[go: up one dir, main page]

DK2585833T3 - Fremgangsmåder til detektering af cancer - Google Patents

Fremgangsmåder til detektering af cancer Download PDF

Info

Publication number
DK2585833T3
DK2585833T3 DK11798823.8T DK11798823T DK2585833T3 DK 2585833 T3 DK2585833 T3 DK 2585833T3 DK 11798823 T DK11798823 T DK 11798823T DK 2585833 T3 DK2585833 T3 DK 2585833T3
Authority
DK
Denmark
Prior art keywords
tag
pmg
cancer
cer
bmp
Prior art date
Application number
DK11798823.8T
Other languages
English (en)
Inventor
Michael Bousamra
Andrew Nicholas Lane
Richard M Higashi
Teresa Whei-Mei Fan
Original Assignee
Univ Louisville Res Found Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Louisville Res Found Inc filed Critical Univ Louisville Res Found Inc
Application granted granted Critical
Publication of DK2585833T3 publication Critical patent/DK2585833T3/da

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57488Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds identifable in body fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2570/00Omics, e.g. proteomics, glycomics or lipidomics; Methods of analysis focusing on the entire complement of classes of biological molecules or subsets thereof, i.e. focusing on proteomes, glycomes or lipidomes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)

Claims (22)

1. Fremgangsmåde til at bestemme tilstedeværelse eller fravær af mindst en cancertype i et dyr, hvilken fremgangsmåde omfatter: - at bestemme lipidmængder af lipider i et sæt af lipider i en prøve fra dyret, og - at bestemme tilstedeværelse eller fravær af mindst en cancertype i dyret med en prædiktiv model; hvor - lipidmængderne af lipider i lipidsættet omfatter et input af den prædiktive model, - prøven omfatter en kropsvæske eller behandling deraf, - den mindst ene cancertype er valgt fra gruppen, der består af carcinomer, sarcomer, hæmatologiske cancerformer, neurologiske maligniteter, skjoldbruskcancer, neuroblastom, melanom, nyrecellecarcinom, hepatocellulært carcinom, brystcancer, tyktarmscancer, lungecancer, cancer i bugspytkirtlen, hjernecancer, prostatacancer, kronisk lymfocytisk leukæmi, akut lymfoblastisk leukæmi, rhabdomyosarcoma, glioblastom multiforme, meningiom, blærecancer, gastrisk cancer, gliom, oral cancer, nasopharyngeal carcinoma, nyrecancer, rektal cancer, lymfeknudecancer, knoglemarvscancer, mavecancer, livmodercancer, leukæmi, basalcellecarcinom, cancer relateret til epithelceller, cancer, som kan ændre reguleringen eller aktiviteten af pyruvatcarboxylase og tumorer associeret med en hvilken som helst af de førnævnte cancertyper; - lipidsættet omfatter et lipid fra klassen BMP, fortrinsvis BMP (30: 1), BMP (32:
1), BMP (34: 1), BMP (35: 4), BMP (36: 3), BMP (37: 1), BMP (37: 7), BMP (38:
1) , BMP (38: 2), BMP (38: 4), BMP (39: 1), BMP (39: 4), BMP 40: 1), BMP (40:
