP1354064A2 (en) | 2000-12-01 | 2003-10-22 | Visigen Biotechnologies, Inc. | Enzymatic nucleic acid synthesis: compositions and methods for altering monomer incorporation fidelity |
| AR031640A1 (en) | 2000-12-08 | 2003-09-24 | Applied Research Systems | ISOTHERMAL AMPLIFICATION OF NUCLEIC ACIDS IN A SOLID SUPPORT |
| JP2004523243A (en) | 2001-03-12 | 2004-08-05 | カリフォルニア インスティチュート オブ テクノロジー | Method and apparatus for analyzing polynucleotide sequences by asynchronous base extension |
| US6653082B2 (en) | 2001-05-17 | 2003-11-25 | Baylor College Of Medicine | Substrate-bound cleavage assay for nucleic acid analysis |
| GB0129012D0 (en) | 2001-12-04 | 2002-01-23 | Solexa Ltd | Labelled nucleotides |
| US7057026B2 (en) | 2001-12-04 | 2006-06-06 | Solexa Limited | Labelled nucleotides |
| AU2003249681A1 (en) | 2002-05-31 | 2003-12-19 | Diversa Corporation | Multiplexed systems for nucleic acid sequencing |
| JP4106977B2 (en) | 2002-06-21 | 2008-06-25 | 株式会社日立製作所 | Analysis chip and analyzer |
| US7074597B2 (en) | 2002-07-12 | 2006-07-11 | The Trustees Of Columbia University In The City Of New York | Multiplex genotyping using solid phase capturable dideoxynucleotides and mass spectrometry |
| EP3795577A1 (en) | 2002-08-23 | 2021-03-24 | Illumina Cambridge Limited | Modified nucleotides |
| US11008359B2 (en) | 2002-08-23 | 2021-05-18 | Illumina Cambridge Limited | Labelled nucleotides |
| US7414116B2 (en) | 2002-08-23 | 2008-08-19 | Illumina Cambridge Limited | Labelled nucleotides |
| DE60327649D1 (en) | 2002-08-23 | 2009-06-25 | Illumina Cambridge Ltd | MARKED NUCLEOTIDE |
| US8637650B2 (en) | 2003-11-05 | 2014-01-28 | Genovoxx Gmbh | Macromolecular nucleotide compounds and methods for using the same |
| US7169560B2 (en) | 2003-11-12 | 2007-01-30 | Helicos Biosciences Corporation | Short cycle methods for sequencing polynucleotides |
| CA2557177A1 (en) | 2004-02-19 | 2005-09-01 | Stephen Quake | Methods and kits for analyzing polynucleotide sequences |
| US7622279B2 (en) | 2004-03-03 | 2009-11-24 | The Trustees Of Columbia University In The City Of New York | Photocleavable fluorescent nucleotides for DNA sequencing on chip constructed by site-specific coupling chemistry |
| JP2008512084A (en) | 2004-05-25 | 2008-04-24 | ヘリコス バイオサイエンシーズ コーポレイション | Methods and devices for nucleic acid sequencing |
| US7476734B2 (en) | 2005-12-06 | 2009-01-13 | Helicos Biosciences Corporation | Nucleotide analogs |
| US7315019B2 (en) * | 2004-09-17 | 2008-01-01 | Pacific Biosciences Of California, Inc. | Arrays of optical confinements and uses thereof |
| US7220549B2 (en) | 2004-12-30 | 2007-05-22 | Helicos Biosciences Corporation | Stabilizing a nucleic acid for nucleic acid sequencing |
| US7482120B2 (en) | 2005-01-28 | 2009-01-27 | Helicos Biosciences Corporation | Methods and compositions for improving fidelity in a nucleic acid synthesis reaction |
| AU2006211150A1 (en) * | 2005-01-31 | 2006-08-10 | Pacific Biosciences Of California, Inc. | Use of reversible extension terminator in nucleic acid sequencing |
| EP2239342A3 (en) | 2005-02-01 | 2010-11-03 | AB Advanced Genetic Analysis Corporation | Reagents, methods and libraries for bead-based sequencing |
| EP2241637A1 (en) | 2005-02-01 | 2010-10-20 | AB Advanced Genetic Analysis Corporation | Nucleic acid sequencing by performing successive cycles of duplex extension |
| US9169510B2 (en) | 2005-06-21 | 2015-10-27 | The Trustees Of Columbia University In The City Of New York | Pyrosequencing methods and related compositions |
| US7805081B2 (en) | 2005-08-11 | 2010-09-28 | Pacific Biosciences Of California, Inc. | Methods and systems for monitoring multiple optical signals from a single source |
| GB0517097D0 (en) | 2005-08-19 | 2005-09-28 | Solexa Ltd | Modified nucleosides and nucleotides and uses thereof |
| US7666593B2 (en) | 2005-08-26 | 2010-02-23 | Helicos Biosciences Corporation | Single molecule sequencing of captured nucleic acids |
| US7405281B2 (en) | 2005-09-29 | 2008-07-29 | Pacific Biosciences Of California, Inc. | Fluorescent nucleotide analogs and uses therefor |
| US7763423B2 (en) | 2005-09-30 | 2010-07-27 | Pacific Biosciences Of California, Inc. | Substrates having low density reactive groups for monitoring enzyme activity |
| US8796432B2 (en) | 2005-10-31 | 2014-08-05 | The Trustees Of Columbia University In The City Of New York | Chemically cleavable 3'-o-allyl-DNTP-allyl-fluorophore fluorescent nucleotide analogues and related methods |
| US7982029B2 (en) | 2005-10-31 | 2011-07-19 | The Trustees Of Columbia University In The City Of New York | Synthesis of four color 3′O-allyl, modified photocleavable fluorescent nucleotides and related methods |
| GB0522310D0 (en) | 2005-11-01 | 2005-12-07 | Solexa Ltd | Methods of preparing libraries of template polynucleotides |
| GB0524069D0 (en) | 2005-11-25 | 2006-01-04 | Solexa Ltd | Preparation of templates for solid phase amplification |
| US7998717B2 (en) | 2005-12-02 | 2011-08-16 | Pacific Biosciences Of California, Inc. | Mitigation of photodamage in analytical reactions |
| US7715001B2 (en) | 2006-02-13 | 2010-05-11 | Pacific Biosciences Of California, Inc. | Methods and systems for simultaneous real-time monitoring of optical signals from multiple sources |
| US7995202B2 (en) | 2006-02-13 | 2011-08-09 | Pacific Biosciences Of California, Inc. | Methods and systems for simultaneous real-time monitoring of optical signals from multiple sources |
| US7692783B2 (en) | 2006-02-13 | 2010-04-06 | Pacific Biosciences Of California | Methods and systems for simultaneous real-time monitoring of optical signals from multiple sources |
| US7397546B2 (en) | 2006-03-08 | 2008-07-08 | Helicos Biosciences Corporation | Systems and methods for reducing detected intensity non-uniformity in a laser beam |
| US8975216B2 (en) | 2006-03-30 | 2015-03-10 | Pacific Biosciences Of California | Articles having localized molecules disposed thereon and methods of producing same |
| US7563574B2 (en) | 2006-03-31 | 2009-07-21 | Pacific Biosciences Of California, Inc. | Methods, systems and compositions for monitoring enzyme activity and applications thereof |
| WO2007135368A2 (en) | 2006-05-18 | 2007-11-29 | Solexa Limited | Dye compounds and the use of their labelled conjugates |
| US8889348B2 (en) | 2006-06-07 | 2014-11-18 | The Trustees Of Columbia University In The City Of New York | DNA sequencing by nanopore using modified nucleotides |
| CA2662521C (en) | 2006-09-01 | 2016-08-09 | Pacific Biosciences Of California, Inc. | Substrates, systems and methods for analyzing materials |
| US8207509B2 (en) | 2006-09-01 | 2012-06-26 | Pacific Biosciences Of California, Inc. | Substrates, systems and methods for analyzing materials |
| WO2008042067A2 (en) | 2006-09-28 | 2008-04-10 | Illumina, Inc. | Compositions and methods for nucleotide sequencing |
| US7883869B2 (en) | 2006-12-01 | 2011-02-08 | The Trustees Of Columbia University In The City Of New York | Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators |
| WO2008093098A2 (en) | 2007-02-02 | 2008-08-07 | Illumina Cambridge Limited | Methods for indexing samples and sequencing multiple nucleotide templates |
| US11940413B2 (en) | 2007-02-05 | 2024-03-26 | IsoPlexis Corporation | Methods and devices for sequencing nucleic acids in smaller batches |
| US8551704B2 (en) | 2007-02-16 | 2013-10-08 | Pacific Biosciences Of California, Inc. | Controllable strand scission of mini circle DNA |
| US7901889B2 (en) | 2007-07-26 | 2011-03-08 | Pacific Biosciences Of California, Inc. | Molecular redundant sequencing |
| EP2201021A4 (en) | 2007-08-29 | 2012-01-25 | Applied Biosystems Llc | Alternative nucleic acid sequencing methods |
| WO2009045344A2 (en) | 2007-09-28 | 2009-04-09 | Pacific Biosciences Of California, Inc. | Error-free amplification of dna for clonal sequencing |
| US7960116B2 (en) | 2007-09-28 | 2011-06-14 | Pacific Biosciences Of California, Inc. | Nucleic acid sequencing methods and systems |
| US20110014611A1 (en) | 2007-10-19 | 2011-01-20 | Jingyue Ju | Design and synthesis of cleavable fluorescent nucleotides as reversible terminators for dna sequences by synthesis |
| EP2725107B1 (en) | 2007-10-19 | 2018-08-29 | The Trustees of Columbia University in the City of New York | DNA sequencing with non-fluorescent nucleotide reversible terminators and cleavable label modified ddNTPs and nucleic acid comprising inosine with reversible terminators |
| US8617811B2 (en) | 2008-01-28 | 2013-12-31 | Complete Genomics, Inc. | Methods and compositions for efficient base calling in sequencing reactions |
| WO2009067628A1 (en) | 2007-11-20 | 2009-05-28 | Applied Biosystems Inc. | Reversible di-nucleotide terminator sequencing |
| CA2711560A1 (en) | 2008-01-10 | 2009-07-16 | Pacific Biosciences Of California, Inc. | Methods and systems for analysis of fluorescent reactions with modulated excitation |
| CA2715385A1 (en) | 2008-02-12 | 2009-08-20 | Pacific Biosciences Of California, Inc. | Compositions and methods for use in analytical reactions |
| US9017973B2 (en) | 2008-03-19 | 2015-04-28 | Intelligent Biosystems, Inc. | Methods and compositions for incorporating nucleotides |
| US8628940B2 (en) | 2008-09-24 | 2014-01-14 | Pacific Biosciences Of California, Inc. | Intermittent detection during analytical reactions |
| EP4230747A3 (en) | 2008-03-28 | 2023-11-15 | Pacific Biosciences Of California, Inc. | Compositions and methods for nucleic acid sequencing |
| US8236499B2 (en) | 2008-03-28 | 2012-08-07 | Pacific Biosciences Of California, Inc. | Methods and compositions for nucleic acid sample preparation |
| CA2725239C (en) | 2008-05-27 | 2019-02-26 | Trilink Biotechnologies | Chemically modified nucleoside 5'-triphosphates for thermally initiated amplification of nucleic acid |
| US8198023B2 (en) | 2008-08-05 | 2012-06-12 | Pacific Biosciences Of California, Inc. | Prevention and alleviation of steric hindrance during single molecule nucleic acid synthesis by a polymerase |
| WO2010027497A2 (en) | 2008-09-05 | 2010-03-11 | Pacific Biosciences Of California, Inc | Preparations, compositions, and methods for nucleic acid sequencing |
| US8383345B2 (en) | 2008-09-12 | 2013-02-26 | University Of Washington | Sequence tag directed subassembly of short sequencing reads into long sequencing reads |
| DK3629011T3 (en) | 2008-09-16 | 2024-01-29 | Pacific Biosciences California Inc | INTEGRATED OPTICAL DEVICE |
| US8921046B2 (en) | 2008-09-19 | 2014-12-30 | Pacific Biosciences Of California, Inc. | Nucleic acid sequence analysis |
| US8481264B2 (en) | 2008-09-19 | 2013-07-09 | Pacific Biosciences Of California, Inc. | Immobilized nucleic acid complexes for sequence analysis |
| WO2010036287A1 (en) | 2008-09-24 | 2010-04-01 | Pacific Biosciences Of California, Inc. | Intermittent detection during analytical reactions |
| US8383369B2 (en) | 2008-09-24 | 2013-02-26 | Pacific Biosciences Of California, Inc. | Intermittent detection during analytical reactions |
| WO2010038042A1 (en) | 2008-10-02 | 2010-04-08 | Illumina Cambridge Ltd. | Nucleic acid sample enrichment for sequencing applications |
| WO2010048337A2 (en) | 2008-10-22 | 2010-04-29 | Illumina, Inc. | Preservation of information related to genomic dna methylation |
| AU2009319907B2 (en) | 2008-11-03 | 2015-10-01 | The Regents Of The University Of California | Methods for detecting modification resistant nucleic acids |
| WO2010059206A2 (en) | 2008-11-19 | 2010-05-27 | Pacific Biosciences Of California, Inc. | Modular nucleotide compositions and uses therefor |
