ES2812457T3 - Uso de ácidos grasos en procedimientos para detectar cáncer - Google Patents
Uso de ácidos grasos en procedimientos para detectar cáncer Download PDFInfo
- Publication number
- ES2812457T3 ES2812457T3 ES17163073T ES17163073T ES2812457T3 ES 2812457 T3 ES2812457 T3 ES 2812457T3 ES 17163073 T ES17163073 T ES 17163073T ES 17163073 T ES17163073 T ES 17163073T ES 2812457 T3 ES2812457 T3 ES 2812457T3
- Authority
- ES
- Spain
- Prior art keywords
- cancer
- tag
- lipids
- pmg
- lipid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 94
- 201000011510 cancer Diseases 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims abstract description 72
- 235000014113 dietary fatty acids Nutrition 0.000 title description 9
- 229930195729 fatty acid Natural products 0.000 title description 9
- 239000000194 fatty acid Substances 0.000 title description 9
- 150000004665 fatty acids Chemical class 0.000 title description 9
- 150000002632 lipids Chemical class 0.000 claims abstract description 168
- 208000026310 Breast neoplasm Diseases 0.000 claims abstract description 45
- 206010006187 Breast cancer Diseases 0.000 claims abstract description 42
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims abstract description 41
- 201000005202 lung cancer Diseases 0.000 claims abstract description 41
- 208000020816 lung neoplasm Diseases 0.000 claims abstract description 41
- 238000004458 analytical method Methods 0.000 claims abstract description 34
- 241001465754 Metazoa Species 0.000 claims abstract description 29
- 210000001124 body fluid Anatomy 0.000 claims abstract description 26
- 239000010839 body fluid Substances 0.000 claims abstract description 26
- 238000000513 principal component analysis Methods 0.000 claims abstract description 16
- 230000009467 reduction Effects 0.000 claims abstract description 8
- 238000012937 correction Methods 0.000 claims abstract description 7
- 238000002790 cross-validation Methods 0.000 claims abstract description 6
- 230000004069 differentiation Effects 0.000 claims abstract description 6
- 230000010354 integration Effects 0.000 claims abstract description 6
- 238000010801 machine learning Methods 0.000 claims abstract description 6
- 238000010238 partial least squares regression Methods 0.000 claims abstract description 6
- 241000282414 Homo sapiens Species 0.000 claims description 18
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 18
- 125000002252 acyl group Chemical group 0.000 claims description 17
- 210000002381 plasma Anatomy 0.000 claims description 12
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 9
- 239000012530 fluid Substances 0.000 claims description 9
- WWUZIQQURGPMPG-UHFFFAOYSA-N (-)-D-erythro-Sphingosine Natural products CCCCCCCCCCCCCC=CC(O)C(N)CO WWUZIQQURGPMPG-UHFFFAOYSA-N 0.000 claims description 8
- 238000004949 mass spectrometry Methods 0.000 claims description 8
- WWUZIQQURGPMPG-KRWOKUGFSA-N sphingosine Chemical compound CCCCCCCCCCCCC\C=C\[C@@H](O)[C@@H](N)CO WWUZIQQURGPMPG-KRWOKUGFSA-N 0.000 claims description 8
- 239000004322 Butylated hydroxytoluene Substances 0.000 claims description 6
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 claims description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 6
- 238000004252 FT/ICR mass spectrometry Methods 0.000 claims description 6
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 6
- 210000004369 blood Anatomy 0.000 claims description 6
- 239000008280 blood Substances 0.000 claims description 6
- 235000010354 butylated hydroxytoluene Nutrition 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 6
- 206010017758 gastric cancer Diseases 0.000 claims description 6
- 210000002966 serum Anatomy 0.000 claims description 6
- 201000011549 stomach cancer Diseases 0.000 claims description 6
- YBHMPNRDOVPQIN-UHFFFAOYSA-N (13E,15S)-15-Hydroxy-9-oxo-8(12),13-prostadienoic acid Natural products CCCCCC(O)C=CC1=C(CCCCCCC(O)=O)C(=O)CC1 YBHMPNRDOVPQIN-UHFFFAOYSA-N 0.000 claims description 5
- BGKHCLZFGPIKKU-UHFFFAOYSA-N (13E,15S)-15-hydroxy-9-oxo-prosta-10,13-dienoic acid Natural products CCCCCC(O)C=CC1C=CC(=O)C1CCCCCCC(O)=O BGKHCLZFGPIKKU-UHFFFAOYSA-N 0.000 claims description 5
- 102100036465 Autoimmune regulator Human genes 0.000 claims description 5
- 101000928549 Homo sapiens Autoimmune regulator Proteins 0.000 claims description 5
- 210000003567 ascitic fluid Anatomy 0.000 claims description 5
- 229940095259 butylated hydroxytoluene Drugs 0.000 claims description 5
- 210000001175 cerebrospinal fluid Anatomy 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 5
- BGKHCLZFGPIKKU-LDDQNKHRSA-N prostaglandin A1 Chemical compound CCCCC[C@H](O)\C=C\[C@H]1C=CC(=O)[C@@H]1CCCCCCC(O)=O BGKHCLZFGPIKKU-LDDQNKHRSA-N 0.000 claims description 5
- YBHMPNRDOVPQIN-VSOYFRJCSA-N prostaglandin B1 Chemical compound CCCCC[C@H](O)\C=C\C1=C(CCCCCCC(O)=O)C(=O)CC1 YBHMPNRDOVPQIN-VSOYFRJCSA-N 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 206010004146 Basal cell carcinoma Diseases 0.000 claims description 4
- 206010009944 Colon cancer Diseases 0.000 claims description 4
- 241000283073 Equus caballus Species 0.000 claims description 4
- 241001494479 Pecora Species 0.000 claims description 4
- 206010060862 Prostate cancer Diseases 0.000 claims description 4
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 4
- 108010053763 Pyruvate Carboxylase Proteins 0.000 claims description 4
- 102100039895 Pyruvate carboxylase, mitochondrial Human genes 0.000 claims description 4
- 210000001742 aqueous humor Anatomy 0.000 claims description 4
- 210000002939 cerumen Anatomy 0.000 claims description 4
- 210000003756 cervix mucus Anatomy 0.000 claims description 4
- 210000004910 pleural fluid Anatomy 0.000 claims description 4
- 206010046901 vaginal discharge Diseases 0.000 claims description 4
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 claims description 3
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 claims description 3
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 claims description 3
- 206010005003 Bladder cancer Diseases 0.000 claims description 3
- 208000003174 Brain Neoplasms Diseases 0.000 claims description 3
- 201000009030 Carcinoma Diseases 0.000 claims description 3
- 206010050337 Cerumen impaction Diseases 0.000 claims description 3
- 241000282326 Felis catus Species 0.000 claims description 3
- 241000287828 Gallus gallus Species 0.000 claims description 3
- 208000032612 Glial tumor Diseases 0.000 claims description 3
- 201000010915 Glioblastoma multiforme Diseases 0.000 claims description 3
- 206010018338 Glioma Diseases 0.000 claims description 3
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 3
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 claims description 3
- 208000003445 Mouth Neoplasms Diseases 0.000 claims description 3
- 208000002454 Nasopharyngeal Carcinoma Diseases 0.000 claims description 3
- 206010061306 Nasopharyngeal cancer Diseases 0.000 claims description 3
- 206010029260 Neuroblastoma Diseases 0.000 claims description 3
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 3
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 claims description 3
- 208000015634 Rectal Neoplasms Diseases 0.000 claims description 3
- 206010038389 Renal cancer Diseases 0.000 claims description 3
- 208000006265 Renal cell carcinoma Diseases 0.000 claims description 3
- 206010039491 Sarcoma Diseases 0.000 claims description 3
- 208000024770 Thyroid neoplasm Diseases 0.000 claims description 3
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 claims description 3
- 208000002495 Uterine Neoplasms Diseases 0.000 claims description 3
- 230000033228 biological regulation Effects 0.000 claims description 3
- 201000006491 bone marrow cancer Diseases 0.000 claims description 3
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 claims description 3
- 208000029742 colonic neoplasm Diseases 0.000 claims description 3
- 210000003060 endolymph Anatomy 0.000 claims description 3
- 210000002919 epithelial cell Anatomy 0.000 claims description 3
- 210000004051 gastric juice Anatomy 0.000 claims description 3
- 208000005017 glioblastoma Diseases 0.000 claims description 3
- 206010073071 hepatocellular carcinoma Diseases 0.000 claims description 3
- 231100000844 hepatocellular carcinoma Toxicity 0.000 claims description 3
- 235000020256 human milk Nutrition 0.000 claims description 3
- 210000004251 human milk Anatomy 0.000 claims description 3
- 201000010982 kidney cancer Diseases 0.000 claims description 3
- 208000032839 leukemia Diseases 0.000 claims description 3
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 claims description 3
- 210000004072 lung Anatomy 0.000 claims description 3
- 201000010453 lymph node cancer Diseases 0.000 claims description 3
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 3
- 201000001441 melanoma Diseases 0.000 claims description 3
- 206010027191 meningioma Diseases 0.000 claims description 3
- 210000003097 mucus Anatomy 0.000 claims description 3
- 201000011216 nasopharynx carcinoma Diseases 0.000 claims description 3
- 230000000926 neurological effect Effects 0.000 claims description 3
- 210000000019 nipple aspirate fluid Anatomy 0.000 claims description 3
- 201000002528 pancreatic cancer Diseases 0.000 claims description 3
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 3
- 210000004049 perilymph Anatomy 0.000 claims description 3
- 206010038038 rectal cancer Diseases 0.000 claims description 3
- 201000001275 rectum cancer Diseases 0.000 claims description 3
- 201000009410 rhabdomyosarcoma Diseases 0.000 claims description 3
- 210000003296 saliva Anatomy 0.000 claims description 3
- 210000002374 sebum Anatomy 0.000 claims description 3
- 210000000582 semen Anatomy 0.000 claims description 3
- 210000004243 sweat Anatomy 0.000 claims description 3
- 210000001138 tear Anatomy 0.000 claims description 3
- 201000002510 thyroid cancer Diseases 0.000 claims description 3
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 claims description 3
- 201000005112 urinary bladder cancer Diseases 0.000 claims description 3
- 210000002700 urine Anatomy 0.000 claims description 3
- 206010046766 uterine cancer Diseases 0.000 claims description 3
- 210000004127 vitreous body Anatomy 0.000 claims description 3
- 210000004916 vomit Anatomy 0.000 claims description 3
- 230000008673 vomiting Effects 0.000 claims description 3
- 230000002489 hematologic effect Effects 0.000 claims description 2
- JLPULHDHAOZNQI-JLOPVYAASA-N [(2r)-3-hexadecanoyloxy-2-[(9e,12e)-octadeca-9,12-dienoyl]oxypropyl] 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C\C\C=C\CCCCC JLPULHDHAOZNQI-JLOPVYAASA-N 0.000 description 199
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 58
- 229940067605 phosphatidylethanolamines Drugs 0.000 description 58
- 238000010586 diagram Methods 0.000 description 20
- 150000002500 ions Chemical class 0.000 description 8
- 230000014509 gene expression Effects 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 6
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 150000008105 phosphatidylcholines Chemical class 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000012549 training Methods 0.000 description 6
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 6
- 210000000481 breast Anatomy 0.000 description 5
- 238000004587 chromatography analysis Methods 0.000 description 5
- 238000004817 gas chromatography Methods 0.000 description 5
- 238000004811 liquid chromatography Methods 0.000 description 5
- 150000003905 phosphatidylinositols Chemical class 0.000 description 5
- 229940067626 phosphatidylinositols Drugs 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- RYCNUMLMNKHWPZ-SNVBAGLBSA-N 1-acetyl-sn-glycero-3-phosphocholine Chemical class CC(=O)OC[C@@H](O)COP([O-])(=O)OCC[N+](C)(C)C RYCNUMLMNKHWPZ-SNVBAGLBSA-N 0.000 description 4
- 150000008106 phosphatidylserines Chemical class 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 101710088194 Dehydrogenase Proteins 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 150000002327 glycerophospholipids Chemical class 0.000 description 3
- 238000004896 high resolution mass spectrometry Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 210000002307 prostate Anatomy 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- DNXIKVLOVZVMQF-UHFFFAOYSA-N (3beta,16beta,17alpha,18beta,20alpha)-17-hydroxy-11-methoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]-yohimban-16-carboxylic acid, methyl ester Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(C(=O)OC)C(O)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 DNXIKVLOVZVMQF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000283086 Equidae Species 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 241000009328 Perro Species 0.000 description 2
- LCQMZZCPPSWADO-UHFFFAOYSA-N Reserpilin Natural products COC(=O)C1COCC2CN3CCc4c([nH]c5cc(OC)c(OC)cc45)C3CC12 LCQMZZCPPSWADO-UHFFFAOYSA-N 0.000 description 2
- QEVHRUUCFGRFIF-SFWBKIHZSA-N Reserpine Natural products O=C(OC)[C@@H]1[C@H](OC)[C@H](OC(=O)c2cc(OC)c(OC)c(OC)c2)C[C@H]2[C@@H]1C[C@H]1N(C2)CCc2c3c([nH]c12)cc(OC)cc3 QEVHRUUCFGRFIF-SFWBKIHZSA-N 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 241000282898 Sus scrofa Species 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- -1 but not limited to Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 210000004209 hair Anatomy 0.000 description 2
- 238000005040 ion trap Methods 0.000 description 2
- 125000003473 lipid group Chemical group 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000002751 lymph Anatomy 0.000 description 2
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 2
- 210000002445 nipple Anatomy 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000010239 partial least squares discriminant analysis Methods 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- BJOIZNZVOZKDIG-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C([C]5C=CC(OC)=CC5=N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 BJOIZNZVOZKDIG-MDEJGZGSSA-N 0.000 description 2
- 229960003147 reserpine Drugs 0.000 description 2
- MDMGHDFNKNZPAU-UHFFFAOYSA-N roserpine Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(OC(C)=O)C(OC)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 MDMGHDFNKNZPAU-UHFFFAOYSA-N 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 150000003408 sphingolipids Chemical class 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 2
- 102000006589 Alpha-ketoglutarate dehydrogenase Human genes 0.000 description 1
- 108020004306 Alpha-ketoglutarate dehydrogenase Proteins 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 108010036781 Fumarate Hydratase Proteins 0.000 description 1
- 102100036160 Fumarate hydratase, mitochondrial Human genes 0.000 description 1
- 241000243127 Geodia Species 0.000 description 1
- 102000009127 Glutaminase Human genes 0.000 description 1
- 108010073324 Glutaminase Proteins 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 102000005548 Hexokinase Human genes 0.000 description 1