2) , BMP (40: 3), BMP (40: 4), BMP (40: 7), BMP (42:10), BMP (42: 2), BMP: 5) eller BMP (44: 8) og den prædiktive model omfatter en eller flere af følgende: dimensionsreducerende fremgangsmåder, klyngefremgangsmåder, maskinindlæringsfremgangsmåder, principal komponentanalyse, blød uafhængig modellering af klasseanalogi, partielle mindste kvadraters regression, ortogonale mindste kvadraters regression, partielle mindste kvadraters diskriminantanalyse, ortogonale partielle mindste kvadraters diskriminantanalyse, gennemsnitlig centrering, mediancentrering, Pareto-skalering, enhedsvarianskalering, ortogonal signalkorrektion, integration, differentiering, krydsvalidering eller modtageroperationskarakteristiske kurver.
2. Fremgangsmåden ifølge krav 1, hvor kropsvæsken er valgt fra gruppen, der består plasmaopkastning, cerumen, mavesaft, modermælk, slim, spyt, talg, sæd, sved, tårer, vaginal sekretion, blodserum, vandig legemsvæske, glaslegemevæske, endolymfe, perilymfe, peritonealvæske, lungehindevæske, cerebrospinalvæske, blod, plasma, brystvorte-aspiratvæske, urin, afføring og bronchoalveolær skyllevæske.
3. Fremgangsmåde ifølge krav 1 eller 2, hvor prøven omfatter en lipidmikrovesikelfraktion.
4. Fremgangsmåde ifølge krav 1,2 eller 3, hvor lipidsættet omfatter mindst 10, mindst 50, mindst 100, mindst 200 eller ikke mere end 100.000 lipider.
5. Fremgangsmåde ifølge et hvilket som helst af de foregående krav, hvor lipidsættet yderligere omfatter et eller flere lipider, der er udvalgt fra den ene eller de nævnte flere klasser af lipider, som er valgt fra gruppen, der består af CE, Cer, DAG, DH-LTB4, FA, GA2, GM3, HexCer, HexDHCer, LacCer, LysoPA, LysoPC, LysoPC-pmg, LysoPE, LysoPE-pmg, LysoPS, MAG, PC, PC-pmg, PE, PE-pmg, PGA1, PGB1, SM, Sphingosin, TAG og TH-12-keto -LTB4.
6. Fremgangsmåde ifølge et hvilket som helst af kravene 1 til 4, hvor lipidsættet yderligere omfatter et eller flere lipider, der er udvalgt fra den ene eller de nævnte flere klasser af lipider, som er valgt fra gruppen, der består af FA, MAG, DAG, TAG, PI, PE, PS, PI LysoPC, LysoPI, LysoPD, LysoPi, LysoPP, LysoPa, LysoPC, LysoPE, SM, Cer, Cer-P, HexCer, GA1, GA2, GD1, GD2, GM1, GM2, GM3, GT1 og CE.
7. Fremgangsmåde ifølge et hvilket som helst af kravene 1 til 4, hvor et eller flere lipider i lipidsættet er yderligere valgt fra gruppen bestående af CE (16: 2), CE (18: 2), CE (18: 3), CE 18: 4), CE (20: 2), CE (20: 4), CE (20: 5), Cer (32: 1), Cer (34: 1), Cer (36: 1), Cer (38: 1), Cer (38: 4), Cer (40; 2), Cer (40: 4), DAG (28: 0), DAG (32: 0), DAG (32: 2), DAG (34: 0), DAG (34: 3), DAG (34: 5), DAG (36: 0), DAG (36: 1), DAG (36: 2), DAG (36: 3), DAG (36: 8), DAG (38: 1), DAG (38: 10), DAG (38: 2), DAG (38: 3), DAG (38: 5), DAG (40: 1), DAG (40: 2) , DAG (40: 5), DH-LTB4 (20: 3), FA (16: 3), FA (19: 1), GA2 (30: 0), GA2 (33: 2), GA2 (35: 2), GA2 (37: 2), GM3 (41: 1), HexCer (32: 1), HexDHCer (34: 0), LacCer (30: 0), LacCer (30: 1), LacCer (32: 2) LysoPA (16: 2), LysoPA (16: 3), LysoPA (18: 1), LysoPA (22: 0), LysoPA (22: 1), LysoPC (16: 0), LysoPC (18: 0) LysoPC (18: 1), LysoPC (18: 4), LysoPC (20: 4), LysoPC (20: 5), LysoPC (26: 6), LysoPC-pmg (12: 0), LysoPC-pmg (18:3), LysoPC-pmg (24: 4), LysoPC-pmg (26: 0), LysoPE (10: 1), LysoPE (16: 2), LysoPE (18: 2), Lyso PE-pmg (18:
