[go: up one dir, main page]

CN113902645B - A Method for Acquiring RPC Correction Parameters of Spaceborne SAR Images Based on Inverse RD Positioning Model - Google Patents

A Method for Acquiring RPC Correction Parameters of Spaceborne SAR Images Based on Inverse RD Positioning Model Download PDF

Info

Publication number
CN113902645B
CN113902645B CN202111254611.5A CN202111254611A CN113902645B CN 113902645 B CN113902645 B CN 113902645B CN 202111254611 A CN202111254611 A CN 202111254611A CN 113902645 B CN113902645 B CN 113902645B
Authority
CN
China
Prior art keywords
image
equation
model
coordinates
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111254611.5A
Other languages
Chinese (zh)
Other versions
CN113902645A (en
Inventor
陶利
曲圣杰
张程
许涛
曹菡
项海兵
姚梦园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 38 Research Institute
Original Assignee
CETC 38 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 38 Research Institute filed Critical CETC 38 Research Institute
Priority to CN202111254611.5A priority Critical patent/CN113902645B/en
Publication of CN113902645A publication Critical patent/CN113902645A/en
Application granted granted Critical
Publication of CN113902645B publication Critical patent/CN113902645B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/80Geometric correction
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/75Determining position or orientation of objects or cameras using feature-based methods involving models
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computing Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

A satellite-borne SAR image RPC correction parameter acquisition method based on an inverse RD positioning model belongs to the technical field of microwave remote sensing SAR image geometric correction, and solves the problem of how to design a complete satellite-borne SAR image RPC correction parameter generation method based on real terrain positioning for a satellite-borne SAR general geometric correction model; and performing least square accurate solution on the RPC model equation by adopting a spectrum correction iteration method to solve the problem of equation morbidity caused by excessive unknown parameters and strong correlation of the equation, so that the accuracy of the SAR image general geometric correction is ensured and improved.

Description

一种基于逆RD定位模型的星载SAR图像RPC校正参数获取方法A Method for Acquiring RPC Correction Parameters of Spaceborne SAR Images Based on Inverse RD Positioning Model

技术领域technical field

本发明属于微波遥感SAR图像几何校正技术领域,涉及一种基于逆RD定位模型的星载SAR图像RPC校正参数获取方法。The invention belongs to the technical field of geometric correction of microwave remote sensing SAR images, and relates to a method for acquiring RPC correction parameters of spaceborne SAR images based on an inverse RD positioning model.

背景技术Background technique

随着越多先进体制星载SAR(Synthetic Aperture Radar,合成孔径雷达)卫星升空运行和投入使用,其在科学研究和经济建设中发挥愈发重要作用。由于SAR斜距成像机理,需将其校正到地面坐标以方便开展定量几何分析及影像解译,从而更好的服务地形测绘、资源普查、地质灾害监测预警等应用中。因此,高精度星载SAR几何校正具有重要意义,目前主要有基于SAR严密成像模型和与传感器无关通用几何模型两类方法。图像RPC(Rational Polynomial Coefficients,有理多项式系数)模型即是一种与传感器无关的通用几何校正模型,通过将像素坐标表示为以地面空间坐标为自变量的比值多项式,实现SAR图像的正射投影。由于RPC校正模型规避了SAR成像传感器和平台详细信息,同时在合理选择模型输入的情况下,模型拟合精度接近SAR严密成像模型,具有简单、通用、保密、高效等优点。因此,独立于传感器和平台的RPC模型广泛应用于星载SAR图像几何校正。As more and more advanced system spaceborne SAR (Synthetic Aperture Radar) satellites are put into operation and put into use, they will play an increasingly important role in scientific research and economic construction. Due to the SAR oblique range imaging mechanism, it needs to be corrected to the ground coordinates to facilitate quantitative geometric analysis and image interpretation, so as to better serve applications such as terrain surveying, resource surveys, and geological disaster monitoring and early warning. Therefore, the geometric correction of high-precision spaceborne SAR is of great significance. At present, there are mainly two methods based on SAR rigorous imaging model and sensor-independent general geometric model. The image RPC (Rational Polynomial Coefficients, Rational Polynomial Coefficients) model is a sensor-independent general geometric correction model. By expressing pixel coordinates as ratio polynomials with ground space coordinates as independent variables, the orthographic projection of SAR images is realized. Since the RPC correction model avoids the detailed information of SAR imaging sensors and platforms, and in the case of reasonable selection of model input, the model fitting accuracy is close to the SAR rigorous imaging model, which has the advantages of simplicity, generality, confidentiality, and efficiency. Therefore, the sensor- and platform-independent RPC model is widely used in geometric correction of spaceborne SAR images.