- 206010062717 Increased upper airway secretion Diseases 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 108010088350 Lactate Dehydrogenase 5 Proteins 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 108010026217 Malate Dehydrogenase Proteins 0.000 description 1
- 102000013460 Malate Dehydrogenase Human genes 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 101000840556 Oryza sativa subsp. japonica Hexokinase-4, chloroplastic Proteins 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 208000005228 Pericardial Effusion Diseases 0.000 description 1
- 102000012434 Phosphofructokinase-2 Human genes 0.000 description 1
- 108010022678 Phosphofructokinase-2 Proteins 0.000 description 1
- 102100028251 Phosphoglycerate kinase 1 Human genes 0.000 description 1
- 101710139464 Phosphoglycerate kinase 1 Proteins 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 206010053459 Secretion discharge Diseases 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 102000019259 Succinate Dehydrogenase Human genes 0.000 description 1
- 108010012901 Succinate Dehydrogenase Proteins 0.000 description 1
- 102000011929 Succinate-CoA Ligases Human genes 0.000 description 1
- 108010075728 Succinate-CoA Ligases Proteins 0.000 description 1
- 208000033809 Suppuration Diseases 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 102100028601 Transaldolase Human genes 0.000 description 1
- 108020004530 Transaldolase Proteins 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 210000002534 adenoid Anatomy 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 210000004381 amniotic fluid Anatomy 0.000 description 1
- 230000010100 anticoagulation Effects 0.000 description 1
- 210000000436 anus Anatomy 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 238000000065 atmospheric pressure chemical ionisation Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 210000000941 bile Anatomy 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000006652 catabolic pathway Effects 0.000 description 1
- 229940106189 ceramide Drugs 0.000 description 1
- 150000001783 ceramides Chemical class 0.000 description 1
- 238000000451 chemical ionisation Methods 0.000 description 1
- 210000001268 chyle Anatomy 0.000 description 1
- 210000004913 chyme Anatomy 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 150000001982 diacylglycerols Chemical class 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 210000000188 diaphragm Anatomy 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 210000003372 endocrine gland Anatomy 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 238000010265 fast atom bombardment Methods 0.000 description 1
- 150000002190 fatty acyls Chemical group 0.000 description 1
- 230000002550 fecal effect Effects 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 150000002270 gangliosides Chemical class 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 230000004110 gluconeogenesis Effects 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 150000002313 glycerolipids Chemical class 0.000 description 1
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 1
- 230000034659 glycolysis Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 210000003016 hypothalamus Anatomy 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 210000001613 integumentary system Anatomy 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000002429 large intestine Anatomy 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 235000020778 linoleic acid Nutrition 0.000 description 1
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 210000001365 lymphatic vessel Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 210000005075 mammary gland Anatomy 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 230000005906 menstruation Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002759 monoacylglycerols Chemical class 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 210000000282 nail Anatomy 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 210000004789 organ system Anatomy 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 210000002741 palatine tonsil Anatomy 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 210000001819 pancreatic juice Anatomy 0.000 description 1
- 230000000849 parathyroid Effects 0.000 description 1
- 210000002990 parathyroid gland Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 210000003899 penis Anatomy 0.000 description 1
- 230000004108 pentose phosphate pathway Effects 0.000 description 1
- 210000004912 pericardial fluid Anatomy 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 210000000578 peripheral nerve Anatomy 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- 208000026435 phlegm Diseases 0.000 description 1
- 150000008103 phosphatidic acids Chemical class 0.000 description 1
- 229930029653 phosphoenolpyruvate Natural products 0.000 description 1
- DTBNBXWJWCWCIK-UHFFFAOYSA-N phosphoenolpyruvic acid Chemical compound OC(=O)C(=C)OP(O)(O)=O DTBNBXWJWCWCIK-UHFFFAOYSA-N 0.000 description 1
- 150000003904 phospholipids Chemical group 0.000 description 1
- 210000004560 pineal gland Anatomy 0.000 description 1
- 230000001817 pituitary effect Effects 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 229930001119 polyketide Natural products 0.000 description 1
- 125000000830 polyketide group Chemical group 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 210000004909 pre-ejaculatory fluid Anatomy 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 210000004994 reproductive system Anatomy 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005316 response function Methods 0.000 description 1
- 150000003313 saccharo lipids Chemical class 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 210000001625 seminal vesicle Anatomy 0.000 description 1
- 210000004999 sex organ Anatomy 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 210000002435 tendon Anatomy 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 210000003437 trachea Anatomy 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 230000004143 urea cycle Effects 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 210000001177 vas deferen Anatomy 0.000 description 1
- 201000010653 vesiculitis Diseases 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/92—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
- G01N33/57488—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds identifable in body fluids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2570/00—Omics, e.g. proteomics, glycomics or lipidomics; Methods of analysis focusing on the entire complement of classes of biological molecules or subsets thereof, i.e. focusing on proteomes, glycomes or lipidomes
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Endocrinology (AREA)
- Hospice & Palliative Care (AREA)
- Oncology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicinal Preparation (AREA)
- Peptides Or Proteins (AREA)
Abstract
Un procedimiento para determinar la presencia o ausencia de al menos un tipo de cáncer en un animal, que comprende - determinar las cantidades de lípidos de los lípidos en un conjunto de lípidos en una muestra del animal, y - determinar la presencia o ausencia de al menos un tipo de cáncer en el animal con un modelo predictivo; en el que - las cantidades de lípidos de los lípidos en el conjunto de lípidos comprenden una entrada del modelo predictivo, y - la muestra comprende un fluido corporal o un tratamiento del mismo, - el al menos un tipo de cáncer se selecciona del grupo que consiste en cáncer pulmonar, cáncer de mama, y tumores asociados con cualquiera de los tipos de cáncer mencionados anteriormente, - el conjunto de lípidos comprende FA (16:3), y - el modelo predictivo comprende uno o más del procedimiento de reducción de dimensiones, procedimiento de agrupamiento, procedimiento de aprendizaje automático, análisis de componentes principales, modelado independiente suave de analogía de clases, regresión de mínimos cuadrados parciales, regresión de mínimos cuadrados ortogonales, análisis de discriminación de mínimos cuadrados parciales, análisis de discriminación de mínimos cuadrados parciales ortogonales, centrado de la media, centrado de la mediana, escala de Pareto, escala de varianza de la unidad, corrección de señal ortogonal, integración, diferenciación, validación cruzada o curvas características de funcionamiento del receptor.
Description
DESCRIPCIÓN
Uso de ácidos grasos en procedimientos para detectar cáncer
Derechos gubernamentales
La presente invención se hizo en parte con el apoyo del gobierno con el número de subvención EPS-0447479 otorgado por la Fundación Nacional de Ciencias / Oficina del Programa Experimental para Estimular la Investigación Competitiva (EPSCoR). El gobierno de los Estados Unidos tiene ciertos derechos en la invención.
Antecedentes
El cáncer es una causa principal de muerte y enfermedad y supone un coste importante en los sistemas médicos en Estados Unidos y en todo el mundo. Algunas publicaciones que se refieren a la conexión entre el cáncer y los ácidos grasos son las siguientes: Baro y col. (British Journal of Cancer, 1988, Vol. 77 (11), 1978-1983) se refiere a anomalías en los perfiles de ácidos grasos en plasma y células sanguíneas de pacientes con cáncer colorrectal. Mannisto y col. (Cancer Epidemiology Biomarkers and Prevention, 2003, Vol. 12, 1422-1428) se refiere a la conexión entre los ácidos grasos y el riesgo de cáncer de próstata en hombres fumadores. Przybytkowski y col. (Biochemistry and Cell Biology, 2007, Vol. 85, 301-310) se refiere a la regulación positiva del ciclo de ácidos grasos libres de triacilglicerol celular por oleato que se asocia con la supervivencia a largo plazo sin suero de las células de cáncer de mama humano. Rissanen y col. (Nutrition and Cancer, 2003, Vol 45, 168-175) se refiere a la conexión entre los ácidos grasos del suero y la incidencia de cáncer de mama. Charles y col. (American Journal of Epidemiology, 2001, Vol. 153(3), 292-298) describe cómo los ácidos grasos no esterificados en plasma predicen la mortalidad por cáncer pero no la mortalidad por cardiopatía coronaria. Charjes y col. (International Journal of Cancer, 1999, Vol 83(5), 585-590) se refiere a la conexión entre la composición de ácidos grasos de los fosfolípidos y el riesgo de cáncer de mama. Laaksonen y col. (International Journal of Cancer, 2004, 111(3), 444-450) se refiere al ácido linoleico sérico y los ácidos grasos poliinsaturados totales en relación con la próstata y otros tipos de cáncer.
La detección prematura del cáncer está asociada con mejores opciones de tratamiento y con un resultado mejorado. Por lo tanto, la detección prematura del cáncer puede ayudar a minimizar tanto la enfermedad como el coste, mientras se aumenta típicamente la probabilidad de supervivencia. Por tanto, algunas realizaciones de la invención son procedimientos para determinar la presencia de cánceres en animales.
Sumario
De acuerdo con un primer aspecto, se proporciona un procedimiento para determinar la presencia o ausencia de al menos un tipo de cáncer en un animal, que comprende
- determinar las cantidades de lípidos en un conjunto de lípidos en una muestra del animal, y
- determinar la presencia o ausencia de al menos un tipo de cáncer en el animal con un modelo predictivo; en el que
- las cantidades de lípidos en el conjunto de lípidos comprenden una entrada del modelo predictivo,
- la muestra comprende un fluido corporal o tratamiento del mismo;
- el al menos un tipo de cáncer se selecciona del grupo que consiste en cáncer de pulmón, cáncer de mama y tumores asociados con cualquiera de los tipos de cáncer mencionados anteriormente.
- el conjunto de lípidos comprende lípidos FA (16:3), y
- el modelo predictivo comprende uno o más de procedimiento de reducción de dimensiones, procedimiento de agrupamiento, procedimiento de aprendizaje automático, análisis de componentes principales, modelado independiente suave de analogía de clases, regresión de mínimos cuadrados parciales, regresión de mínimos cuadrados ortogonales, análisis de discriminación de mínimos cuadrados parciales, análisis de discriminación de mínimos cuadrados parciales ortogonales, centrado de la media, centrado de la mediana, escala de Pareto, escala de varianza de la unidad, corrección de señal ortogonal, integración, diferenciación, validación cruzada o curvas características de funcionamiento del receptor.
Preferentemente, el fluido corporal se selecciona del grupo que consiste en vómito plasmático, cerumen, jugo gástrico, leche materna, moco, saliva, sebo, semen, sudor, lágrimas, secreción vaginal, suero sanguíneo, humor acuoso, humor vítreo, endolinfa, perilinfa, fluido peritoneal, fluido pleural, líquido cefalorraquídeo, sangre, plasma, fluido de aspirado del pezón, orina, heces y fluido de lavado broncoalveolar.
Preferentemente, la muestra es una fracción exosomal.
Preferentemente, el conjunto de lípidos comprende al menos 10, al menos 50, al menos 100, al menos 200 o no más de 100.000 lípidos.
Se prefiere que el conjunto de lípidos comprende adicionalmente uno o más lípidos seleccionados de la una o más clases, de lípidos seleccionadas del grupo que consiste en BMP, CE, Cer, DAG, DH-LTB4, FA, GA2, GM3, HexCer, HexDHCer, LacCer, LisoPA, LisoPC, LisoPC-pmg, LisoPE, LisoPE-pmg, LisoPS, MAG, PC, PC-pmg, PE, PE-pmg, PGA1, PGB1, SM, esfingosina, TAG y TH-12-ceto-LTB4.
Preferentemente, el conjunto de lípidos comprende adicionalmente uno o más lípidos seleccionados de la una o más clases, e lípidos seleccionadas del grupo que consiste en FA, MAG, DAG, TAG, PI, PE, PS, PI, PG, PA, LisoPC, LisoPE, LisoPS, LisoPI, LisoPG, LisoPA, LisoPC, LisoPE, BMP, SM, Cer, Cer-P, HexCer, GA1, GA2, GD1, GD2, GM1, GM2, GM3, GT1 y CE.
Normalmente, uno o más lípidos del conjunto de lípidos se seleccionan adicionalmente de uno o más lípidos FA con un intervalo de acilo 10-26 y un número de sitios insaturados de 0-6.
Se prefiere que el al menos un tipo de cáncer comprende cáncer pulmonar.
Preferentemente, el al menos un tipo de cáncer comprende cáncer de mama.
Preferentemente, las cantidades de lípidos se determinan usando espectrometría de masas, tal como analizador de masas de resonancia de ciclotrón de iones con transformada de Fourier.
Se prefiere que la muestra sea un tratamiento de un fluido corporal y el tratamiento comprende una o más extracciones usando una o más soluciones que comprenden acetonitrilo, agua, cloroformo, metanol, hidroxitolueno butilado, ácido tricloroacético o combinaciones de los mismos.
Preferentemente, el modelo predictivo comprende uno o más procedimientos de reducción de dimensiones.
Preferentemente, el modelo predictivo comprende uno o más procedimientos seleccionados del grupo que consiste en análisis de componentes principales (PCA), modelado independiente suave de analogía de clases (SimCa ), análisis de discriminación de mínimos cuadrados parciales (PLS-DA) y análisis de discriminación de mínimos cuadrados parciales ortogonales (OPLS-DA).