4), LysoPS (24: 1), MAG (18: 0), MAG (20: 3), MAG (24: 2), PC (32: 0), PC (32: 1) , PC (34: 1), PC (34: 2), PC (34: 3), PC (34: 4), PC (34: 6), PC (36: 1), PC (36: 2) PC (36: 3), PC (36: 4), PC (36: 5), PC (36: 6), PC (36: 9), PC(38:2), PC (38:3), PC (38: 4), PC (38: 5), PC (38: 6), PC (38: 7), PC (38: 8), PC (38: 9), PC (40: 5), PC (40: 6), PC (40;7), PC 40: 8), PC (40: 9), PC (44:12), PC-pmg (30:
1) , PC-pmg (36: 4), PC-pmg (38: 5), PC-pmg (38: 7), PC-pmg (40:11), PC-pmg (42: 1), PE (34: 7), PE (36: 5), PE (36: 7), PE (38: 2), PE (38: 3), PE (38: 4), PE (38: 5), PE (38: 7), PE (40: 4), PE (40: 9), PE (42:12), PE (44:11), PE-pmg (28:
2) , PE-pmg (30: 3), PE-pmg (34: 6), PE- pmg (34: 8), PE-pmg (36: 5), PE-pmg (36: 6), PE-pmg (40: 7), PE-pmg (40: 8), PE-pmg (42: 10), PE-pmg (42:12), PE-pmg (42: 4), PE-pmg (42: 7), PE-pmg (42: 8), PE-pmg (42: 9), PE-pmg (44:10), PE-pmg (44:11), PE-pmg (44:12), PE-pmg (44: 7), PE-pmg (44: 8), PE-pmg (44: 9) , PGA1 (20: 1), PGB1 (20: 1), SM (34: 1), SM (34: 2), SM (36: 1), SM (38: 1), SM (40: 1) SM (40: 2), SM (42: 1), SM (42: 2), SM (42: 3), sfingosin (18:
0) , TAG (44: 1), TAG (44: 3), TAG (46: 0), TAG (46: 1), TAG (46: 2), TAG (46:
3) , TAG (46: 4), TAG (48: 0), TAG (48: 1), TAG (48: 2), TAG (48: 3), TAG (48:
4) , TAG (48: 5), TAG (49: 1), TAG (49: 2), TAG (49: 3), TAG (50: 0), TAG (50:
1) , TAG (50: 2), TAG (50: 3), TAG (50: 4), TAG (50: 5), TAG (50: 6), TAG (51:
2) , TAG (51: 4), TAG (52: 2), TAG (52: 3), TAG (52: 4), TAG (52: 5), TAG (52:
6), TAG (52: 7), TAG (53: 4) TAG (54: 2), TAG (54: 3), TAG (54: 4), TAG (54:
5) , TAG (54: 6), TAG (54: 7), TAG (54: 8) TAG (55: 5), TAG (55: 6), TAG (55:
7), TAG (56: 4), TAG (56: 5), TAG (56: 6), TAG (56: 7), TAG (56: 8), TAG (56: 9), TAG (58:10), TAG (58: 6), TAG (58: 8), TAG (58: 9), TAG (60:12) og TH -12-keto-LTB4 (20: 2).
8. Fremgangsmåde ifølge et hvilket som helst af kravene 1 til 4, hvor den mindst ene cancertype omfatter lungecancer, og en eller flere lipider i lipidsættet er yderligere udvalgt fra gruppen, der består af LysoPA (22: 0), PE-pmg (42: 9), FA (16: 3), FA (19: 1), CE (18: 2), Cer (36: 1), Cer (38: 4), PC (38:
5) , Cer (38: 1), og TAG (44: 3).
9. Fremgangsmåde ifølge et hvilket som helst af kravene 1 til 4, hvor den mindst ene cancertype omfatter lungecancer, og et eller flere lipider i lipidsættet er yderligere udvalgt fra gruppen, der består af TAG (44: 3), PC (36: 5 ), PC (38: 5), Cer (38: 4), PE-pmg (42: 9), PC (38: 7), LysoPA (22: 0), Cer (38: 1), Cer (34: 1), Cer (36: 1), PC (40: 7), TAG (54: 5), TAG (54: 6), CE (18: 2), PC (36: 4), FA (16: 3), PE-pmg (44:11), TAG (52: 5), Cer (40: 4), CE (20: 5), PC (38: 6), TAG (50: 2), MAG (18: 0), FA (19: 1), TAG (52: 2), LysoPA (22: 1), MAG (24: 2), TAG (54: 7), TAG (50: 3), TAG (50: 1), DAG (36: 3), PC (34: 1), TAG (52: 6), PE-pmg (44:12), CE (20: 4), PE (44:11), PC (40: 8), TAG (56: 9), PE-pmg (34:
