DK1998748T3 - Improved snuff composition - Google Patents
Improved snuff composition Download PDFInfo
- Publication number
- DK1998748T3 DK1998748T3 DK07723323T DK07723323T DK1998748T3 DK 1998748 T3 DK1998748 T3 DK 1998748T3 DK 07723323 T DK07723323 T DK 07723323T DK 07723323 T DK07723323 T DK 07723323T DK 1998748 T3 DK1998748 T3 DK 1998748T3
- Authority
- DK
- Denmark
- Prior art keywords
- nicotine
- cellulose
- composition
- snuff
- use according
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims description 140
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 claims description 176
- 229960002715 nicotine Drugs 0.000 claims description 169
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 claims description 166
- 229920002678 cellulose Polymers 0.000 claims description 63
- 239000001913 cellulose Substances 0.000 claims description 57
- 238000000338 in vitro Methods 0.000 claims description 48
- 235000010980 cellulose Nutrition 0.000 claims description 37
- 229920000168 Microcrystalline cellulose Polymers 0.000 claims description 33
- 238000007922 dissolution test Methods 0.000 claims description 33
- 229940016286 microcrystalline cellulose Drugs 0.000 claims description 33
- 239000008108 microcrystalline cellulose Substances 0.000 claims description 33
- 235000019813 microcrystalline cellulose Nutrition 0.000 claims description 29
- 239000012528 membrane Substances 0.000 claims description 25
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 23
- 241000208125 Nicotiana Species 0.000 claims description 22
- 239000000463 material Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 19
- -1 polyethylene Polymers 0.000 claims description 11
- 210000000214 mouth Anatomy 0.000 claims description 10
- 239000011148 porous material Substances 0.000 claims description 10
- 239000012458 free base Substances 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 9
- 239000012453 solvate Substances 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 8
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 5
- 239000011343 solid material Substances 0.000 claims description 5
- 241000195493 Cryptophyta Species 0.000 claims description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 2
- 239000001856 Ethyl cellulose Substances 0.000 claims description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 2
- 244000043261 Hevea brasiliensis Species 0.000 claims description 2
- 239000004677 Nylon Substances 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 2
- 229920002301 cellulose acetate Polymers 0.000 claims description 2
- 150000002148 esters Chemical class 0.000 claims description 2
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 2
- 229920001249 ethyl cellulose Polymers 0.000 claims description 2
- 230000002209 hydrophobic effect Effects 0.000 claims description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 claims description 2
- 229920003052 natural elastomer Polymers 0.000 claims description 2
- 229920001194 natural rubber Polymers 0.000 claims description 2
- 229920001778 nylon Polymers 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 2
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 2
- 229920000642 polymer Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 2
- 239000011118 polyvinyl acetate Substances 0.000 claims description 2
- 239000004800 polyvinyl chloride Substances 0.000 claims description 2
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 2
- 241000894006 Bacteria Species 0.000 claims 2
- 241000196324 Embryophyta Species 0.000 claims 2
- 241000233866 Fungi Species 0.000 claims 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims 1
- 210000004379 membrane Anatomy 0.000 description 16
- 238000001727 in vivo Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000000796 flavoring agent Substances 0.000 description 11
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 229940087730 nicorette Drugs 0.000 description 9
- 235000013355 food flavoring agent Nutrition 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 6
- 235000003599 food sweetener Nutrition 0.000 description 6
- 239000003765 sweetening agent Substances 0.000 description 6
- 239000006172 buffering agent Substances 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 229940112822 chewing gum Drugs 0.000 description 5
- 235000015218 chewing gum Nutrition 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 238000000502 dialysis Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 239000008363 phosphate buffer Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 108010011485 Aspartame Proteins 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 235000006708 antioxidants Nutrition 0.000 description 3
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000009506 drug dissolution testing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 235000019634 flavors Nutrition 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000036470 plasma concentration Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000000391 smoking effect Effects 0.000 description 3
- 238000000825 ultraviolet detection Methods 0.000 description 3
- NOOLISFMXDJSKH-KXUCPTDWSA-N (-)-Menthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@H]1O NOOLISFMXDJSKH-KXUCPTDWSA-N 0.000 description 2
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 2
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 2
- 241001478778 Cladophora Species 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229920002488 Hemicellulose Polymers 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 229940072056 alginate Drugs 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 239000008122 artificial sweetener Substances 0.000 description 2
- 235000021311 artificial sweeteners Nutrition 0.000 description 2
- 239000000605 aspartame Substances 0.000 description 2
- 235000010357 aspartame Nutrition 0.000 description 2
- 229960003438 aspartame Drugs 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 239000012928 buffer substance Substances 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 235000019504 cigarettes Nutrition 0.000 description 2
- 150000001860 citric acid derivatives Chemical class 0.000 description 2
- 239000012738 dissolution medium Substances 0.000 description 2
- 238000011978 dissolution method Methods 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000008368 mint flavor Substances 0.000 description 2
- LDMPZNTVIGIREC-ZGPNLCEMSA-N nicotine bitartrate Chemical compound O.O.OC(=O)[C@H](O)[C@@H](O)C(O)=O.OC(=O)[C@H](O)[C@@H](O)C(O)=O.CN1CCC[C@H]1C1=CC=CN=C1 LDMPZNTVIGIREC-ZGPNLCEMSA-N 0.000 description 2
- 239000011236 particulate material Substances 0.000 description 2
- 239000001814 pectin Substances 0.000 description 2
- 235000010987 pectin Nutrition 0.000 description 2