Se prefiere que el animal se seleccione del grupo que consiste en un ser humano, perro, gato, caballo, vaca, cerdo, oveja, pollo, pavo, ratón y rata.
De acuerdo con otro aspecto de la invención, se proporciona un procedimiento para determinar la presencia o ausencia de al menos un tipo de cáncer en un animal que comprende
- determinar las cantidades de lípidos de los lípidos en un conjunto de lípidos en una muestra del animal, y - determinar la presencia o ausencia de al menos un tipo de cáncer en el animal con un modelo predictivo; en el que
- las cantidades de lípidos en el conjunto de lípidos comprenden una entrada del modelo predictivo, y - la muestra cmprende un líquido corporal o el tratamiento del mismo,
- el al menos un tipo de cáncer se selecciona del grupo que consiste en carcinomas, sarcomas, cánceres hematológicos, neoplasias neurológicas, cáncer de tiroides, neuroblastoma, melanoma, carcinoma de células renales, carcinoma hepatocelular, cáncer de mama, cáncer de colon, cáncer de pulmón, cáncer de páncreas, cáncer cerebral, cámcer de próstata, leucemia linfocítica crónica, leucemia linfoblástica aguda, rabdomiosarcoma, glioblastoma multiforme, meningioma, cáncer de vejiga, cáncer gástrico, glioma, cáncer oral, carcinoma nasofaríngeo, cáncer de riñón, cáncer rectal, cáncer de nódulo linfático, cáncer de médula ósea, cáncer de estómago, cáncer de útero, leucemia, carcinoma de células basales, cánceres asociados a células epiteliales, cánceres que pueden alterar la regulación o la actividad de la piruvato carboxilasa y tumores asociados con cualquiera de los tipos de cáncer mencionados anteriormente.
- el conjunto de lípidos comprende FA (16:3); y
- el modelo predictivo comprende uno o más de los métodos de reducción de dimensiones, método de agrupamiento, método de aprendizaje automático, análisis de componentes principales, modelado independiente suave de la analogía de clase, regresión parcial de mínimos cuadrados, regresión ortogonal de mínimos cuadrados, análisis discriminante de mínimos cuadrados parciales, mínimos cuadrados parciales ortogonales análisis discriminante, centrado medio, centrado medio, escalado de Pareto, escalado de varianza de unidad, corrección de señal ortogonal, integración, diferenciación, validación cruzada o curvas características operativas del receptor.
Breve descripción de los dibujos
Los siguientes dibujos forman parte de la presente memoria descriptiva y se incluyen para ilustrar adicionalmente ciertos ejemplos de la presente invención.
Figura 1. Diacilgliceroles en muestras de seres humanos con cáncer pulmonar, cáncer de mama y sin cáncer (control).
Figura 2. Fosfatidilcolinas en muestras de seres humanos con cáncer pulmonar, cáncer de mama y sin cáncer (control).
Figura 3. Fosfatidilcolinas en muestras de seres humanos con cáncer pulmonar, cáncer de mama y sin cáncer (control).
Figura 4. Fosfatidilcolinas en muestras de seres humanos con cáncer pulmonar, cáncer de mama y sin cáncer (control).
Figura 5. Fosfatidilcolinas en muestras de seres humanos con cáncer pulmonar, cáncer de mama y sin cáncer (control).
Figura 6. Fosfatidiletanolaminas en muestras de seres humanos con cáncer pulmonar, cáncer de mama y sin cáncer (control).
Figura 7. Fosfatidiletanolaminas en muestras de seres humanos con cáncer pulmonar, cáncer de mama y sin cáncer (control).
Figura 8. Fosfatidiletanolaminas en muestras de seres humanos con cáncer pulmonar, cáncer de mama y sin cáncer (control).
Figura 9. Fosfatidiletanolaminas-pmg en muestras de seres humanos con cáncer pulmonar, cáncer de mama y sin cáncer (control).
Figura 10. Fosfatidiletanolaminas-pmg en muestras de seres humanos con cáncer pulmonar, cáncer de mama y sin cáncer (control).
Figura 11. Triacilgliceroles en muestras de seres humanos con cáncer pulmonar, cáncer de mama y sin cáncer (control).
Figura 12. Monoacilgliceroles en muestras de seres humanos con cáncer pulmonar, cáncer de mama y sin cáncer (control).
Figura 13. Clases de lípidos en muestras de seres humanos que comparan el tipo de cáncer.
Figura 14. Diagrama de valores PC1-PC3 PCA para muestras de cáncer de mama, de control y cáncer pulmonar - 4 componentes, R2X = 0,475, Q2 = 0,296.
Figura 15. Diagrama de cargas de PC1-PC3 PCA para muestras de cáncer de mama, de control y cáncer pulmonar - 4 componentes, R2X = 0,475, Q2 = 0,296.
Figura 16. Diagrama de valores OPLS-DA que separa muestras de cáncer pulmonar y de control - componentes ortogonales 1 1, R2X = 0,253, R2Y = 0,619, Q2 = 0,345.
Figura 17. Diagrama de coeficientes OPLS-DA que separa muestras de cáncer pulmonar y de control -componentes ortogonales 1+1, R2X = 0,253, R2Y = 0,619, Q2 = 0,345. El diagrama de coeficientes indica lípidos elevados en muestras de control.
Figura 18. Diagrama de coeficientes OPLS-DA que separa muestras de cáncer pulmonar y de control -componentes ortogonales 1+1, R2X = 0,253, R2Y = 0,619, Q2 = 0,345. El diagrama de coeficientes indica lípidos elevados en muestras de cáncer pulmonar.
Figura 19. Diagrama de valores OPLS-DA que separa muestras de cáncer de mama y de control - componentes ortogonales 1 1, R2X = 0,281, R2Y = 0,762, Q2 = 0,625.
Figura 20. Diagrama de coeficientes OPLS-DA que separa muestras de cáncer de mama y de control -componentes ortogonales 1+1, R2X = 0,281, R2Y = 0,762, Q2 = 0,625. El diagrama de coeficientes indica lípidos elevados en muestras de control.
Figura 21. Diagrama de coeficientes OPLS-DA que separa muestras de cáncer de mama y de control -componentes ortogonales 1+1, R2X = 0,281, R2Y = 0,762, Q2 = 0,625. El diagrama de coeficientes indica lípidos elevados en muestras de cáncer de mama.
Figura 22. Diagrama de valores OPLS-DA que separa muestras de cáncer pulmonar y de cáncer de mama -componentes ortogonales 1 1, R2X = 0,309, R2Y = 0,816, Q2 = 0,725.
Figura 23. Diagrama de coeficientes OPLS-DA que separa muestras de cáncer pulmonar y de cáncer de mama -componentes ortogonales 1+1, R2X = 0,309, R2Y = 0,816, Q2 = 0,725. El diagrama de coeficientes indica lípidos elevados en muestras de cáncer pulmonar.
Figura 24. Diagrama de coeficientes OPLS-DA que separa muestras de cáncer pulmonar y de cáncer de mama -componentes ortogonales 1+1, R2X = 0,309, R2Y = 0,816, Q2 = 0,725. El diagrama de coeficientes indica lípidos elevados en muestras de cáncer de mama.
Figura 25. Un diagrama de flujo que representa una realización de uno de los procedimientos divulgados en el presente documento. El estado del cáncer puede incluir la presencia o ausencia de uno o más tipos de cáncer.
Descripción detallada
Algunas realizaciones de la invención incluyen procedimientos para detectar la presencia o ausencia de uno o más tipos de cáncer determinando la cantidad de lípidos en un conjunto de lípidos en una muestra. La muestra puede ser un fluido corporal (o tratamiento del mismo) de un animal. En algunos casos, la muestra (por ejemplo, un extracto de fluido corporal) comprende una concentración de microvesículas de lípidos que es mayor de la normalmente encontrada en un fluido corporal. Las cantidades de lípidos en el conjunto de lípidos se analizan usando un modelo predictivo para determinar la presencia o ausencia de uno o más tipos de cáncer.
Los lípidos se denominan de acuerdo con la siguiente notación XXX (YY:ZZ). XXX es la abreviatura para el grupo de lípidos (que en muchos casos indica el grupo principal lipídico) según se proporciona, por ejemplo, en la tabla 1. YY es la cantidad de carbonos en la cadena acilo. ZZ es la cantidad de dobles enlaces en las cadenas acilo.
El término lípido, como se usa en el presente documento, se define como un conjunto de uno o más isómeros. Por ejemplo, PC (36:1) es un lípido y está en el conjunto de uno o más de los isómeros de fosfatidilcolina que tienen 36 carbonos en la cadena acilo y un doble enlace en cualquiera de las dos cadenas acilo; estos isómeros tienen pesos moleculares idénticos. Aunque el término lípido puede abarcar el conjunto completo de isómeros, la muestra puede tener, de hecho, solamente un isómero, varios isómeros o cualquier cantidad de isómeros menor que la cantidad total de todos los posibles isómeros en un conjunto. Por consiguiente, lípido puede referirse a uno o más de los isómeros que componen el conjunto completo de posibles isómeros.
Se define que la expresión conjunto de lípidos incluye uno o más lípidos.
Se define que la expresión cantidad de lípidos (y expresiones similares tales como, cantidades de lípidos o cantidad de un lípido) abarca una cantidad absoluta de un lípido (por ejemplo, en milimoles) o una cantidad relativa de un lípido (por ejemplo, en % de intensidad relativa).
La tabla 1 proporciona abreviaturas de nombres de lípidos usadas en los datos; se proporcionan otras abreviaturas en el texto según lo necesario.
Tabla 1
Los fluidos corporales pueden ser cualquier fluido corporal adecuado para la determinación de cáncer e incluyen, aunque sin limitación, vómito, cerumen (cera del oído), jugo gástrico, leche materna, moco (por ejemplo, drenaje nasal y flema), saliva, sebo (aceite de la piel), semen (incluyendo fluido prostático), sudor, lágrimas, secreción vaginal, suero sanguíneo, humor acuoso, humor vítreo, endolinfa, perilinfa, fluido peritoneal, fluido pleural, líquido cefalorraquídeo,
sangre, plasma, fluido de aspirado del pezón, orina, heces, fluido de lavado broncoalveolar, sangre periférica, suero, plasma, líquido ascítico, líquido cefalorraquídeo (CSF), esputo, médula ósea, fluido sinovial, humor acuoso, líquido amniótico, fluido de Cowpero fluido preeyaculatorio, eyaculado femenino, materia fecal, cabello, líquido quístico, fluido pleural y peritoneal, fluido pericárdico, linfa, quimo, quilo, bilis, fluido intersticial, menstruación, pus, secreciones vaginales, secreción mucosa, agua fecal, jugo pancreático, fluidos de lavado de cavidades sinusales, aspirados broncopulmonares u otros fluidos de lavado.
El fluido corporal puede ser cualquier tejido animal (por ejemplo, tejidos de mamífero) incluyendo, aunque sin limitación, tejido conectivo, tejido muscular, tejido nervioso, tejido adiposo, tejido endotelial o tejido epitelial. El tejido puede ser al menos parte de un órgano o parte de un sistema orgánico. Los órganos pueden incluir, aunque sin limitación, corazón, sangre, vasos sanguíneos, glándulas salivares, esófago, estómago, hígado, vesícula biliar, páncreas, intestino grueso, intestino delgado, recto, ano, colon, glándulas endocrinas (por ejemplo, hipotálamo, pituitaria, cuerpo pineal, tiroides, paratiroides y glándulas suprarrenales), riñones, uréteres, vejiga, piel de la uretra, cabello, uñas, linfa, ganglios linfáticos, vasos linfáticos, leucocitos, amígdalas, adenoides, timo, bazo, músculos, cerebro, médula espinal, nervios periféricos, nervios, órganos sexuales (por ejemplo, ovarios, trompas de Falopio, útero, vagina, glándulas mamarias (por ejemplo, mamas), testículos, vaso deferente, vesículas seminales, próstata y pene), faringe, laringe, tráquea, bronquios, pulmones, diafragma, huesos, cartílago, ligamentos o tendones. Los sistemas orgánicos pueden incluir, aunque sin limitación el sistema circulatorio, el sistema digestivo, el sistema endocrino, el sistema excretor, el sistema tegumentario, el sistema linfático, el sistema muscular, el sistema nervioso, el sistema reproductor, el sistema respiratorio o el sistema esquelético.
Los fluidos corporales se pueden obtener del animal mediante cualquier procedimiento adecuado, incluyendo, pero sin limitación, la manipulación de puntos de excreción natural (por ejemplo, mediante la succión o mediante manipulación manual, tal como el pezón mamario para obtener un líquido aspirado del pezón). Los fluidos corporales pueden congelarse en nitrógeno líquido. La preparación de los fluidos corporales puede realizarse de cualquier manera adecuada.
El fluido corporal puede obtenerse a través de un tercero, como una parte que no realiza el análisis. Por ejemplo, el fluido corporal puede obtenerse a través de un médico, practicante u otro administrador de atención médica de un sujeto del que se obtiene la muestra. En algunas realizaciones, el fluido corporal se puede obtener por la misma parte que realiza el análisis. En algunas realizaciones, el fluido corporal es la muestra. En otras realizaciones, el fluido corporal se trata para proporcionar la muestra. El tratamiento puede incluir cualquier procedimiento adecuado, incluyendo, aunque sin limitación, extracción, centrifugación (por ejemplo, ultracentrifugación), liofilización, fraccionamiento, separación (por ejemplo, usando cromatografía en columna o gel) o evaporación. En algunos casos este tratamiento puede incluir una o más extracciones con soluciones que comprenden cualquier disolvente adecuado o combinaciones de disolventes tales como, aunque sin limitación, acetonitrilo, agua, cloroformo, metanol, hidroxitolueno butilado, ácido tricloroacético, tolueno, hexano, benceno o combinaciones de los mismos. Por ejemplo, en algunas realizaciones, se extraen fracciones de sangre con una mezcla que comprende metanol e hidroxitolueno butilado. En algunos casos, la muestra (por ejemplo, un extracto de fluido corporal o una fracción de microvesícula lipídica de plasma sanguíneo) comprende una concentración de microvesículas de lípidos que es mayor de la normalmente encontrada en un fluido corporal.