6) , PE (36: 7), PE (36: 5), TAG (56: 7), TAG (56: 8), DAG (34: 3), TAG (56: 6), TAG (52: 3), TAG (54: 3), TAG (56: 5), TAG (54: 8), PC (34: 6), PC (40: 6), DAG (36: 0), LysoPE (10: 1), DAG (40: 5), Cer (32: 1), TAG (50: 5), TAG (50:
4) , PE-pmg (36: 6), TAG (46: 3) og PE (38: 5).
10. Fremgangsmåde ifølge et hvilket som helst af kravene 1 til 4, hvor den mindst ene cancertype omfatter lungecancer og et eller flere lipider i lipidsættet er yderligere udvalgt fra gruppen, der består af TAG (44: 3), PC (36: 5), PC (38:
5) , Cer (38: 4), PE-pmg (42: 9), PC (38: 7), LysoPA (22: 0), Cer (38: 1), Cer (34: 1) og Cer (36: 1).
11. Fremgangsmåde ifølge et hvilket som helst af kravene 1 til 4, hvor den mindst ene cancer type omfatter brystcancer, og en eller flere lipider i lipidsættet er yderligere valgt fra gruppen, der består af LysoPA (22: 1), PE-pmg (42: 9), CE (20: 5), TAG (52: 3), LysoPA (22: 0), PC (36: 3), PC (36: 4), PC (36: 2) PC (34: 2) og PC (34: 1).
12. Fremgangsmåde ifølge et hvilket som helst af kravene 1 til 4, hvor den mindst ene cancertype omfatter brystcancer, og en eller flere lipider i lipidsættet er yderligere udvalgt fra gruppen, der består af PC (34: 2), PC (34: 1 ), PC (36: 2), PC (36: 4), PC (36: 3), PC (38: 4), LysoPA (22: 1), PE-pmg (42: 9), LysoPA (22: 0), CE (20: 5), Cer (36: 1), CE (18: 2), DAG (34: 0), SM (34: 1), DAG (32: 0), PE-pmg (40: 8), PC (38: 3), DAG (36: 0), PC (36: 1), TAG (54: 5), TAG (54:
6) , PE-pmg (44:11), PMG (42: 8), TAG (52: 2), SM (42: 2), PC (38: 6), TAG (54:
7) , PC (40: 6), PC (40: 7), LysoPC (16: 0), FA (16: 3), TAG (52: 5), TAG (44: 3), SM (40: 1), PE-pmg (42:10), PE-pmg (40: 7), SM (36: 1), PE (38: 2), PC (34: 3), PC (36: 5), PC (32: 0), PC (32: 1), PC (36: 9), SM (42: 3), PC-pmg (36: 4), PC-pmg (38: 5), PC (40: 9), TAG (54: 3), PE-pmg (44:12), FA (19: 1), TAG (50: 3), PC (34: 6), GA2 (35: 2), TAG (58: 9), PE-pmg (42: 7) og LysoPC (18: 0) .
13. Fremgangsmåde ifølge et hvilket som helst af kravene 1 til 4, hvor den mindst ene cancertype omfatter brystcancer, og en eller flere lipider i lipidsættet er yderligere udvalgt fra gruppen, der består af PC (34: 2), PC (34: 1), PC (36:
2), PC (36: 4), PC (36: 3), PC (38: 4), LysoPA (22: 1), PE-pmg (42: 9), LysoPA 0) og CE (20: 5).
14. Fremgangsmåde ifølge et hvilket som helst af kravene 1 til 4, hvor den mindst ene cancertype omfatter lungecancer og brystcancer, og en eller flere lipider i lipidsættet er yderligere udvalgt fra gruppen, der består af LysoPA (22:
1) , PC (36: 5), TAG (52: 3), PC (38: 5), CE (20: 5), TAG (50: 2), PC (34: 2), CE (18: 2) og PC (34: 1).