| US8370079B2 (en) | 2008-11-20 | 2013-02-05 | Pacific Biosciences Of California, Inc. | Algorithms for sequence determination |
| US8993230B2 (en) | 2008-12-04 | 2015-03-31 | Pacific Biosciences of Californ, Inc. | Asynchronous sequencing of biological polymers |
| US9175338B2 (en) | 2008-12-11 | 2015-11-03 | Pacific Biosciences Of California, Inc. | Methods for identifying nucleic acid modifications |
| AU2009325069B2 (en) | 2008-12-11 | 2015-03-19 | Pacific Biosciences Of California, Inc. | Classification of nucleic acid templates |
| US20230148447A9 (en) | 2008-12-11 | 2023-05-11 | Pacific Biosciences Of California, Inc. | Classification of nucleic acid templates |
| EP2607496B1 (en) | 2008-12-23 | 2014-07-16 | Illumina, Inc. | Methods useful in nucleic acid sequencing protocols |
| WO2010111691A2 (en) | 2009-03-27 | 2010-09-30 | Life Technologies Corp | Conjugates of biomolecules to nanoparticles |
| AU2010245304B2 (en) | 2009-04-27 | 2015-06-04 | Pacific Biosciences Of California, Inc. | Real-time sequencing methods and systems |
| US20100311144A1 (en) | 2009-06-05 | 2010-12-09 | Life Technologies Corporation | Mutant dna polymerases |
| US8501406B1 (en) | 2009-07-14 | 2013-08-06 | Pacific Biosciences Of California, Inc. | Selectively functionalized arrays |
| US8182994B2 (en) | 2009-09-15 | 2012-05-22 | Illumina Cambridge Limited | Centroid markers for image analysis of high denisty clusters in complex polynucleotide sequencing |
| EP2494073B1 (en) | 2009-10-26 | 2017-11-29 | AGCT GmbH | Nucleotide conjugates and methods of uses thereof |
| PT2531880T (en) | 2010-02-01 | 2016-10-31 | Illumina Inc | Focusing methods and optical systems and assemblies using the same |
| US8518643B2 (en) | 2010-02-04 | 2013-08-27 | Pacific Biosciences Of California, Inc. | Method to improve single molecule analyses |
| US8324914B2 (en) | 2010-02-08 | 2012-12-04 | Genia Technologies, Inc. | Systems and methods for characterizing a molecule |
| US9605307B2 (en) | 2010-02-08 | 2017-03-28 | Genia Technologies, Inc. | Systems and methods for forming a nanopore in a lipid bilayer |
| US9678055B2 (en) | 2010-02-08 | 2017-06-13 | Genia Technologies, Inc. | Methods for forming a nanopore in a lipid bilayer |
| CA2790393C (en) | 2010-02-19 | 2019-03-12 | Pacific Biosciences Of California, Inc. | Integrated analytical system and method |
| US8994946B2 (en) | 2010-02-19 | 2015-03-31 | Pacific Biosciences Of California, Inc. | Integrated analytical system and method |
| WO2011112465A1 (en) | 2010-03-06 | 2011-09-15 | Illumina, Inc. | Systems, methods, and apparatuses for detecting optical signals from a sample |
| US20190300945A1 (en) | 2010-04-05 | 2019-10-03 | Prognosys Biosciences, Inc. | Spatially Encoded Biological Assays |
| US10787701B2 (en) | 2010-04-05 | 2020-09-29 | Prognosys Biosciences, Inc. | Spatially encoded biological assays |
| CA2794522C (en) | 2010-04-05 | 2019-11-26 | Prognosys Biosciences, Inc. | Spatially encoded biological assays |
| US8318094B1 (en) | 2010-06-18 | 2012-11-27 | Pacific Biosciences Of California, Inc. | Substrate analysis systems |
| WO2011159942A1 (en) | 2010-06-18 | 2011-12-22 | Illumina, Inc. | Conformational probes and methods for sequencing nucleic acids |
| WO2012021733A2 (en) | 2010-08-12 | 2012-02-16 | Pacific Biosciences Of California, Inc. | Photodamage mitigation compounds and systems |
| US8465922B2 (en) | 2010-08-26 | 2013-06-18 | Pacific Biosciences Of California, Inc. | Methods and systems for monitoring reactions |
| US9029103B2 (en) | 2010-08-27 | 2015-05-12 | Illumina Cambridge Limited | Methods for sequencing polynucleotides |
| US8483969B2 (en) | 2010-09-17 | 2013-07-09 | Illuminia, Inc. | Variation analysis for multiple templates on a solid support |
| US8759038B2 (en) | 2010-09-29 | 2014-06-24 | Illumina Cambridge Limited | Compositions and methods for sequencing nucleic acids |
| EP2633069B1 (en) | 2010-10-26 | 2015-07-01 | Illumina, Inc. | Sequencing methods |
| US8575071B2 (en) | 2010-11-03 | 2013-11-05 | Illumina, Inc. | Reducing adapter dimer formation |
| EP2635679B1 (en) | 2010-11-05 | 2017-04-19 | Illumina, Inc. | Linking sequence reads using paired code tags |
| US9074251B2 (en) | 2011-02-10 | 2015-07-07 | Illumina, Inc. | Linking sequence reads using paired code tags |
| WO2012074855A2 (en) | 2010-11-22 | 2012-06-07 | The Regents Of The University Of California | Methods of identifying a cellular nascent rna transcript |
| WO2012088339A2 (en) | 2010-12-22 | 2012-06-28 | Genia Technologies, Inc. | Nanopore-based single dna molecule characterization using speed bumps |
| US8951781B2 (en) | 2011-01-10 | 2015-02-10 | Illumina, Inc. | Systems, methods, and apparatuses to image a sample for biological or chemical analysis |
| US9581563B2 (en) | 2011-01-24 | 2017-02-28 | Genia Technologies, Inc. | System for communicating information from an array of sensors |
| US9110478B2 (en) | 2011-01-27 | 2015-08-18 | Genia Technologies, Inc. | Temperature regulation of measurement arrays |
| WO2012106081A2 (en) | 2011-01-31 | 2012-08-09 | Illumina, Inc. | Methods for reducing nucleic acid damage |
| WO2012106546A2 (en) | 2011-02-02 | 2012-08-09 | University Of Washington Through Its Center For Commercialization | Massively parallel continguity mapping |
| WO2012129242A2 (en) | 2011-03-23 | 2012-09-27 | Pacific Biosciences Of California, Inc. | Isolation of polymerase-nucleic acid complexes and loading onto substrates |
| WO2012138973A2 (en) | 2011-04-06 | 2012-10-11 | The University Of Chicago | COMPOSITION AND METHODS RELATED TO MODIFICATION OF 5-METHYLCYTOSINE (5mC) |
| GB201106254D0 (en) | 2011-04-13 | 2011-05-25 | Frisen Jonas | Method and product |
| EP2702171A1 (en) | 2011-04-27 | 2014-03-05 | Cherkasov, Dmitry | Method and components for detecting nucleic acid chains |
| DE102012008759A1 (en) | 2011-05-04 | 2012-11-08 | Genovoxx Gmbh | Nucleoside-triphosphate conjugates and methods for their use |
| US9624539B2 (en) | 2011-05-23 | 2017-04-18 | The Trustees Of Columbia University In The City Of New York | DNA sequencing by synthesis using Raman and infrared spectroscopy detection |
| US8778848B2 (en) | 2011-06-09 | 2014-07-15 | Illumina, Inc. | Patterned flow-cells useful for nucleic acid analysis |
| US10152569B2 (en) | 2011-09-26 | 2018-12-11 | Gen-Probe Incorporated | Algorithms for sequence determinations |
| US10378051B2 (en) | 2011-09-29 | 2019-08-13 | Illumina Cambridge Limited | Continuous extension and deblocking in reactions for nucleic acids synthesis and sequencing |
| US9347900B2 (en) | 2011-10-14 | 2016-05-24 | Pacific Biosciences Of California, Inc. | Real-time redox sequencing |
| CA3003082C (en) | 2011-10-28 | 2020-12-15 | Illumina, Inc. | Microarray fabrication system and method |
| CA2854023A1 (en) | 2011-11-07 | 2013-05-16 | Illumina, Inc. | Integrated sequencing apparatuses and methods of use |
| US9200274B2 (en) | 2011-12-09 | 2015-12-01 | Illumina, Inc. | Expanded radix for polymeric tags |
| US9279154B2 (en) | 2011-12-21 | 2016-03-08 | Illumina, Inc. | Apparatus and methods for kinetic analysis and determination of nucleic acid sequences |
| US9238836B2 (en) | 2012-03-30 | 2016-01-19 | Pacific Biosciences Of California, Inc. | Methods and compositions for sequencing modified nucleic acids |
| WO2013117595A2 (en) | 2012-02-07 | 2013-08-15 | Illumina Cambridge Limited | Targeted enrichment and amplification of nucleic acids on a support |
| EP3222627B1 (en) | 2012-02-15 | 2019-08-07 | Pacific Biosciences of California, Inc. | Polymerase enzyme substrates with protein shield |
| US8986629B2 (en) | 2012-02-27 | 2015-03-24 | Genia Technologies, Inc. | Sensor circuit for controlling, detecting, and measuring a molecular complex |
| NO2694769T3 (en) | 2012-03-06 | 2018-03-03 | ||
| US20130261984A1 (en) | 2012-03-30 | 2013-10-03 | Illumina, Inc. | Methods and systems for determining fetal chromosomal abnormalities |
| JP6159391B2 (en) | 2012-04-03 | 2017-07-05 | イラミーナ インコーポレーテッド | Integrated read head and fluid cartridge useful for nucleic acid sequencing |
| US20130274148A1 (en) | 2012-04-11 | 2013-10-17 | Illumina, Inc. | Portable genetic detection and analysis system and method |
| WO2013163207A1 (en) | 2012-04-24 | 2013-10-31 | Pacific Biosciences Of California, Inc. | Identification of 5-methyl-c in nucleic acid templates |
| US9012022B2 (en) | 2012-06-08 | 2015-04-21 | Illumina, Inc. | Polymer coatings |
| JP2015525077A (en) | 2012-06-15 | 2015-09-03 | ジェニア・テクノロジーズ・インコーポレイテッド | Chip configuration and highly accurate nucleic acid sequencing |
| US8895249B2 (en) | 2012-06-15 | 2014-11-25 | Illumina, Inc. | Kinetic exclusion amplification of nucleic acid libraries |
| US9372308B1 (en) | 2012-06-17 | 2016-06-21 | Pacific Biosciences Of California, Inc. | Arrays of integrated analytical devices and methods for production |
| CA2878291A1 (en) | 2012-07-03 | 2014-01-09 | Sloan Kettering Institute For Cancer Research | Quantitative assessment of human t-cell repertoire recovery after allogeneic hematopoietic stem cell transplantation |
| WO2014015098A1 (en) | 2012-07-18 | 2014-01-23 | Siemens Healthcare Diagnostics Inc. | A method of normalizing biological samples |
| NL2017959B1 (en) | 2016-12-08 | 2018-06-19 | Illumina Inc | Cartridge assembly |
| CA3178340C (en) | 2012-08-20 | 2025-10-14 | Illumina Inc | METHOD AND SYSTEM FOR FLUORESCENCE LIFETIME-BASED SEQUENCING |
| DK3511423T4 (en) | 2012-10-17 | 2024-07-29 | Spatial Transcriptomics Ab | METHODS AND PRODUCT FOR OPTIMIZING LOCALIZED OR SPATIAL DETECTION OF GENE EXPRESSION IN A TISSUE SAMPLE |
| US9181583B2 (en) | 2012-10-23 | 2015-11-10 | Illumina, Inc. | HLA typing using selective amplification and sequencing |
| US10206911B2 (en) | 2012-10-26 | 2019-02-19 | Memorial Sloan-Kettering Cancer Center | Androgen receptor variants and methods for making and using |
| US9605309B2 (en) | 2012-11-09 | 2017-03-28 | Genia Technologies, Inc. | Nucleic acid sequencing using tags |
| US9223084B2 (en) | 2012-12-18 | 2015-12-29 | Pacific Biosciences Of California, Inc. | Illumination of optical analytical devices |
| US9683230B2 (en) | 2013-01-09 | 2017-06-20 | Illumina Cambridge Limited | Sample preparation on a solid support |
| US9805407B2 (en) | 2013-01-25 | 2017-10-31 | Illumina, Inc. | Methods and systems for using a cloud computing environment to configure and sell a biological sample preparation cartridge and share related data |
| US9759711B2 (en) | 2013-02-05 | 2017-09-12 | Genia Technologies, Inc. | Nanopore arrays |
| EP2959283B1 (en) | 2013-02-22 | 2022-08-17 | Pacific Biosciences of California, Inc. | Integrated illumination of optical analytical devices |
| US9512422B2 (en) | 2013-02-26 | 2016-12-06 | Illumina, Inc. | Gel patterned surfaces |
| US9914979B2 (en) | 2013-03-04 | 2018-03-13 | Fry Laboratories, LLC | Method and kit for characterizing microorganisms |
| CA2898453C (en) | 2013-03-13 | 2021-07-27 | Illumina, Inc. | Multilayer fluidic devices and methods for their fabrication |
| DK3553175T3 (en) | 2013-03-13 | 2021-08-23 | Illumina Inc | PROCEDURE FOR MAKING A NUCLEIC ACID SEQUENCE LIBRARY |
| CA2898459C (en) | 2013-03-14 | 2021-02-02 | Illumina, Inc. | Modified polymerases for improved incorporation of nucleotide analogues |
| EP2971071B1 (en) | 2013-03-15 | 2018-02-28 | Illumina, Inc. | Enzyme-linked nucleotides |
| US20140274747A1 (en) | 2013-03-15 | 2014-09-18 | Illumina, Inc. | Super resolution imaging |
| US9193998B2 (en) | 2013-03-15 | 2015-11-24 | Illumina, Inc. | Super resolution imaging |
| US10648026B2 (en) | 2013-03-15 | 2020-05-12 | The Trustees Of Columbia University In The City Of New York | Raman cluster tagged molecules for biological imaging |