El volumen de la muestra (por ejemplo, el fluido corporal o tratamiento del mismo) usada para el análisis puede estar en el intervalo de aproximadamente 0,1 a aproximadamente 20 ml, tal como no más de aproximadamente 20, aproximadamente 15, aproximadamente 10, aproximadamente 9, aproximadamente 8, aproximadamente 7, aproximadamente 6, aproximadamente 5, aproximadamente 4, aproximadamente 3, aproximadamente 2, aproximadamente 1 o aproximadamente 0,1 ml.
Las amplias clases de lípidos que pueden ser parte de un conjunto de lípidos incluyen, aunque sin limitación, ácidos grasos (caracterizados por un grupo carboxilo y una cadena acilo), glicerolípidos (caracterizados por la presencia de una estructura de glicerol con uno - monoacilgliceroles (MAG), dos - diacilgliceroles (DAG) o tres - triacilgliceroles (TAG) cadenas de acilo graso enlazadas con éster), glicerofosfolípidos (GPL) (caracterizados por una estructura de glicerilo con dos cadenas acilo enlazadas por éster y un grupo principal polar enlazado con fosfato - los GPL incluyen fosfatidilcolinas (PC), fosfatidiletanolaminas (PE), fosfatidilserinas (PS), fosfatidilgliceroles (PG), fosfatidilinositoles (PI), inositol y ácidos fosfatídicos), lisoglicerofosfolípidos (LGPL) (los LGPL pierden una de las cadenas acilo de la estructura de glicerol, por ejemplo, en la posición C2 - los LGPL incluyen lisofosfatidilcolinas (LisoPC), lisofosfatidiletanolaminas (LisoPE), lisofosfatidilserinas (LisoPS), lisofosfatidilgliceroles (LisoPG), lisofosfatidilinositoles (LisoPI), lisoinositol y ácidos lisofosfatídicos), esfingolípidos (SPL) (caracterizados por una estructura básica de esfingosina con un doble enlace trans entre C4 y C5 de una cadena acilo unida al grupo amino a través de un enlace amida), Bis(monoacilglicero)fosfato (BMP), ceramidas, gangliósidos, esteroles, prenoles, sacarolípidos y policétidos. En algunos casos, el grupo lipídico se basa en la composición de cadena acilo que puede variar de muchas maneras incluyendo la cantidad de carbonos en la cadena acilo y la cantidad de dobles enlaces en la cadena acilo.
En otras realizaciones, los lípidos en el conjunto de lípidos pueden provenir de una o más clases de lípidos, tales como BMP, CE, Cer, DAG, DH-lTb4, FA, GA2, GM3, HexCer, HexDHCer, LacCer, LisoPA, LisoPC, LisoPC-pmg, LisoPE, LisoPEpmg, LisoPS, MAG, PC, PC-pmg, PE, PE-pmg, PGA1, PGB1, SM, esfingosina, TAG, o TH-12-ceto-LTB4. En otras realizaciones más, los lípidos en el conjunto de lípidos pueden provenir de una o más clases de lípidos, tales
como, FA, MAG, DAG, TAG, PC, PE, PS, PI, PG, PA, LisoPC, LisoPE, LisoPS, LisoPI, LisoPG, LisoPA, LisoPC, LisoPE, BMP, SM, Cer, Cer-P, HexCer, GA1, GA2, GDI, GD2, GM1, GM2, GM3, GT1, o CE.
En algunas realizaciones, el conjunto de lípidos usado en el modelo predictivo se limita a los que tienen una mayor probabilidad de encontrarse en combinaciones de lípidos humanos. En otros ejemplos, el conjunto de lípidos excluye cadenas acilo muy cortas, y muy largas (por ejemplo, menos de 10 carbonos y más de 26 carbonos dentro de una cadena). En otros ejemplos más, los lípidos del conjunto de lípidos (por ejemplo, GPL o LGPL) se limitan a los que contienen una cantidad par de carbonos en la cadena acilo. En otros ejemplos, el conjunto de lípidos incluía uno o más lípidos enumerados en la tabla 2.
Tabla 2
(continuación)
De acuerdo con la realización de la invención, el conjunto de lípidos comprende uno o más lípidos FA (16:3).
En algunos ejemplos, los lípidos en conjunto de lípidos pueden incluir uno o más de BMP (30:1), BMP (32:1), BMP (34:1), BMP (35:4), BMP (36:3), BMP (37:1), BMP (37:7), BMP (38:1), BMP (38:2), BMP (38:4), BMP (39:1), BMP (39:4), BMP (40:1), BMP (40:2), BMP (40:3), BMP (40:4), BMP (40:7), BMP (42:10), BMP (42:2), BMP (42:5), BMP (44:8), CE (16:2), CE (18:2), CE (18:3), CE (18:4), CE (20:2), CE (20:4), CE (20:5), Cer (32:1), Cer (34:1), Cer (36:1), Cer (38:1), Cer (38:4), Cer (40:2), Cer (40:4), DAG (28:0), DAG (32:0), DAG (32:2), DAG (34:0), DAG (34:3), DAG (34:5), DAG (36:0), DAG (36:1), DAG (36:2), DAG (36:3), DAG (36:8), DAG (38:1), DAG (38:10), DAG (38:2), DAG (38:3), DAG (38:5), DAG (40:1), DAG (40:2), DAG (40:5), DH-LTB4 (20:3), FA (16:3), FA (19:1), GA2 (30:0), GA2 (33:2), GA2 (35:2), GA2 (37:2), GM3 (41:1), HexCer (32:1), HexDHCer (34:0), LacCer (30:0), LacCer (30:1), LacCer (32:2), LisoPA (16:2), LisoPA (16:3), LisoPA (18:1), LisoPA (22:0), LisoPA (22:1), LisoPC (16:0), LisoPC (18:0), LisoPC (18:1), LisoPC (18:4), LisoPC (20:4), LisoPC (20:5), LisoPC (26:6), LisoPC-pmg (12:0), LisoPC-pmg (18:3), LisoPC-pmg (24:4), LisoPC-pmg (26:0), LisoPE (10:1), LisoPE (16:2), LisoPE (18:2), LisoPE-pmg (18:4), LisoPS (24:1), MAG (18:0), MAG (20:3), MAG (24:2), PC (32:0), PC (32:1), PC (34:1), PC (34:1), PC (34:2), PC (34:3), PC (34:4), PC (34:6), PC (36:1), PC (36:2), PC (36:3), PC (36:4), PC (36:5), PC (36:6), PC (36:9), PC (38:2), PC (38:3), PC (38:4), PC (38:5), PC (38:6), PC (38:7), PC (38:8), PC (38:9), PC (40:5), PC (40:6), PC (40:7), PC (40:8), PC (40:9), PC (44:12), PC-pmg (30:1), PC-pmg (36:4), PC-pmg (38:5), PC-pmg (38:7), PC-pmg (40:11), PC-pmg (42:1), PE (34:7), PE (36:5), PE (36:7), PE (38:2), PE (38:3), PE (38:4), PE (38:5), PE (38:7), PE (40:4), PE (40:9), PE (42:12), PE (44:11), PE-pmg (28:2), PE-pmg (30:3), PE-pmg (34:6), PE-pmg (34:8), PE-pmg (36:5), PE-pmg (36:6), PE-pmg (40:7), PE-pmg (40:8), PE-pmg (42:10), PE-pmg (42:12), PE-pmg (42:4), PE-pmg (42:7), PE-pmg (42:8), PE-pmg (42:9), PE-pmg (44:10), PE-pmg (44:11), PE-pmg (44:12), PE-pmg (44:7), PE-pmg (44:8), PE-pmg (44:9), PGA1 (20:1), PGB1 (20:1), SM (34:1), SM (34:2), SM (36:1), SM (38:1), SM (40:1), SM (40:2), SM (42:1), SM (42:2), SM (42:3), Esfingosina (18:0), TAG (44:1), TAG (44:3), TAG (46:0), TAG (46:1), TAG (46:2), TAG (46:3), TAG (46:4), TAG (48:0), TAG (48:1), TAG (48:2), TAG (48:3), TAG (48:4), TAG (48:5), TAG (49:1), TAG (49:2), TAG (49:3), TAG (50:0), TAG (50:1), TAG (50:2),
TAG (50:3), TAG (50:4), TAG (50:5), TAG (50:6), TAG (51:2), TAG (51:4), TAG (52:2), TAG (52:3), TAG (52:4), TAG (52:5), TAG (52:6), TAG (52:7), TAG (53:4), TAG (54:2), TAG (54:3), TAG (54:4), TAG (54:5), TAG (54:6), TAG (54:7), TAG (54:8), TAG (55:5), TAG (55:6), TAG (55:7), TAG (56:4), TAG (56:5), TAG (56:6), TAG (56:7), TAG (56:8), TAG (56:9), TAG (58:10), TAG (58:6), TAG (58:8), TAG (58:9), TAG (60:12) o TH-12-ceto-LTB4(20:2).
En algunos ejemplos (por ejemplo, para determinar cáncer pulmonar), los lípidos en el conjunto de lípidos incluyen LisoPA (22:0), PE-pmg (42:9), FA (16:3), FA (19:1), CE (18:2), PE-pmg (44:11), BMP (30:1), PE-pmg (44:12), BMP (42:10), BMP (36:3), PC (34:6), BMP (40:3), TAG (50:2), BMP (39:1), DAG (38:3), BMP (37:1), PC-pmg (40:11), DAG (40:5), DAG (32:2), TAG (46:2), BMP (42:5), PE-pmg (42:8), PC (44:12), GA2 (35:2), TAG (50:1), CE (20:5), DAG (40:2), TAG (49:2), LisoPE (18:2), BMP (40:7), DAG (36:8), LisoPC (18:1), PE-pmg (36:5), PE-pmg (42:7), DH-LTB4 (20:3), PGA1 (20:1), PGB1 (20:1), BMP (38:4), BMP (35:4), BMP (44:8), TAG (46:1), TAG (44:1), LysoPC (18:4), DAG (36:0), DAG (38:2), LisoPC (20:4), DAG (38:1), LisoPC (26:6), DAG (36:2), DAG (34:5), TAG (49:1), TAG (56:7), DAG (38:5), Cer (40:2), BMP (40:4), GA2 (30:0), LisoPC-pmg (12:0), LisoPC-pmg (26:0), PC-pmg (30:1), LisoPC (20:5), PE-pmg (44:10), PE-pmg (34:8), PE-pmg (44:7), GM3 (41:1), BMP (37:7), PC (38:9), CE (20:4), SM (36:1), LisoPC-pmg (18:3), TAG (54:2), PE (38:5), PC (34:4), PC (34:3), TAG (48:0), TAG (50:5), DAG (32:0), PC (36:3), LisoPA (18:1), TAG (48:3), TAG (50:4), TAG (54:3), LisoPA (16:3), PC (36:1), TAG (58:9), PE-pmg (36:6), TAG (54:7), TAG (56:5), SM (42:1), LisoPA (16:2), DAG (28:0), TAG (46:3), TAG (54:8), SM (42:2), PC (40:8), LisoPE (10:1), PE (44:11), TAG (56:9), PC (40:6), SM (40:1), PE (36:5), Cer (32:1), BMP (39:4), PE-pmg (34:6), DAG (34:3), TAG (54:4), TAG (54:6), TAG (52:6), PE (36:7), PC (38:4), DAG (36:3), PC (36:2), PC (38:6), Cer (40:4), TAG (52:4), MAG (24:2), TAG (54:5), PC (36:5), TAG (50:3), TAG (52:5), MAG (18:0), LisoPA (22:1), TAG (52:3), PC (36:4), PC (40:7), PC (34:2), PC (34:1), Cer (34:1), PC (38:7), Cer (36:1), Cer (38:4), PC (38:5), Cer (38:1), o TAG (44:3).
En algunos ejemplos (por ejemplo, para determinar cáncer pulmonar), los lípidos en el conjunto de lípidos incluyen LisoPA (22:0), PE-pmg (42:9), FA (16:3), FA (19:1), CE (18:2), Cer (36:1), Cer (38:4), PC (38:5), Cer (38:1), o TAG (44:3).
En algunos ejemplos (por ejemplo, para determinar cáncer pulmonar), los lípidos en el conjunto de lípidos incluyen LisoPA (22:0), PE-pmg (42:9), FA (16:3), FA (19:1), CE (18:2), PE-pmg (44:11), BMP (30:1), PE-pmg (44:12), BMP (42:10), BMP (36:3), PC (34:6), BMP (40:3), TAG (50:2), BMP (39:1), DAG (38:3), BMP (37:1), PC-pmg (40:11), DAG (40:5), DAG (32:2), TAG (46:2), BMP (42:5), PE-pmg (42:8), PC (44:12), GA2 (35:2), TAG (50:1), PE (36:7), PC (38:4), DAG (36:3), PC (36:2), PC (38:6), Cer (40:4), TAG (52:4), MAG (24:2), TAG (54:5), PC (36:5), TAG (50:3), TAG (52:5), MAG (18:0), LisoPA (22:1), TAG (52:3), PC (36:4), PC (40:7), PC (34:2), PC (34:1), Cer (34:1), PC (38:7), Cer (36:1), Cer (38:4), PC (38:5), Cer (38:1) o TAG (44:3).