15. Fremgangsmåde ifølge et hvilket som helst af kravene 1 til 4, hvor den mindst ene cancertype omfatter lungecancer og brystcancer, og en eller flere lipider i lipidsættet er yderligere udvalgt fra gruppen, der består af PC (34: 2), PC (36: 2), TAG (44: 3), CE (18: 2), PC (34: 1), LysoPA (22: 1), PC (36: 5), Cer (36: 1), CE 20: 5), PC (36: 3), PC (38: 4), PC (36: 4), Cer (38: 4), PC (38: 5), PC (38: 7), Cer (38: 1), TAG (50: 2), Cer (34: 1), SM (34: 1), Cer (40: 4), MAG (18: 0), MAG (24: 2) PC (38: 3), PE-pmg (40: 8), PE-pmg (42: 8), TAG (50: 1), DAG (32: 0), PC (36: 1), DAG (34: 0), LysoPC (16: 0), PE-pmg (34: 6), DAG (36: 3), PC (36: 9), PE (36: 5), TAG (52: 6), FA (19: 1), PE-pmg (44:11), PE (44:11), TAG (48: 2), SM (42: 2), PE-pmg (42:10), PE (36: 7), PE-pmg (40: 7), PE-pmg (36: 6), PE (38: 5), PC (32: 0), PE (38: 2), GA2 (35: 2), DAG (34: 3), PE-pmg (44:12), MAG (16: 0), PC (32: 1), LysoPE (10: 1), SM (36: 1), TAG (56: 7) og PE-pmg (42: 9).
16. Fremgangsmåde ifølge et hvilket som helst af kravene 1 til 4, hvor den mindst ene cancertype omfatter lungecancer og brystcancer, og en eller flere lipider i lipidsættet er yderligere udvalgt fra gruppen, der består af PC (34: 2), PC (36: 2), TAG (44: 3), CE (18: 2), PC (34: 1), LysoPA (22: 1), PC (36: 5), Cer (36:1), CE (20: 5) og PC (36: 3).
17. Fremgangsmåde ifølge et hvilket som helst af de foregående krav, hvor lipidmængderne bestemmes under anvendelse af massespektrometri, såsom en Fourier-transform-ion-cyklotron-resonansmasseanalysator.
18. Fremgangsmåden ifølge et hvilket som helst af de foregående krav, hvor prøven er en behandling af en kropsvæske, og behandlingen omfatter en eller flere ekstraktioner under anvendelse af en eller flere opløsninger, der omfatter acetonitril, vand, chloroform, methanol, butyleret hydroxytoluen, trichloreddikesyre eller kombinationer deraf.
19. Fremgangsmåde ifølge et hvilket som helst af de foregående krav, hvor den prædiktive model omfatter en eller flere dimensionsreduktionsfremgangsmåder.
20. Fremgangsmåde ifølge et hvilket som helst af de foregående krav, hvor den prædiktive model omfatter en eller flere fremgangsmåder, der er valgt fra gruppen, som består af principal komponentanalyse (PCA), blød uafhængig modellering af klasseanalogi (SIMCA), partielle mindste kvadraters diskriminantanalyse (PLS-DA), og ortogonale partielle mindste kvadrater diskriminantanalyse (OPLS-DA).
21. Fremgangsmåde ifølge et hvilket som helst af de foregående krav, hvor dyret er valgt fra gruppen bestående af human, hund, kat, hest, ko, gris, får, kylling, kalkun, mus og rotte.
22. Fremgangsmåde ifølge et hvilket som helst af de foregående krav, hvor den mindst ene cancertype er lunge- eller brystcancer.
DK11798823.8T 2010-06-23 2011-06-22 Fremgangsmåder til detektering af cancer DK2585833T3 (da)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35764210P 2010-06-23 2010-06-23
PCT/US2011/041399 WO2011163332A2 (en) 2010-06-23 2011-06-22 Methods for detecting cancer

