EP0080326A1 - Improvements in or relating to the continuous casting of steel - Google Patents
Improvements in or relating to the continuous casting of steel Download PDFInfo
- Publication number
- EP0080326A1 EP0080326A1 EP82306122A EP82306122A EP0080326A1 EP 0080326 A1 EP0080326 A1 EP 0080326A1 EP 82306122 A EP82306122 A EP 82306122A EP 82306122 A EP82306122 A EP 82306122A EP 0080326 A1 EP0080326 A1 EP 0080326A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coils
- strand
- connections
- steel
- continuous casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 18
- 239000010959 steel Substances 0.000 title claims abstract description 18
- 238000009749 continuous casting Methods 0.000 title claims abstract description 12
- 238000003756 stirring Methods 0.000 claims abstract description 23
- 238000005266 casting Methods 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 3
- 239000002184 metal Substances 0.000 claims abstract description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000012768 molten material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 150000001398 aluminium Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000011545 laboratory measurement Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/10—Supplying or treating molten metal
- B22D11/11—Treating the molten metal
- B22D11/114—Treating the molten metal by using agitating or vibrating means
- B22D11/115—Treating the molten metal by using agitating or vibrating means by using magnetic fields
Definitions
- This invention relates to the continuous casting of steel, and more particularly to electromagnetic stirring of the steel while still-molten and/or as it solidifies after pouring into a mould.
- Helical stirring can also, for example, have advantage in the casting of alloys with long solidification ranges, for example high carbon steels typically with carbon content ranging from 0.5 to 1.5%, where it would arrest the collumnar crystal growth giving a central equiaxed structure with reduced mini-ingotism, bridging, central segregation of alloying elements and allow for a higher casting temperature without its pronounced deleterious effects.
- apparatus for continuously downwardly casting steel including a continuous casting mould and electromagnetic stirring means located about the metal strand path, the electromagnetic stirring means comprising a set of electromagnetic coils disposed about the strand, the set of coils being connected to two separate power sources by means of two separate sets of connections such that one power supply and set of connections activates the set of coils to provide a rotational field force upon the strand, and the other power supply and set of connections activates the set of coils to provide an axial field force upon the strand.
- the electromagnetic stirring means may be arranged about the strand within and/or below the casting mould.
- the present invention overcomes potential disadvantages of previous proposals for helical stirring which suggested, for example, a skewed arrangement of coils which could be in some circumstances difficult to accommodate about a continuous casting mould and could in some circumstances give only a limited helix angle variation.
- a further previous proposal was for fixed inductors about a continuous casting mould. Although in this arrangement the disposition of the.inductors would not usually create any serious problem, the helix angles produced were found not always to be conducive to the best metallurgical effects upon the cast material.
- the two power sources may be arranged with advantage to operate at different frequencies.
- a continuous casting mould 1 is provided in the usual way with a copper mould wall 2 and is surrounded by a cooling water annulus 3 and an outer jacket wall 4 of austenitic steel.
- a plurality of coils 5 are located along each side of the mould and are mounted on main iron circuits 6 which are linked with secondary iron circuits 7, necessary to allow for rotating magnetic flux.
- mould stirring could be achieved with a similar arrangement of coils provided these were suitably protected from the hot strand by means of a larger clearance therefrom and appropriate heat shield in place of the mould wall 2.
- each side of the mould is provided with a linear magnetic inductor 8 comprising the coils 5 and iron circuits 6 and 7 designed to produce an upward magnetic field.
- Each inductor is fed from a polyphase electrical supply 9, typically at low frequency.
- the inductor coils are connected in star, adjacent inductors being connected anti-phase, thus producing within the mould a magnetic field with strong radial and tangential components. Adjustment of the frequency and current produced by the axial supply allows the axial body forces in the material in the mould to be adjusted, resulting in axial movement of the molten material.
- a further and separate polyphase supply 10 is connected to the star points 11 of the inductors 8 in correct phase rotation.
- the supply will induce a rotating field system about the vertical axis of the mould. Adjustment of the frequency and current produced by the rotary supply allows the rotational body forces in the material in the mould to be adjusted resulting in rotational movement of the molten material.