- 229920001277 pectin Polymers 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920001592 potato starch Polymers 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- BBMHARZCALWXSL-UHFFFAOYSA-M sodium dihydrogenphosphate monohydrate Chemical compound O.[Na+].OP(O)([O-])=O BBMHARZCALWXSL-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920001285 xanthan gum Polymers 0.000 description 2
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 description 1
- QLDPCHZQQIASHX-UHFFFAOYSA-N 2,3-dihydroxybutanedioic acid;3-(1-methylpyrrolidin-2-yl)pyridine Chemical compound OC(=O)C(O)C(O)C(O)=O.CN1CCCC1C1=CC=CN=C1 QLDPCHZQQIASHX-UHFFFAOYSA-N 0.000 description 1
- AIBWPBUAKCMKNS-PPHPATTJSA-N 2-hydroxybenzoic acid;3-[(2s)-1-methylpyrrolidin-2-yl]pyridine Chemical compound OC(=O)C1=CC=CC=C1O.CN1CCC[C@H]1C1=CC=CN=C1 AIBWPBUAKCMKNS-PPHPATTJSA-N 0.000 description 1
- MQWJVKLIBZWVEL-XRIOVQLTSA-N 3-[(2s)-1-methylpyrrolidin-2-yl]pyridine;dihydrochloride Chemical compound Cl.Cl.CN1CCC[C@H]1C1=CC=CN=C1 MQWJVKLIBZWVEL-XRIOVQLTSA-N 0.000 description 1
- HDJBTCAJIMNXEW-PPHPATTJSA-N 3-[(2s)-1-methylpyrrolidin-2-yl]pyridine;hydrochloride Chemical compound Cl.CN1CCC[C@H]1C1=CC=CN=C1 HDJBTCAJIMNXEW-PPHPATTJSA-N 0.000 description 1
- YHBIGBYIUMCLJS-UHFFFAOYSA-N 5-fluoro-1,3-benzothiazol-2-amine Chemical compound FC1=CC=C2SC(N)=NC2=C1 YHBIGBYIUMCLJS-UHFFFAOYSA-N 0.000 description 1
- WBZFUFAFFUEMEI-UHFFFAOYSA-M Acesulfame k Chemical compound [K+].CC1=CC(=O)[N-]S(=O)(=O)O1 WBZFUFAFFUEMEI-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- UIKROCXWUNQSPJ-UHFFFAOYSA-N Cotinine Natural products C1CC(=O)N(C)C1C1=CC=CN=C1 UIKROCXWUNQSPJ-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 239000004129 EU approved improving agent Substances 0.000 description 1
- 244000166124 Eucalyptus globulus Species 0.000 description 1
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 1
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- 244000246386 Mentha pulegium Species 0.000 description 1
- 235000016257 Mentha pulegium Nutrition 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 229960005164 acesulfame Drugs 0.000 description 1
- YGCFIWIQZPHFLU-UHFFFAOYSA-N acesulfame Chemical compound CC1=CC(=O)NS(=O)(=O)O1 YGCFIWIQZPHFLU-UHFFFAOYSA-N 0.000 description 1
- 235000010358 acesulfame potassium Nutrition 0.000 description 1
- 229960004998 acesulfame potassium Drugs 0.000 description 1
- 239000000619 acesulfame-K Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 235000019506 cigar Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229950006073 cotinine Drugs 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 239000005417 food ingredient Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 150000002315 glycerophosphates Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 235000001050 hortel pimenta Nutrition 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000905 isomalt Substances 0.000 description 1
- 235000010439 isomalt Nutrition 0.000 description 1
- HPIGCVXMBGOWTF-UHFFFAOYSA-N isomaltol Natural products CC(=O)C=1OC=CC=1O HPIGCVXMBGOWTF-UHFFFAOYSA-N 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 210000002200 mouth mucosa Anatomy 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229940069688 nicotine bitartrate Drugs 0.000 description 1
- 229940015769 nicotine chewing gum Drugs 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000004005 nitrosamines Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 238000002732 pharmacokinetic assay Methods 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 239000006068 taste-masking agent Substances 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- FGAFEHZTRRYNDF-UHFFFAOYSA-L zinc;3-(1-methylpyrrolidin-2-yl)pyridine;dichloride Chemical compound [Cl-].[Cl-].[Zn+2].CN1CCCC1C1=CC=CN=C1 FGAFEHZTRRYNDF-UHFFFAOYSA-L 0.000 description 1
- BRTHFWPGJMGHIV-UHFFFAOYSA-L zinc;3-(1-methylpyrrolidin-2-yl)pyridine;dichloride;hydrate Chemical compound O.[Cl-].[Cl-].[Zn+2].CN1CCCC1C1=CC=CN=C1 BRTHFWPGJMGHIV-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
DESCRIPTION
Field of the invention [0001] The present invention relates to the use of a nicotine-cellulose combination for the preparation of a snuff composition for achievement of a fast onset of action of nicotine after application of the snuff composition to the oral cavity of a subject, wherein the composition has a high release rate so that when subjected to an in vitro dissolution test about 45% or more of the total content of nicotine is released within 30 minutes. Moreover, the invention relates to an improved snuff composition for application to the oral cavity.
Background of the invention [0002] Wet snuff is a variant of nicotine addition mainly seen in the US and Scandinavia and particularly in Sweden, where this variant is used on a daily basis by approximately 20% of men.
[0003] Although wet snuff is not implicated in the cardiovascular and lung disease morbidity and mortality caused by smoking, the content of nitrosamines poses a potential hazard for some cancer diseases. It is therefore of interest to make available to consumers a snuff-like product while minimising this potential hazard.
[0004] The vascular area at the administration route and the fact that the snuff is fixed over a long period of time gives an opportunity for both a quick and thorough uptake of nicotine over the mucosa. To develop a new medicated snuff bag - Snuff Similar - with similar nicotine effects but without the carcinogenic risks derived from the tobacco was the objective for this project. To reach other countries in Europe and worldwide, one approach would be to have a product that is more clean and more socially acceptable in its appearance. By using the white cellulose complex this could be achieved. A more socially acceptable alternative might also potentially increase usage, especially among women [0005] Due to the slow wetting and thereby release, migration and absorption of nicotine, nicotine release from snuff bags is incomplete in vivo. A present snuff variant on the market is "General white" (Swedish Match AB), has a loaded amount of 8.0 mg nicotine per snuff bag and an approximate in vitro release of 1.4 mg over a period of 30 minutes. The release in vivo is consequently less than 20 %. This is mainly due to the low amount of saliva available to dissolve the nicotine and to the fact that the snuff bag is kept in place over the time of administration. Accordingly, in order to load as little nicotine as possible, there is a need for snuff bag compositions, which have a higher total release of nicotine. This will also imply that less nicotine is used in the method for preparation of such snuff compositions, which is also beneficial from an economic and an environmental point of view.
[0006] The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention . It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.