| BR112015022448B1 (en) | 2013-03-15 | 2020-12-08 | Illumina Cambridge Limited | modified nucleotide or nucleoside molecule, methods for preparing the growth of polynucleotide complementary to single-stranded target polynucleotide in sequencing reaction and to determine the sequence of single-stranded target polynucleotide and kit |
| WO2014201155A1 (en) | 2013-06-11 | 2014-12-18 | Courtagen Life Sciences, Inc. | Methods and kits for treating and classifying individuals at risk of or suffering from trap1 change-of-function |
| US9868979B2 (en) | 2013-06-25 | 2018-01-16 | Prognosys Biosciences, Inc. | Spatially encoded biological assays using a microfluidic device |
| CN105431554B (en) | 2013-07-01 | 2019-02-15 | Illumina公司 | Catalyst-free surface functionalization and polymer grafting |
| WO2015002789A1 (en) | 2013-07-03 | 2015-01-08 | Illumina, Inc. | Sequencing by orthogonal synthesis |
| US9957291B2 (en) | 2013-08-05 | 2018-05-01 | Pacific Biosciences Of California, Inc. | Protected fluorescent reagent compounds |
| CA3009218C (en) | 2013-08-08 | 2020-10-27 | Illumina, Inc. | Fluidic system for reagent delivery to a flow cell |
| US10508311B2 (en) | 2013-08-26 | 2019-12-17 | The Translational Genomics Research Institute | Single molecule-overlapping read analysis for minor variant mutation detection in pathogen samples |
| US9551697B2 (en) | 2013-10-17 | 2017-01-24 | Genia Technologies, Inc. | Non-faradaic, capacitively coupled measurement in a nanopore cell array |
| US9567630B2 (en) | 2013-10-23 | 2017-02-14 | Genia Technologies, Inc. | Methods for forming lipid bilayers on biochips |
| US10421995B2 (en) | 2013-10-23 | 2019-09-24 | Genia Technologies, Inc. | High speed molecular sensing with nanopores |
| US9416414B2 (en) | 2013-10-24 | 2016-08-16 | Pacific Biosciences Of California, Inc. | Delaying real-time sequencing |
| US10540783B2 (en) | 2013-11-01 | 2020-01-21 | Illumina, Inc. | Image analysis useful for patterned objects |
| CA2930834A1 (en) | 2013-11-17 | 2015-05-21 | Quantum-Si Incorporated | Integrated device with external light source for probing detecting and analyzing molecules |
| EP2876166B1 (en) | 2013-11-20 | 2016-12-14 | Roche Diagnostics GmbH | New compound for sequencing by synthesis |
| RS60736B1 (en) | 2013-12-03 | 2020-09-30 | Illumina Inc | Methods and systems for analyzing image data |
| DK3080585T3 (en) | 2013-12-10 | 2024-02-05 | Illumina Inc | BIOSENSORS FOR BIOLOGICAL OR CHEMICAL ANALYSIS AND METHODS OF MANUFACTURE THEREOF |
| DK3083994T3 (en) | 2013-12-20 | 2021-09-13 | Illumina Inc | Preservation of genomic connectivity information in fragmented genomic DNA samples |
| KR102333635B1 (en) | 2013-12-23 | 2021-11-30 | 일루미나, 인코포레이티드 | Structured substrates for improving detection of light emissions and methods relating to the same |
| US10537889B2 (en) | 2013-12-31 | 2020-01-21 | Illumina, Inc. | Addressable flow cell using patterned electrodes |
| EP3094742A1 (en) | 2014-01-16 | 2016-11-23 | Illumina, Inc. | Amplicon preparation and sequencing on solid supports |
| US9677132B2 (en) | 2014-01-16 | 2017-06-13 | Illumina, Inc. | Polynucleotide modification on solid support |
| MY200537A (en) | 2014-02-18 | 2024-01-02 | Illumina Inc | Methods and compositions for dna profiling |
| EP3116651B1 (en) | 2014-03-11 | 2020-04-22 | Illumina, Inc. | Disposable, integrated microfluidic cartridge and methods of making it |
| FR3020071B1 (en) | 2014-04-17 | 2017-12-22 | Dna Script | PROCESS FOR THE SYNTHESIS OF NUCLEIC ACIDS, IN PARTICULAR LARGE NUCLEIC ACIDS, USE OF THE METHOD AND KIT FOR IMPLEMENTING THE METHOD |
| AU2015253299B2 (en) | 2014-04-29 | 2018-06-14 | Illumina, Inc. | Multiplexed single cell gene expression analysis using template switch and tagmentation |
| US10570447B2 (en) | 2014-05-16 | 2020-02-25 | Illumina, Inc. | Nucleic acid synthesis techniques |
| EP3148697A1 (en) | 2014-05-27 | 2017-04-05 | Illumina, Inc. | Systems and methods for biochemical analysis including a base instrument and a removable cartridge |
| DK3152320T3 (en) | 2014-06-03 | 2021-01-11 | Illumina Inc | Compositions, systems and methods for detecting events using tethers anchored to or adjacent to nanopores |
| US20150353989A1 (en) | 2014-06-09 | 2015-12-10 | Illumina Cambridge Limited | Sample preparation for nucleic acid amplification |
| CA3172086A1 (en) | 2014-06-13 | 2015-12-17 | Illumina Cambridge Limited | Methods and compositions for preparing sequencing libraries |
| US10829814B2 (en) | 2014-06-19 | 2020-11-10 | Illumina, Inc. | Methods and compositions for single cell genomics |
| US10017759B2 (en) | 2014-06-26 | 2018-07-10 | Illumina, Inc. | Library preparation of tagged nucleic acid |
| ES2788949T3 (en) | 2014-06-27 | 2020-10-23 | Illumina Inc | Modified polymerases for improved incorporation of nucleotide analogs |
| SG11201610910QA (en) | 2014-06-30 | 2017-01-27 | Illumina Inc | Methods and compositions using one-sided transposition |
| WO2016010975A2 (en) | 2014-07-15 | 2016-01-21 | Illumina, Inc. | Biochemically activated electronic device |
| CA3176503A1 (en) | 2014-07-21 | 2016-01-28 | Illumina, Inc | Polynucleotide enrichment using crispr-cas systems |
| EP3194933B1 (en) | 2014-08-08 | 2024-05-01 | Quantum-Si Incorporated | Instrument for time resolved reading of fluorescence based assay chip |
| CA2957546A1 (en) | 2014-08-08 | 2016-02-11 | Quantum-Si Incorporated | Integrated device with external light source for probing, detecting, and analyzing molecules |
| EP3471402B1 (en) | 2014-08-08 | 2023-05-31 | Quantum-Si Incorporated | Integrated device for temporal binning of received photons |
| GB201414098D0 (en) | 2014-08-08 | 2014-09-24 | Illumina Cambridge Ltd | Modified nucleotide linkers |
| US10174363B2 (en) | 2015-05-20 | 2019-01-08 | Quantum-Si Incorporated | Methods for nucleic acid sequencing |
| CN107076739B (en) | 2014-08-21 | 2018-12-25 | 伊卢米纳剑桥有限公司 | Reversible surface functionalization |
| WO2016033207A1 (en) | 2014-08-27 | 2016-03-03 | Pacific Biosciences Of California, Inc. | Arrays of integrated analyitcal devices |
| FR3025201B1 (en) | 2014-09-02 | 2018-10-12 | Dna Script | MODIFIED NUCLEOTIDES FOR THE SYNTHESIS OF NUCLEIC ACIDS, A KIT COMPRISING SUCH NUCLEOTIDES AND THEIR USE FOR GENERATING SYNTHETIC NUCLEIC ACID GENES OR SEQUENCES |
| WO2016040602A1 (en) | 2014-09-11 | 2016-03-17 | Epicentre Technologies Corporation | Reduced representation bisulfite sequencing using uracil n-glycosylase (ung) and endonuclease iv |
| EP3191606B1 (en) | 2014-09-12 | 2020-05-27 | Illumina, Inc. | Methods for detecting the presence of polymer subunits using chemiluminescence |
| KR102538753B1 (en) | 2014-09-18 | 2023-05-31 | 일루미나, 인코포레이티드 | Methods and systems for analyzing nucleic acid sequencing data |
| WO2016054096A1 (en) | 2014-09-30 | 2016-04-07 | Illumina, Inc. | Modified polymerases for improved incorporation of nucleotide analogues |
| US9897791B2 (en) | 2014-10-16 | 2018-02-20 | Illumina, Inc. | Optical scanning systems for in situ genetic analysis |
| KR102643955B1 (en) | 2014-10-17 | 2024-03-07 | 일루미나 케임브리지 리미티드 | Contiguity preserving transposition |
| DK3212684T3 (en) | 2014-10-31 | 2020-03-02 | Illumina Cambridge Ltd | Polymers and DNA copolymer coatings |
| DK3215616T3 (en) | 2014-11-05 | 2020-03-02 | Illumina Cambridge Ltd | Reducing DNA damage during sample preparation and sequencing using siderophore chelators |
| GB201419731D0 (en) | 2014-11-05 | 2014-12-17 | Illumina Cambridge Ltd | Sequencing from multiple primers to increase data rate and density |
| HK1243464B (en) | 2014-11-11 | 2019-08-16 | Illumina, Inc. | Polynucleotide amplification using crispr-cas systems |
| SG11201703693UA (en) | 2014-11-11 | 2017-06-29 | Illumina Cambridge Ltd | Methods and arrays for producing and sequencing monoclonal clusters of nucleic acid |
| CN114438172B (en) | 2014-12-15 | 2025-02-21 | 亿明达股份有限公司 | Compositions and methods for single molecule placement on substrates |
| US10302972B2 (en) | 2015-01-23 | 2019-05-28 | Pacific Biosciences Of California, Inc. | Waveguide transmission |
| US10150872B2 (en) | 2015-02-04 | 2018-12-11 | Pacific Biosciences Of California, Inc. | Multimeric protected fluorescent reagents |
| KR20240091073A (en) | 2015-02-10 | 2024-06-21 | 일루미나, 인코포레이티드 | The method and the composition for analyzing the cellular constituent |
| CN113064236B (en) | 2015-03-16 | 2022-11-01 | 加利福尼亚太平洋生物科学股份有限公司 | Integrated device and system for free space optical coupling |
| CN107847930B (en) | 2015-03-20 | 2020-06-30 | 亿明达股份有限公司 | Fluid cartridge for use in an upright or substantially upright position |
| CN119779988A (en) | 2015-03-24 | 2025-04-08 | 伊鲁米那股份有限公司 | Methods, carrier assemblies and systems for imaging samples for biological or chemical analysis |
| ES2846730T3 (en) | 2015-03-31 | 2021-07-29 | Illumina Cambridge Ltd | Concatemerization on the surface of molds |
| WO2016162309A1 (en) | 2015-04-10 | 2016-10-13 | Spatial Transcriptomics Ab | Spatially distinguished, multiplex nucleic acid analysis of biological specimens |
| EP3696536A1 (en) | 2015-04-14 | 2020-08-19 | Illumina, Inc. | A method of manufacturing a substrate and a method of analyzing biomolecules capable of generating light emissions |
| US10844428B2 (en) | 2015-04-28 | 2020-11-24 | Illumina, Inc. | Error suppression in sequenced DNA fragments using redundant reads with unique molecular indices (UMIS) |
| WO2016179437A1 (en) | 2015-05-07 | 2016-11-10 | Pacific Biosciences Of California, Inc. | Multiprocessor pipeline architecture |
| CA2983932C (en) | 2015-05-11 | 2023-07-25 | Illumina, Inc. | Platform for discovery and analysis of therapeutic agents |
| CA2984112C (en) | 2015-05-12 | 2021-07-06 | Illumina, Inc. | Field-effect apparatus and methods for sequencing nucelic acids |
| BR112017025587B1 (en) | 2015-05-29 | 2022-09-27 | Illumina, Inc | SAMPLE CARRIER AND ASSAY SYSTEM TO CONDUCT DESIGNATED REACTIONS |
| US10640809B2 (en) | 2015-05-29 | 2020-05-05 | Epicentre Technologies Corporation | Methods of analyzing nucleic acids |
| JP6609641B2 (en) | 2015-05-29 | 2019-11-20 | イルミナ ケンブリッジ リミテッド | Advanced use of surface primers in clusters |
| WO2016196755A1 (en) | 2015-06-03 | 2016-12-08 | Illumina, Inc. | Compositions, systems, and methods for sequencing polynucleotides using tethers anchored to polymerases adjacent to nanopores |
| CA2989344C (en) | 2015-06-12 | 2023-09-26 | Pacific Biosciences Of California, Inc. | Integrated target waveguide devices and systems for optical coupling |
| WO2016205753A1 (en) | 2015-06-17 | 2016-12-22 | The Translational Genomics Research Institute | Systems and methods for obtaining biological molecules from a sample |
| EP3878974A1 (en) | 2015-07-06 | 2021-09-15 | Illumina Cambridge Limited | Sample preparation for nucleic acid amplification |
| CN107924121B (en) | 2015-07-07 | 2021-06-08 | 亿明达股份有限公司 | Selective Surface Patterning via Nanoimprinting |
| EP3325648B1 (en) | 2015-07-17 | 2023-03-29 | Illumina, Inc. | Polymer sheets for sequencing applications |
| CA3242290A1 (en) | 2015-07-27 | 2017-02-02 | Illumina, Inc. | Spatial mapping of nucleic acid sequence information |
| IL255445B (en) | 2015-07-30 | 2022-07-01 | Illumina Inc | Removal of orthogonal blocking of nucleotides |
| WO2017030999A1 (en) | 2015-08-14 | 2017-02-23 | Illumina, Inc. | Systems and methods using magnetically-responsive sensors for determining a genetic characteristic |
| CN108474805A (en) | 2015-08-24 | 2018-08-31 | 亿明达股份有限公司 | In-line accumulators and flow control systems for biological and chemical assays |