- differing frequencies for the rotational suppy and the axial supply are provided so that the RM5 value of current in each coil is approximately the same. Should the frequency of both the rotational supply and the axial supply be the same, the RMS value of current in each coil will in use vary so that there is risk of overheating the coils and at the same time under-utilising the coils.
- the calculated RMS Flux Density at the mould surface is, with respect to axial mode stirring, 0.19 Tesla with a travelling wave velocity of 3m/sec and an electrical input of 30 KVA; and is with respect to rotary mode stirring 0.09 Tesla with a frequency of 5 Hertz and an electrical input of 20 KVA.
- the mould has a copper inner jacket 8 mm thick, an austenitic steel outer jacket 8 mm thick, and a 4 mm water gap.
- the stirred length along the strand is approximately 650 mm and the mould section 150 mm square.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Apparatus for continuously downwardly casting steel, in- ciuding a continuous casting mould (1) and electromagnetic stirring means located about the metal strand path, the electromagnetic stirring means comprising a set of electromagnetic coils (5) disposed about the strand, the set of coils being connected to two separate power sources by means of two separate sets of connections such that one power supply and set of connections activates the set of coils to provide a rotational field force upon the strand, and the other power supply and set of connections activates the set of coils to provide an axial field force upon the strand.
Description
- This invention relates to the continuous casting of steel, and more particularly to electromagnetic stirring of the steel while still-molten and/or as it solidifies after pouring into a mould.
- It has been found desirable to provide such stirring to many grades of cast steel for a number of reasons perhaps the chief of which in general is to achieve homogeneity of at least the major portion of the cross-section of the steel strand, and to remove non-metallic inclusions and included gases.
- It has been proposed to provide helical stirring movement of the molten steel in continuous casting such an arrangement has useful application, and its value can be exampled by the continuous casting of aluminium treated steel. Two noteworthy problems in the casting of such steel are the need to avoid retaining inclusions of alumina in the steel as it is cast, and the need to ensure an outer surface layer around the strand free from included gas and entrapped slag. Previously proposed arrangements for horizontal, rotational stirring of the steel suffer from the disadvantages, specially in the context of the above mentioned aluminium treated steel, that inclusions tend to be trapped and retained below the surface of the steel by rotating stirring action. In addition, with the commonly used moulds of rectangular plan form, the rotational movement of stirring tends to create turbulence and/or standing waves at the mould corners which severly hinders the removal of inclusions and produces undesirable surface ripples on the strand surface. It is also desirable with this form of stirring to ensure that the stirring force penetrates to the central portions of the steel for adequate stirring throughout, which imposes restrictions on power supply frequencies.
- Helical stirring can also, for example, have advantage in the casting of alloys with long solidification ranges, for example high carbon steels typically with carbon content ranging from 0.5 to 1.5%, where it would arrest the collumnar crystal growth giving a central equiaxed structure with reduced mini-ingotism, bridging, central segregation of alloying elements and allow for a higher casting temperature without its pronounced deleterious effects.
- It is an object of the present invention to provide an improved electromagnetic stirring arrangement for use in the continuous casting of steel.
- According to the present invention there is provided apparatus for continuously downwardly casting steel, including a continuous casting mould and electromagnetic stirring means located about the metal strand path, the electromagnetic stirring means comprising a set of electromagnetic coils disposed about the strand, the set of coils being connected to two separate power sources by means of two separate sets of connections such that one power supply and set of connections activates the set of coils to provide a rotational field force upon the strand, and the other power supply and set of connections activates the set of coils to provide an axial field force upon the strand.
- The electromagnetic stirring means may be arranged about the strand within and/or below the casting mould.
- By means of the invention it is possible by appropriate activation of the two power sources to provide an overall helical field force of adjustable helix angle to the strand.
- The present invention overcomes potential disadvantages of previous proposals for helical stirring which suggested, for example, a skewed arrangement of coils which could be in some circumstances difficult to accommodate about a continuous casting mould and could in some circumstances give only a limited helix angle variation. Again a further previous proposal was for fixed inductors about a continuous casting mould. Although in this arrangement the disposition of the.inductors would not usually create any serious problem, the helix angles produced were found not always to be conducive to the best metallurgical effects upon the cast material.
- The two power sources may be arranged with advantage to operate at different frequencies.