Detailed description of the invention [0007] The present invention relates to the use of a nicotine-cellulose combination for the preparation of a snuff composition for achievement of a fast onset of action of nicotine after application of the snuff composition to the oral cavity of a subject, wherein 1. i) the nicotine-cellulose combination is a solid material composed of microcrystalline cellulose, which has sorbed said nicotine in voids or pores within the microcrystalline cellulose, 2. ii) the concentration of the nicotine-cellulose combination in the composition is from 80% to 98% w/w, 3. iii) the concentration of nicotine in the composition is from 0.1 to 10% w/w, and 4. iv) the composition, when subjected to an in vitro dissolution test, 30% or more of the total content of nicotine is released within 30 minutes, and the in vitro dissolution test being in accordance with the method described herein under the heading "In vitro dissolution test", subheading "Snuff".
[0008] The invention also relates to a snuff composition comprising a nicotine-cellulose combination and one or more acceptable excipients, wherein 1. i) the nicotine-cellulose combination is a solid material composed of microcrystalline cellulose, which has sorbed said nicotine in voids or pores within the microcrystalline cellulose, 2. ii) the concentration of the nicotine-cellulose combination in the composition is from 80% to 98% w/w, 3. iii) the concentration of nicotine in the composition is from 0.1 to 10% w/w, and 4. iv) the composition, when subjected to an in vitro dissolution test, 30% or more of the total content of nicotine is released within 30 minutes, and the in vitro dissolution test being in accordance with the method described herein under the heading "In vitro dissolution test", subheading "Snuff".
[0009] Preferably, the composition has a high release rate so that when subjected to an in vitro dissolution test about 45% or more of the total content of nicotine is released within 30 minutes.
[0010] In general the onset of the nicotine effect is within 5 minutes such as, e.g. within 4 minutes, within 3 minutes, within 2 minutes or within 1.5 minutes after application of composition between the lip and the teeth of a subject.
[0011] In the present context the term "nicotine-cellulose combination" is intended to denote a solid material composed of a cellulose which has sorbed (adsorbed and/or absorbed) a well-defined amount of nicotine (either as free base or as a pharmaceutically acceptable salt, complex or solvate) e.g. in voids or pores within the cellulose. The terms "nicotine-cellulose adduct" and "nicotine-cellulose carrier complex" as used herein are intended to have the same meaning as the term "nicotine-cellulose combination". As used herein cellulose is an example of a carrier.
[0012] In WO 2004/056363 (to the same Applicant) is described such a nicotine-cellulose combination for release of nicotine. However, there is no disclosure of the use of such a material for the preparation of a snuff composition for use in the oral cavity.
[0013] Moreover, the present inventors have found that the use of such a nicotine-cellulose combination is especially suitable for use in a snuff composition as such a snuff composition, on the one hand releases nicotine relatively fast and thereby enables a fast onset of the nicotine effect, and on the other hand enables the nicotine content in the snuff composition to be completely or almost completely released after application in the oral cavity. The complete or almost complete release is also seen after encapsulating of the snuff composition in a suitable bag, pouch or membrane. The bag or pouch may be of any suitable material e.g. wowen or non-wowen fabric (e.g. cotton, fleece etc.), heat sealable non-wowen cellulose or other polymeric materials such as a synthetic, semisynthetic or natural polymeric material as described herein. A material suitable for use must provide a semipermeable membrane layer to prevent the powder or composition from leaving the bag or pouch during use. Suitable materials are also those that do not have a significant impact on the release of nicotine from the composition. To the best of the inventor's knowledge, the nicotine/tobacco snuff products available on the market today only releases a part of the nicotine contained in the snuff product (see the Examples herein).
[0014] The snuff is normally in the form of a bag or pouch suitable for buccal administration (e.g. to be inserted between the lip and the teeth) and the bag or pouch comprises the nicotine in the form of a nicotine-cellulose combination. In a particular interesting embodiment, the cellulose is microcrystalline cellulose having a mean particle size of about 180 pm. An example of a suitable quality is e.g. Avicel PH-200.
[0015] The snuff composition according to the present invention may also comprise one or more pharmaceutically acceptable excipients or additives that are suitable for buccal administration. Such agents include -but are not limited to - fillers, binders, wetting agents, stabilizing agents, coloring agents, surface active agents, pH adjusting agents, absorption enhancers, taste-masking agents, flavoring agents, texture-improving agents, etc.
[0016] As indicated above, in a specific embodiment of the present invention, the nicotine-cellulose combination (normally together with one or more pharmaceutically acceptable excipients or additives) is enclosed in a membrane material. The membrane may be a natural, synthetic, semi-synthetic hydrophilic or hydrophobic membrane. It may be made from one or more biocompatible and physiologically acceptable polymeric material. Examples of suitable membrane materials are cellulose acetate and derivatives thereof, carboxymethyl cellulose, polycellulose ester, other cellulose derivatives including ethylcellulose, propylcellulose, polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinyl acetate, polymers of methacrylates and acrylates, natural rubber, polycarbonate, polyethylene terephthalate, polyester, polyamide and nylon. Other suitable materials are mentioned herein before.
[0017] In keeping with long-standing patent law convention, the words "a" and "an" when used in the present specification in concert with the word comprising, including the claims, denote "one or more." As used herein "another" may mean at least a second or more. Some embodiments of the invention may consist of or consist essentially of one or more elements, method steps, and/or methods of the invention. It is contemplated that any method or composition described herein can be implemented with respect to any other method or composition described herein.
[0018] In one aspect, the invention relates to a snuff composition for buccal administration in the cheek pouch between the cheek and the jaw or under the lip. The composition may include tobacco.
[0019] The use of tobacco is deeply rooted in a large part of the world population. In the Scandinavian countries and in particular Sweden the use of moist snuff (snus) is very common as an alternative to smoking. Snuff is fermented and milled/grinded tobacco with a relatively large water content (40 - 60 % w/w), normally to be used under the front upper lip of a human being.
[0020] Tobacco itself varies somewhat in nicotine content due to its natural origin. To adjust the nicotine release in moist snuff, various buffer systems may be added, e.g. carbonates. The moist snuff is either packed loosely, as bulk in a box or as single doses in small non-woven bags. A number of the filled and sealed bags are then packed in a box.
[0021] The moist snuff as a single dose has become popular due to the ease of use compared to the bulk product. The popularity of moist snuff is most probably due to its pharmacological nicotine absorption profile. The dose of nicotine and speed of absorption is approximately 10 ng per ml over 10 minutes though this may vary between brands. Measurements of plasma nicotine concentrations after a single day of moist snuff consumption also yielded levels similar to cigarette use. The kinetics are slightly slower compared to the kinetics when smoking tobacco, such as e.g. cigarettes and cigars; however, the overall amount of nicotine absorbed is higher when snuff is employed.