关于RPC模型参数求解,由于通用模型中包含七十八个有理多项式系数(简称其为RPCs),需要足够多且分布合理的控制点数组进行迭代求解计算。其中关于控制点数组的生成,通常有基于SAR严密成像模型生成关于多个高程面的虚拟控制点方法和直接利用大量地面真实控制点方法;前者生成的数组常较为冗余,后者在实际图像产品生成中往往难以实现;此外,由于未知RPCs数量较多且之间存在较强相关性,其方程求解中常出现方程病态问题也需多加考虑。Regarding the solution of RPC model parameters, since the general model contains seventy-eight rational polynomial coefficients (referred to as RPCs), a sufficient and reasonably distributed array of control points is required for iterative calculation. Regarding the generation of control point arrays, there are usually methods of generating virtual control points on multiple elevation surfaces based on the SAR rigorous imaging model and methods of directly using a large number of ground truth control points; It is often difficult to achieve in product generation; in addition, due to the large number of unknown RPCs and the strong correlation between them, the problem of equation ill-conditioning often occurs in the equation solution and needs to be considered more.

现有技术中,公开号为CN103218780A、公开日期为2013年7月24日的中国发明专利申请《基于逆RD定位模型的无控星载SAR图像正射校正方法》公开了一种基于逆RD定位模型的星载SAR图像正射校正方法,本发明以其为技术前提,联合地面真实高度定位给出一种通用RPC校正模型参数生成方法,以服务于具有技术保密特性的SAR通用几何校正。In the prior art, the Chinese invention patent application with the publication number CN103218780A and the publication date of July 24, 2013 "Orthorectification Method for Uncontrolled Spaceborne SAR Images Based on Inverse RD Positioning Model" discloses a method based on inverse RD positioning The spaceborne SAR image orthorectification method of the model, the present invention takes it as the technical premise, and provides a general RPC correction model parameter generation method in combination with the ground true height positioning, so as to serve the SAR general geometric correction with technical confidentiality characteristics.

发明内容Contents of the invention

本发明的目的在于解决现有技术的不足,为星载SAR通用几何校正模型设计一种完整的基于真实地形定位的星载SAR图像RPC校正参数生成方法。The purpose of the present invention is to solve the deficiencies of the prior art, and to design a complete RPC correction parameter generation method for spaceborne SAR images based on real terrain positioning for the general geometric correction model of spaceborne SAR.

本发明是通过以下技术方案解决上述技术问题的:The present invention solves the above technical problems through the following technical solutions:

1、一种基于逆RD定位模型的星载SAR图像RPC校正参数获取方法,其特征在于,包括以下步骤:1, a kind of RPC correction parameter acquisition method based on the inverse RD positioning model of spaceborne SAR image, is characterized in that, comprises the following steps:

S1、SAR成像参数及卫星轨道数据获取:获取星载SAR系统成像以及图像参数、卫星轨道数据以及地面高程数据;S1. Acquisition of SAR imaging parameters and satellite orbit data: acquisition of spaceborne SAR system imaging and image parameters, satellite orbit data and ground elevation data;

S2、卫星轨道数据多项式拟合:根据SAR成像系统和图像参数中多个时刻的卫星位置和速度数据,拟合卫星轨道关于方位向像素的函数曲线;S2. Polynomial fitting of satellite orbit data: according to the satellite position and velocity data at multiple moments in the SAR imaging system and image parameters, fit the function curve of the satellite orbit with respect to the azimuth pixel;