- In order that the invention may be more readily understood one embodiment thereof will now be described by way of example with reference to the accompanying drawings in which:-
- FIG. 1 is a diagramatic sectional side elevation of the physical arrangement of coils connected for the arrangement of the present invention;
- FIG. 2 is a diagramatic plan in section of the arrangement shown in FIG. 1;
- FIG. 3 is a circuit diagram for the axial field force supply system;
- FIG. 4 is a circuit diagram of the rotational field force supply system; and
- FIG. 5 is a circuit diagram of the combined axial and rotational systems;
- Referring firstly to Figures 1 & 2 it is to be seen that a
continuous casting mould 1 is provided in the usual way with acopper mould wall 2 and is surrounded by acooling water annulus 3 and anouter jacket wall 4 of austenitic steel. A plurality ofcoils 5 are located along each side of the mould and are mounted onmain iron circuits 6 which are linked withsecondary iron circuits 7, necessary to allow for rotating magnetic flux. - It is to be noted that below mould stirring could be achieved with a similar arrangement of coils provided these were suitably protected from the hot strand by means of a larger clearance therefrom and appropriate heat shield in place of the
mould wall 2. - Referring now to Figure 3, it is to be noted that each side of the mould is provided with a linear
magnetic inductor 8 comprising thecoils 5 and 6 and 7 designed to produce an upward magnetic field. Each inductor is fed from a polyphase electrical supply 9, typically at low frequency. The inductor coils are connected in star, adjacent inductors being connected anti-phase, thus producing within the mould a magnetic field with strong radial and tangential components. Adjustment of the frequency and current produced by the axial supply allows the axial body forces in the material in the mould to be adjusted, resulting in axial movement of the molten material.iron circuits - Referring now to Figure 4, it will be seen that a further and
separate polyphase supply 10 is connected to thestar points 11 of theinductors 8 in correct phase rotation. The supply will induce a rotating field system about the vertical axis of the mould. Adjustment of the frequency and current produced by the rotary supply allows the rotational body forces in the material in the mould to be adjusted resulting in rotational movement of the molten material. - As can be seen from Figure 5 a combination of the two supply arrangements of Figure 3 and 4 will result in a combination of axial and rotational body forces in the material in the mould thereby resulting in helical movement of the material within the mould. The hydraulic conditions within the mould require a disproportionately large effort to move materials in an axial direction compared with the effort required to rotate them. From laboratory measurements it is thought that to obtain a helix angle of 45° the ratio of axial to rotational forces may be of the order of 10:1 or even higher, which ratio can readily be obtained by means of the arrangement of the present invention, but would be difficult to obtain by means of a physically helically displaced array of inductors around the mould.
- Advantageously, differing frequencies for the rotational suppy and the axial supply are provided so that the RM5 value of current in each coil is approximately the same. Should the frequency of both the rotational supply and the axial supply be the same, the RMS value of current in each coil will in use vary so that there is risk of overheating the coils and at the same time under-utilising the coils.
- In one example, the calculated RMS Flux Density at the mould surface is, with respect to axial mode stirring, 0.19 Tesla with a travelling wave velocity of 3m/sec and an electrical input of 30 KVA; and is with respect to rotary mode stirring 0.09 Tesla with a frequency of 5 Hertz and an electrical input of 20 KVA. In this example the mould has a copper
inner jacket 8 mm thick, an austenitic steelouter jacket 8 mm thick, and a 4 mm water gap. The stirred length along the strand is approximately 650 mm and the mould section 150 mm square.
Claims (5)
1. Apparatus for continuously downwardly casting steel, including a continuous casting mould and electromagnetic stirring means located about the metal strand path, the electromagnetic stirring means comprising a set of electromagnetic coils disposed about the strand, the set of coils being connected to two separate power sources by means of two separate sets of connections such that one power supply and set of connections activates the set of coils to provide a rotational field force upon the strand, and the other power supply and set of connections activates the set of coils to provide an axial field force upon the strand.
2. Apparatus as claimed in Claim 1 wherein the set of coils comprises a plurality of columns of coils disposed about the strand path, each column including a plurality of coils, coils being linked with iron circuits around the strand path and along the length of the strand path.