[0022] A snuff composition according to the invention comprises nicotine, or a pharmaceutically acceptable salt, solvate, complex, adduct, or derivative thereof, wherein - and when subjected to an in vitro dissolution test as described herein for 30 minutes about 30% or more of the total content of nicotine is released. This requirement with respect to in vitro release ensures that a sufficient amount of nicotine is rapidly available for absorption through the oral mucosa. In particular embodiments, about 35% or more such as, e.g., about 40% or more, about 42% or more, about 45% or more, about 50% or more of the total content of nicotine is released. In embodiments of particular interest, the release of nicotine is about 45% or more of the total content of nicotine within 30 minutes (in an in vitro test). Notably, the release within this period of time is about 50% or more such as, e.g., about 60% or more, about 70% or more or about 75% or more of the total content of nicotine in the snuff composition. The same applies to snuff compositions encapsulated in a polymeric membrane as described herein.
[0023] One important feature of the present invention is that the snuff composition leads to a rapid appearance of nicotine in the plasma. Accordingly, in general the in vivo uptake of nicotine 30 minutes after buccal administration corresponds to at least about 30% of the total content of nicotine in the snuff. As seen from the examples herein the snuff composition can be formulated so that the in vivo release of nicotine 30 minutes after buccal administration is higher, i.e. it corresponds to at least about 35% such as, e.g., at least about 40%, at least about 42%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70% or at least about 75% of the total content of nicotine in the snuff.
[0024] The snuff composition according to the invention comprises a carrier comprising internal voids. Such voids may at least partially comprise said nicotine. The carrier is typically insoluble in water or has a low solubility in water. Thus, it typically has a solubility in water at room temperature of less than 1% w/w.
[0025] The carrier for use in a snuff composition of the invention is microcrystalline cellulose ("mcc"). The cellulose may be synthetic or semi-synthetic celluloses, or it may be derived from natural celluloses. It is microcrystalline. Certain specific embodiments may also utilize other forms of carriers, in addition to mcc, such as but not limited to fibrous material or carbohydrates including cellulose (including hemicellulose, celluloses with different crystallinities and structures (e.g., varying structures including solid fibers, and addition or including fibers or the like in various structures such as web-like structures and/or other structures), including naturally occurring celluloses including Cladophora sp. Algae cellulose or the like), dextran, agarose, agar, pectin, alginate, xanthan, chitosan, starch (including potato starch, shoti starch) etc. or mixtures thereof. While not intended to be bound by theory, it is believed as of the time of this patent application that nicotine may interact the carrier (for example, mcc or other suitable carrier including other cellulose carriers) by absorbing into and/or adsorbing onto the carrier. Such interaction is completely or nearly completely reversible.
[0026] The microcrystalline cellulose may be selected from the group consisting of AVICEL® grades PH-100, PH-102, PH-103, PH-105, PH-112, PH-113, PH-200, PH-300, PH-302, VIVACEL® grades 101, 102, 12, 20 and EMOCEL® grades 50M and 90M, and the like, and mixtures thereof.
[0027] Suitable carriers may also be those disclosed in WO 2004/064811.
[0028] More specifically, it is contemplated that a relatively high surface area may be of importance for a carrier that is suitable for use. Accordingly, the specific surface area of suitable carriers is normally at least 0.7 m2/g such as, e.g., 1 m2/g. In certain uses the specific surface area may range between about 0.7 m2/g and at least about 100 m2/g and/or may be anything within this range and/or may be any mixture of sizes within this range. For example, in certain embodiments, the surface area may be about 0.7 m2/g, about 1 m2/g, about 1.5 m2/g, about 2.0 m2/g, about 3.0 m2/g, about 5 m2/g, about 7 m2/g, about 10 m2/g, about 15 m2/g, about 20 m2/g, about 25 m2/g, about 35 m2/g, about 45 m2/g, about 50 m2/g, about 75 m2/g, about 100 m2/g and above about 100 m2/g, or combinations thereof. Such carriers having such suitable surface areas may include, but are not limited to, mcc, fibrous material or carbohydrates including cellulose (including hemicellulose, celluloses with different crystallinities and structures (e.g., varying structures including solid fibers, and addition or including fibers or the like in various structures such as web-like structures and/or other structures), including naturally occurring celluloses including Cladophora sp. Algae cellulose or the like), dextran, agarose, agar, pectin, alginate, xanthan, chitosan, starch (including potato starch, shoti starch) etc. and/or mixtures thereof.
[0029] Nicotine is sorbed on microcrystalline cellulose.
[0030] In general, the mean particle size of the carrier such as microcrystalline cellulose is one that is not too low and neither too high such as, e.g., at the most about 500 pm, at the most about 450 pm, at the most about 300 pm, or at the most about 200 pm, or from about 5 to about 500 pm, from 10 to about 500 pm, from 15 to about 500 pm, from about 20 to about 500pm, from about 30 to about 500 pm, from about 40 to about 500 pm, from about 10 to about 400 pm, from about 20 to about 400 pm, from about 30 to about 400 pm, from about 40 to about 400 pm, from about 30 to about 300 pm, from about 40 to about 300 pm, from about 50 to about 250 pm, from about 50 to about 200 pm or from about 75 to about 200 pm. In specific embodiments the particle size used were about 100 pm. In a preferred aspect, the mean particle size is in a range of from about 15 to about 250 pm such as from about 20 to about 200 pm. In the examples herein a quality of microcrystalline cellulose having a mean particle size of 180 pm has proved to be well-suited for the present purpose.
[0031] A snuff composition according to the invention contains nicotine as a nicotine-microcrystalline cellulose carrier complex in which said nicotine is at least partially absorbed into the carrier. Such interaction is completely or nearly completely reversible Hence, nicotine is sorbed on microcrystalline cellulose, absorbed into the mcc, and/or combinations thereof.
[0032] In embodiments of the present invention, the carrier (mcc ) is at least partially porous. This porosity may be due, for example but not limited to, the structure of the carrier, for example, branched, fibrous, or weblike structures may have pores. Ranges of pore sizes include but are not limited to pore volumes of about 0.01 cm3/g and include, but are not necessarily limited to pore volume ranges of from about 0.003 cm3/g or less to about 0.025 cm3/g, to about or greater than 0.60 cm3/g.