S3、SAR图像四个角点定位:构建斜距-多普勒-地球椭球模型定位方程,迭代求解SAR图像的四个角点地面坐标,即分别为SAR图像对应的第一个方位时刻和最后一个方位时刻分别对应的最近斜距和最远斜距的W6S84坐标,确定SAR图像地面区域范围;S3. Positioning of the four corners of the SAR image: Construct the positioning equation of the slant range-Doppler-Earth ellipsoid model, and iteratively solve the ground coordinates of the four corners of the SAR image, which are the first azimuth moment and the corresponding time of the SAR image respectively. The W6S84 coordinates of the closest slant distance and the farthest slant distance corresponding to the last azimuth time respectively determine the range of the ground area of the SAR image;

S4、地面三维网格建立:根据四个角点地理坐标及全球地面DEM(DigitalElevation Model,数字高程模型)数据获得所需图像地理范围内的高程数据信息;对其进行均匀划分为M*N个网格,计算每个格网内的高程最高、最低及中间值的三维坐标信息,共得到3M*N个地面控制点数据;再进行笛卡尔坐标转换,得到地心坐标系统下新的控制点位置矢量组;S4. Ground three-dimensional grid establishment: according to the geographical coordinates of the four corners and the global ground DEM (Digital Elevation Model, digital elevation model) data, the elevation data information within the geographic range of the required image is obtained; it is evenly divided into M*N Grid, calculate the three-dimensional coordinate information of the highest, lowest and intermediate values of elevation in each grid, and obtain 3M*N ground control point data in total; then perform Cartesian coordinate conversion to obtain new control points under the geocentric coordinate system position vector group;

S5、地面控制点数组的逆RD(Range Doppler,斜距多普勒)图像定位:构建斜距误差方程及多普勒频率误差方程,根据卫星轨道像素拟合曲线,对每一个控制点进行逆RD定位方程牛顿迭代求解,获得每一控制点对应的图像像素位置;S5. Inverse RD (Range Doppler, slant range Doppler) image positioning of the ground control point array: construct the slant range error equation and the Doppler frequency error equation, and inverse each control point according to the satellite orbit pixel fitting curve The RD positioning equation is solved iteratively by Newton to obtain the image pixel position corresponding to each control point;

S6、控制点数组的合规性预判及规则化处理:对获得的图像像素位置及其对应的地面三维坐标信息进行合规性预判,去除不在图像范围内的点;进行数据规则化处理,将地面坐标和图像坐标归一化,减少计算过程中的舍入误差;S6. Compliance prediction and regularization processing of the control point array: perform compliance prediction on the obtained image pixel position and its corresponding ground three-dimensional coordinate information, remove points that are not within the image range; perform data regularization processing , to normalize the ground coordinates and image coordinates to reduce rounding errors in the calculation process;

S7、RPC模型方程构建及最小二乘求解:建立地面坐标和图像坐标之间的比值多项式,并变形得到关于RPCs的非线性模型;针对方程系数矩阵病态问题,采用基于谱修正迭代法的最小二乘求解,获得RPCs参数的无偏估计;S7. RPC model equation construction and least squares solution: establish a ratio polynomial between ground coordinates and image coordinates, and deform it to obtain a nonlinear model about RPCs; for the ill-conditioned problem of the equation coefficient matrix, use the least squares based on the spectral correction iterative method Multiply the solution to obtain an unbiased estimate of the RPCs parameters;

S8、模型精度验证:采用已求解RPCs模型参数计算检查点对应图像坐标,通过与严密成像几何模型计算结果进行差值,评定RPC模型参数的像方精度。S8. Model accuracy verification: use the solved RPCs model parameters to calculate the image coordinates corresponding to the checkpoints, and evaluate the image square accuracy of the RPC model parameters by making a difference with the calculation results of the rigorous imaging geometric model.