Publications (1)

Publication Number Publication Date
DK2585833T3 true DK2585833T3 (da) 2017-09-18

Family

ID=45372067

Family Applications (1)

Application Number Title Priority Date Filing Date
DK11798823.8T DK2585833T3 (da) 2010-06-23 2011-06-22 Fremgangsmåder til detektering af cancer

Country Status (8)

Country Link
US (2) US20130109592A1 (da)
EP (4) EP2585833B1 (da)
JP (3) JP5944385B2 (da)
AU (3) AU2011270968C1 (da)
CA (1) CA2803865A1 (da)
DK (1) DK2585833T3 (da)
ES (3) ES2989530T3 (da)
WO (1) WO2011163332A2 (da)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012343843B2 (en) * 2011-11-30 2018-03-08 Metanomics Health Gmbh Device and methods to diagnose pancreatic cancer
WO2014043633A1 (en) * 2012-09-17 2014-03-20 Agios Pharmaceuticals, Inc. Use of e-cadherin and vimentin for selection of treatment responsive patients
MX369691B (es) 2012-11-21 2019-11-19 Agios Pharmaceuticals Inc Inhibidores de glutaminasa y métodos de empleo.
US9029531B2 (en) 2012-11-22 2015-05-12 Agios Pharmaceuticals, Inc. Compounds and their methods of use
WO2014079011A1 (en) 2012-11-22 2014-05-30 Agios Pharmaceuticals, Inc. Heterocyclic compounds for inhibiting glutaminase and their methods of use
US11353467B2 (en) 2013-01-24 2022-06-07 The Regents Of The University Of California Use of lipid particles in medical diagnostics
KR101408217B1 (ko) * 2013-05-22 2014-06-17 국립암센터 질량분석패턴을 이용한 원발성간내담도암 및 전이성간암의 감별법
AU2014368412A1 (en) * 2013-12-20 2016-07-07 Metanomics Health Gmbh Means and methods for diagnosing pancreatic cancer in a subject based on a metabolite panel
MX2016012244A (es) 2014-03-21 2017-05-08 Agios Pharmaceuticals Inc Compuestos y sus metodos de uso.
EP2963608A1 (en) * 2014-07-04 2016-01-06 Tata Consultancy Services Limited System and method for prescriptive analytics
US10758133B2 (en) * 2014-08-07 2020-09-01 Apple Inc. Motion artifact removal by time domain projection
WO2017155473A1 (en) * 2016-03-10 2017-09-14 Agency For Science, Technology And Research Lipid biomarkers for the diagnosis of cancer
JP6520893B2 (ja) 2016-04-01 2019-05-29 株式会社デンソー 運転支援装置及び運転支援プログラム
KR101812205B1 (ko) * 2016-04-11 2017-12-26 연세대학교 산학협력단 혈청 대사체를 이용한 인후암 예측 방법
WO2018013678A2 (en) * 2016-07-13 2018-01-18 Board Of Regents, The University Of Texas System Molecular markers and methods for sample analysis via mass spectrometry
EP3496859B1 (en) 2016-09-02 2024-01-10 Board of Regents, The University of Texas System Collection probe and methods for the use thereof