[0033] In general, the nicotine carrier complex or nicotine carrier adduct is present in a snuff composition of the invention in a concentration of at least about 2% w/w such as in a range from about 2% w/w to about 98% w/w, from about 2% to about 96% w/w, from about 2% w/w to about 95% w/w, from about 3 % w/w to about 90% w/w, from about 4 % w/w to about 85% w/w, from about 5 % w/w to about 80% w/w, from about 5 % w/w to about 75% w/w, from about 5 % w/w to about 70% w/w, or from about 7.5% w/w to about 65% w/w.
[0034] In certain embodiments, the amount of nicotine sorbed, for example absorbed into and/or adsorbed onto to carrier can be up to 50% or more of the total weight of the composition. Ranges of the amount of nicotine sorbed onto the carrier in the present invention range for less than about 1 % of the total weight of the composition to more than about 50% of the composition, including all amounts within this range. While applicants do not intend the invention to be bound by theory, it is believed at the time of preparing this application that the maximum amount of nicotine that can be sorbed onto and/or into the carrier, thereby affecting the amount, for example the percent nicotine by weight of the total composition (e.g., the maximum percentage) is affected by properties of the carrier, including but not limited to the structure of the carrier, the porosity of the carrier, and the surface area of the carrier.
[0035] In certain embodiments, the concentration of the nicotine carrier complex or nicotine carrier adduct in a composition of the invention is present in a concentration such as, e.g., from about 80% w/w to about 98% w/w, such as, e.g., from about 85% w/w to about 98% w/w, from about 90% w/w to about 98% w/w, from about 92% w/w to about 98% w/w, from about 93% w/w to about 97% w/w or from about 94% w/w to about 96% w/w.
Concentrations and amounts of nicotine [0036] As mentioned above, nicotine may be present in any suitable form. Normally, nicotine is selected from the group consisting of nicotine base, nicotine hydrochloride, nicotine dihydrochloride, nicotine monotartrate, nicotine bitartrate, nicotine sulfate, nicotine zinc chloride such as nicotine zinc chloride monohydrate and nicotine salicylate. In a preferred aspect, nicotine is in its free base form, which easily can be sorbed on a cellulose to form a microcrystalline cellulose-nicotine carrier complex or carrier adduct.
[0037] A snuff composition according to the invention contains nicotine in a concentration from 0.1% w/w to 10% w/w, such as, e.g., from from 0.1% w/w to 8% w/w, from 0.1% w/w to 6% w/w, from 0.1% w/w to 4% w/w, from 0.1% w/w to 2% w/w, from 1% w/w to 1.5% w/w, from 0.2% w/w to 1.0% w/w or from 0.2% w/w to 0.8% w/w, calculated as free base.
[0038] In a snuff composition of the invention the nicotine is typically present in a concentration from about 0.1 % w/w to about 5% w/w, such as; e.g., from about from about 0.1 % w/w to about 4% w/w, from about 0.1 % w/w to about 3% w/w, from about 0.1% w/w to about 2% w/w, from about 0.1% w/w to about 1% w/w, from about 0.1% w/w to about 0.75% w/w, from about 0.2% w/w to about 0.5% w/w or from about 0.2% w/w to about 0.4% w/w, calculated as free base.
[0039] As mentioned above, the nicotine is present in the form of a nicotine-cellulose combination. The choice of suitable concentration depends on the load of nicotine in the nicotine-cellulose combination and the dosage of nicotine in a single pouch or bag. If the load is relatively high, then the concentration of the combination may be lower than if the load is relatively low. The concentration of the combination is from 80% w/w to 98% w/w, such as, e.g., from 85% w/w to 98% w/w, from 90% w/w to 98% w/w, from 92% w/w to 98% w/w, from 93% w/w to 97% w/w or from 94% w/w to 96% w/w.
[0040] The concentration of nicotine (or the pharmaceutically acceptable salt, complex or solvate thereof) in the combination is at the most 70% w/w such as, e.g., at the most 60% w/w, at the most 50% w/w, at the most 45% w/w. The content of nicotine must not be so high that the combination (which is in powder form) "sweats", so that nicotine desorbs, evaporates or otherwise disappears from the combination. Accordingly, the load of nicotine in the combination is dependent on the particular cellulose employed. If the surface area of the cellulose material is relatively high, then a larger amount of nicotine can be contained therein in a stable manner during a suitable period of time, whereas a cellulose having a smaller surface area normally is indicative for a lower capacity to load nicotine in a suitable manner with respect to stability.
[0041] For most cellulose qualities, the concentration of nicotine in the nicotine-cellulose combination is at the most about 45% w/w, such as, e.g., at the most about 40% w/w, at the most about 35% w/w, at the most about 30% w/w, at the most about 25% w/w, at the most about 20% w/w, at the most about 15% w/w, at the most about 12.5% w/w, at the most about 10% w/w, at the most about 9.5% w/w, at the most about 9% w/w, at the most about 8.5% w/w or at the most about 8% w/w, and the concentration being calculated as the nicotine base.
[0042] In a specific embodiment, a particulate material according to the present invention has a concentration of nicotine or the pharmaceutically acceptable salt, complex or solvate thereof in the particulate material is at the most about 7.5% w/w such as, e.g., at the most about 7% w/w, at the most about 6.5 % w/w, at the most about 6% w/w, at the most about 5.5% w/w, at the most about 5% w/w, at the most about 4.5% w/w, at the most about 4% w/w, at the most about 3% w/w, at the most about 2% w/w or at the most about 1% w/w, and the concentration being calculated as the nicotine base.
[0043] The amount of the nicotine compound (calculated as the free base) in a composition of the inventions is generally from about 0.5 mg to about 10 mg such as, e.g., from about 1 mg to about 8 mg, from about 1.5 mg to about 7.5 mg, from about 2 mg to about 5 mg, from about 2.5 mg to about 5 mg, from about 3 to about 10 mg, from about 3 to about 7.5 mg or from about 3 mg to about 5 mg such as, e.g., about 1.5 mg, about 2 mg, about 2.5 mg, about 3 mg, about 3.5 mg, about 4 mg, about 5 mg or about 6 mg, as calculated as free nicotine base. In particular a dosage of 2 mg, 3 mg, 4 mg and 6 mg is of commercial interest.