本发明的技术方案的创新点在于:1)根据SAR严密成像模型,采用逆RD定位算法及真实地形信息进行成像区域真实空间均匀采样,生成分布合理的图像地面控制点数组用于RPC方程模型输入;2)采用谱修正迭代法进行RPC模型方程的最小二乘精确求解,以解决由于方程未知过多且强相关引起的方程病态问题,从而使SAR图像通用几何校正得到精度保证和提高。The innovations of the technical solution of the present invention are: 1) According to the SAR rigorous imaging model, the inverse RD positioning algorithm and real terrain information are used to uniformly sample the real space of the imaging area, and an array of image ground control points with reasonable distribution is generated for the input of the RPC equation model ; 2) The least squares exact solution of the RPC model equations is carried out by using the spectrum correction iterative method to solve the ill-conditioned problem of the equations caused by too many unknowns and strong correlations, so that the accuracy of the general geometric correction of SAR images can be guaranteed and improved.

作为本发明技术方案的进一步改进,步骤S1中所述的星载SAR系统成像以及图像参数包括:雷达波长、图像大小、成像多普勒频率信息、图像首行成像时间T0、图像第一个像素的脉冲延迟t0或图像近距R0、脉冲重复频率PRF、距离向采样频率RSR;所述的卫星轨道数据包括:采样点时刻的位置及速度矢量数据。As a further improvement of the technical solution of the present invention, the spaceborne SAR system imaging and image parameters described in step S1 include: radar wavelength, image size, imaging Doppler frequency information, imaging time T 0 of the first line of the image, the first line of the image Pixel pulse delay t 0 or image short distance R 0 , pulse repetition frequency PRF, and range sampling frequency RSR; the satellite orbit data includes: position and velocity vector data at the sampling point.

作为本发明技术方案的进一步改进,步骤S2中所述的拟合卫星轨道关于方位向像素的函数曲线的方法如下:As a further improvement of the technical solution of the present invention, the method for fitting the function curve of the satellite orbit about the azimuth pixel described in step S2 is as follows:

S21、关于位置的多项式拟合模型如下:S21, the polynomial fitting model about the position is as follows:

Figure BDA0003323468270000031
Figure BDA0003323468270000031

其中,m表示像素,xs、ys、zs表示该像素对应的卫星轨道在x方向、y方向、z方向的位置,αi,βi,γi分别是待拟合的卫星轨道关于方位向像素的函数曲线多项式的系数,i=1,2,3,4,5;Among them, m represents a pixel, x s , y s , and z s represent the position of the satellite orbit corresponding to the pixel in the x direction, y direction, and z direction, and α i , β i , and γ i are the satellite orbits to be fitted about The coefficients of the function curve polynomial of the pixels in the azimuth direction, i=1, 2, 3, 4, 5;

S22、关于速度的多项式拟合模型如下:S22, the polynomial fitting model about speed is as follows:

Figure BDA0003323468270000032
Figure BDA0003323468270000032

其中,vxs、vys、vzs表示像素m对应的卫星轨道在位置xs、ys、zs处的速度。Among them, vx s , vy s , vz s represent the velocity of the satellite orbit corresponding to pixel m at positions x s , y s , z s .

作为本发明技术方案的进一步改进,步骤S3中所述的构建斜距-多普勒-地球椭球模型定位方程如下:As a further improvement of the technical solution of the present invention, the slant range-Doppler-Earth ellipsoid model positioning equation described in step S3 is as follows:

1)地球椭球模型方程:

Figure BDA0003323468270000033
其中,Re、Rp分别为椭球体的半长轴、半短轴;h为目标点的高程,通常可设为成像区域的平均高程;
Figure BDA0003323468270000034
为目标点t的位置矢量坐标;1) Earth ellipsoid model equation:
Figure BDA0003323468270000033
Among them, R e and R p are the semi-major axis and semi-minor axis of the ellipsoid respectively; h is the elevation of the target point, which can usually be set as the average elevation of the imaging area;
Figure BDA0003323468270000034
is the position vector coordinate of the target point t;

2)斜距方程:

Figure BDA0003323468270000035
其中,
Figure BDA0003323468270000036
是卫星位置矢量,
Figure BDA0003323468270000037
R为卫星到目标的斜距,即
Figure BDA0003323468270000041
2) Slope distance equation:
Figure BDA0003323468270000035
in,
Figure BDA0003323468270000036
is the satellite position vector,
Figure BDA0003323468270000037
R is the slant distance from the satellite to the target, that is
Figure BDA0003323468270000041