| CA2997035A1 (en) | 2015-08-28 | 2017-03-09 | Illumina, Inc. | Nucleic acid sequence analysis from single cells |
| WO2017037078A1 (en) | 2015-09-02 | 2017-03-09 | Illumina Cambridge Limited | Systems and methods of improving droplet operations in fluidic systems |
| US10450598B2 (en) | 2015-09-11 | 2019-10-22 | Illumina, Inc. | Systems and methods for obtaining a droplet having a designated concentration of a substance-of-interest |
| WO2017087724A1 (en) | 2015-11-17 | 2017-05-26 | Omniome, Inc. | Methods for determining sequence profiles |
| US10676788B2 (en) | 2015-11-20 | 2020-06-09 | Pacific Biosciences Of California, Inc. | Modified nucleotide reagents |
| WO2017087975A1 (en) | 2015-11-20 | 2017-05-26 | Pacific Biosciences Of California, Inc. | Labeled nucleotide analogs, reaction mixtures, and methods and systems for sequencing |
| CN108472121A (en) | 2015-11-20 | 2018-08-31 | 加利福尼亚太平洋生物科学股份有限公司 | Protected dye-labeled reagents |
| CN115881230A (en) | 2015-12-17 | 2023-03-31 | 伊路敏纳公司 | Differentiate methylation levels in complex biological samples |
| DE202017100081U1 (en) | 2016-01-11 | 2017-03-19 | Illumina, Inc. | Detection device with a microfluorometer, a fluidic system and a flow cell detent module |
| EP3417277A4 (en) | 2016-02-17 | 2019-10-23 | Tesseract Health, Inc. | SENSOR AND DEVICE FOR IMAGING AND LIFETIME DETECTION APPLICATIONS |
| CN110702652A (en) | 2016-03-24 | 2020-01-17 | 伊鲁米那股份有限公司 | Apparatus and compositions for use in luminescence imaging and methods of use thereof |
| ES2861350T3 (en) | 2016-03-28 | 2021-10-06 | Illumina Inc | Multi-plane microarrays |
| WO2017177017A1 (en) | 2016-04-07 | 2017-10-12 | Omniome, Inc. | Methods of quantifying target nucleic acids and identifying sequence variants |
| EP3235905A1 (en) | 2016-04-20 | 2017-10-25 | QIAGEN GmbH | Method for generating a stranded rna library |
| KR102254451B1 (en) | 2016-04-22 | 2021-05-20 | 옴니옴 인코포레이티드 | Nucleic acid sequencing method and system employing enhanced detection of nucleotide-specific ternary complex formation |
| IL301735A (en) | 2016-04-22 | 2023-05-01 | Illumina Inc | Photonic structure-based devices and compositions for use in luminescent imaging of sites in a pixel and methods of using the devices and compositions |
| US10597643B2 (en) | 2016-04-29 | 2020-03-24 | Omniome, Inc. | Polymerases engineered to reduce nucleotide-independent DNA binding |
| AU2017258523B2 (en) | 2016-04-29 | 2020-08-13 | Pacific Biosciences Of California, Inc. | Method of Nucleic Acid sequence determination |
| AU2017258619B2 (en) | 2016-04-29 | 2020-05-14 | Pacific Biosciences Of California, Inc. | Sequencing method employing ternary complex destabilization to identify cognate nucleotides |
| EP4269611A3 (en) | 2016-05-11 | 2024-01-17 | Illumina, Inc. | Polynucleotide enrichment and amplification using argonaute systems |
| EP3458913B1 (en) | 2016-05-18 | 2020-12-23 | Illumina, Inc. | Self assembled patterning using patterned hydrophobic surfaces |
| EP3488002B1 (en) | 2016-07-22 | 2021-03-31 | Oregon Health & Science University | Single cell whole genome libraries and combinatorial indexing methods of making thereof |
| WO2018034780A1 (en) | 2016-08-15 | 2018-02-22 | Omniome, Inc. | Sequencing method for rapid identification and processing of cognate nucleotide pairs |
| KR102230444B1 (en) | 2016-08-15 | 2021-03-23 | 옴니옴 인코포레이티드 | Methods and systems for sequencing nucleic acids |
| WO2018064116A1 (en) | 2016-09-28 | 2018-04-05 | Illumina, Inc. | Methods and systems for data compression |
| CN111781139B (en) | 2016-10-14 | 2023-09-12 | 亿明达股份有限公司 | Clamping box assembly |
| CN110100009B (en) | 2016-10-19 | 2023-11-21 | 伊鲁米那股份有限公司 | Method for chemical ligation of nucleic acids |
| WO2018093780A1 (en) | 2016-11-16 | 2018-05-24 | Illumina, Inc. | Validation methods and systems for sequence variant calls |
| GB201619458D0 (en) | 2016-11-17 | 2017-01-04 | Spatial Transcriptomics Ab | Method for spatial tagging and analysing nucleic acids in a biological specimen |
| KR20240120756A (en) | 2016-12-09 | 2024-08-07 | 더 브로드 인스티튜트, 인코퍼레이티드 | Crispr effector system based diagnostics |
| KR102512186B1 (en) | 2016-12-22 | 2023-03-20 | 일루미나, 인코포레이티드 | Array comprising a resin film and a patterned polymer layer |
| AU2017382316B2 (en) | 2016-12-22 | 2023-02-09 | Quantum-Si Incorporated | Integrated photodetector with direct binning pixel |
| EP3559262B1 (en) | 2016-12-22 | 2025-04-09 | Illumina, Inc. | Arrays with quality control tracers |
| JP7051869B2 (en) | 2016-12-22 | 2022-04-11 | イラミーナ インコーポレーテッド | Array containing sequencing primers and non-sequencing entities |
| CA3048415C (en) | 2016-12-30 | 2023-02-28 | Omniome, Inc. | Method and system employing distinguishable polymerases for detecting ternary complexes and identifying cognate nucleotides |
| GB201704754D0 (en) | 2017-01-05 | 2017-05-10 | Illumina Inc | Kinetic exclusion amplification of nucleic acid libraries |
| WO2018128544A1 (en) | 2017-01-06 | 2018-07-12 | Agendia N.V. | Biomarkers for selecting patient groups, and uses thereof. |
| CA3049142A1 (en) | 2017-01-06 | 2018-07-12 | Illumina, Inc. | Phasing correction |
| AU2018208462B2 (en) | 2017-01-10 | 2021-07-29 | Pacific Biosciences Of California, Inc. | Polymerases engineered to reduce nucleotide-independent DNA binding |
| JP6806909B2 (en) | 2017-01-17 | 2021-01-06 | イルミナ インコーポレイテッド | Determining tumorigenic splicing variants |
| EP3571616B1 (en) | 2017-01-18 | 2021-05-19 | Illumina, Inc. | Methods and systems for generation and error-correction of unique molecular index sets with heterogeneous molecular lengths |
| AU2017394645B2 (en) | 2017-01-20 | 2020-01-23 | Pacific Biosciences Of California, Inc. | Genotyping by polymerase binding |
| WO2018136117A1 (en) | 2017-01-20 | 2018-07-26 | Omniome, Inc. | Allele-specific capture of nucleic acids |
| EP3571319A1 (en) | 2017-01-20 | 2019-11-27 | Omniome, Inc. | Process for cognate nucleotide detection in a nucleic acid sequencing workflow |
| GB201701689D0 (en) | 2017-02-01 | 2017-03-15 | Illumia Inc | System and method with fiducials of non-closed shapes |
| CN109414673B (en) | 2017-02-01 | 2021-09-07 | 伊鲁米那股份有限公司 | System and method having a reference responsive to multiple excitation frequencies |
| GB201701688D0 (en) | 2017-02-01 | 2017-03-15 | Illumia Inc | System and method with fiducials in non-recliner layouts |
| GB201701686D0 (en) | 2017-02-01 | 2017-03-15 | Illunina Inc | System & method with fiducials having offset layouts |
| WO2018152162A1 (en) | 2017-02-15 | 2018-08-23 | Omniome, Inc. | Distinguishing sequences by detecting polymerase dissociation |
| EP3494235A1 (en) | 2017-02-17 | 2019-06-12 | Stichting VUmc | Swarm intelligence-enhanced diagnosis and therapy selection for cancer using tumor- educated platelets |
| EP3783112A1 (en) | 2017-02-21 | 2021-02-24 | Illumina, Inc. | Tagmentation using immobilized transposomes with linkers |
| US11021740B2 (en) | 2017-03-15 | 2021-06-01 | The Broad Institute, Inc. | Devices for CRISPR effector system based diagnostics |
| EP3596218B1 (en) | 2017-03-15 | 2023-08-23 | The Broad Institute, Inc. | Crispr effector system based diagnostics for virus detection |
| US11174515B2 (en) | 2017-03-15 | 2021-11-16 | The Broad Institute, Inc. | CRISPR effector system based diagnostics |
| US11104937B2 (en) | 2017-03-15 | 2021-08-31 | The Broad Institute, Inc. | CRISPR effector system based diagnostics |
| SG11201908680YA (en) | 2017-03-20 | 2019-10-30 | Illumina Inc | Methods and compositions for preparing nucleic acid libraries |
| WO2018175798A1 (en) | 2017-03-24 | 2018-09-27 | Life Technologies Corporation | Polynucleotide adapters and methods of use thereof |
| WO2018187013A1 (en) | 2017-04-04 | 2018-10-11 | Omniome, Inc. | Fluidic apparatus and methods useful for chemical and biological reactions |
| AU2018259202B2 (en) | 2017-04-23 | 2022-03-24 | Illumina Cambridge Limited | Compositions and methods for improving sample identification in indexed nucleic acid libraries |
| DK3615691T3 (en) | 2017-04-23 | 2021-07-26 | Illumina Inc | Compositions and methods for improving sample identification in indexed nucleic acid libraries |
| CN111094584B (en) | 2017-04-23 | 2024-11-26 | 伊鲁米那股份有限公司 | Compositions and methods for improving sample identification in indexed nucleic acid libraries |
| US10161003B2 (en) | 2017-04-25 | 2018-12-25 | Omniome, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
| US9951385B1 (en) | 2017-04-25 | 2018-04-24 | Omniome, Inc. | Methods and apparatus that increase sequencing-by-binding efficiency |
| EP3619326A1 (en) | 2017-05-01 | 2020-03-11 | Illumina, Inc. | Optimal index sequences for multiplex massively parallel sequencing |
| AU2018266377B2 (en) | 2017-05-08 | 2024-06-20 | Illumina, Inc. | Universal short adapters for indexing of polynucleotide samples |
| IL271215B2 (en) | 2017-06-07 | 2025-02-01 | Univ Oregon Health & Science | Single cell whole genome libraries for methylation sequencing |
| EP3642362B1 (en) | 2017-06-20 | 2025-10-15 | Illumina, Inc. | Methods for addressing inefficiencies in amplification reactions |
| CA3070407C (en) | 2017-07-18 | 2022-08-09 | Omniome, Inc. | Method of chemically modifying plastic surfaces |
| BR112020000826A2 (en) | 2017-07-24 | 2020-07-21 | Quantum-Si Incorporated | massively parallel bio-optoelectronic instrument |
| WO2019027767A1 (en) | 2017-07-31 | 2019-02-07 | Illumina Inc. | Sequencing system with multiplexed biological sample aggregation |
| CN118086479A (en) | 2017-08-01 | 2024-05-28 | 深圳华大智造科技有限公司 | Nucleic acid sequencing methods |
| KR102307473B1 (en) | 2017-08-01 | 2021-10-01 | 일루미나, 인코포레이티드 | Hydrogel Beads for Nucleotide Sequencing |
| US11352668B2 (en) | 2017-08-01 | 2022-06-07 | Illumina, Inc. | Spatial indexing of genetic material and library preparation using hydrogel beads and flow cells |
| EP3545106B1 (en) | 2017-08-01 | 2022-01-19 | Helitec Limited | Methods of enriching and determining target nucleotide sequences |
| AU2018317826B2 (en) | 2017-08-15 | 2022-11-24 | Pacific Biosciences Of California, Inc. | Scanning apparatus and methods useful for detection of chemical and biological analytes |
| US11447818B2 (en) | 2017-09-15 | 2022-09-20 | Illumina, Inc. | Universal short adapters with variable length non-random unique molecular identifiers |
| WO2019079182A1 (en) | 2017-10-16 | 2019-04-25 | Illumina, Inc. | Semi-supervised learning for training an ensemble of deep convolutional neural networks |
| KR102662206B1 (en) | 2017-10-16 | 2024-04-30 | 일루미나, 인코포레이티드 | Deep learning-based splice site classification |
| EP3697932A1 (en) | 2017-10-19 | 2020-08-26 | Omniome, Inc. | Simultaneous background reduction and complex stabilization in binding assay workflows |
| US11561196B2 (en) | 2018-01-08 | 2023-01-24 | Illumina, Inc. | Systems and devices for high-throughput sequencing with semiconductor-based detection |
| CA3065934A1 (en) | 2018-01-08 | 2019-07-11 | Illumina, Inc. | High-throughput sequencing with semiconductor-based detection |
| KR102689425B1 (en) | 2018-01-15 | 2024-07-29 | 일루미나, 인코포레이티드 | Deep learning-based variant classifier |
| JP7527961B2 (en) | 2018-01-29 | 2024-08-05 | ザ・ブロード・インスティテュート・インコーポレイテッド | CRISPR effector system-based diagnostics |
| BR112020015905A2 (en) | 2018-02-06 | 2020-12-15 | Omniome, Inc. | COMPOSITIONS AND TECHNIQUES FOR NUCLEIC ACID INITIATOR EXTENSION |
| EP4083225A1 (en) | 2018-02-13 | 2022-11-02 | Illumina, Inc. | Dna sequencing using hydrogel beads |
| RU2751359C2 (en) | 2018-02-16 | 2021-07-13 | Иллюмина, Инк. | Charge labelled nucleotides and methods for application thereof |