En algunos ejemplos (por ejemplo, para determinar cáncer pulmonar), los lípidos en el conjunto de lípidos incluyen TAG (44:3), PC (36:5), PC (38:5), Cer (38:4), PE-pmg (42:9), PC (38:7), LisoPA (22:0), Cer (38:1), Cer (34:1), Cer (36:1), PC (40:7), TAG (54:5), TAG (54:6), CE (18:2), PC (36:4), FA (16:3), PE-pmg (44:11), TAG (52:5), Cer (40:4), CE (20:5), PC (38:6), TAG (50:2), MAG (18:0), FA (19:1), TAG (52:2), LisoPA (22:1), MAG (24:2), TAG (54:7), TAG (50:3), TAG (50:1), DAG (36:3), PC (34:1), TAG (52:6), BMP (30:1), PE-pmg (44:12), CE (20:4), BMP (40:3), PE (44:11), PC (40:8), TAG (56:9), PE-pmg (34:6), PE (36:7), PE (36:5), TAG (56:7), TAG (56:8), DAG (34:3), TAG (56:6), BMP (42:10), TAG (52:3), BMP (39:4), BMP (36:3), TAG (54:3), TAG (56:5), TAG (54:8), PC (34:6), PC (40:6), DAG (36:0), LisoPE (10:1), DAG (40:5), Cer (32:1), TAG (50:5), TAG (50:4), PE-pmg (36:6), BMP (42:5), TAG (46:3) o PE (38:5).
En algunos ejemplos (por ejemplo, para determinar cáncer pulmonar), los lípidos en el conjunto de lípidos incluyen TAG (44:3), PC (36:5), PC (38:5), Cer (38:4), PE-pmg (42:9), PC (38:7), LisoPA (22:0), Cer (38:1), Cer (34:1) o Cer (36:1).
En algunos ejemplos (por ejemplo, para determinar cáncer de mama), los lípidos en el conjunto de lípidos incluyen LisoPA (22:1), PE-pmg (42:9), CE (20:5), TAG (52:3), LisoPA (22:0), TAG (52:2), DAG (32:0), TAG (54:4), DAG (34:0), DAG (36:0), TAG (54:3), PE-pmg (44:11), TAG (44:3), BMP (30:1), TAG (52:4), BMP (40:3), PC (36:5), PC (36:9), PC (34:6), PE-pmg (44:12), BMP (42:10), BMP (36:3), PC-pmg (40:11), FA (16:3), DAG (38:3), TAG (54:2), BMP (42:5), HexDHCer (34:0), DAG (40:5), Cer (40:4), PC-pmg (30:1), PC (44:12), PE (38:5), PE (42:12), TAG (48:0), PE (36:5), PE-pmg (34:6), MAG (24:2), PE-pmg (36:6), TAG (56:4), TAG (49:3), CE (18:3), FA (19:1), DAG (38:5), TAG (50:0), BMP (38:4), TAG (46:3), TAG (51:4), BMP (35:4), PE-pmg (36:5), PE (44:11), DAG (38:2), TAG (48:3), CE (20:4), CE (18:4), LisoPC-pmg (18:3), BMP (44:8), LisoPC (20:4), TAG (60:12), LisoPC (18:4), PE-pmg (28:2), PE (40:4), PC-pmg (42:1), Esfingosina (18:0), LacCer (32:2), LisoPC (18:0), PE (38:3), MAG (20:3), SM (34:2), PC (40:5), SM (42:1), PE (38:7), LacCer (30:1), TAG (44:1), TAG (58:8), PC (40:9), CE (16:2), TAG (58:10), PE-pmg (44:10), SM (40:2), TAG (50:4), LisoPE-pmg (18:4), GA2 (37:2), PC-pmg (38:5), PC-pmg (36:4), PC (38:2), LacCer (30:0), GA2 (33:2), SM (42:3), PE (38:4), TAG (46:1), PC (32:1), BMP (42:2), LisoPC (16:0), SM (38:1), PE (38:2), TAG (50:3), TAG (58:9), PC (40:6), TAG (48:1), TAG (50:2), BMP (38:2), PE-pmg (40:7), PE-pmg (42:10), LisoPC-pmg (24:4), PC (34:3), PE-pmg (44:9), SM (36:1), PE-pmg (42:12), TAG (48:2), BMP (40:1), PE-pmg (44:8), DAG (36:1), TAG (56:7), LisoPC (26:6), PE-pmg (40:8), CE (18:2), PC (32:0), TAG (54:8), Cer (36:1), GA2 (35:2), TAG (56:6), TAG (56:9), DAG (36:8), PE-pmg (42:7), BMP (40:2), PC (38:3), PC (40:7), DAG (32:2), SM (42:2), SM (40:1), MAG (18:0), TAG (56:8), PE-pmg (42:8), TAG (52:5), DAG (40:1), PC (36:1), SM (34:1), DAG (38:1), TAG (54:7), Cer (38:1), BMP (39:1), BMP (37:1), Cer (34:1), TAG (54:6), PC (38:4), TAG (54:5), PC (36:3), PC (36:4), PC (36:2), PC (34:2) o PC (34:1).
En algunos ejemplos (por ejemplo, para determinar cáncer de mama), los lípidos en el conjunto de lípidos incluyen LisoPA (22:1), PE-pmg (42:9), CE (20:5), TAG (52:3), LisoPA (22:0), PC (36:3), PC (36:4), PC (36:2), PC (34:2) o PC (34:1).
En algunos ejemplos (por ejemplo, para determinar cáncer de mama), los lípidos en el conjunto de lípidos incluyen LisoPA (22:1), PE-pmg (42:9), CE (20:5), TAG (52:3), LisoPA (22:0), TAG (52:2), DAG (32:0), TAG (54:4), DAG (34:0), DAG (36:0), TAG (54:3), PE-pmg (44:11), TAG (44:3), BMP (30:1), TAG (52:4), BMP (40:3), PC (36:5), PC (36:9), PC (34:6), PE-pmg (44:12), BMP (42:10), BMP (36:3), PC-pmg (40:11), FA (16:3), DAG (38:3), PC (40:7), DAG (32:2), SM (42:2), SM (40:1), MAG (18:0), TAG (56:8), PE-pmg (42:8), TAG (52:5), DAG (40:1), PC (36:1), SM (34:1), DAG (38:1), TAG (54:7), Cer (38:1), BMP (39:1), BMP (37:1), Cer (34:1), TAG (54:6), PC (38:4), TAG (54:5), PC (36:3), PC (36:4), PC (36:2), PC (34:2) o PC (34:1).
En algunos ejemplos (por ejemplo, para determinar cáncer de mama), los lípidos en el conjunto de lípidos incluyen PC (34:2), PC (34:1), PC (36:2), PC (36:4), PC (36:3), PC (38:4), LisoPA (22:1), PE-pmg (42:9), LisoPA (22:0), CE (20:5), Cer (36:1), CE (18:2), DAG (34:0), SM (34:1), DAG (32:0), PE-pmg (40:8), PC (38:3), DAG (36:0), PC (36:1), TAG (54:5), TAG (54:6), PE-pmg (44:11), PE-pmg (42:8), TAG (52:2), SM (42:2), PC (38:6), TAG (54:7), PC (40:6), PC (40:7), LisoPC (16:0), FA (16:3), TAG (52:5), TAG (44:3), BMP (38:2), BMP (30:1), SM (40:1), PE-pmg (42:10), BMP (40:2), PE-pmg (40:7), SM (36:1), PE (38:2), PC (34:3), PC (36:5), PC (32:0), PC (32:1), BMP (37:1), BMP (40:3), PC (36:9), SM (42:3), PC-pmg (36:4), PC-pmg (38:5), PC (40:9), TAG (54:3), PE-pmg (44:12), BMP (36:3), FA (19:1), BMP (39:1), TAG (50:3), BMP (42:10), PC (34:6), GA2 (35:2), TAG (58:9), PE-pmg (42:7) o LisoPC (18:0).
En algunos ejemplos (por ejemplo, para determinar cáncer de mama), los lípidos en el conjunto de lípidos incluyen, aunque sin limitación, PC (34:2), PC (34:1), PC (36:2), PC (36:4), PC (36:3), PC (38:4), LisoPA (22:1), PE-pmg (42:9), LisoPA (22:0) o CE (20:5).
En algunos ejemplos (por ejemplo, para determinar cáncer de mama y cáncer pulmonar), los lípidos en el conjunto de lípidos incluyen LisoPA (22:1), PC (36:5), TAG (52:3), PC (38:5), CE (20:5), TAG (44:3), PC (38:7), TAG (52:2), TAG (54:4), TAG (52:4), Cer (38:4), DAG (32:0), MAG (24:2), DAG (34:0), TAG (54:3), PC (38:6), Cer (40:4), TAG (52:6), PE-pmg (34:6), PE (36:5), DAG (36:0), Cer (36:1), CE (20:4), PC (36:9), PE-pmg (36:6), PE (38:5), PE (36:7), TAG (50:5), TAG (46:3), TAG (48:3), DAG (36:3), TAG (48:0), PC (40:7), CE (18:3), LisoPE (10:1), TAG (56:5), TAG (52:7), PE (44:11), Cer (38:1), TAG (54:2), LisoPA (16:2), TAG (52:5), TAG (48:4), LisoPA (16:3), DAG (28:0), LisoPC-pmg (18:3), HexDHCer (34:0), Cer (32:1), DAG (34:3), TAG (50:3), BMP (39:4), LisoPA (18:1), TAG (49:3), DAG (38:3), MAG (18:0), TAG (56:4), PC (40:8), PE-pmg (42:4), TAG (50:0), TAG (48:5), TAG (50:6), DAG (38:10), BMP (34:1), PC (36:6), BMP (37:7), TAG (55:6), PC (34:4), BMP (32:1), PC (38:8), PC-pmg (38:7), TAG (46:0), TAG (46:4), PC (38:9), TAG (53:4), TAG (55:5), TAG (55:7), TAG (58:6), TAG (58:9), BMP (38:1), TH-12-ceto-LTB4(20:2), PC (34:6), HexCer (32:1), LisoPE (16:2), PE (34:7), LisoPS (24:1), PC (40:5), LisoPC (18:0), TAG (51:2), PE (38:3), Esfingosina (18:0), PC-pmg (38:5), PC-pmg (36:4), BMP (40:4), LacCer (30:1), SM (40:2), BMP (30:1), PC-pmg (42:1), PE-pmg (28:2), PE- pmg (30:3), PE (38:2), CE (20:2), DAG (34:5), BMP (42:2), Cer (34:1), PC (32:1), PE-pmg (44:12), GA2 (37:2), GA2 (33:2), LisoPA (22:0), DAG (40:2), TAG (56:7), TAG (54:5), LisoPE (18:2), LisoPE-pmg (18:4), CE (16:2), TAG (56:6), BMP (40:7), PE-pmg (40:7), BMP (38:2), MAG (20:3), TAG (49:2), PE (38:4), TAG (49:1), PE-pmg (42:10), DAG (36:2), BMP (42:10), TAG (44:1), LisoPC (16:0), PC (38:2), SM (42:2), PE-pmg (44:9), BMP (40:1), PE-pmg (44:8), PE-pmg (44:11), TAG (46:2), LisoPC-pmg (24:4), SM (40:1), PE-pmg (42:9), DAG (40:5), PE (40:9), PE-pmg (40:8), PE-pmg (42:12), PC (38:3), TAG (46:1), BMP (40:2), PC (32:0), TAG (56:8), PE-pmg (42:7), DAG (36:1), GA2 (35:2), LisoPC (26:6), TAG (54:6), TAG (48:1), TAG (54:7), PE-pmg (42:8), DAG (36:8), PC (36:1), SM (34:1), TAG (48:2), DAG (40:1), DAG (32:2), TAG (50:1), FA (16:3), PC (36:4), DAG (38:1), PC (38:4), FA (19:1), PC (36:3), PC (36:2), BMP (37:1), TAG (50:2), BMP (39:1), PC (34:2), CE (18:2), o PC (34:1).
En algunos ejemplos (por ejemplo, para determinar cáncer de mama y cáncer pulmonar), los lípidos en el conjunto de lípidos incluyen LisoPA (22:1), PC (36:5), TAG (52:3), PC (38:5), CE (20:5), TAG (50:2), BMP (39:1), PC (34:2), CE (18:2), o PC (34:1).
En algunos ejemplos (por ejemplo, para determinar cáncer de mama y cáncer pulmonar), los lípidos en el conjunto de lípidos incluyen LisoPA (22:1), PC (36:5), TAG (52:3), PC (38:5), CE (20:5), TAG (44:3), PC (38:7), TAG (52:2), TAG (54:4), TAG (52:4), Cer (38:4), DAG (32:0), MAG (24:2), DAG (34:0), TAG (54:3), PC (38:6), Cer (40:4), TAG (52:6)), PE-pmg (34:6), PE (36:5), DAG (36:0), Cer (36:1), CE (20:4), PC (36:9), PE-pmg (36:6), LisoPC (26:6), TAG (54:6), TAG (48:1), TAG (54:7), PE-pmg (42:8), DAG (36:8), PC (36:1), SM (34:1), TAG (48:2), DAG (40:1), DAG (32:2), TAG (50:1), FA (16:3), PC (36:4), DAG (38:1), PC (38:4), FA (19:1), PC (36:3), PC (36:2), BMP (37:1), TAG (50:2), BMP (39:1), PC (34:2), CE (18:2) o PC (34:1).
En algunos ejemplos (por ejemplo, para determinar cáncer de mama y cáncer pulmonar), los lípidos en el conjunto de lípidos incluyen PC (34:2), PC (36:2), TAG (44:3), CE (18:2), PC (34:1), LisoPA (22:1), PC (36:5), Cer (36:1), CE (20:5), PC (36:3), PC (38:4), PC (36:4), Cer (38:4), PC (38:5), PC (38:7), Cer (38:1), TAG (50:2), Cer (34:1), SM (34:1), Cer (40:4), MAG (18:0), MAG (24:2), PC (38:3), PE-pmg (40:8), PE-pmg (42:8), TAG (50:1), DAG (32:0), PC (36:1), DAG (34:0), LisoPC (16:0), PE-pmg (34:6), DAG (36:3), PC (36:9), PE (36:5), TAG (52:6), FA (19:1), PE-pmg (44:11), BMP (38:2), PE (44:11), TAG (48:2), SM (42:2), BMP (40:2), PE-pmg (42:10), PE (36:7), PE-pmg (40:7), BMP (39:1), BMP (37:1), PE-pmg (36:6), PE (38:5), PC (32:0), PE (38:2), GA2 (35:2), DAG (34:3), PE-pmg (44:12), MAG (16:0), PC (32:1), LisoPE (10:1), SM (36:1), BMP (39:4), TAG (56:7) o PE-pmg (42:9).