3)多普勒频率方程:

Figure BDA0003323468270000042
其中,λ为雷达波长,
Figure BDA0003323468270000043
卫星速度矢量,
Figure BDA0003323468270000044
为目标速度矢量,采用ECR(Earth CenteredRotation,地心坐标系)坐标系统定义时其值可简化为0。3) Doppler frequency equation:
Figure BDA0003323468270000042
where λ is the radar wavelength,
Figure BDA0003323468270000043
satellite velocity vector,
Figure BDA0003323468270000044
is the target velocity vector, and its value can be simplified to 0 when defined by the ECR (Earth Centered Rotation, earth-centered coordinate system) coordinate system.

作为本发明技术方案的进一步改进,步骤S4中所述的进行笛卡尔坐标转换的公式为:As a further improvement of the technical solution of the present invention, the formula for Cartesian coordinate transformation described in step S4 is:

Figure BDA0003323468270000045
Figure BDA0003323468270000045

其中,

Figure BDA0003323468270000046
为地球第一偏心率。in,
Figure BDA0003323468270000046
is the first eccentricity of the earth.

作为本发明技术方案的进一步改进,步骤S5中所述的构建斜距误差方程及多普勒频率误差方程,根据卫星轨道像素拟合曲线,对每一个控制点进行逆RD定位方程牛顿迭代求解,获得每一控制点对应的图像像素位置的方法具体如下:As a further improvement of the technical solution of the present invention, the construction of the slant range error equation and the Doppler frequency error equation described in step S5, according to the satellite orbit pixel fitting curve, performs the inverse RD positioning equation Newton iterative solution for each control point, The method of obtaining the image pixel position corresponding to each control point is as follows:

(1)根据卫星拟合曲线,构建斜距误差方程及多普勒频率误差方程如下:(1) According to the satellite fitting curve, construct the slant range error equation and Doppler frequency error equation as follows:

Figure BDA0003323468270000047
Figure BDA0003323468270000047

其中,fs为采样频率RSR,C为光速,λ为雷达波长,fd(n)为像素对应的多普勒中心频率,根据获取的图像多普勒频率信息,对其进行距离向像素拟合为fd(n)=f0+f1n+f2n2Among them, f s is the sampling frequency RSR, C is the speed of light, λ is the radar wavelength, and f d (n) is the Doppler center frequency corresponding to the pixel. Combined into f d (n) = f 0 +f 1 n+f 2 n 2 ;

(2)关于像素位置(m,n)的逆斜距-多普勒方程求解采用牛顿迭代法如下:(2) The Newton iterative method is used to solve the inverse slope range-Doppler equation about the pixel position (m, n) as follows:

Figure BDA0003323468270000048
Figure BDA0003323468270000048

其中,(m0,n0)为预设初值,则可以得到迭代过程中的第k组解如下:Among them, (m 0 , n 0 ) is the preset initial value, then the kth group of solutions in the iterative process can be obtained as follows:

Figure BDA0003323468270000051
Figure BDA0003323468270000051

Figure BDA0003323468270000052
Figure BDA0003323468270000052

其中,in,

Figure BDA0003323468270000053
Figure BDA0003323468270000053

Figure BDA0003323468270000054
Figure BDA0003323468270000054

Figure BDA0003323468270000055
Figure BDA0003323468270000055

Figure BDA0003323468270000056
Figure BDA0003323468270000056

Figure BDA0003323468270000057
Figure BDA0003323468270000057

其中,偏导系数

Figure BDA0003323468270000058
可简单通过轨道拟合公式获得;Among them, the partial conduction coefficient
Figure BDA0003323468270000058
It can be obtained simply by orbital fitting formula;

(3)通过多次迭代循环,当相邻两个解的差值精度达到收敛值,停止迭代求解,获取目标像素位置。(3) Through multiple iterative loops, when the difference accuracy of two adjacent solutions reaches the convergence value, the iterative solution is stopped and the target pixel position is obtained.