| IL271411B2 (en) | 2018-03-09 | 2024-03-01 | Illumina Inc | Generalized stochastic super-resolution sequencing |
| KR102383799B1 (en) | 2018-04-02 | 2022-04-05 | 일루미나, 인코포레이티드 | Compositions and methods for preparing controls for sequence-based genetic testing |
| WO2019200338A1 (en) | 2018-04-12 | 2019-10-17 | Illumina, Inc. | Variant classifier based on deep neural networks |
| WO2019203986A1 (en) | 2018-04-19 | 2019-10-24 | Omniome, Inc. | Improving accuracy of base calls in nucleic acid sequencing methods |
| SG11201911961RA (en) | 2018-04-20 | 2020-01-30 | Illumina Inc | Methods of encapsulating single cells, the encapsulated cells and uses thereof |
| JP7554117B2 (en) | 2018-04-26 | 2024-09-19 | パシフィック・バイオサイエンシズ・オブ・カリフォルニア・インク. | Methods and compositions for stabilizing nucleic acid-nucleotide-polymerase complexes - Patents.com |
| EP4306532A3 (en) | 2018-05-15 | 2024-04-10 | Illumina, Inc. | Chemical cleavage and deprotection |
| US11981891B2 (en) | 2018-05-17 | 2024-05-14 | Illumina, Inc. | High-throughput single-cell sequencing with reduced amplification bias |
| CN110785499B (en) | 2018-05-25 | 2024-12-03 | 伊鲁米那股份有限公司 | Circulating RNA signature specific for preeclampsia |
| JP2021525078A (en) | 2018-05-31 | 2021-09-24 | オムニオム インコーポレイテッドOmniome, Inc. | Increased signal vs. noise in nucleic acid sequencing |
| US11180794B2 (en) | 2018-05-31 | 2021-11-23 | Omniome, Inc. | Methods and compositions for capping nucleic acids |
| KR102507415B1 (en) | 2018-06-04 | 2023-03-07 | 일루미나, 인코포레이티드 | High-throughput single-cell transcriptome libraries and methods of making and of using |
| AU2019288394B2 (en) | 2018-06-22 | 2025-01-30 | Quantum-Si Incorporated | Integrated photodetector with charge storage bin of varied detection time |
| US12073922B2 (en) | 2018-07-11 | 2024-08-27 | Illumina, Inc. | Deep learning-based framework for identifying sequence patterns that cause sequence-specific errors (SSEs) |
| CN113056327A (en) | 2018-07-23 | 2021-06-29 | Dna斯克瑞普特公司 | Massively parallel enzymatic synthesis of nucleic acid strands |
| CA3107165A1 (en) | 2018-07-24 | 2020-01-30 | Omniome, Inc. | Serial formation of ternary complex species |
| WO2020022891A2 (en) | 2018-07-26 | 2020-01-30 | Stichting Vumc | Biomarkers for atrial fibrillation |
| EP3833761A1 (en) | 2018-08-07 | 2021-06-16 | The Broad Institute, Inc. | Novel cas12b enzymes and systems |
| JP7431802B2 (en) | 2018-08-15 | 2024-02-15 | イルミナ インコーポレイテッド | Compositions and methods for improving library enrichment |
| US11519033B2 (en) | 2018-08-28 | 2022-12-06 | 10X Genomics, Inc. | Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample |
| EP3853358A1 (en) | 2018-09-17 | 2021-07-28 | Omniome, Inc. | Engineered polymerases for improved sequencing |
| WO2020072816A1 (en) | 2018-10-03 | 2020-04-09 | The Broad Institute, Inc. | Crispr effector system based diagnostics for hemorrhagic fever detection |
| NZ759665A (en) | 2018-10-15 | 2022-07-01 | Illumina Inc | Deep learning-based techniques for pre-training deep convolutional neural networks |
| MY202795A (en) | 2018-10-26 | 2024-05-22 | Illumina Inc | Modulating polymer beads for dna processing |
| CN112673098B (en) | 2018-10-31 | 2023-01-06 | 亿明达股份有限公司 | Polymerases, compositions and methods of use |
| WO2020093261A1 (en) | 2018-11-07 | 2020-05-14 | 深圳华大智造极创科技有限公司 | Method for sequencing polynucleotides |
| JP2022513031A (en) | 2018-11-14 | 2022-02-07 | ディーエヌエー スクリプト | Terminal deoxynucleotidyl transferase variant and its use |
| WO2020101795A1 (en) | 2018-11-15 | 2020-05-22 | Omniome, Inc. | Electronic detection of nucleic acid structure |
| NL2022043B1 (en) | 2018-11-21 | 2020-06-03 | Akershus Univ Hf | Tagmentation-Associated Multiplex PCR Enrichment Sequencing |
| EP4477758A3 (en) | 2018-11-30 | 2025-01-15 | Illumina, Inc. | Analysis of multiple analytes using a single assay |
| EP3891304A1 (en) | 2018-12-04 | 2021-10-13 | Omniome, Inc. | Mixed-phase fluids for nucleic acid sequencing and other analytical assays |
| WO2020117968A2 (en) | 2018-12-05 | 2020-06-11 | Illumina, Inc. | Polymerases, compositions, and methods of use |
| EP3891305A1 (en) | 2018-12-05 | 2021-10-13 | Illumina Cambridge Limited | Methods and compositions for cluster generation by bridge amplification |
| CN113767177B (en) | 2018-12-10 | 2025-01-14 | 10X基因组学有限公司 | Generation of capture probes for spatial analysis |
| GB201820341D0 (en) | 2018-12-13 | 2019-01-30 | 10X Genomics Inc | Method for transposase-mediated spatial tagging and analysing genomic DNA in a biological specimen |
| GB201820300D0 (en) | 2018-12-13 | 2019-01-30 | 10X Genomics Inc | Method for spatial tagging and analysing genomic DNA in a biological specimen |
| EP3894593B1 (en) | 2018-12-13 | 2024-10-02 | DNA Script | Direct oligonucleotide synthesis on cdna |
| JP7542444B2 (en) | 2018-12-14 | 2024-08-30 | イルミナ ケンブリッジ リミテッド | Reduced phasing by unlabeled nucleotides during sequencing. |
| WO2020126595A1 (en) | 2018-12-17 | 2020-06-25 | Illumina Cambridge Limited | Primer oligonucleotide for sequencing |
| EP3899040B8 (en) | 2018-12-17 | 2025-06-11 | Illumina Cambridge Limited | Method of polynucleotide sequencing |
| SG11202012807YA (en) | 2018-12-18 | 2021-01-28 | Illumina Cambridge Ltd | Methods and compositions for paired end sequencing using a single surface primer |
| ES2965222T3 (en) | 2018-12-19 | 2024-04-11 | Illumina Inc | Methods to improve the clonality priority of polynucleotide pools |
| JP7153140B2 (en) | 2018-12-19 | 2022-10-13 | エフ.ホフマン-ラ ロシュ アーゲー | 3' protected nucleotide |
| WO2020132350A2 (en) | 2018-12-20 | 2020-06-25 | Omniome, Inc. | Temperature control for analysis of nucleic acids and other analytes |
| US11293061B2 (en) | 2018-12-26 | 2022-04-05 | Illumina Cambridge Limited | Sequencing methods using nucleotides with 3′ AOM blocking group |
| WO2020141143A1 (en) | 2019-01-03 | 2020-07-09 | Dna Script | One pot synthesis of sets of oligonucleotides |
| US11649485B2 (en) | 2019-01-06 | 2023-05-16 | 10X Genomics, Inc. | Generating capture probes for spatial analysis |
| US11926867B2 (en) | 2019-01-06 | 2024-03-12 | 10X Genomics, Inc. | Generating capture probes for spatial analysis |
| CN112930405B (en) | 2019-01-11 | 2025-01-28 | Illumina剑桥有限公司 | Composite surface-bound transposome complex |
| WO2020165137A1 (en) | 2019-02-12 | 2020-08-20 | Dna Script | Efficient product cleavage in template-free enzymatic synthesis of polynucleotides. |
| US11499189B2 (en) | 2019-02-14 | 2022-11-15 | Pacific Biosciences Of California, Inc. | Mitigating adverse impacts of detection systems on nucleic acids and other biological analytes |
| KR20210132104A (en) | 2019-02-19 | 2021-11-03 | 울티마 제노믹스, 인크. | Linkers and Methods for Optical Detection and Sequencing |
| EP3927467A4 (en) | 2019-02-20 | 2022-12-14 | Pacific Biosciences of California, Inc. | Scanning apparatus and methods for detecting chemical and biological analytes |
| MX2021003746A (en) | 2019-03-01 | 2021-06-23 | Illumina Inc | High-throughput single-nuclei and single-cell libraries and methods of making and of using. |
| NL2023311B9 (en) | 2019-03-21 | 2021-03-12 | Illumina Inc | Artificial intelligence-based generation of sequencing metadata |
| NL2023312B1 (en) | 2019-03-21 | 2020-09-28 | Illumina Inc | Artificial intelligence-based base calling |
| NL2023316B1 (en) | 2019-03-21 | 2020-09-28 | Illumina Inc | Artificial intelligence-based sequencing |
| NL2023314B1 (en) | 2019-03-21 | 2020-09-28 | Illumina Inc | Artificial intelligence-based quality scoring |
| WO2020191390A2 (en) | 2019-03-21 | 2020-09-24 | Illumina, Inc. | Artificial intelligence-based quality scoring |
| US11783917B2 (en) | 2019-03-21 | 2023-10-10 | Illumina, Inc. | Artificial intelligence-based base calling |
| US11210554B2 (en) | 2019-03-21 | 2021-12-28 | Illumina, Inc. | Artificial intelligence-based generation of sequencing metadata |
| NL2023310B1 (en) | 2019-03-21 | 2020-09-28 | Illumina Inc | Training data generation for artificial intelligence-based sequencing |
| CN118931711A (en) | 2019-05-15 | 2024-11-12 | 青岛华大智造科技有限责任公司 | Single-channel sequencing device and sequencing method |
| US11593649B2 (en) | 2019-05-16 | 2023-02-28 | Illumina, Inc. | Base calling using convolutions |
| US11423306B2 (en) | 2019-05-16 | 2022-08-23 | Illumina, Inc. | Systems and devices for characterization and performance analysis of pixel-based sequencing |
| EP3976820A1 (en) | 2019-05-30 | 2022-04-06 | 10X Genomics, Inc. | Methods of detecting spatial heterogeneity of a biological sample |
| US11644406B2 (en) | 2019-06-11 | 2023-05-09 | Pacific Biosciences Of California, Inc. | Calibrated focus sensing |
| KR20220034716A (en) | 2019-07-12 | 2022-03-18 | 일루미나 케임브리지 리미티드 | Compositions and methods for preparing nucleic acid sequencing libraries using CRISPR/CAS9 immobilized on a solid support |
| BR112021012751A2 (en) | 2019-07-12 | 2021-12-14 | Illumina Cambridge Ltd | Nucleic acid library preparation using electrophoresis |
| WO2021011803A1 (en) | 2019-07-16 | 2021-01-21 | Omniome, Inc. | Synthetic nucleic acids having non-natural structures |
| US10656368B1 (en) | 2019-07-24 | 2020-05-19 | Omniome, Inc. | Method and system for biological imaging using a wide field objective lens |
| CA3145783A1 (en) | 2019-07-30 | 2021-02-04 | Tillmann HEINISCH | Template-free enzymatic synthesis of polynucleotides using poly(a) and poly(u) polymerases |
| EP4007816A1 (en) | 2019-08-01 | 2022-06-08 | DNA Script | Increasing long-sequence yields in template-free enzymatic synthesis of polynucleotides |
| EP4047098A4 (en) | 2019-08-20 | 2023-06-07 | EGI Tech (Shen Zhen) Co., Limited | Method for sequencing polynucleotides on basis of optical signal dynamics of luminescent label and secondary luminescent signal |
| US20220315970A1 (en) | 2019-09-09 | 2022-10-06 | Dna Script | Template-Free Enzymatic Polynucleotide Synthesis Using Photocleavable Linkages |
| TW202124406A (en) | 2019-09-10 | 2021-07-01 | 美商歐姆尼歐美公司 | Reversible modification of nucleotides |
| US20220290245A1 (en) | 2019-09-11 | 2022-09-15 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Servic | Cancer detection and classification |
| CN114729389B (en) | 2019-09-23 | 2024-03-08 | Dna斯克瑞普特公司 | Increasing long sequence yield in template-free enzymatic synthesis of polynucleotides |
| EP4045683B1 (en) | 2019-10-18 | 2025-02-19 | Pacific Biosciences of California, Inc. | Methods for capping nucleic acids |
| EP4055185A1 (en) | 2019-11-08 | 2022-09-14 | 10X Genomics, Inc. | Spatially-tagged analyte capture agents for analyte multiplexing |
| WO2021092433A2 (en) | 2019-11-08 | 2021-05-14 | 10X Genomics, Inc. | Enhancing specificity of analyte binding |
| US20210139867A1 (en) | 2019-11-08 | 2021-05-13 | Omniome, Inc. | Engineered polymerases for improved sequencing by binding |
| JP2023501651A (en) | 2019-11-13 | 2023-01-18 | ディーエヌエー スクリプト | Highly efficient template-free enzymatic synthesis of polynucleotides |
| CA3131748A1 (en) | 2019-11-22 | 2021-05-27 | Sarah E. SHULTZABERGER | Circulating rna signatures specific to preeclampsia |
| DE202019106695U1 (en) | 2019-12-02 | 2020-03-19 | Omniome, Inc. | System for sequencing nucleic acids in fluid foam |
| DE202019106694U1 (en) | 2019-12-02 | 2020-03-19 | Omniome, Inc. | System for sequencing nucleic acids in fluid foam |
| EP4010489A1 (en) | 2019-12-04 | 2022-06-15 | Illumina, Inc. | Preparation of dna sequencing libraries for detection of dna pathogens in plasma |
| WO2021118349A1 (en) | 2019-12-10 | 2021-06-17 | Prinses Máxima Centrum Voor Kinderoncologie B.V. | Methods of typing germ cell tumors |