CA2964878A1 (en) * 2016-10-14 2018-04-14 Youping Deng Lipid markers for early diagnosis of breast cancer
US20180246112A1 (en) * 2017-02-28 2018-08-30 University Of Kentucky Research Foundation Biomarkers of Breast and Lung Cancer
EP3622295A1 (en) * 2017-05-11 2020-03-18 Servizo Galego de Saúde (SERGAS) Cholesteryl linoleate (18:2) in feces samples as biomarker for colorectal cancer
CA3083260A1 (en) 2017-11-27 2019-05-31 Board Of Regents, The University Of Texas System Minimally invasive collection probe and methods for the use thereof
EP3514545B1 (en) * 2018-01-22 2020-10-07 Univerzita Pardubice A method of diagnosing pancreatic cancer based on lipidomic analysis of a body fluid
JP7086417B2 (ja) * 2018-01-22 2022-06-20 ウニベルシタ パルドゥビツェ 体液のリピドミクス解析に基づいて癌を診断する方法
CN109613131B (zh) * 2018-11-27 2021-08-27 北京大学第三医院 基于尿液磷脂组学的肾损伤早期诊断标志物及应用
KR102156217B1 (ko) * 2019-03-05 2020-09-15 연세대학교 산학협력단 대장암 진단용 지질 바이오마커 및 이의 용도
KR102156216B1 (ko) * 2019-03-05 2020-09-15 연세대학교 산학협력단 위암 진단용 지질 바이오마커 및 이의 용도
KR102156215B1 (ko) * 2019-03-05 2020-09-15 연세대학교 산학협력단 갑상선암 진단용 지질 바이오마커 및 이의 용도
KR102156214B1 (ko) * 2019-03-05 2020-09-15 연세대학교 산학협력단 폐암 진단용 지질 바이오마커 및 이의 용도
WO2022094404A1 (en) * 2020-11-02 2022-05-05 Iontrap LLC Method and apparatus for the rapid detection of air-borne viruses
KR102421466B1 (ko) * 2021-10-06 2022-07-18 (주)이노베이션바이오 암 진단용 바이오마커 및 이의 용도
CN117233367B (zh) * 2023-11-16 2024-02-09 哈尔滨脉图精准技术有限公司 妊娠期高血压风险评估的代谢标志物
CN119964640B (zh) * 2025-01-06 2025-09-19 太原理工大学 一种基于正交最小二乘法与元分析的基因特征选择方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824555A (en) * 1996-05-30 1998-10-20 The Cleveland Clinic Foundation Method of detecting gynecological carcinomas
IL131985A0 (en) * 1997-03-21 2001-03-19 Atairgin Biotechnologies Inc Method for detecting cancer associated with altered concentrations of lysophospholipids
US7964408B1 (en) * 2004-05-13 2011-06-21 University Of South Florida Lysophospholipids as biomarkers of ovarian cancer
WO2006044680A1 (en) * 2004-10-14 2006-04-27 The Cleveland Clinic Foundation Methods of detecting colorectal cancer
CN101454331A (zh) * 2006-03-24 2009-06-10 菲诺梅诺米发现公司 有效用于诊断前列腺癌的生物标记,及其方法
GB2469244A (en) * 2008-01-28 2010-10-06 Univ Singapore Lipid tumour profile
EP2310529A2 (en) * 2008-06-20 2011-04-20 Proxy Life Science Holdings, Inc. Microvesicle-based compositions and methods
BR112012019894A2 (pt) * 2010-02-11 2016-05-03 Univ Leuven Kath "perfil fosfolipídeo e câncer"