作为本发明技术方案的进一步改进,步骤S6中所述的进行数据规则化处理,将地面坐标和图像坐标归一化的方法如下:As a further improvement of the technical solution of the present invention, the data regularization process described in step S6, the method of normalizing the ground coordinates and image coordinates is as follows:

对3M*N个控制点数组的图像坐标和地面坐标进行标准化,设(P,L,H)为地面三维坐标标准化后的地面坐标,(X,Y)为图像像素位置行列值标准化后的影像坐标,其标准化公式如下:Standardize the image coordinates and ground coordinates of 3M*N control point arrays, let (P, L, H) be the ground coordinates after the ground three-dimensional coordinates are standardized, and (X, Y) be the images after the normalized row and column values of the image pixel positions Coordinates, the standardized formula is as follows:

Figure BDA0003323468270000059
Figure BDA00033234682700000510
Figure BDA0003323468270000059
Figure BDA00033234682700000510

其中,

Figure BDA00033234682700000511
Figure BDA00033234682700000512
为地面坐标的标准化参数,即偏移值和比例值;moff,mscale,nofff和nscale为像素坐标的标准化参数。in,
Figure BDA00033234682700000511
with
Figure BDA00033234682700000512
is the normalization parameter of ground coordinates, that is, offset value and scale value; m off , m scale , n offff and n scale are normalization parameters of pixel coordinates.

作为本发明技术方案的进一步改进,所述的偏移值和比例值计算公式如下:As a further improvement of the technical solution of the present invention, the calculation formulas of the offset value and the ratio value are as follows:

Figure BDA0003323468270000066
Figure BDA0003323468270000066

Figure BDA0003323468270000061
Figure BDA0003323468270000061

Figure BDA0003323468270000062
Figure BDA0003323468270000062

Figure BDA0003323468270000063
Figure BDA0003323468270000063

mscale=max(|m(i,j)max-moff|,|m(i,j)min-moff|);m scale = max(|m(i, j) max -m off |, |m(i, j) min -m off |);

nscale=max(|n(i,j)max-noff|,|n(i,j)min-noff|)。n scale = max(|n(i, j) max -n off |, |n(i, j) min -n off |).

作为本发明技术方案的进一步改进,步骤S7中所述的建立地面坐标和图像坐标之间的比值多项式,并变形得到关于RPCs的非线性模型的方法如下:As a further improvement of the technical solution of the present invention, the ratio polynomial between the ground coordinates and the image coordinates described in the step S7 is established, and the deformation method for obtaining a nonlinear model about RPCs is as follows:

(1)建立地面坐标和图像坐标之间的比值多项式,将地面点坐标(P,L,H)与其对应的像素点坐标(X,Y)用比值多项式关联起来:(1) Establish a ratio polynomial between ground coordinates and image coordinates, and associate the ground point coordinates (P, L, H) with their corresponding pixel point coordinates (X, Y) with a ratio polynomial:

Figure BDA0003323468270000064
Figure BDA0003323468270000064

Figure BDA0003323468270000065
Figure BDA0003323468270000065

其中,Numline(P,L,H)=a0+a1L+a2P+a3H+a4LP+a5LH+a6PH+a7L2+a8P2+a9H2+a10PLH+a11L3+a12LP2+a13LH2+a14L2P+a15P3+a16PH2+a17L2H+a18P2H+a19H3Among them, Num line (P, L, H) = a 0 +a 1 L+a 2 P+a 3 H+a 4 LP+a 5 LH+a 6 PH+a 7 L 2 +a 8 P 2 +a 9 H 2 +a 10 PLH+a 11 L 3 +a 12 LP 2 +a 13 LH 2 +a 14 L 2 P+a 15 P 3 +a 16 PH 2 +a 17 L 2 H+a 18 P 2 H +a 19 H 3 ;