| CN114787346A (en) | 2019-12-12 | 2022-07-22 | Dna斯克瑞普特公司 | Chimeric terminal deoxynucleotidyl transferase for template-free enzymatic synthesis of polynucleotides |
| CN115135770A (en) | 2019-12-16 | 2022-09-30 | Dna斯克瑞普特公司 | Template-free enzymatic synthesis of polynucleotides using disproportionation-free terminal deoxynucleotidyl transferase variants |
| EP4077344B1 (en) | 2019-12-18 | 2025-07-23 | F. Hoffmann-La Roche AG | Methods of sequencing by synthesis using a consecutive labeling scheme |
| BR112021019640A2 (en) | 2019-12-19 | 2022-06-21 | Illumina Inc | High-throughput single cell libraries and methods of preparation and use |
| CN115038794A (en) | 2019-12-23 | 2022-09-09 | 10X基因组学有限公司 | Compositions and methods for using fixed biological samples in partition-based assays |
| CN114885610B (en) | 2019-12-23 | 2025-09-05 | 10X基因组学有限公司 | Methods for spatial profiling using RNA-templated ligation |
| US12365942B2 (en) | 2020-01-13 | 2025-07-22 | 10X Genomics, Inc. | Methods of decreasing background on a spatial array |
| EP4090942A4 (en) * | 2020-01-14 | 2024-02-28 | Pacific Biosciences of California, Inc. | Nucleic acid sequencing cartridges, packaged devices, and systems |
| US12405264B2 (en) | 2020-01-17 | 2025-09-02 | 10X Genomics, Inc. | Electrophoretic system and method for analyte capture |
| US11732299B2 (en) | 2020-01-21 | 2023-08-22 | 10X Genomics, Inc. | Spatial assays with perturbed cells |
| US11702693B2 (en) | 2020-01-21 | 2023-07-18 | 10X Genomics, Inc. | Methods for printing cells and generating arrays of barcoded cells |
| US20210230681A1 (en) | 2020-01-24 | 2021-07-29 | 10X Genomics, Inc. | Methods for spatial analysis using proximity ligation |
| US11821035B1 (en) | 2020-01-29 | 2023-11-21 | 10X Genomics, Inc. | Compositions and methods of making gene expression libraries |
| US12076701B2 (en) | 2020-01-31 | 2024-09-03 | 10X Genomics, Inc. | Capturing oligonucleotides in spatial transcriptomics |
| US12110541B2 (en) | 2020-02-03 | 2024-10-08 | 10X Genomics, Inc. | Methods for preparing high-resolution spatial arrays |
| US11898205B2 (en) | 2020-02-03 | 2024-02-13 | 10X Genomics, Inc. | Increasing capture efficiency of spatial assays |
| US20230054204A1 (en) | 2020-02-04 | 2023-02-23 | Pacific Biosciences Of California, Inc. | Flow cells and methods for their manufacture and use |
| US11732300B2 (en) | 2020-02-05 | 2023-08-22 | 10X Genomics, Inc. | Increasing efficiency of spatial analysis in a biological sample |
| WO2021158925A1 (en) | 2020-02-07 | 2021-08-12 | 10X Genomics, Inc. | Quantitative and automated permeabilization performance evaluation for spatial transcriptomics |
| US11835462B2 (en) | 2020-02-11 | 2023-12-05 | 10X Genomics, Inc. | Methods and compositions for partitioning a biological sample |
| US12281357B1 (en) | 2020-02-14 | 2025-04-22 | 10X Genomics, Inc. | In situ spatial barcoding |
| US12399123B1 (en) | 2020-02-14 | 2025-08-26 | 10X Genomics, Inc. | Spatial targeting of analytes |
| US11807851B1 (en) | 2020-02-18 | 2023-11-07 | Ultima Genomics, Inc. | Modified polynucleotides and uses thereof |
| MX2022010276A (en) | 2020-02-20 | 2022-09-19 | Illumina Inc | MANY-TO-MANY BASE CALL BASED ON ARTIFICIAL INTELLIGENCE. |
| US20210265016A1 (en) | 2020-02-20 | 2021-08-26 | Illumina, Inc. | Data Compression for Artificial Intelligence-Based Base Calling |
| US20210265015A1 (en) | 2020-02-20 | 2021-08-26 | Illumina, Inc. | Hardware Execution and Acceleration of Artificial Intelligence-Based Base Caller |
| US12354008B2 (en) | 2020-02-20 | 2025-07-08 | Illumina, Inc. | Knowledge distillation and gradient pruning-based compression of artificial intelligence-based base caller |
| US11891654B2 (en) | 2020-02-24 | 2024-02-06 | 10X Genomics, Inc. | Methods of making gene expression libraries |
| US20230089448A1 (en) | 2020-02-25 | 2023-03-23 | Dna Script | Method And Apparatus for Enzymatic Synthesis of Polynucleotides |
| US11926863B1 (en) | 2020-02-27 | 2024-03-12 | 10X Genomics, Inc. | Solid state single cell method for analyzing fixed biological cells |
| WO2021178467A1 (en) | 2020-03-03 | 2021-09-10 | Omniome, Inc. | Methods and compositions for sequencing double stranded nucleic acids |
| US11768175B1 (en) | 2020-03-04 | 2023-09-26 | 10X Genomics, Inc. | Electrophoretic methods for spatial analysis |
| US20230159903A1 (en) | 2020-04-20 | 2023-05-25 | Dna Script | Terminal Deoxynucleotidyl Transferase Variants and Uses Thereof |
| WO2021216708A1 (en) | 2020-04-22 | 2021-10-28 | 10X Genomics, Inc. | Methods for spatial analysis using targeted rna depletion |
| WO2021221500A1 (en) | 2020-04-27 | 2021-11-04 | Agendia N.V. | Treatment of her2 negative, mammaprint high risk 2 breast cancer. |
| US11188778B1 (en) | 2020-05-05 | 2021-11-30 | Illumina, Inc. | Equalization-based image processing and spatial crosstalk attenuator |
| WO2021225886A1 (en) | 2020-05-05 | 2021-11-11 | Omniome, Inc. | Compositions and methods for modifying polymerase-nucleic acid complexes |
| WO2021231477A2 (en) | 2020-05-12 | 2021-11-18 | Illumina, Inc. | Generating nucleic acids with modified bases using recombinant terminal deoxynucleotidyl transferase |
| WO2021236625A1 (en) | 2020-05-19 | 2021-11-25 | 10X Genomics, Inc. | Electrophoresis cassettes and instrumentation |
| EP4153776B1 (en) | 2020-05-22 | 2025-03-05 | 10X Genomics, Inc. | Spatial analysis to detect sequence variants |
| EP4414459B1 (en) | 2020-05-22 | 2025-09-03 | 10X Genomics, Inc. | Simultaneous spatio-temporal measurement of gene expression and cellular activity |
| WO2021242834A1 (en) | 2020-05-26 | 2021-12-02 | 10X Genomics, Inc. | Method for resetting an array |
| WO2021247543A2 (en) | 2020-06-02 | 2021-12-09 | 10X Genomics, Inc. | Nucleic acid library methods |
| US12265079B1 (en) | 2020-06-02 | 2025-04-01 | 10X Genomics, Inc. | Systems and methods for detecting analytes from captured single biological particles |
| EP4600376A3 (en) | 2020-06-02 | 2025-10-22 | 10X Genomics, Inc. | Spatial transcriptomics for antigen-receptors |
| US12031177B1 (en) | 2020-06-04 | 2024-07-09 | 10X Genomics, Inc. | Methods of enhancing spatial resolution of transcripts |
| WO2021252375A1 (en) | 2020-06-08 | 2021-12-16 | The Broad Institute, Inc. | Single cell combinatorial indexing from amplified nucleic acids |
| EP4421186B1 (en) | 2020-06-08 | 2025-08-13 | 10X Genomics, Inc. | Methods of determining a surgical margin and methods of use thereof |
| WO2021252617A1 (en) | 2020-06-09 | 2021-12-16 | Illumina, Inc. | Methods for increasing yield of sequencing libraries |
| US12435363B1 (en) | 2020-06-10 | 2025-10-07 | 10X Genomics, Inc. | Materials and methods for spatial transcriptomics |
| EP4165207B1 (en) | 2020-06-10 | 2024-09-25 | 10X Genomics, Inc. | Methods for determining a location of an analyte in a biological sample |
| CA3182608A1 (en) | 2020-06-16 | 2021-12-23 | Carl Martin | Systems, apparatus and kits for enzymatic polynucleotide synthesis |
| CN120174072A (en) | 2020-06-22 | 2025-06-20 | 伊鲁米纳剑桥有限公司 | Nucleosides and nucleotides with 3' acetal capping groups |
| ES2994976T3 (en) | 2020-06-25 | 2025-02-05 | 10X Genomics Inc | Spatial analysis of dna methylation |
| KR20230037503A (en) | 2020-06-30 | 2023-03-16 | 일루미나, 인코포레이티드 | Sequencing by catalytically controlled synthesis to generate traceless DNA |
| US20230242967A1 (en) | 2020-07-02 | 2023-08-03 | Illumina, Inc. | A method to calibrate nucleic acid library seeding efficiency in flowcells |
| US12209280B1 (en) | 2020-07-06 | 2025-01-28 | 10X Genomics, Inc. | Methods of identifying abundance and location of an analyte in a biological sample using second strand synthesis |
| US11981960B1 (en) | 2020-07-06 | 2024-05-14 | 10X Genomics, Inc. | Spatial analysis utilizing degradable hydrogels |
| US11761038B1 (en) | 2020-07-06 | 2023-09-19 | 10X Genomics, Inc. | Methods for identifying a location of an RNA in a biological sample |
| CN116018412A (en) | 2020-07-08 | 2023-04-25 | Illumina公司 | Beads as transposome vectors |
| EP4182472A1 (en) | 2020-07-15 | 2023-05-24 | DNA Script | Massively parallel enzymatic synthesis of polynucleotides |
| IL300112A (en) | 2020-08-06 | 2023-03-01 | Illumina Inc | Preparation of rna and dna sequencing libraries using bead-linked transposomes |
| CA3191159A1 (en) | 2020-08-18 | 2022-02-24 | Illumina, Inc. | Sequence-specific targeted transposition and selection and sorting of nucleic acids |
| US11981958B1 (en) | 2020-08-20 | 2024-05-14 | 10X Genomics, Inc. | Methods for spatial analysis using DNA capture |
| AU2021339945A1 (en) | 2020-09-11 | 2023-03-02 | Illumina Cambridge Limited | Methods of enriching a target sequence from a sequencing library using hairpin adaptors |
| ES2993269T3 (en) | 2020-09-18 | 2024-12-26 | 10X Genomics Inc | Sample handling apparatus and image registration methods |
| CA3193386A1 (en) | 2020-09-22 | 2022-03-31 | Mikhael SOSKINE | Stabilized n-terminally truncated terminal deoxynucleotidyl transferase variants and uses thereof |
| US11926822B1 (en) | 2020-09-23 | 2024-03-12 | 10X Genomics, Inc. | Three-dimensional spatial analysis |
| MX2023004461A (en) | 2020-10-21 | 2023-05-03 | Illumina Inc | Sequencing templates comprising multiple inserts and compositions and methods for improving sequencing throughput. |
| WO2022090057A1 (en) | 2020-10-26 | 2022-05-05 | Dna Script | Novel variants of endonuclease v and uses thereof |
| WO2022090323A1 (en) | 2020-10-29 | 2022-05-05 | Dna Script | Enzymatic synthesis of polynucleotide probes |
| US11827935B1 (en) | 2020-11-19 | 2023-11-28 | 10X Genomics, Inc. | Methods for spatial analysis using rolling circle amplification and detection probes |
| EP4121555A1 (en) | 2020-12-21 | 2023-01-25 | 10X Genomics, Inc. | Methods, compositions, and systems for capturing probes and/or barcodes |
| CA3204784A1 (en) | 2021-01-13 | 2022-07-21 | Alex Nemiroski | Surface structuring with colloidal assembly |
| US20240117416A1 (en) | 2021-01-29 | 2024-04-11 | Illumina, Inc. | Methods, compositions and kits to improve seeding efficiency of flow cells with polynucleotides |
| FI4288562T3 (en) | 2021-02-04 | 2025-02-17 | Illumina Inc | Long indexed-linked read generation on transposome bound beads |
| WO2022174054A1 (en) | 2021-02-13 | 2022-08-18 | The General Hospital Corporation | Methods and compositions for in situ macromolecule detection and uses thereof |
| EP4421491A3 (en) | 2021-02-19 | 2024-11-27 | 10X Genomics, Inc. | Method of using a modular assay support device |
| WO2022197752A1 (en) | 2021-03-16 | 2022-09-22 | Illumina, Inc. | Tile location and/or cycle based weight set selection for base calling |
| ES3008686T3 (en) | 2021-03-18 | 2025-03-24 | 10X Genomics Inc | Multiplex capture of gene and protein expression from a biological sample |
| AU2022245985A1 (en) | 2021-03-22 | 2023-09-21 | Illumina Cambridge Limited | Methods for improving nucleic acid cluster clonality |
| KR20230163434A (en) | 2021-03-29 | 2023-11-30 | 일루미나, 인코포레이티드 | Compositions and methods for assessing DNA damage and normalizing amplicon size bias in libraries |
| WO2022212269A1 (en) | 2021-03-29 | 2022-10-06 | Illumina, Inc. | Improved methods of library preparation |
| JP2024512917A (en) | 2021-03-30 | 2024-03-21 | イルミナ インコーポレイテッド | Improved methods for isothermal complementary DNA and library preparation |
| EP4314283A1 (en) | 2021-03-31 | 2024-02-07 | Illumina, Inc. | Methods of preparing directional tagmentation sequencing libraries using transposon-based technology with unique molecular identifiers for error correction |
| IL307378A (en) | 2021-04-02 | 2023-11-01 | Illumina Inc | Machine-learning model for detecting a bubble within a nucleotide-sample slide for sequencing |