3. Apparatus as claimed in Claim 1 or 2 wherein the stirring means is disposed about the continuous casting mould.
4. Apparatus as claimed in Claim 1, 2 or 3 wherein the arrangement is such that the power supplied for the rotational field is at a different frequency to that supplied for the axial field.
5. Apparatus as claimed in any one of the preceding claims wherein the arrangement is such that the power supplied for the rotational field is less than that supplied for the axial field.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB8135013 | 1981-11-20 | ||
| GB8135013 | 1981-11-20 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP0080326A1 true EP0080326A1 (en) | 1983-06-01 |
Family
ID=10526031
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP82306122A Withdrawn EP0080326A1 (en) | 1981-11-20 | 1982-11-17 | Improvements in or relating to the continuous casting of steel |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP0080326A1 (en) |
| JP (1) | JPS58135755A (en) |
| GB (1) | GB2109724A (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2632549A1 (en) * | 1988-06-08 | 1989-12-15 | Voest Alpine Ind Anlagen | LINGOTIERE FOR THE CONTINUOUS CASTING OF BILLETTES OR BLOOMS |
| WO1994015739A1 (en) * | 1993-01-15 | 1994-07-21 | J. Mulcahy Enterprises Inc. | A.c. magnetic stirring modifier for continuous casting of metals |
| WO1996018469A1 (en) * | 1994-12-15 | 1996-06-20 | Asea Brown Boveri Ab | Method and device for casting in a mould |
| US5699850A (en) * | 1993-01-15 | 1997-12-23 | J. Mulcahy Enterprises Inc. | Method and apparatus for control of stirring in continuous casting of metals |
| WO2004058433A3 (en) * | 2002-12-16 | 2005-05-19 | Irving I Dardik | Systems and methods of electromagnetic influence on electroconducting continuum |
| CN100421838C (en) * | 2002-12-16 | 2008-10-01 | 欧文·I·达迪克 | Method for controlling crystal structure of ferrous and non-ferrous metal ingots and ingots |
| CN102574202A (en) * | 2009-08-31 | 2012-07-11 | Abb公司 | Electromagnetic stirrer arrangement with continuous casting of steel billets and blooms |
| CN103182495A (en) * | 2011-12-29 | 2013-07-03 | 宝山钢铁股份有限公司 | Multifunctional electromagnetic stirrer |
| ITUB20159776A1 (en) * | 2015-12-30 | 2017-06-30 | Ergolines Lab S R L | PLANT FOR THE PRODUCTION OF METAL BARS, CASTING MACHINE, CASTING PROCESS AND METHOD OF CONTROL OF ELECTROMAGNETIC DEVICES FOR MIXED METAL AGITATION |
| CN107116191A (en) * | 2017-05-15 | 2017-09-01 | 东北大学 | A kind of complex and spiral magnetic stirrer |
| CN112074359A (en) * | 2018-05-08 | 2020-12-11 | 日本制铁株式会社 | Electromagnetic stirring device |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58215254A (en) * | 1982-06-08 | 1983-12-14 | Kawasaki Steel Corp | Electromagnetic stirrer disposed right under casting mold of continuous casting machine or in posterior position |
| GB2184674A (en) * | 1985-12-19 | 1987-07-01 | Ti | Stirring of molten metal during continuous casting |
| EP0750958B1 (en) * | 1994-03-07 | 2002-11-27 | Nippon Steel Corporation | Continuous casting method and apparatus |
| DE19843354C1 (en) * | 1998-09-22 | 2000-03-09 | Ald Vacuum Techn Gmbh | Apparatus for oriented solidification of a metal melt cast into a mold shell comprises guide sheets in the liquid metal cooling bath for purposes of controlling the bath flow produced by magnetic fields |
| US6402367B1 (en) * | 2000-06-01 | 2002-06-11 | Aemp Corporation | Method and apparatus for magnetically stirring a thixotropic metal slurry |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3995678A (en) * | 1976-02-20 | 1976-12-07 | Republic Steel Corporation | Induction stirring in continuous casting |
| DE7801279U1 (en) * | 1978-01-18 | 1978-12-21 | Aeg-Elotherm Gmbh, 5630 Remscheid | DEVICE FOR ELECTROMAGNETIC STIRRING OF THE COOLING METAL IN A CAST STRAND |