En algunos ejemplos (por ejemplo, para determinar cáncer de mama y cáncer pulmonar), los lípidos en el conjunto de lípidos incluyen PC (34:2), PC (36:2), TAG (44:3), CE (18:2), PC (34:1), LisoPA (22:1), PC (36:5), Cer (36:1), CE (20:5) o PC (36:3).
En algunas realizaciones, la cantidad de lípidos en el conjunto de lípidos puede incluir al menos 10, al menos 50, al menos 100, al menos 150, al menos 200, al menos 500 o al menos 1000 lípidos. En algunas realizaciones, la cantidad de lípidos en el conjunto de lípidos puede incluir no más de 200, no más de 500, no más de 1.000, no más de 5.000, no más de 10.000 o no más de 100.000 lípidos.
Los animales incluyen, aunque sin limitación, primates (por ejemplo, seres humanos), caninos, equinos, bovinos, porcinos, ovinos, aves o mamíferos. Los animales incluyen los que son mascotas o de zoológico e incluyen cerdos domesticados y caballos (incluyendo caballos de raza). Además, cualquier animal relacionado con actividades comerciales también se incluye, tal como aquellos animales relacionados con la agricultura y la acuicultura y otras actividades en que el control, el diagnóstico y la selección de terapia para enfermedades son una práctica rutinaria en la agricultura para la productividad económica y/o la seguridad de la cadena alimentaria. En algunas realizaciones, el animal es un ser humano, perro, gato, caballo, vaca, cerdo, oveja, pollo, pavo, ratón o rata.
En algunos ejemplos, los tipos de cáncer (incluyendo tumores cancerosos) pueden incluir carcinomas, sarcomas, cánceres hemáticos, neoplasias neurológicas, carcinoma de células basales, cáncer de tiroides, neuroblastoma, cáncer de ovario, melanoma, carcinoma de células renales, carcinoma hepatocelular, cáncer de mama, cáncer de colon, cáncer pulmonar, cáncer pancreático, cáncer cerebral, cáncer de próstata, leucemia linfocítica crónica, leucemia linfoblástica aguda, rabdomiosarcoma, glioblastoma multiforme, meningioma, cáncer de vejiga, cáncer gástrico, glioma, cáncer oral, carcinoma nasofaríngeo, cáncer renal, cáncer rectal, cáncer de ganglios linfáticos, cáncer de médula ósea, cáncer de estómago, cáncer uterino, leucemia, carcinoma basocelular, cánceres relacionados con células epiteliales o cánceres que pueden alterar la regulación o la actividad de la piruvato carboxilasa. Los tumores cancerosos incluyen, por ejemplo, tumores asociados con cualquiera de los cánceres mencionados anteriormente.
En algunas realizaciones, la determinación de la presencia o de la ausencia de uno o más tipos de cáncer incluye determinar la presencia o la ausencia de cada tipo de cáncer.
La cantidad de un lípido puede determinarse usando cualquier técnica adecuada, incluyendo, por ejemplo, cualquiera de los procedimientos de espectrometría de masas descritos en el presente documento.
Usando un sistema de espectrometría de masas, se obtiene el espectro de espectrometría de masas de la muestra. El sistema de espectrometría de masas puede comprender los componentes habituales de un espectrómetro de masas (por ejemplo, fuente de ionización, detector de iones, analizador de masa, cámara de vacío y sistema de bombeo) y otros componentes, incluyendo, aunque sin limitación, sistemas de separación, tales como sistemas de cromatografía interconectados. El espectrómetro de masas puede ser cualquier espectrómetro de masas adecuado para determinar una cantidad de lípidos. El sistema analizador de masas puede incluir cualquier sistema adecuado incluyendo, aunque sin limitación, analizador de tiempo de vuelvo, analizador de cuadrupolo, sector magnético, Orbitrap, trampa de iones lineal o resonancia de ciclotrón de iones con transformada de Fourier (FTICR). En algunos casos, el sistema analizador de masa (por ejemplo, FTICR) tiene suficiente resolución para determinar la identidad del lípido sin medios experimentales adicionales. La fuente de iones puede incluir, aunque sin limitación, ionización por impacto de electrones, electronebulización, ionización química, fotoionización, ionización química por presión atmosférica, ionización por colisión, ionización natural, ionización térmica, ionización por bombardeo de átomos rápidos, ionización con haces de partículas o ionización por desorción láser asistida con matriz (MALDI). En algunos casos, la electronebulización puede ser una fuente de iones no ionizante. Los sistemas de cromatografía interconectados pueden incluir cualquier sistema adecuado de cromatografía incluyendo, aunque sin limitación, cromatografía de gases (CG), cromatografía líquida (CL) o movilidad de iones (que puede combinarse con procedimientos de CL o de CG). En algunos casos, puede usarse infusión directa. En algunos casos, el sistema de espectrometría de masas es CG/EM o CL/EM.
En algunos casos, una vez se han obtenido los espectros de EM, los espectros pueden analizarse para determinar la identidad y la cantidad (por ejemplo, la presencia) de lípidos en la muestra.
Para los espectros de EM, el análisis puede incluir cualquier análisis adecuado para determinar la identidad y/o la cantidad de un lípido incluyendo el análisis de una o más características, que incluyen, aunque sin limitación, la comparación de las masas con masas conocidas, los tiempos de retención cromatográfica (por ejemplo, para CG/EM o CL/EM) y patrones de fragmentación de masas. En algunos casos, el análisis puede incluir una comparación de características con las de una base de datos (por ejemplo, una base de datos de patrones). En algunos casos, puede usarse PREMISE (Lane, A.N., T.W.-M. Fan, X. Xie, H.N. Moseley y R.M. Higashi, Stable isotope analysis of lipid biosynthesis by high resolution mass spectrometry and NMR Anal. Chim. Acta, 2009. 651: pág. 201-208) para identificar los lípidos. La cantidad de lípidos (por ejemplo, la cantidad relativa) puede determinarse por cualquier procedimiento adecuado incluyendo, aunque sin limitación, la función de respuesta del detector de iones, por referencia a patrones añadidos o por dilución de isótopo.
En algunas realizaciones, antes de introducir los datos en el modelo predictivo, los datos pueden pre-procesarse. Los
procedimientos de pre-procesamiento pueden incluir uno o más de cualquier procedimiento adecuado tal como procedimientos de normalización o procedimientos de escala. En algunas realizaciones, los procedimientos de escalonamiento pueden incluir, aunque sin limitación, centrado, varianza de la unidad, varianza de la unidad sin centrado, Pareto y Pareto sin centrado.
Un modelo predictivo puede comprender cualquier modelo adecuado para determinar la presencia o la ausencia de uno o más tipos de cáncer. Por ejemplo, el modelo predictivo puede comprender uno o más procedimientos de reducción de dimensiones. En algunas realizaciones, el modelo predictivo comprende uno o más de los procedimientos de agrupamiento (por ejemplo, agrupación de medias-K y agrupación de vecinos más cercanos de K), procedimientos de aprendizaje automático (por ejemplo, redes neurales artificiales (ANN) y máquinas de vectores de soporte (SVM)), análisis de componentes principales (PCA), modelado independiente suave de analogía de clases (SIMCA), regresión de mínimos cuadrados parciales (PLS), regresión de mínimos ortogonales (OPLS), análisis de discriminación de mínimos cuadrados parciales (PLS-DA) o análisis de discriminación de mínimos cuadrados parciales ortogonales (OPLS-DA). Estas técnicas pueden incluir, si se desea, o suplementarse con uno o más procedimientos adecuados incluyendo centrado de la media, centrado de la mediana, escala de Pareto, escala de varianza unitaria, corrección de la señal ortogonal, integración, diferenciación, validación cruzada y curvas de característica de funcionamiento del receptor (ROC). En algunas realizaciones, el modelo predictivo puede desarrollarse usando un conjunto de datos de capacitación, donde los datos de capacitación están diseñados para producir un conjunto de parámetros aplicables y coeficientes. En algunas realizaciones, el conjunto de parámetros y coeficientes puede usarse para determinar si un animal tiene cáncer y, en algunos casos, el tipo de cáncer. Los datos de capacitación pueden incluir datos de control negativo (por ejemplo, cuando no hay cáncer presente en el animal) y datos de control positivo (cuando hay uno o más tipos de cáncer presentes en el animal). El conjunto de datos de capacitación puede usarse para establecer un modelo predictivo que puede determinar dos o más tipos de cáncer.
La figura 25 muestra algunas realizaciones del procedimiento. Ilustra que, en algunos casos, una vez se ha establecido un modelo predictivo usando un conjunto de datos de capacitación, puede hacerse la determinación de la presencia de uno o más tipos de cáncer a partir del modelo predictivo sin ninguna capacitación adicional.
Los procedimientos de la presente invención pueden comprender adicionalmente la determinación de la expresión proteica, expresión génica o tanto de proteínas o sus genes. Puede determinarse la expresión de cualquier proteína adecuada (o su gen), incluyendo, aunque sin limitación, la piruvato carboxilasa, la succinil CoA sintetasa, la fosfoenolpiruvato carboxiquinasa, la transcelotasa, la transaldolasa, la piruvato deshidrogenasa, una deshidrogenasa, glutaminasa, isocitrato deshidrogenasa, a-cetoglutarato deshidrogenasa, malato deshidrogenasa mitocondrial, succinato deshidrogenasa, fumarato hidratasa, hexoquinasa II, gliceraldehído-3-fosfato deshidrogenasa, fosfoglicerato quinasa 1, lactato deshidrogenasa 5, fosfofructoquinasa 1 y 2, glutatión peroxidasa o glutatión-S-transferasa, o proteínas asociadas con rutas metabólicas tales como, aunque sin limitación, el ciclo de Krebs (también conocido como el ciclo del ácido cítrico), glucolisis, la ruta de pentosa fosfato (oxidativa y no oxidativa), gluconeogénesis, biosíntesis de lípidos, síntesis de aminoácidos (por ejemplo, síntesis de aminoácidos no esenciales), rutas catabólicas , ciclo de la urea, ciclo de Cori o ciclo de glutamato/glutamina. La expresión proteica puede determinarse por cualquier técnica adecuada incluyendo, aunque sin limitación, técnicas que comprenden técnicas de electroforesis en gel (por ejemplo, transferencia de Western), técnicas cromatográficas, técnicas basadas en anticuerpos, técnicas de centrifugación o combinaciones de las mismas. La expresión génica puede determinarse por cualquier técnica adecuada incluyendo, aunque sin limitación, técnicas que comprenden técnicas basadas en PCR (por ejemplo, PCR a tiempo real), técnicas de electroforesis en gel, técnicas cromatográficas, técnicas basadas en anticuerpos, técnicas de centrifugación o combinaciones de las mismas. Los procedimientos para medir la expresión génica pueden comprender medir cantidades de ADNc preparado a partir de ARN aislado de tejido.
Ejemplos
Preparación de plasma: Se recogió sangre de seres humanos diagnosticados con cáncer de mama, diagnosticados con cáncer pulmonar no microcítico (NSCLC) y seres humanos sanos (sin cáncer) (también mencionados como de control o normales) en tubos vacutainer que contienen K-EDTA (parte superior púrpura) para anticoagulación y se colocaron inmediatamente en hielo y se centrifugaron a 3.500 xg durante 15 minutos a 4 °C. El sobrenadante (plasma) se dividió en alícuotas antes de congelarse rápidamente en N2 líquido y se mantuvo a -80 °C hasta la preparación de la fracción.
Preparación de la fracción: Se descongeló el plasma y se transfirieron 0,8 ml a tubos de ultracentrífuga de poloalómero de 1 ml usando PBS frío para ajustar el volumen exacto (el volumen completo de los tubos de ultracentrífuga debe llenarse hasta 5 mm de la parte superior para evitar el colapso tras la centrifugación). Se preenfrió el rotor SWTi55 con cubos hasta 4 °C. Los tubos de ultracentrífuga más la tapa en cubos, se pesaron para ajustar todas las masas de muestra a 10 mg de variación usando PBS. Las muestras después se centrifugaron en rotores SWTi55 a 70.000 xg (27.172 r.p.m.) durante 1 h a 4 °C. El sobrenadante se centrifugó de nuevo en SWTi55 a 100.000 xg (32.477 r.p.m.) durante 1 h a 4 °C para sedimentar la fracción de microvesículas lipídicas. El sedimento de la primera centrifugación (fracción de microvesículas) y el sedimento de la fracción de microvesículas lipídicas se lavaron el PBS frío por resuspensión y centrifugaron en SWTi55 a 100.000 xg (32.477 r.p.m.) durante 1 h a 4 °C. El sobrenadante se retiró y ambos tubos se invirtieron sobre toalla de papel para drenar el exceso de PBS. Los sedimentos se resuspendieron en 2 x 100 pl de agua 18 MOhm para su transferencia a tubos de microfuga de 2 ml y se liofilizaron
durante una noche. Los sedimentos liofilizados se mantuvieron a -80 °C hasta la extracción de los lípidos.
Extracción de lípidos: El sedimento de la fracción de microvesículas lipídicas se extrajo en 0,5 ml de metanol (calidad de espectrometría de masas) hidroxitolueno butilado 1 mM por homogeneización con perlas de vidrio de 3 x 3 mm en un molino de mezcla (por ejemplo, MM200, Retsch) durante 1 minuto a 30 Hz. El homogeneizado después se agitó en un balancín durante 30 minutos antes de centrifugación a 14.000 r.p.m. durante 30 minutos a 4 °C en una microcentrífuga. El sobrenadante se transfirió a un vial de vidrio de tapón de rosca de 1,5 ml con septo de silicona cubierto de teflón y se registra el peso del extracto. El extracto lipídico se almacenó a -80 °C hasta el análisis FT-ICR-EM.