| EP4314314A1 (en) | 2021-04-02 | 2024-02-07 | DNA Script | Methods and kits for enzymatic synthesis of g4-prone polynucleotides |
| EP4305196B1 (en) | 2021-04-14 | 2025-04-02 | 10X Genomics, Inc. | Methods of measuring mislocalization of an analyte |
| US12217829B2 (en) | 2021-04-15 | 2025-02-04 | Illumina, Inc. | Artificial intelligence-based analysis of protein three-dimensional (3D) structures |
| US12444482B2 (en) | 2021-04-15 | 2025-10-14 | Illumina, Inc. | Multi-channel protein voxelization to predict variant pathogenicity using deep convolutional neural networks |
| US12070744B2 (en) | 2021-04-22 | 2024-08-27 | Illumina, Inc. | Valve assemblies and related systems |
| WO2022236054A1 (en) | 2021-05-06 | 2022-11-10 | 10X Genomics, Inc. | Methods for increasing resolution of spatial analysis |
| WO2022235163A1 (en) | 2021-05-07 | 2022-11-10 | Agendia N.V. | Endocrine treatment of hormone receptor positive breast cancer typed as having a low risk of recurrence |
| WO2022240766A1 (en) | 2021-05-10 | 2022-11-17 | Pacific Biosciences Of California, Inc. | Dna amplification buffer replenishment during rolling circle amplification |
| US20220356519A1 (en) | 2021-05-10 | 2022-11-10 | Pacific Biosciences Of California, Inc. | Single-molecule seeding and amplification on a surface |
| WO2022243480A1 (en) | 2021-05-20 | 2022-11-24 | Illumina, Inc. | Compositions and methods for sequencing by synthesis |
| EP4582555A3 (en) | 2021-06-03 | 2025-10-22 | 10X Genomics, Inc. | Methods, compositions, kits, and systems for enhancing analyte capture for spatial analysis |
| EP4355476A1 (en) | 2021-06-15 | 2024-04-24 | Illumina, Inc. | Hydrogel-free surface functionalization for sequencing |
| US20220411864A1 (en) | 2021-06-23 | 2022-12-29 | Illumina, Inc. | Compositions, methods, kits, cartridges, and systems for sequencing reagents |
| EP4364149A1 (en) | 2021-06-29 | 2024-05-08 | Illumina, Inc. | Machine-learning model for generating confidence classifications for genomic coordinates |
| WO2023278184A1 (en) | 2021-06-29 | 2023-01-05 | Illumina, Inc. | Methods and systems to correct crosstalk in illumination emitted from reaction sites |
| CN117730372A (en) | 2021-06-29 | 2024-03-19 | 因美纳有限公司 | Signal to noise metric for determining nucleotide base detection and base detection quality |
| WO2023278609A1 (en) | 2021-06-29 | 2023-01-05 | Illumina, Inc. | Self-learned base caller, trained using organism sequences |
| US12423815B2 (en) | 2021-07-13 | 2025-09-23 | Illumina, Inc. | Methods and systems for real time extraction of crosstalk in illumination emitted from reaction sites |
| WO2023003757A1 (en) | 2021-07-19 | 2023-01-26 | Illumina Software, Inc. | Intensity extraction with interpolation and adaptation for base calling |
| US11455487B1 (en) | 2021-10-26 | 2022-09-27 | Illumina Software, Inc. | Intensity extraction and crosstalk attenuation using interpolation and adaptation for base calling |
| CN117813391A (en) | 2021-07-23 | 2024-04-02 | 因美纳有限公司 | Method for preparing substrate surface for DNA sequencing |
| US20230021577A1 (en) | 2021-07-23 | 2023-01-26 | Illumina Software, Inc. | Machine-learning model for recalibrating nucleotide-base calls |
| EP4377960A1 (en) | 2021-07-28 | 2024-06-05 | Illumina, Inc. | Quality score calibration of basecalling systems |
| EP4381514A1 (en) | 2021-08-03 | 2024-06-12 | Illumina, Inc. | Base calling using multiple base caller models |
| US12077789B2 (en) | 2021-08-14 | 2024-09-03 | Illumina, Inc. | Polymerases, compositions, and methods of use |
| EP4388127A1 (en) | 2021-08-17 | 2024-06-26 | Illumina, Inc. | Methods and compositions for identifying methylated cytosines |
| CN118103750A (en) | 2021-08-31 | 2024-05-28 | 伊鲁米纳公司 | Flow cell with enhanced aperture imaging resolution |
| EP4509614A3 (en) | 2021-09-01 | 2025-05-14 | 10X Genomics, Inc. | Methods, compositions, and kits for blocking a capture probe on a spatial array |
| JP2024535758A (en) | 2021-09-07 | 2024-10-02 | 深▲セン▼華大智造科技股▲ふん▼有限公司 | Method for analyzing the sequence of a target polynucleotide |
| EP4400602A4 (en) | 2021-09-07 | 2025-09-17 | Mgi Tech Co Ltd | Method for analyzing the sequence of a target polynucleotide |
| CN117561573A (en) | 2021-09-17 | 2024-02-13 | 因美纳有限公司 | Automatic identification of the source of faults in nucleotide sequencing from base interpretation error patterns |
| KR20240072970A (en) | 2021-09-21 | 2024-05-24 | 일루미나, 인코포레이티드 | Graph reference genome and base determination approaches using imputed haplotypes. |
| WO2023049215A1 (en) | 2021-09-22 | 2023-03-30 | Illumina, Inc. | Compressed state-based base calling |
| WO2023056328A2 (en) | 2021-09-30 | 2023-04-06 | Illumina, Inc. | Solid supports and methods for depleting and/or enriching library fragments prepared from biosamples |
| US12480157B2 (en) | 2021-09-30 | 2025-11-25 | Illumina, Inc. | Polynucleotide sequencing |
| EP4419705A1 (en) | 2021-10-20 | 2024-08-28 | Illumina, Inc. | Methods for capturing library dna for sequencing |
| EP4174189A1 (en) | 2021-10-28 | 2023-05-03 | Volker, Leen | Enzyme directed biomolecule labeling |
| WO2023081485A1 (en) | 2021-11-08 | 2023-05-11 | Pacific Biosciences Of California, Inc. | Stepwise sequencing of a polynucleotide with a homogenous reaction mixture |
| US20250002879A1 (en) | 2021-11-10 | 2025-01-02 | Dna Script | NOVEL TERMINAL DEOXYNUCLEOTIDYL TRANSFERASE (TdT) VARIANTS |
| EP4430175A2 (en) | 2021-11-10 | 2024-09-18 | DNA Script | Novel terminal deoxynucleotidyl |
| EP4419707A1 (en) | 2021-11-10 | 2024-08-28 | 10X Genomics, Inc. | Methods, compositions, and kits for determining the location of an analyte in a biological sample |
| WO2023085932A1 (en) | 2021-11-10 | 2023-05-19 | Omnigen B.V. | Prediction of response following folfirinox treatment in cancer patients |
| WO2023102118A2 (en) | 2021-12-01 | 2023-06-08 | 10X Genomics, Inc. | Methods, compositions, and systems for improved in situ detection of analytes and spatial analysis |
| JP2024543762A (en) | 2021-12-02 | 2024-11-26 | イルミナ インコーポレイテッド | Generating cluster-specific signal corrections for determining nucleotide base calls |
| EP4441711A1 (en) | 2021-12-20 | 2024-10-09 | 10X Genomics, Inc. | Self-test for pathology/histology slide imaging device |
| EP4453524A1 (en) | 2021-12-23 | 2024-10-30 | Illumina, Inc. | Systems and related temperature calibration methods |
| WO2023122363A1 (en) | 2021-12-23 | 2023-06-29 | Illumina Software, Inc. | Dynamic graphical status summaries for nucelotide sequencing |
| US20230215515A1 (en) | 2021-12-23 | 2023-07-06 | Illumina Software, Inc. | Facilitating secure execution of external workflows for genomic sequencing diagnostics |
| US20230207050A1 (en) | 2021-12-28 | 2023-06-29 | Illumina Software, Inc. | Machine learning model for recalibrating nucleotide base calls corresponding to target variants |
| AU2022425440A1 (en) | 2021-12-29 | 2024-07-11 | Illumina, Inc. | Automatically switching variant analysis model versions for genomic analysis applications |
| US20240294967A1 (en) | 2022-01-20 | 2024-09-05 | Illumina, Inc. | Methods of detecting methylcytosine and hydroxymethylcytosine by sequencing |
| BE1030246B1 (en) | 2022-02-04 | 2023-09-04 | Leen Volker | POLYMER ASSISTED BIOMOLECULE ANALYSIS |
| WO2023164492A1 (en) | 2022-02-25 | 2023-08-31 | Illumina, Inc. | Machine-learning models for detecting and adjusting values for nucleotide methylation levels |
| JP2025507713A (en) | 2022-02-25 | 2025-03-21 | イルミナ インコーポレイテッド | Calibration Sequences for Nucleotide Sequencing |
| WO2023183937A1 (en) | 2022-03-25 | 2023-09-28 | Illumina, Inc. | Sequence-to-sequence base calling |
| IL315876A (en) | 2022-04-07 | 2024-11-01 | Illumina Inc | Altered cytidine deaminases and methods of use |
| EP4515547A1 (en) | 2022-04-26 | 2025-03-05 | Illumina, Inc. | Machine-learning models for selecting oligonucleotide probes for array technologies |
| WO2023209606A1 (en) | 2022-04-29 | 2023-11-02 | Illumina Cambridge Limited | Methods and systems for encapsulating lyophilised microspheres |
| WO2023220627A1 (en) | 2022-05-10 | 2023-11-16 | Illumina Software, Inc. | Adaptive neural network for nucelotide sequencing |
| WO2023224488A1 (en) | 2022-05-19 | 2023-11-23 | Agendia N.V. | Dna repair signature and prediction of response following cancer therapy |
| WO2023224487A1 (en) | 2022-05-19 | 2023-11-23 | Agendia N.V. | Prediction of response to immune therapy in breast cancer patients |
| EP4532769A2 (en) | 2022-06-03 | 2025-04-09 | Illumina, Inc. | Circulating rna biomarkers for preeclampsia |
| JP2025526537A (en) | 2022-06-09 | 2025-08-15 | イルミナ インコーポレイテッド | Dependence of base calling on flow cell tilt |
| IL317960A (en) | 2022-06-24 | 2025-02-01 | Illumina Inc | Improving split-read alignment by intelligently identifying and scoring candidate split groups |
| CN119698662A (en) | 2022-06-27 | 2025-03-25 | 因美纳有限公司 | Generate and implement structural variation graph genomes |
| US20230420075A1 (en) | 2022-06-27 | 2023-12-28 | Illumina Software, Inc. | Accelerators for a genotype imputation model |
| WO2024006705A1 (en) | 2022-06-27 | 2024-01-04 | Illumina Software, Inc. | Improved human leukocyte antigen (hla) genotyping |
| WO2024015962A1 (en) | 2022-07-15 | 2024-01-18 | Pacific Biosciences Of California, Inc. | Blocked asymmetric hairpin adaptors |
| EP4562638A1 (en) | 2022-07-26 | 2025-06-04 | Illumina, Inc. | Rapid single-cell multiomics processing using an executable file |
| JP2025534191A (en) | 2022-09-29 | 2025-10-15 | イルミナ インコーポレイテッド | Targeted variant reference panel for target variant attribution |
| EP4595059A1 (en) | 2022-09-30 | 2025-08-06 | Illumina, Inc. | Machine-learning model for refining structural variant calls |
| US20240141427A1 (en) | 2022-09-30 | 2024-05-02 | Illumina, Inc. | Polymerases, compositions, and methods of use |
| EP4594481A1 (en) | 2022-09-30 | 2025-08-06 | Illumina, Inc. | Helicase-cytidine deaminase complexes and methods of use |
| WO2024073043A1 (en) | 2022-09-30 | 2024-04-04 | Illumina, Inc. | Methods of using cpg binding proteins in mapping modified cytosine nucleotides |
| WO2024073047A1 (en) | 2022-09-30 | 2024-04-04 | Illumina, Inc. | Cytidine deaminases and methods of use in mapping modified cytosine nucleotides |
| CN119096301A (en) | 2022-10-05 | 2024-12-06 | 因美纳有限公司 | Integrating variant calls from multiple sequencing pipelines using machine learning architectures |
| EP4482987A2 (en) | 2022-10-06 | 2025-01-01 | Illumina, Inc. | Probes for improving coronavirus sample surveillance |
| EP4599080A2 (en) | 2022-10-06 | 2025-08-13 | Illumina, Inc. | Probes for improving environmental sample surveillance |
| WO2024077152A1 (en) | 2022-10-06 | 2024-04-11 | Illumina, Inc. | Probes for depleting abundant small noncoding rna |
| EP4602608A1 (en) | 2022-10-11 | 2025-08-20 | Illumina, Inc. | Detecting and correcting methylation values from methylation sequencing assays |
| WO2024083883A1 (en) | 2022-10-19 | 2024-04-25 | Dna Script | Methods and products for removal of uracil containing polynucleotides |
| WO2024118903A1 (en) | 2022-11-30 | 2024-06-06 | Illumina, Inc. | Chemoenzymatic correction of false positive uracil transformations |
| US20240177802A1 (en) | 2022-11-30 | 2024-05-30 | Illumina, Inc. | Accurately predicting variants from methylation sequencing data |
| EP4630540A1 (en) | 2022-12-05 | 2025-10-15 | DNA Script | Variants of poly(a) polymerase and uses thereof |
| WO2024129672A1 (en) | 2022-12-12 | 2024-06-20 | The Broad Institute, Inc. | Trafficked rnas for assessment of cell-cell connectivity and neuroanatomy |