Buffering agents [0044] A composition according to the invention may also contain one or more buffering agents. It is generally known that a slightly alkaline reaction (between 7 and 8) in the oral cavity enhances the absorption of nicotine. Accordingly, it may be and advantage to incorporate a buffer substance in the composition such that a slightly alkaline reaction is provided. Especially compositions for release of the nicotine in the oral cavity can advantageously contain a buffer substance, i.e. compositions like snuff compositions.
[0045] Suitable buffering agents are typically those selected from the group consisting of acetates, glycinates, phosphates, glycerophosphates, citrates such as citrates of alkaline metals, carbonates, and hydrogen carbonates, and borates, or mixtures thereof. Especially, a carbonate, a hydrogen carbonate or a phosphate including a triphosphate is suitable as a buffer agent.
[0046] If present the one or more buffering agents are present in a concentration from about 0.5% w/w to about 5% w/w, such as, e.g., from about 0.75% w/w to about 4%, w/w, from about 0.75% w/w to about 3%, w/w or from about 1% w/w to about 2%, w/w.
[0047] In a specific embodiment, the concentration of the one or more buffering agents is from about 0.1% w/w to about 5% w/w, such as, e.g., from about 0.2% w/w to about 4% w/w, from about 0.3% w/w to about 4% w/w, from about 0.4% w/w to about 3% w/w, from about 0.5% w/w to about 2% w/w, from about 0.6% w/w to about 1 % w/w or from about 0.7% w/w to about 0.9% w/w such as about 0.8% w/w.
Sweeteners - flavouring agents [0048] In order to improve the sensory properties of the composition according to the invention one or more sweeteners or texture improves may be added, such as sugar alcohols including xylitol, sorbitol, maltitol and/or isomalt, or artificial sweeteners such as e.g. aspartame, acesulfame or saccharin.
[0049] The concentration of the one or more sweeteners, if present, is normally at least about 0.05% such as, e.g. from about 0.075% w/w to about 5% w/w or from about 5% to about 35% w/w, such as, e.g., from about 10% w/w to about 35% w/w, from about 15% w/w to about 35% w/w or from about 20% w/w to about 30% w/w. In an interesting embodiment the one or more sweeteners are present in a concentration from about 0.01 % w/w to about 0.2% w/w, such as, e.g., from about 0.01 % w/w to about 0.15% w/w, from about 0.02% w/w to about 0.12% w/w, from about 0.03% w/w to about 0.11% w/w, from about 0.04% w/w to about 0.1 % w/w, from about 0.05% w/w to about 0.1% w/w, from about 0.06% w/w to about 0.1% w/w or from about 0.07% w/w to about 0.09% w/w such as about 0.08% w/w. As demonstrated in the examples herein a concentration of the one or more artificial sweeteners of about 0.08% gives good sensoric acceptance.
[0050] In order to improve the organoleptic properties of a composition according to the invention, the composition may include one or more flavouring agents, such as, e.g., menthol flavour, eucalyptus, mint flavour and/or L-menthol, normally present (total concentration of flavouring agents) in a concentration of from about 0.5% w/w to about 12% w/w, from about 1% w/w to about 10% w/w, from about 1.5% w/w to about 9% w/w or from about 2% w/w to about 8% w/w.
[0051] In a particular embodiment the flavour is mint flavour and the concentration of the one or more flavouring agents is from about 1% w/w to about 15% w/w, such as, e.g., from about 1% w/w to about 10% w/w, from about 1.5% w/w to about 8% w/w, from about 2% w/w to about 6% w/w or from about 3% w/w to about 5% w/w such as about 4% w/w. In a specific embodiment, the concentration of the one or more flavouring agents is about 4% w/w.
[0052] It is well-known that nicotine is subject to oxidation and accordingly, it may be advantageous to incorporate one or more anti-oxidants, such as, e.g., ascorbyl palmitate and/or sodium ascorbate, in a composition according to the invention.
[0053] The one or more anti-oxidants may be present in a concentration of from about 0.4% w/w to about 2.4% w/w, such as, e.g., from about 0.5% w/w to about 2.2% w/w, from about 0.6% w/w to about 2% w/w, from about 0.7% w/w to about 1.8% w/w or from about 0.8% w/w to about 1.6% w/w.
[0054] Also disclosed are: [0055] A snuff composition comprising 1. i) a carrier, 2. ii) nicotine, or a pharmaceutically acceptable salt, solvate, complex, or derivative thereof, wherein at least about 30% w/w of the total content of nicotine is released within 30 minutes when said composition is subjected to an in vitro dissolution test.
[0056] A snuff composition comprising 1. i) a nicotine-cellulose combination 2. ii) one or more pharmaceutically acceptable excipients or additive the composition being encapsulated in a bag, pouch or membrane material.
[0057] A snuff composition comprising 1. i) a nicotine-cellulose combination containing from about 0.5 to about 10 mg of nicotine 2. ii) a flavoring agent 3. iii) a sweetener the composition being encapsulated in a bag, pouch or membrane material.
[0058] A snuff composition comprising 1. i) a nicotine-cellulose combination containing from about 0.5 to about 10 mg of nicotine 2. ii) a flavoring agent 3. iii) a sweetener 4. iv) an antioxidant the composition being encapsulated in a bag, pouch or membrane material.
[0059] A method of administering a snuff composition with a high release rate comprising the step of: delivering a snuff composition comprising a carrier combined with nicotine, or a pharmaceutically acceptable salt, solvate, complex, or derivative thereof, wherein at least about 30% w/w of the total content of nicotine is released within 30 minutes when said composition is subjected to an in vitro dissolution test.
[0060] A method of making a snuff composition with a high release rate, comprising the step of: combining nicotine, or a pharmaceutically acceptable salt, solvate, complex, or derivative thereof, with a carrier, wherein at least about 30% w/w of the total content of nicotine is released within 30 minutes when said composition is subjected to an in vitro dissolution test.
[0061] The invention is further illustrated in the following figures and non-limiting examples.
Legends to the figures [0062]
Figure 1 shows an assembly of the dialysis membrane to the silicone hose - the assembly is a part of the dissolution testing apparatus for testing of snuff compositions
Figure 2 shows an overview of tubing routes in the dissolution testing of snuff compositions
Figure 3 shows a sample tube for dissolution testing of snuff compositions
Figures 4 and 5 show in vitro release profile for snuff compositions described in Example 2
Figures 6 and 7 show the in vivo uptake of nicotine from snuff compositions described in Example 3.