| DE2903225A1 (en) * | 1978-02-01 | 1979-08-02 | Concast Ag | CONTINUOUS CASTING GRILL |
| WO1980001999A1 (en) * | 1979-03-21 | 1980-10-02 | British Steel Corp | Continuous casting of steel |
-
1982
- 1982-11-17 GB GB08232749A patent/GB2109724A/en not_active Withdrawn
- 1982-11-17 EP EP82306122A patent/EP0080326A1/en not_active Withdrawn
- 1982-11-18 JP JP20124282A patent/JPS58135755A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3995678A (en) * | 1976-02-20 | 1976-12-07 | Republic Steel Corporation | Induction stirring in continuous casting |
| DE7801279U1 (en) * | 1978-01-18 | 1978-12-21 | Aeg-Elotherm Gmbh, 5630 Remscheid | DEVICE FOR ELECTROMAGNETIC STIRRING OF THE COOLING METAL IN A CAST STRAND |
| DE2903225A1 (en) * | 1978-02-01 | 1979-08-02 | Concast Ag | CONTINUOUS CASTING GRILL |
| WO1980001999A1 (en) * | 1979-03-21 | 1980-10-02 | British Steel Corp | Continuous casting of steel |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2632549A1 (en) * | 1988-06-08 | 1989-12-15 | Voest Alpine Ind Anlagen | LINGOTIERE FOR THE CONTINUOUS CASTING OF BILLETTES OR BLOOMS |
| WO1994015739A1 (en) * | 1993-01-15 | 1994-07-21 | J. Mulcahy Enterprises Inc. | A.c. magnetic stirring modifier for continuous casting of metals |
| US5699850A (en) * | 1993-01-15 | 1997-12-23 | J. Mulcahy Enterprises Inc. | Method and apparatus for control of stirring in continuous casting of metals |
| WO1996018469A1 (en) * | 1994-12-15 | 1996-06-20 | Asea Brown Boveri Ab | Method and device for casting in a mould |
| CN1083308C (en) * | 1994-12-15 | 2002-04-24 | 瑞典通用电器勃朗勃威力公司 | Method and device for casting in a mould |
| WO2004058433A3 (en) * | 2002-12-16 | 2005-05-19 | Irving I Dardik | Systems and methods of electromagnetic influence on electroconducting continuum |
| US7350559B2 (en) | 2002-12-16 | 2008-04-01 | Energetics Technologies, Llc | Systems and methods of electromagnetic influence on electroconducting continuum |
| US7381238B2 (en) | 2002-12-16 | 2008-06-03 | Energetics Technologies, L.L.C. | System and method of electromagnetic influence on electroconducting continuum |
| CN100421838C (en) * | 2002-12-16 | 2008-10-01 | 欧文·I·达迪克 | Method for controlling crystal structure of ferrous and non-ferrous metal ingots and ingots |
| US7449143B2 (en) | 2002-12-16 | 2008-11-11 | Energetics Technologies, L.L.C. | Systems and methods of electromagnetic influence on electroconducting continuum |
| US7675959B2 (en) | 2002-12-16 | 2010-03-09 | Energetics Technologies, Llc | Systems and methods of electromagnetic influence on electroconducting continuum |
| CN102574202A (en) * | 2009-08-31 | 2012-07-11 | Abb公司 | Electromagnetic stirrer arrangement with continuous casting of steel billets and blooms |
| CN103182495A (en) * | 2011-12-29 | 2013-07-03 | 宝山钢铁股份有限公司 | Multifunctional electromagnetic stirrer |
| CN103182495B (en) * | 2011-12-29 | 2015-04-22 | 宝山钢铁股份有限公司 | Multifunctional electromagnetic stirrer |
| ITUB20159776A1 (en) * | 2015-12-30 | 2017-06-30 | Ergolines Lab S R L | PLANT FOR THE PRODUCTION OF METAL BARS, CASTING MACHINE, CASTING PROCESS AND METHOD OF CONTROL OF ELECTROMAGNETIC DEVICES FOR MIXED METAL AGITATION |
| WO2017114587A1 (en) * | 2015-12-30 | 2017-07-06 | Ergolines Lab S.R.L. | Production plant of metal rods, casting machine, casting process and control method of electromagnetic stirrer devices of molten metal |
| CN108430668A (en) * | 2015-12-30 | 2018-08-21 | 麦角灵实验室公司 | Metal rod production equipment, casting machine, casting process and control method of electromagnetic stirring device for molten metal |
| KR20180101431A (en) * | 2015-12-30 | 2018-09-12 | 얼고라인스 랩 에스알엘 | Metal rod production plant, casting machine, casting process and control method of electromagnetic stirring device of molten metal |