Análisis de FT-ICR-EM: Las muestras se diluyeron 1:5 en metanol BHT 1 mM 1 ng/nl de reserpina antes del análisis en un espectrómetro de masas de FT-lCR con trampa de iones lineal híbrido (ThermoFisher LTQ FT, Thermo Electron, Bremen, Alemania), como se describe previamente (Lane, A.N., T.W.-M. Fan, X. Xie, H.N. Moseley, y R.M. Higashi, Stable isotope analysis of lipid biosynthesis by high resolution mass spectrometry and NMR Anal. Chim. Acta, 2009. 651: pág. 201-208). El FT-lCR-EM estaba equipado con una fuente de iones TriVersa NanoMate (Advion BioSciences, Ithaca, NY) con un chip de electronebulización "A" (diámetro interior de boquilla 5,5 |jm). El TriVersa NanoMate se hizo funcionar aplicando 2,0 kV con una presión superior de 689,47 Pa (0,1 psi) en modo de iones positivos y 1,5 kV y 3.447,38 (0,5 psi) en el modo negativo. Las ejecuciones de EM se registraron sobre un intervalo de masa de 150 a 1600 Da. Inicialmente, se adquirieron exploraciones de EM de baja resolución durante 1 min para asegurar la estabilidad de la ionización, después de lo cual se recogieron datos de alta precisión de masa usando el analizador FT-ICR donde se adquirieron exploraciones de EM durante 8,5 min y a la resolución de masa diana de 200.000 a 400 m/z. El tiempo de iones máximo AGC (control de ganancia automática) se estableció a 500 ms (pero típicamente utilizó <10 ms) y se adquirieron cinco "^exploraciones" para cada espectro guardado; por tanto, el tiempo del ciclo para cada espectro transformado y guardado fue aproximadamente 10 s. El LTQ-FT se afinó y calibró de acuerdo con las recomendaciones convencionales por defecto del fabricante, que consiguió una precisión de masa mejor de 1 ppm. Los espectros de masas FT-ICR se exportaron como listas de masa exacta en un archivo de hoja de cálculo usando QualBrowser 2.0 (Thermo Electron), típicamente exportando todos los picos observados. Las especies de lípidos se asignaron basándose en su masa precisa, aplicando primero una corrección lineal pequeña (típicamente <0,0005) basada en la masa observada del patrón interno (reserpina), después usando una herramienta de software propia PREMISE (PRecaculated Exact Mass Isotopologue Search Engine) (Lane, A.N., T.W.-M. Fan, X. Xie, H.N. Moseley, y R.M. Higashi, Stable isotope analysis of lipid biosynthesis by high resolution mass spectrometry and NMR Anal. Chim. Acta, 2009. 651: pág. 201-208) que se validó manualmente. PREMISE es una rutina que empareja los valores m/z observados con los teóricos, sujeta a una ventana de selección que era de 0,0014 Da o más pequeña. Para los lípidos, las masas exactas de una gran cantidad (>3.500) de posibles GLP y sus formas iónicas (principalmente H+ y Na+ - modo positivo y - H+ - modo negativo) se precalcularon en una tabla de búsqueda de hoja de cálculo. El procedimiento global fue suficiente para asignar un GLP a una longitud de cadena de acilo total particular, grado de saturación e identidad de grupo principal.
Análisis de quimiométrica: Los datos de FT-ICR-EM normalizados se importaron en SimcaP (version 11.5, Umetrics, Umeá, Suecia). Los datos se centraron en la media y se graduaron a la varianza de Pareto (1/Vdt). El análisis de componentes principales (PCA) después se realizó sobre los datos resultantes. Esto se hizo para encontrar muestras atípicas o variables. No se determinaron muestras como atípicas y fue una variable. La variable esfingosina (18:1) se excluyó del análisis posterior. Los diagramas de valores y cargas PCA se muestran en las figuras 14 y 15.
Los modelos de análisis de discriminación de mínimos cuadrados parciales ortogonales (OPLS-DA) se crearon para tres subconjuntos de datos: normal (es decir, sin cáncer) y cáncer pulmonar, normal (es decir, sin cáncer) y cáncer de mama, y cáncer pulmonar y cáncer de mama. Este análisis determinó una dimensión en el espacio de múltiples variables que maximizan la separación de grupos (por ejemplo, el grupo de control y el grupo de cáncer pulmonar) eliminando al mismo tiempo una dimensión ortogonal a la dimensión mencionada que tiene una varianza de muestra máxima no relacionada con la separación de clases. Este análisis determinó que de las muchas variables la mayoría son diferentes entre las clases de datos.
OPLS-DA mostró una buena separación de los perfiles de lípidos totales de las tres clases de plasma. Algunos de los lípidos eran esencialmente iguales en cada fuente de fracción de microvesículas lipídicas (los componentes principales). Las clases principales que dieron lugar a la discriminación se obtuvieron de los diagramas de carga y coeficiente, que se visualizan en los diagramas 3D mostrados en las figuras 1-13. Los diagramas de valores y coeficientes OPLS-DA se proporcionan en las figuras 16-24.
Las intensidades de las especies lipídicas se normalizaron a la respuesta de lípidos totales para generar "fracciones molares". Las clases de lípidos diferentes variaron en sus abundancias, y dentro de una clase también varía sustancialmente la longitud de cadena acilo y el número de dobles enlaces, que era parte de la clasificación. La mayor parte de la varianza surgía de la variabilidad entre sujetos en lugar de la varianza analítica. La diferencia en la abundancia entre las clases para la discriminación fue >4 veces con un coeficiente de variación dentro de una clase de hasta un 50 %. Por ejemplo, el PC (36:3) mostró una media y dt de 1,38 ± 0,34 (BrCA) frente a 0,23 ± 0,1 (sanos) frente a 0,19 ± 0,28 (NSCLC). Este único caso proporcionó separación estadística con valores p de <0,0001 (BrCA frente a sanos), <0,0001 (BrCA frente a NSCLC). NSCLC frente a sanos no alcanzó significancia estadística. Sin embargo, otros lípidos dieron altas separación estadística entre NSCLC y sanos. Por lo tanto, se usaron varias clases
juntas para discriminar entre individuos sanos y aquellos con cáncer. La segregación óptima se consiguió usando conjuntos de lípidos donde al menos dos de las clases de sujetos diferían con valores p mejores de 0,01, y un mínimo de diez de dichas clases lipídicas se usaron para una discriminación fiable.
Se observa que términos como "preferiblemente", "comúnmente" y "típicamente" no se utilizan en el presente documento para limitar el ámbito de la invención reivindicada o para implicar que ciertas características son críticas, esenciales o incluso importantes para la estructura o función de la invención reivindicada. Más bien, estos términos están destinados simplemente a resaltar características alternativas o adicionales que pueden o no ser utilizadas en una realización particular de la presente invención.
Claims (15)
1. Un procedimiento para determinar la presencia o ausencia de al menos un tipo de cáncer en un animal, que comprende
- determinar las cantidades de lípidos de los lípidos en un conjunto de lípidos en una muestra del animal, y - determinar la presencia o ausencia de al menos un tipo de cáncer en el animal con un modelo predictivo; en el que
- las cantidades de lípidos de los lípidos en el conjunto de lípidos comprenden una entrada del modelo predictivo, y
- la muestra comprende un fluido corporal o un tratamiento del mismo,
- el al menos un tipo de cáncer se selecciona del grupo que consiste en cáncer pulmonar, cáncer de mama, y tumores asociados con cualquiera de los tipos de cáncer mencionados anteriormente,
- el conjunto de lípidos comprende FA (16:3), y
- el modelo predictivo comprende uno o más del procedimiento de reducción de dimensiones, procedimiento de agrupamiento, procedimiento de aprendizaje automático, análisis de componentes principales, modelado independiente suave de analogía de clases, regresión de mínimos cuadrados parciales, regresión de mínimos cuadrados ortogonales, análisis de discriminación de mínimos cuadrados parciales, análisis de discriminación de mínimos cuadrados parciales ortogonales, centrado de la media, centrado de la mediana, escala de Pareto, escala de varianza de la unidad, corrección de señal ortogonal, integración, diferenciación, validación cruzada o curvas características de funcionamiento del receptor.
2. El procedimiento de la reivindicación 1, en el que el fluido corporal se selecciona del grupo que consiste en vómito plasmático, cerumen, jugo gástrico, leche materna, moco, saliva, sebo, semen, sudor, lágrimas, secreción vaginal, suero sanguíneo, humor acuoso, humor vítreo, endolinfa, perilinfa, fluido peritoneal, fluido pleural, líquido cefalorraquídeo, sangre, plasma, fluido de aspirado del pezón, orina, heces y fluido de lavado broncoalveolar.
3. Procedimiento de la reivindicación 1 o 2, en el que la muestra es una fracción exosomal.
4. El procedimiento de la reivindicación 1, 2 o 3, en el que el conjunto de lípidos comprende al menos 10, al menos 50, al menos 100, al menos 200 o no más de 100.000 lípidos.
5. El procedimiento de cualquier reivindicación precedente, en el que el conjunto de lípidos comprende adicionalmente uno o más lípidos seleccionados de la una o más clases de lípidos seleccionadas del grupo que consiste en BMP, CE, Cer, DAG, DH-LTB4, FA, GA2, GM3, HexCer, HexDHCer, LacCer, LisoPA, LisoPC, LisoPC-pmg, LisoPE, LisoPE-pmg, LisoPS, MAG, PC, PC-pmg, PE, PEpmg, PGA1, PGB1, SM, esfingosina, TAG y TH-12-ceto-LTB4.
6. El procedimiento de cualquiera de las reivindicaciones 1 a 4, en el que el conjunto de lípidos comprende adicionalmente uno o más lípidos seleccionados de la una o más clases de lípidos seleccionadas del grupo que consiste en BMP, FA, MAG, DAG, TAG, PI, PE, PS, PI, PG, PA, LisoPC, LisoPE, LisoPS, LisoPI, LisoPG, LisoPA, LisoPC, LisoPE, SM, Cer, Cer-P, HexCer, GA1, GA2, GD1, GD2, GM1, GM2, GM3, GT1 y CE.
7. El procedimiento de cualquiera de las reivindicaciones 1 a 4, en el que uno o más lípidos en el conjunto de lípidos se selecciona adicionalmente de uno o más lípidos FA con un intervalo de la cadena acilo de 10-26 y un número de sitios insaturados de 0-6.
8. El procedimiento de una cualquiera de las reivindicaciones 1 a 4, en el que el al menos un tipo de cáncer comprende cáncer pulmonar.
9. El procedimiento de una cualquiera de las reivindicaciones 1 a 4, en el que el al menos un tipo de cáncer comprende cáncer de mama.
10. El procedimiento de cualquier reivindicación precedente, en el que las cantidades de lípidos se determinan usando espectrometría de masas, tal como un analizador de masas de resonancia de ciclotrón de iones con transformada de Fourier.
11. El procedimiento de cualquier reivindicación precedente, en el que la muestra es un tratamiento de un fluido corporal y el tratamiento comprende una o más extracciones usando una o más soluciones que comprenden acetonitrilo, agua, cloroformo, metanol, hidroxitolueno butilado, ácido tricloroacético o combinaciones de los mismos.
12. El procedimiento de cualquier reivindicación precedente, en el que el modelo predictivo comprende uno o más procedimientos de reducción de dimensiones.
13. El procedimiento de cualquier reivindicación precedente, en el que el modelo predictivo comprende uno o más procedimientos seleccionados del grupo que consiste en análisis de componentes principales (PCA), modelado independiente suave de analogía de clases (SIMCA), análisis de discriminación de mínimos cuadrados parciales (PLS-DA) y análisis de discriminación de mínimos cuadrados parciales ortogonales (OPLS-DA).
14. El procedimiento de cualquier reivindicación precedente, en el que el animal se selecciona del grupo que consiste en un ser humano, perro, gato, caballo, vaca, cerdo, oveja, pollo, pavo, ratón y rata.