Figure 8 show the plasma concentration versus time for the experiment described in Example 5 comparing Nicorette® chewing gum (4 mg) with a snuff composition of the invention containing 5 mg of nicotine
Methods
In vitro dissolution test [0063] The snuff compositions according to the invention are normally tested to fulfill specific requirements with respect to in vitro release of nicotine. A suitable in vitro test depends on the specific composition in question. In general, a person skilled in the art will find guidance as to how to choose a relevant dissolution test for a specific composition in the official monographs such as, e.g., the European Pharmacopoeia. Below are described suitable dissolution tests in case of snuff compositions.
Snuff [0064] The following dissolution method for testing of the release of nicotine from snuff compositions was used.
[0065] The method describes in-vitro release of nicotine from snuff using UV detection. The released nicotine diffuses through a dialysis membrane into a stream of tempered phosphate buffer.
Equipment ;0066] UV spectrophotometer HP 8453 or equivalent |
Sipper HP Peristaltic pump or equivalent j
Secondary pump Flexicon PF5 or equivalent j
Magnetic stirrer Labasco or equivalent j
Water bath Gant W 14 or equivalent j
Instrument settings [0067] UV spectrophotometer |Wavelengths 244.259 and 274 nm j j.................................................................................................j Flow cell 1.000 cm j jwaterbath jTemperature 37 °C j
Secondary pump_jPump flow_30 rpm j l.^.9..?.^.^!.0...5.!:j.r.r.e..r 1.^.9.^.1.°1] Gentle stir j
Materials [0068]
Dialysis membrane, Spectra/Por®, MWCO 500,
Silicon tubing, i.d. 6 mm Sample tube 250 ml beaker
Reagents [0069]
Chemicals & solvents:
Purified water, H2O
Sodium Hydroxide, min 98%, NaOH
Sodium Dihydrogen Phosphate Monohydrat, min 98 %, NaH2P04 H2O Reference material: [0070]
Nicotine bitartrate dihydrate, standard Solutions: [0071] 5 M Sodium hydroxide Phosphate buffer, pH 6.8
Procedure
Apparatus assembly [0072] Cut two pieces of silicon hoses, 150 and 35 cm long. Insert a 3 cm long hard plastic hose (o.d. 7 mm) in one end of the two 'blood vessels' for support. Cut a piece of dialysis membrane and pre-treat according to manufacturer. Thread the membrane through two 2.5 cm long silcon hose pieces (i.d. 6 mm). The supported ends of the blood vessels should be inserted approximately 3 cm into the membrane and secured with the two small silicon rings (See Figure 1).
[0073] Add 250 ml phosphate buffer [6] to the 250 ml beaker and add a magnetic bar. Place it in the water bath and start the heating and rotation. Connect the silicone hose to the secondary pump and place the longest part to the beaker. Place a pipette tip (1 ml) into the shorter end to work as a pressure restrictor. The hole in the tip may be expanded in order to adjust the back pressure. Prime the tubing with buffer.
[0074] Place the two tubings from the flow cell in the beaker. (See Figure 2) and obtain a blank measurement.
[0075] Stop the flow and fold the membrane on the middle. Use a piece of paper to slide the membrane into the sample tube as far down as possible. Start the pump and carefully insert the snuff bag halfway down the sample tube between the membranes (see Figure 3). Add phosphate buffer [2] to the tube enough to cover the sample. Place the sample tube in the water bath and start the analysis.
Sampling [0076] Blank: Measure blank before the membrane is placed into the sample tube. Sampling: Withdraw sample online every fifth minute for 30 minutes using the sipper. Measure the absorbance at 244, 259 and 274 nm.
[0077] Standards: Pump S1-S3 into the flow cell after the sampling sequence. Measure the absorbance at 244, 259 and 274 nm.
Evaluation [0078] The concentrations of nicotine in the samples are calculated.
[0079] As an alternative method, USP basket method (in vitro dissolution of tablets) can be used employing 500 ml water as dissolution medium.
[0080] The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice.
Examples Example 1
Snuff bag compositions E, F, G, Η, I and J
[0081] Nicotine was sorbed onto microcrystalline cellulose (MCC) as described in WO 2004/056363. Accordingly, in the present example 2.40 ml nicotine was dissolved in 25 ml ethanol (99.5%). 47.6 g MCC of type PH-102 was loaded into a high-speed mixer and the nicotine was slowly added. After vacuum drying of the obtained wetted mass a fine-grained, white powder of nicotine-microcrystalline cellulose carrier complex was obtained.
[0082] Nicotine was sorbed onto microcrystalline cellulose (MCC) to obtain nicotine-microcrystalline cellulose carrier complexes essentially as described above. The obtained nicotine-microcrystalline cellulose carrier complexes were mixed with the remaining ingredients to obtain the compositions E, F, G, Η, I and J stated in the following table:
[0083] Nicotine was purchased from Siegfried, Switzerland, (batch no. 03381006), Microcrystalline cellulose was purchased from FMC, Belgium (batch no. M301 C), Peppermint powder flavour was purchased from Firmenich, Switzerland (batch no. JP05040527), Acesulfame potassium was purchased from L&P Food Ingredient, China (batch no. (ZD02035), Aspartame powder was purchased from NutraSweet, Switzerland (batch no. C000220), Sodium carbonate was purchased from Aldrich, Germany (batch no. A008729PI), Sodium hydrogen carbonate was purchased from Merck, Germany (batch no. K28409723047), Sodium triphosphate was purchased from Sigma, USA (supplied from Swedish Match Sweden).
[0084] 150 mg of the compositions E-J, respectively, were filled into snuff bags made of a snuff bag material obtained from Swedish Match, Sweden (batch no. W-NR00217, RL-NR6). The snuff bag size used is similar to the present marketed dry snuff bags, i.e. as "Catch® dry".
Example 2
In vitro release from snuff bag compositions E, F, G, Η, I and 3 [0085] Measurement of in vitro release rates of nicotine from snuff bags were performed using an in vitro dissolution test developed at Swedish Match, Stockholm, and utilizing a plastic flow-chamber in a tube with buffer solution combined with UV detection on a spectrophotometer at 260 nm. The details are mentioned above under the heading "In vitro dissolution test".