Also Published As

Publication number Publication date
ES2989530T3 (es) 2024-11-26
WO2011163332A2 (en) 2011-12-29
EP3206034A2 (en) 2017-08-16
JP6092302B2 (ja) 2017-03-08
EP3719502A1 (en) 2020-10-07
EP3955004A2 (en) 2022-02-16
EP3206034B1 (en) 2020-05-27
AU2011270968A1 (en) 2013-01-24
AU2016213855B2 (en) 2018-07-05
AU2018236876A1 (en) 2018-10-18
JP2013529784A (ja) 2013-07-22
ES2638522T8 (es) 2021-02-11
WO2011163332A9 (en) 2012-04-26
EP3955004C0 (en) 2024-05-29
US20220003792A1 (en) 2022-01-06
EP3955004A3 (en) 2022-05-11
ES2638522T3 (es) 2017-10-23
JP5944385B2 (ja) 2016-07-05
EP3955004B1 (en) 2024-05-29
AU2016213855A1 (en) 2016-09-01
JP2016218085A (ja) 2016-12-22
ES2812457T3 (es) 2021-03-17
EP2585833A4 (en) 2013-11-13
EP3206034A3 (en) 2017-10-11
JP2015158512A (ja) 2015-09-03
EP2585833A2 (en) 2013-05-01
US20130109592A1 (en) 2013-05-02
EP2585833B1 (en) 2017-05-31
AU2011270968C1 (en) 2017-01-19
CA2803865A1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
DK2585833T3 (da) Fremgangsmåder til detektering af cancer
AU2011270968B2 (en) Methods for detecting cancer
Jové et al. A plasma metabolomic signature discloses human breast cancer
Xiao et al. LC–MS based serum metabolomics for identification of hepatocellular carcinoma biomarkers in Egyptian cohort
Rocha et al. Mass spectrometry imaging: a novel technology in rheumatology
De Guzman et al. Chronic caloric restriction partially protects against age-related alteration in serum metabolome
JP2016153808A (ja) 前立腺癌を診断する手段と方法
US20150160238A1 (en) Means and Methods for Diagnosing and Monitoring Heart Failure in a Subject
Garate et al. Influence of lipid fragmentation in the data analysis of imaging mass spectrometry experiments
Lloyd et al. Ultra high performance liquid chromatography–high resolution mass spectrometry plasma lipidomics can distinguish between canine breeds despite uncontrolled environmental variability and non-standardized diets
Caponigro et al. Integrated plasma metabolomics and lipidomics profiling highlights distinctive signature of hepatocellular carcinoma in HCV patients
Qi et al. Cholesterol was identified as a biomarker in human melanocytic nevi using DESI and DESI/PI mass spectrometry imaging
Liu et al. Discovery of lipid profiles in plasma‐derived extracellular vesicles as biomarkers for breast cancer diagnosis
Mason et al. Lipidomic profiling of colorectal lesions for real-time tissue recognition and risk-stratification using rapid evaporative ionization mass spectrometry
HK40062522B (en) Use of fatty acids in methods for detecting cancer
HK40062522A (en) Use of fatty acids in methods for detecting cancer
HK1180764A (en) Methods for detecting cancer
HK1180764B (en) Methods for detecting cancer
EP4522996A1 (en) Diagnostic signature
Eckel et al. Application of rapid evaporative ionization mass spectrometry in preclinical and clinical analyses of steatotic liver tissues and cells
Mutuku et al. MALDI Mass spectrometry imaging in lipidomics
Altadill Metabolomic study for the identification of diagnostic markers and the characterization of the dissemination process of endometrial cancer
ES2734810T3 (es) Uso de SM_Esfingomielina (D18:1, C16:0) como un marcador para insuficiencia cardiaca
Shaheed Oncoproteomic applications for detection of breast cancer. Proteomic profiling of breast cancer models and biopsies
Gathercole Biomarker discovery for pre-clinical diagnosis of Tasmanian devil facial tumour disease