| EP3626366A1 (en) | 2015-12-30 | 2020-03-25 | Ergolines Lab S.r.l. | Production plant of metal materials, casting machine, casting process and control method of electromagnetic stirrer devices of molten metal and stirring system |
| RU2723495C2 (en) * | 2015-12-30 | 2020-06-11 | Эрголайнз Лэб С.Р.Л. | Apparatus for producing metal rods, casting machine, casting process and method of controlling electromagnetic devices for mixing molten metal |
| US10792730B2 (en) | 2015-12-30 | 2020-10-06 | Ergolines Lab S.R.L. | Production plant of metal rods, casting machine, casting process and control method of electromagnetic stirrer devices of molten metal |
| EP3845328A1 (en) | 2015-12-30 | 2021-07-07 | Ergolines Lab S.r.l. | Production plant of metal rods, casting machine and casting process |
| CN107116191A (en) * | 2017-05-15 | 2017-09-01 | 东北大学 | A kind of complex and spiral magnetic stirrer |
| CN107116191B (en) * | 2017-05-15 | 2020-09-29 | 东北大学 | Combined type spiral electromagnetic stirrer |
| CN112074359A (en) * | 2018-05-08 | 2020-12-11 | 日本制铁株式会社 | Electromagnetic stirring device |
Also Published As
| Publication number | Publication date |
|---|---|
| GB2109724A (en) | 1983-06-08 |
| JPS58135755A (en) | 1983-08-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7735544B2 (en) | Method and system of electromagnetic stirring for continuous casting of medium and high carbon steels | |
| EP0080326A1 (en) | Improvements in or relating to the continuous casting of steel | |
| US4294304A (en) | Electromagnetic centrifuging inductor for rotating a molten metal about its casting axis | |
| US2963758A (en) | Production of fine grained metal castings | |
| Vivès | Effects of electromagnetic vibrations on the microstructure of continuously cast aluminium alloys | |
| CA1208200A (en) | Mold for use in metal or metal alloy casting systems | |
| US4936374A (en) | Sidewall containment of liquid metal with horizontal alternating magnetic fields | |
| EP0114988B1 (en) | Continuous metal casting method | |
| EP2127783B1 (en) | A continuous casting device | |
| JPS6188950A (en) | Molten metal electromagnetic stirring device | |
| US5246060A (en) | Process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot | |
| US4139048A (en) | Magnetic stirrer for continuously casting metal | |
| US4530404A (en) | Process for the electromagnetic casting of metals involving the use of at least one magnetic field which differs from the field of confinement | |
| US4200137A (en) | Process and apparatus for the continuous casting of metal using electromagnetic stirring | |
| USRE32529E (en) | Process for the electromagnetic casting of metals involving the use of at least one magnetic field which differs from the field of confinement | |
| US4523628A (en) | Process for casting metals in which magnetic fields are employed | |
| JPS5947621B2 (en) | Continuous casting method | |
| US4103730A (en) | Process for electromagnetic stirring | |
| US4484615A (en) | Electro-magnetic stirring | |
| JP3131513B2 (en) | Stirring method of molten metal in continuous casting | |
| KR950002967B1 (en) | Continuous casting apparatus and method of molten steel | |
| US4741383A (en) | Horizontal electromagnetic casting of thin metal sheets | |
| US4905756A (en) | Electromagnetic confinement and movement of thin sheets of molten metal | |
| US4544016A (en) | Continuous casting process and apparatus | |
| JPH081281A (en) | Method and apparatus for producing semi-solidified metallic material |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Designated state(s): BE DE FR IT SE |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 19840202 |
|
| RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SWAINSTON, CHRISTOPHER MORTIMER |