[0086] The in vitro release of nicotine from compositions E-J in percentage of the total content of nicotine are stated in the table below: ________________________
[0087] Furthermore, comparison studies of the in vitro release profiles of nicotine from snuff bags containing snuff compositions according to the present invention and already marketed snuff bags were performed. In Figure 4 the in vitro release profiles of nicotine from compositions F and FI were compared with the in vitro release profiles of nicotine from the present marketed dry snuff bags "Catch® dry" and "general white" using the first of the above-mentioned in vitro release methods. Figure 4 illustrates the improved in vitro release of nicotine from snuff compositions according to the present invention compared to both "Catch® dry" and "general white": Snuff composition F which contains 6 mg nicotine releases significantly more nicotine than the already marketed products "Catch® dry" and "general white". As the marketed products are natural products information of the exact content of nicotine is not available, but it is disclosed that the weight is 1 gram or less, the nicotine content is 5-11 mg, the pFH is 7.3-8.5 and the buffer content is 1.5-3.5%.
[0088] In Figure 5 the in vitro release rates of nicotine from snuff compositions E, F and G containing 6 mg of nicotine and snuff compositions FI and I containing 4 mg of nicotine, were compared to the in vitro release rates of nicotine from "General" compositions 1, 2 and 3. Again, the snuff compositions according to the present invention exhibit a better release relative to the total content of nicotine in the composition/product.
Example 3
In vivo uptake of nicotine from snuff bag containing composition [0089] A comparison study of the in vivo uptake of nicotine from the snuff product "General", 4 mg Nicorette® chewing gum and a snuff bag comprising composition J was performed. Composition J contained 0.8% sodium hydrogen carbonate and 0.8% sodium carbonate. Blood samples were taken at 0, 5, 10, 15, 20, 30 and 40 minutes after application and the plasma concentrations of nicotine were determined by ABS laboratories, London, England. After addition of sodium hydroxide, the plasma samples were extracted with dichloroethane and nicotine was quantitatively determined by gas chromatography using a nitrogen/phosphorous detector. 5-methyl cotinine was used to internally standardize the procedure. The limit of quantification is 0.5 ng/ml.
[0090] The results are shown in Figure 6. For comparison reasons the in vivo uptake of nicotine from the snuff product "General" was normalized to a nicotine content of 6 mg. Figure 6 shows that over a time period of 30 minutes, the snuff bag containing composition J provides a plasma level of nicotine exceeding those of both "General" and Nicorette® 4 mg nicotine chewing gum.
[0091] Furthermore, a pilot pharmacokinetic study (n=4) in which the in vivo uptake of nicotine from snuff compositions G, J and I were compared to the in vivo uptake from Nicorette® 4 mg chewing gum. The result shown in figure 7 illustrates that the in vivo uptake of nicotine from each of these snuff compositions is significantly better than from Nicorette® 4 mg chewing gum.
Example 4
Residual amounts of nicotine in snuff bags comprising snuff compositions G, I and J - in vitro vs. in vivo [0092] Snuff bags comprising either of compositions G, I or J were subjected to either the above-mentioned in vitro dissolution test employing USP basket apparatus or the above-mentioned pilot pharmacokinetic assay in 30 minutes. Subsequently, the residual nicotine content in the snuff bags was investigated using a dissolution bath combined with a UV-detection on a spectrophotometer at 260 nm. The dissolution was determined according to the dissolution method for tablets USP (basket) using 500 ml water as dissolution medium and a temperature of 37 °C. 0093] The results are shown in the following table:_
[0094] It follows from the figures in the above table, that the residual amount of nicotine in the snuff bags after 30 minutes of in vitro dissolution test is between 50% and 57% of the initial content of nicotine, i.e. between 43% and 50% of the nicotine has been released in the in vitro dissolution test. It further follows that the residual amount of nicotine in the snuff bags after 30 minutes of the in vivo pharmacokinetic study, is between 45% and 50% of the initial content of nicotine, i.e. between 45% and 50% of the nicotine has been absorbed in the bloodstream.
Example 5
Comparison of Nicorette 4 mg gum with MCC-nicotine containing snuff composition with 5 mg nicotine [0095] Single dose pharmacokinetics was studied in four subjects in comparison to Nicorette 4 mg gum (Fig 8).
Figure 8 shows the results from a single dose pharmacokinetic study in four subject comparing Nicorette® 4 mg chewing gum with a snuff composition containing MCC-nicotine corresponding to 5 mg nicotine after oral application.
[0096] The bioavailability of nicotine from the nicotine snuff composition appears higher that that seen for the Nicorette® composition even if the different in dosage is taken into account.
References [0097] All patents and publications mentioned in the specification are indicative of the levels of those skilled in the art to which the invention pertains.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • W02004056363A [003.2] ΓΟΟΒΙΙ • WQ2004064811A [0027] • JP05040527B [00¾¾].
Claims (30)
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US78290306P | 2006-03-16 | 2006-03-16 | |
| US78297706P | 2006-03-16 | 2006-03-16 | |
| DKPA200600375 | 2006-03-16 | ||
| DKPA200600376 | 2006-03-16 | ||
| PCT/EP2007/002343 WO2007104573A2 (en) | 2006-03-16 | 2007-03-16 | Improved snuff composition |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| DK1998748T3 true DK1998748T3 (en) | 2015-04-27 |
Family
ID=52683014
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| DK07723323T DK1998748T3 (en) | 2006-03-16 | 2007-03-16 | Improved snuff composition |
Country Status (2)
| Country | Link |
|---|---|
| DK (1) | DK1998748T3 (en) |
| ES (1) | ES2531974T3 (en) |
-
2007
- 2007-03-16 ES ES07723323.7T patent/ES2531974T3/en active Active
- 2007-03-16 DK DK07723323T patent/DK1998748T3/en active
Also Published As
| Publication number | Publication date |
|---|---|
| ES2531974T3 (en) | 2015-03-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12219983B1 (en) | Compositions for buccal administration | |
| CA2736531C (en) | Process for preparing snuff composition | |
| DK2691096T3 (en) | Bag containing free nicotine in salt form | |
| EP1458252B1 (en) | Tobacco and/or tobacco in combination with tobacco substitute composition for use as a snuff in the oral cavity | |
| US20100004294A1 (en) | Stable Lozenge Compositions Providing Rapid Release of Nicotine | |
| DK1998748T3 (en) | Improved snuff composition | |
| JP2025504003A (en) | Oral Pouch Products |