| WO2024129969A1 (en) | 2022-12-14 | 2024-06-20 | Illumina, Inc. | Systems and methods for capture and enrichment of clustered beads on flow cell substrates |
| EP4634403A1 (en) | 2022-12-16 | 2025-10-22 | Illumina, Inc. | Boranes on solid supports |
| WO2024137774A1 (en) | 2022-12-22 | 2024-06-27 | Illumina, Inc. | Palladium catalyst compositions and methods for sequencing by synthesis |
| CN119095983A (en) | 2022-12-22 | 2024-12-06 | 伊路米纳有限公司 | Transition metal catalyst compositions and methods for sequencing by synthesis |
| EP4642931A1 (en) | 2022-12-27 | 2025-11-05 | Illumina, Inc. | Methods of sequencing using 3´ allyl blocked nucleotides |
| EP4642920A1 (en) | 2022-12-31 | 2025-11-05 | DNA Script | Variable viscosity inks for inkjet delivery of enzyme reagents |
| EP4646491A1 (en) | 2023-01-06 | 2025-11-12 | Illumina, Inc. | Reducing uracils by polymerase |
| EP4652292A1 (en) | 2023-01-16 | 2025-11-26 | DNA Script | Inkjet-assisted enzymatic nucleic acid synthesis |
| EP4655411A2 (en) | 2023-01-26 | 2025-12-03 | DNA Script | Enzymatic synthesis of polynucleotide probes |
| US20240266003A1 (en) | 2023-02-06 | 2024-08-08 | Illumina, Inc. | Determining and removing inter-cluster light interference |
| AU2024221664A1 (en) | 2023-02-17 | 2025-01-02 | Illumina, Inc. | Cell-free dna signals as biomarkers of preeclampsia |
| US20240327909A1 (en) | 2023-03-30 | 2024-10-03 | Illumina, Inc. | Compositions and methods for nucleic acid sequencing |
| WO2024206848A1 (en) | 2023-03-30 | 2024-10-03 | Illumina, Inc. | Tandem repeat genotyping |
| IL317962A (en) | 2023-05-03 | 2025-02-01 | Illumina Inc | Machine learning model for recalibrating genotype calls from existing sequencing data files |
| WO2024249200A1 (en) | 2023-05-26 | 2024-12-05 | Illumina, Inc. | Methods for preserving methylation status during clustering |
| WO2024249940A1 (en) | 2023-05-31 | 2024-12-05 | Illumina, Inc. | Improving structural variant alignment and variant calling by utilizing a structural-variant reference genome |
| WO2024249973A2 (en) | 2023-06-02 | 2024-12-05 | Illumina, Inc. | Linking human genes to clinical phenotypes using graph neural networks |
| WO2024254003A1 (en) | 2023-06-05 | 2024-12-12 | Illumina, Inc. | Identification and mapping of methylation sites |
| WO2024256604A1 (en) | 2023-06-15 | 2024-12-19 | Dna Script | Salt addition during enzymatic polynucleotide synthesis |
| WO2025006432A1 (en) | 2023-06-26 | 2025-01-02 | Pacific Biosciences Of California, Inc. | Compositions and methods for nucleic acid extension |
| WO2025006565A1 (en) | 2023-06-27 | 2025-01-02 | Illumina, Inc. | Variant calling with methylation-level estimation |
| WO2025006487A1 (en) | 2023-06-30 | 2025-01-02 | Illumina, Inc. | Using flowcell spatial coordinates to link reads for improved genome analysis |
| WO2025006874A1 (en) | 2023-06-30 | 2025-01-02 | Illumina, Inc. | Machine-learning model for recalibrating genotype calls corresponding to germline variants and somatic mosaic variants |
| WO2025010160A1 (en) | 2023-07-06 | 2025-01-09 | Pacific Biosciences Of California, Inc. | Methods and compositions for stabilizing concatemers |
| GB202312147D0 (en) | 2023-08-08 | 2023-09-20 | Syndex Bio Ltd | Methylation method |
| WO2025054389A1 (en) | 2023-09-07 | 2025-03-13 | Illumina, Inc. | Identification of methylated cytosine using landmarks |
| WO2025058517A1 (en) | 2023-09-12 | 2025-03-20 | Levels Diagnostics Holding B.V. | Biomarkers for typing a sample of an individual for hepatocellular carcinoma. |
| WO2025059045A1 (en) | 2023-09-12 | 2025-03-20 | Illumina, Inc. | Systems and methods for determining linkage of sequence reads on a flow cell |
| WO2025059533A1 (en) | 2023-09-13 | 2025-03-20 | The Broad Institute, Inc. | Crispr enzymes and systems |
| WO2025072368A1 (en) | 2023-09-28 | 2025-04-03 | Illumina, Inc. | Capture and selective release of biological material |
| WO2025072800A2 (en) | 2023-09-28 | 2025-04-03 | Illumina, Inc. | Altered cytidine deaminases and methods of use |
| WO2025072870A1 (en) | 2023-09-29 | 2025-04-03 | Illumina, Inc. | Tracking and modifying cluster location on nucleotide-sample slides in real time |
| WO2025072833A1 (en) | 2023-09-29 | 2025-04-03 | Illumina, Inc. | Predicting insert lengths using primary analysis metrics |
| WO2025081064A2 (en) | 2023-10-11 | 2025-04-17 | Illumina, Inc. | Thermophilic deaminase and methods for identifying modified cytosine |
| WO2025088024A1 (en) | 2023-10-24 | 2025-05-01 | Dna Script | Novel terminal deoxynucleotidyl transferase (tdt) variants and uses thereof |
| WO2025090883A1 (en) | 2023-10-27 | 2025-05-01 | Illumina, Inc. | Detecting variants in nucleotide sequences based on haplotype diversity |
| WO2025106431A1 (en) | 2023-11-17 | 2025-05-22 | Illumina, Inc. | Determining structural variants |
| WO2025106629A1 (en) | 2023-11-17 | 2025-05-22 | Illumina, Inc. | Structural variant detection using spatially linked reads |
| WO2025117738A1 (en) | 2023-11-28 | 2025-06-05 | Illumina, Inc. | Methods of improving unique molecular index ligation efficiency |
| EP4567128A1 (en) | 2023-12-07 | 2025-06-11 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft | Improved method and means for spatial nucleic acid detection in-situ |
| WO2025129074A2 (en) | 2023-12-14 | 2025-06-19 | Illumina, Inc. | Indexing techniques for tagmented dna libraries |
| WO2025129133A1 (en) | 2023-12-15 | 2025-06-19 | Illumina, Inc. | Minimal residual disease (mrd) models for determining likelihoods or probabilities of a subject comprising cancer |
| WO2025132603A1 (en) | 2023-12-18 | 2025-06-26 | Dna Script | Novel variants of endonuclease v for cleavage of labelled dna |
| WO2025132627A1 (en) | 2023-12-18 | 2025-06-26 | Dna Script | Stabilized variants of highly active endonuclease v for cleavage of labelled dna |
| US20250201346A1 (en) | 2023-12-18 | 2025-06-19 | Illumina, Inc. | Using machine learning models for detecting minimum residual disease (mrd) in a subject |
| WO2025137222A1 (en) | 2023-12-19 | 2025-06-26 | Illumina, Inc. | Methylation detection assay |
| WO2025136105A1 (en) | 2023-12-20 | 2025-06-26 | Stichting Amsterdam UMC | Intestinal tissue-adherent microbial signatures predictive of response to anti-tnf-alpha in crohn's disease |
| WO2025137268A1 (en) | 2023-12-20 | 2025-06-26 | Pacific Biosciences Of California, Inc. | Methods and compositions for reducing gc bias |
| US20250210137A1 (en) | 2023-12-20 | 2025-06-26 | Illumina, Inc. | Directly determining signal-to-noise-ratio metrics for accelerated convergence in determining nucleotide-base calls and base-call quality |
| WO2025137647A1 (en) | 2023-12-21 | 2025-06-26 | Illumina, Inc. | Enhanced mapping and alignment of nucleotide reads utilizing an improved haplotype data structure with allele-variant differences |
| WO2025136717A1 (en) | 2023-12-22 | 2025-06-26 | Illumina, Inc. | Improving mapping resolution using spatial information of sequenced reads |
| WO2025144716A1 (en) | 2023-12-28 | 2025-07-03 | Illumina, Inc. | Nucleotides with enzymatically cleavable 3'-o-glycoside blocking groups for sequencing |
| WO2025160089A1 (en) | 2024-01-26 | 2025-07-31 | Illumina, Inc. | Custom multigenome reference construction for improved sequencing analysis of genomic samples |
| WO2025174774A1 (en) | 2024-02-12 | 2025-08-21 | Illumina, Inc. | Determining offline corrections for sequence specific errors caused by low complexity nucleotide sequences |
| WO2025174708A1 (en) | 2024-02-13 | 2025-08-21 | Illumina, Inc. | Design and method for cross-sequencing platform compatibility of flow cells |
| WO2025184226A1 (en) | 2024-02-28 | 2025-09-04 | Illumina, Inc. | Nucleotides with terminal phosphate capping |
| WO2025184234A1 (en) | 2024-02-28 | 2025-09-04 | Illumina, Inc. | A personalized haplotype database for improved mapping and alignment of nucleotide reads and improved genotype calling |
| WO2025189105A1 (en) | 2024-03-08 | 2025-09-12 | Illumina, Inc. | Size thresholding of dna fragments |
| WO2025188906A1 (en) | 2024-03-08 | 2025-09-12 | Illumina, Inc. | Modified adenosine nucleotides |
| WO2025193747A1 (en) | 2024-03-12 | 2025-09-18 | Illumina, Inc. | Machine-learning models for ordering and expediting sequencing tasks or corresponding nucleotide-sample slides |
| WO2025198469A1 (en) | 2024-03-18 | 2025-09-25 | Agendia N.V. | Prediction of response to immune therapy in triple negative breast cancer patients. |
| WO2025207886A1 (en) | 2024-03-28 | 2025-10-02 | Illumina, Inc. | Kits and methods for on-flow cell library preparation and methylation detection |
| WO2025230914A1 (en) | 2024-04-29 | 2025-11-06 | Illumina, Inc. | Nucleotides with enzyme-triggered self-immolative linkers for sequencing by synthesis |
| WO2025240241A1 (en) | 2024-05-13 | 2025-11-20 | Illumina, Inc. | Modifying sequencing cycles during a sequencing run to meet customized coverage estimations for a target genomic region |
| WO2025240924A1 (en) | 2024-05-17 | 2025-11-20 | Illumina, Inc. | Blind equalization systems for base calling applications |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4863849A (en) * | 1985-07-18 | 1989-09-05 | New York Medical College | Automatable process for sequencing nucleotide |
| US4959463A (en) * | 1985-10-15 | 1990-09-25 | Genentech, Inc. | Intermediates |
| US4962037A (en) * | 1987-10-07 | 1990-10-09 | United States Of America | Method for rapid base sequencing in DNA and RNA |
| US4971903A (en) * | 1988-03-25 | 1990-11-20 | Edward Hyman | Pyrophosphate-based method and apparatus for sequencing nucleic acids |
| GB8910880D0 (en) * | 1989-05-11 | 1989-06-28 | Amersham Int Plc | Sequencing method |
-
1990
- 1990-10-26 EP EP19910900474 patent/EP0450060A1/en not_active Withdrawn
- 1990-10-26 WO PCT/US1990/006178 patent/WO1991006678A1/en not_active Ceased
- 1990-10-26 CA CA 2044616 patent/CA2044616A1/en not_active Abandoned
Non-Patent Citations (1)
| Title |
|---|
| See references of WO9106678A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CA2044616A1 (en) | 1991-04-27 |
| WO1991006678A1 (en) | 1991-05-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0450060A1 (en) | Dna sequencing | |
| Metzker et al. | Termination of DNA synthesis by novel 3'-modifieddeoxyribonucleoside 5'-triphosphates | |
| US5547835A (en) | DNA sequencing by mass spectrometry | |
| EP2321429B1 (en) | Methods and kits for nucleic acid sequencing | |
| Matteucci et al. | Synthesis of deoxyoligonucleotides on a polymer support | |
| US6573374B1 (en) | Nucleotides labelled with an infrared dye and their use in nucleic acid detection | |
| EP0640146B1 (en) | Dna sequencing method | |
| JP3013156B2 (en) | Use of a DNA polymerase having 3'-specific proofreading activity | |
| US5908926A (en) | 5'to 3' nucleic acid synthesis using 3'-photoremovable protecting group | |
| US5547839A (en) | Sequencing of surface immobilized polymers utilizing microflourescence detection | |
| WO2008037568A2 (en) | Reversible terminators for efficient sequencing by synthesis | |
| KR20010099663A (en) | A Method for Analyzing Polynucleotides | |
| Rosenthal et al. | Automated sequencing of fluorescently labelled DNA by chemical degradation | |
| AU694940C (en) | DNA sequencing by mass spectrometry | |
| JPH04503460A (en) | DNA sequencing | |
| Caruthers | Sequencing and Synthesis of Nucleic Acids | |
| Narang | The Total Synthesis | |
| Lowe | ACID REPEAT SEQUENCES BY $8 $8 2i DISCONTINUOUS PRIMER EXTENSION |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT NL |
|
| 17P | Request for examination filed |
Effective date: 19910925 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 19940501 |