15. Un procedimiento para determinar la presencia o ausencia de al menos un tipo de cáncer en un animal que comprende
- determinar cantidades lipídicas de lípidos en un conjunto de lípidos en una muestra del animal, y
- determinar la presencia o ausencia de al menos un tipo de cáncer en el animal con un modelo predictivo; en el que
-las cantidades lipídicas de los lípidos en el conjunto de lípidos comprende una entrada del modelo predictivo, y
- la muestra comprende un fluido corporal o el tratamiento del mismo,
- el al menos un tipo de cáncer se selecciona del grupo que consiste en carcinomas, sarcomas, cánceres hematológicos, neoplasias neurológicas, cáncer de tiroides, neuroblastoma, melanoma, carcinoma de células renales, carcinoma hepatocelular, cáncer de mama, cáncer de colon, cáncer de pulmón, cáncer de páncreas, cáncer cerebral, cáncer de próstata, leucemia linfocítica crónica, leucemia linfoblástica aguda, rabdomiosarcoma, glioblastoma multiforme, meningioma, cáncer de vejiga, cáncer gástrico, glioma, cáncer oral, carcinoma nasofarínego, cáncer de riñón, cáncer rectal, cáncer de nódulo linfático, cáncer de médula ósea, cáncer de estómago, cáncer de útero, leucemia, carcinoma de células basales, cánceres asociados a células epiteliales, cánceres que pueden alterar la regulación de la actividad de la piruvato carboxilasa y tumores asociados con cualquiera de los tipos de cáncer mencionados anteriormente,
- el conjunto de lípidos comprende FA (16:3), y
- el modelo predictivo comprende uno o más del procedimiento de reducción de dimensiones, procedimiento de agrupamiento, procedimiento de aprendizaje automático, análisis de componentes principales, modelado independiente suave de analogía de clases, regresión de mínimos cuadrados parciales, regresión de mínimos cuadrados ortogonales, análisis de discriminación de mínimos cuadrados parciales, análisis de discriminación de mínimos cuadrados parciales ortogonales, centrado de la media, centrado de la mediana, escala de Pareto, escala de varianza de la unidad, corrección de señal ortogonal, integración, diferenciación, validación cruzada o curvas características de funcionamiento del receptor.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US35764210P | 2010-06-23 | 2010-06-23 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| ES2812457T3 true ES2812457T3 (es) | 2021-03-17 |
Family
ID=45372067
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| ES21200018T Active ES2989530T3 (es) | 2010-06-23 | 2011-06-22 | Uso de ácidos grasos en métodos para detectar el cáncer |
| ES11798823.8T Active ES2638522T3 (es) | 2010-06-23 | 2011-06-22 | Procedimientos para detectar cáncer |
| ES17163073T Active ES2812457T3 (es) | 2010-06-23 | 2011-06-22 | Uso de ácidos grasos en procedimientos para detectar cáncer |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| ES21200018T Active ES2989530T3 (es) | 2010-06-23 | 2011-06-22 | Uso de ácidos grasos en métodos para detectar el cáncer |
| ES11798823.8T Active ES2638522T3 (es) | 2010-06-23 | 2011-06-22 | Procedimientos para detectar cáncer |
Country Status (8)
| Country | Link |
|---|---|
| US (2) | US20130109592A1 (es) |
| EP (4) | EP2585833B1 (es) |
| JP (3) | JP5944385B2 (es) |
| AU (3) | AU2011270968C1 (es) |
| CA (1) | CA2803865A1 (es) |
| DK (1) | DK2585833T3 (es) |
| ES (3) | ES2989530T3 (es) |
| WO (1) | WO2011163332A2 (es) |
Families Citing this family (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2012343843B2 (en) * | 2011-11-30 | 2018-03-08 | Metanomics Health Gmbh | Device and methods to diagnose pancreatic cancer |
| WO2014043633A1 (en) * | 2012-09-17 | 2014-03-20 | Agios Pharmaceuticals, Inc. | Use of e-cadherin and vimentin for selection of treatment responsive patients |
| MX369691B (es) | 2012-11-21 | 2019-11-19 | Agios Pharmaceuticals Inc | Inhibidores de glutaminasa y métodos de empleo. |
| US9029531B2 (en) | 2012-11-22 | 2015-05-12 | Agios Pharmaceuticals, Inc. | Compounds and their methods of use |
| WO2014079011A1 (en) | 2012-11-22 | 2014-05-30 | Agios Pharmaceuticals, Inc. | Heterocyclic compounds for inhibiting glutaminase and their methods of use |
| US11353467B2 (en) | 2013-01-24 | 2022-06-07 | The Regents Of The University Of California | Use of lipid particles in medical diagnostics |
| KR101408217B1 (ko) * | 2013-05-22 | 2014-06-17 | 국립암센터 | 질량분석패턴을 이용한 원발성간내담도암 및 전이성간암의 감별법 |
| AU2014368412A1 (en) * | 2013-12-20 | 2016-07-07 | Metanomics Health Gmbh | Means and methods for diagnosing pancreatic cancer in a subject based on a metabolite panel |
| MX2016012244A (es) | 2014-03-21 | 2017-05-08 | Agios Pharmaceuticals Inc | Compuestos y sus metodos de uso. |
| EP2963608A1 (en) * | 2014-07-04 | 2016-01-06 | Tata Consultancy Services Limited | System and method for prescriptive analytics |
| US10758133B2 (en) * | 2014-08-07 | 2020-09-01 | Apple Inc. | Motion artifact removal by time domain projection |
| WO2017155473A1 (en) * | 2016-03-10 | 2017-09-14 | Agency For Science, Technology And Research | Lipid biomarkers for the diagnosis of cancer |
| JP6520893B2 (ja) | 2016-04-01 | 2019-05-29 | 株式会社デンソー | 運転支援装置及び運転支援プログラム |
| KR101812205B1 (ko) * | 2016-04-11 | 2017-12-26 | 연세대학교 산학협력단 | 혈청 대사체를 이용한 인후암 예측 방법 |
| WO2018013678A2 (en) * | 2016-07-13 | 2018-01-18 | Board Of Regents, The University Of Texas System | Molecular markers and methods for sample analysis via mass spectrometry |
| EP3496859B1 (en) | 2016-09-02 | 2024-01-10 | Board of Regents, The University of Texas System | Collection probe and methods for the use thereof |
| CA2964878A1 (en) * | 2016-10-14 | 2018-04-14 | Youping Deng | Lipid markers for early diagnosis of breast cancer |
| US20180246112A1 (en) * | 2017-02-28 | 2018-08-30 | University Of Kentucky Research Foundation | Biomarkers of Breast and Lung Cancer |
| EP3622295A1 (en) * | 2017-05-11 | 2020-03-18 | Servizo Galego de Saúde (SERGAS) | Cholesteryl linoleate (18:2) in feces samples as biomarker for colorectal cancer |
| CA3083260A1 (en) | 2017-11-27 | 2019-05-31 | Board Of Regents, The University Of Texas System | Minimally invasive collection probe and methods for the use thereof |
| EP3514545B1 (en) * | 2018-01-22 | 2020-10-07 | Univerzita Pardubice | A method of diagnosing pancreatic cancer based on lipidomic analysis of a body fluid |
| JP7086417B2 (ja) * | 2018-01-22 | 2022-06-20 | ウニベルシタ パルドゥビツェ | 体液のリピドミクス解析に基づいて癌を診断する方法 |
| CN109613131B (zh) * | 2018-11-27 | 2021-08-27 | 北京大学第三医院 | 基于尿液磷脂组学的肾损伤早期诊断标志物及应用 |
| KR102156217B1 (ko) * | 2019-03-05 | 2020-09-15 | 연세대학교 산학협력단 | 대장암 진단용 지질 바이오마커 및 이의 용도 |
| KR102156216B1 (ko) * | 2019-03-05 | 2020-09-15 | 연세대학교 산학협력단 | 위암 진단용 지질 바이오마커 및 이의 용도 |
| KR102156215B1 (ko) * | 2019-03-05 | 2020-09-15 | 연세대학교 산학협력단 | 갑상선암 진단용 지질 바이오마커 및 이의 용도 |
| KR102156214B1 (ko) * | 2019-03-05 | 2020-09-15 | 연세대학교 산학협력단 | 폐암 진단용 지질 바이오마커 및 이의 용도 |
| WO2022094404A1 (en) * | 2020-11-02 | 2022-05-05 | Iontrap LLC | Method and apparatus for the rapid detection of air-borne viruses |
| KR102421466B1 (ko) * | 2021-10-06 | 2022-07-18 | (주)이노베이션바이오 | 암 진단용 바이오마커 및 이의 용도 |
| CN117233367B (zh) * | 2023-11-16 | 2024-02-09 | 哈尔滨脉图精准技术有限公司 | 妊娠期高血压风险评估的代谢标志物 |
| CN119964640B (zh) * | 2025-01-06 | 2025-09-19 | 太原理工大学 | 一种基于正交最小二乘法与元分析的基因特征选择方法 |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5824555A (en) * | 1996-05-30 | 1998-10-20 | The Cleveland Clinic Foundation | Method of detecting gynecological carcinomas |
| IL131985A0 (en) * | 1997-03-21 | 2001-03-19 | Atairgin Biotechnologies Inc | Method for detecting cancer associated with altered concentrations of lysophospholipids |
| US7964408B1 (en) * | 2004-05-13 | 2011-06-21 | University Of South Florida | Lysophospholipids as biomarkers of ovarian cancer |
| WO2006044680A1 (en) * | 2004-10-14 | 2006-04-27 | The Cleveland Clinic Foundation | Methods of detecting colorectal cancer |
| CN101454331A (zh) * | 2006-03-24 | 2009-06-10 | 菲诺梅诺米发现公司 | 有效用于诊断前列腺癌的生物标记,及其方法 |
| GB2469244A (en) * | 2008-01-28 | 2010-10-06 | Univ Singapore | Lipid tumour profile |
| EP2310529A2 (en) * | 2008-06-20 | 2011-04-20 | Proxy Life Science Holdings, Inc. | Microvesicle-based compositions and methods |
| BR112012019894A2 (pt) * | 2010-02-11 | 2016-05-03 | Univ Leuven Kath | "perfil fosfolipídeo e câncer" |
-
2011
- 2011-06-22 US US13/805,352 patent/US20130109592A1/en not_active Abandoned
- 2011-06-22 ES ES21200018T patent/ES2989530T3/es active Active
- 2011-06-22 AU AU2011270968A patent/AU2011270968C1/en active Active
- 2011-06-22 WO PCT/US2011/041399 patent/WO2011163332A2/en not_active Ceased
- 2011-06-22 EP EP11798823.8A patent/EP2585833B1/en active Active
- 2011-06-22 EP EP20176591.4A patent/EP3719502A1/en not_active Withdrawn
- 2011-06-22 JP JP2013516721A patent/JP5944385B2/ja active Active
- 2011-06-22 CA CA2803865A patent/CA2803865A1/en active Pending
- 2011-06-22 ES ES11798823.8T patent/ES2638522T3/es active Active
- 2011-06-22 EP EP17163073.4A patent/EP3206034B1/en active Active
- 2011-06-22 ES ES17163073T patent/ES2812457T3/es active Active
- 2011-06-22 EP EP21200018.6A patent/EP3955004B1/en active Active
- 2011-06-22 DK DK11798823.8T patent/DK2585833T3/en active
-
2015
- 2015-05-29 JP JP2015109485A patent/JP6092302B2/ja active Active
-
2016
- 2016-08-12 AU AU2016213855A patent/AU2016213855B2/en active Active
- 2016-09-23 JP JP2016185269A patent/JP2016218085A/ja active Pending
-
2018
- 2018-09-28 AU AU2018236876A patent/AU2018236876A1/en not_active Abandoned
-
2021
- 2021-07-15 US US17/305,824 patent/US20220003792A1/en active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| ES2989530T3 (es) | 2024-11-26 |
| DK2585833T3 (en) | 2017-09-18 |
| WO2011163332A2 (en) | 2011-12-29 |
| EP3206034A2 (en) | 2017-08-16 |
| JP6092302B2 (ja) | 2017-03-08 |
| EP3719502A1 (en) | 2020-10-07 |
| EP3955004A2 (en) | 2022-02-16 |
| EP3206034B1 (en) | 2020-05-27 |
| AU2011270968A1 (en) | 2013-01-24 |
| AU2016213855B2 (en) | 2018-07-05 |
| AU2018236876A1 (en) | 2018-10-18 |
| JP2013529784A (ja) | 2013-07-22 |
| ES2638522T8 (es) | 2021-02-11 |
| WO2011163332A9 (en) | 2012-04-26 |
| EP3955004C0 (en) | 2024-05-29 |
| US20220003792A1 (en) | 2022-01-06 |
| EP3955004A3 (en) | 2022-05-11 |
| ES2638522T3 (es) | 2017-10-23 |
| JP5944385B2 (ja) | 2016-07-05 |
| EP3955004B1 (en) | 2024-05-29 |
| AU2016213855A1 (en) | 2016-09-01 |
| JP2016218085A (ja) | 2016-12-22 |
| EP2585833A4 (en) | 2013-11-13 |
| EP3206034A3 (en) | 2017-10-11 |
| JP2015158512A (ja) | 2015-09-03 |
| EP2585833A2 (en) | 2013-05-01 |
| US20130109592A1 (en) | 2013-05-02 |
| EP2585833B1 (en) | 2017-05-31 |
| AU2011270968C1 (en) | 2017-01-19 |
| CA2803865A1 (en) | 2011-12-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| ES2812457T3 (es) | Uso de ácidos grasos en procedimientos para detectar cáncer | |
| AU2011270968B2 (en) | Methods for detecting cancer | |
| Tao et al. | Metabolomics identifies serum and exosomes metabolite markers of pancreatic cancer | |
| Imhasly et al. | Blood plasma lipidome profile of dairy cows during the transition period | |
| JP2013092527A (ja) | 前立腺癌を診断するために有用なバイオマーカー及びその方法 | |
| Jiang et al. | Potential plasma lipid biomarkers in early-stage breast cancer | |
| Arendowski et al. | Screening of urinary renal cancer metabolic biomarkers with gold nanoparticles-assisted laser desorption/ionization mass spectrometry | |
| Cífková et al. | Correlation of lipidomic composition of cell lines and tissues of breast cancer patients using hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry and multivariate data analysis | |
| US11353467B2 (en) | Use of lipid particles in medical diagnostics | |
| HK40062522B (en) | Use of fatty acids in methods for detecting cancer | |
| HK40062522A (en) | Use of fatty acids in methods for detecting cancer | |
| Zhang et al. | Comparative analysis of the human urinary proteome by 1D SDS-PAGE and chip-HPLC-MS/MS identification of the AACT putative urinary biomarker | |
| CN102565267A (zh) | 筛查结直肠癌的试剂盒 | |
| HK1180764A (en) | Methods for detecting cancer | |
| HK1180764B (en) | Methods for detecting cancer | |
| Alsaleh et al. | Mapping of population disparities in the cholangiocarcinoma urinary metabolome | |
| CN117589905B (zh) | 一种可作为胃癌诊断标志物的脂质代谢物组合及其应用 | |
| Lim et al. | Rapid screening of phospholipid biomarker candidates from prostate cancer urine samples by multiple reaction monitoring of UPLC-ESI-MS/MS and statistical approaches | |
| Mutuku et al. | MALDI Mass spectrometry imaging in lipidomics | |
| Zheng et al. | Stroma Liquid Biopsy-Proteomic Profiles for Cancer Biomarkers | |
| CN119147658A (zh) | 一组用于乳腺癌诊断的标志物 | |
| ES2734810T3 (es) | Uso de SM_Esfingomielina (D18:1, C16:0) como un marcador para insuficiencia cardiaca | |
| Gathercole | Biomarker discovery for pre-clinical diagnosis of Tasmanian devil facial tumour disease |