Denline(P,L,H)=b0+b1L+b2P+b3H+b4LP+b5LH+b6PH+b7L2+b8P2+b9H2+b10PLH+b11L3+b12LP2+b13LH2+b14L2P+b15P3+b16PH2+b17L2H+b18P2H+b19H3Den line (P, L, H)=b 0 +b 1 L+b 2 P+b 3 H+b 4 LP+b 5 LH+b 6 PH+b 7 L 2 +b 8 P 2 +b 9 H 2 +b 10 PLH+b 11 L 3 +b 12 LP 2 +b 13 LH 2 +b 14 L 2 P+b 15 P 3 +b 16 PH 2 +b 17 L 2 H+b 18 P 2 H+b 19 H 3 ;

Numpixel(P,L,H)=c0+c1L+c2P+c3H+c4LP+c5LH+c6PH+c7L2+c8P2+c9H2+c10PLH+c11L3+c12LP2+c13LH2+c14L2P+c15P3+c16PH2+c17L2H+c18P2H+c19H3Num pixel (P, L, H)=c 0 +c 1 L+c 2 P+c 3 H+c 4 LP+c 5 LH+c 6 PH+c 7 L 2 +c 8 P 2 +c 9 H 2 +c 10 PLH+c 11 L 3 +c 12 LP 2 +c 13 LH 2 +c 14 L 2 P+c 15 P 3 +c 16 PH 2 +c 17 L 2 H+c 18 P 2 H+c 19 H 3 ;

Denpixel(P,L,H)=d0+d1L+d2P+d3H+d4LP+d5LH+d6PH+d7L2+d8P2+d9H2+d10PLH+d11L3+d12LP2+d13LH2+d14L2P+d15P3+d16PH2+d17L2H+d18P2H+d19H3Den pixel (P, L, H)=d 0 +d 1 L+d 2 P+d 3 H+d 4 LP+d 5 LH+d 6 PH+d 7 L 2 +d 8 P 2 +d 9 H 2 +d 10 PLH+d 11 L 3 +d 12 LP 2 +d 13 LH 2 +d 14 L 2 P+d 15 P 3 +d 16 PH 2 +d 17 L 2 H+d 18 P 2 H+d 19 H 3 ;

上述公式中的(ai,bi,ci,di,i=0,1,...,19)即为理函数模型系数RPCs,对比值多项式变形,得到有理函数模型关于各RPCs的线性模型,并将控制点所列的误差方程用矩阵形式来表示;(a i , b i , ci , d i , i=0, 1, ..., 19) in the above formula are the coefficients RPCs of the rational function model, and the comparison value polynomial is transformed to obtain the rational function model for each RPCs Linear model, and express the error equation listed by the control points in matrix form;

FY=Numline(P,L,H)-Y*Denline(P,L,H)=0;F Y =Num line (P, L, H)-Y*Den line (P, L, H) = 0;

FX=Numpixel(P,L,H)-X*Denpixel(P,L,H)=0;F X = Num pixel (P, L, H)-X*Den pixel (P, L, H) = 0;

由上式知行、列RPCs是相互独立的,可分开单独求解;以行RPCs为例,上式中的第一式可写为:From the above formula, we know that row and column RPCs are independent of each other and can be solved separately; taking row RPCs as an example, the first formula in the above formula can be written as:

FY=a0+a1L+a2P+a3H+a4LP+a5LH+a6PH+a7L2+a8P2+a9H2+a10PLH+a11L3+a12LP2+a13LH2+a14L2P+a15P3+a16PH2+a17L2H+a18P2H+a19H3-Y*(b0+b1L+b2P+b3H+b4LP+b5LH+b6PH+b7L2+b8P2+b9H2+b10PLH+b11L3+b12LP2+b13LH2+b14L2P+b15P3+b16PH2+b17L2H+b18P2H+b19H3);F Y =a 0 +a 1 L+a 2 P+a 3 H+a 4 LP+a 5 LH+a 6 PH+a 7 L 2 +a 8 P 2 +a 9 H 2 +a 10 PLH+a 11 L 3 +a 12 LP 2 +a 13 LH 2 +a 14 L 2 P+a 15 P 3 +a 16 PH 2 +a 17 L 2 H+a 18 P 2 H+a 19 H 3 -Y*( b 0 +b 1 L+b 2 P+b 3 H+b 4 LP+b 5 LH+b 6 PH+b 7 L 2 +b 8 P 2 +b 9 H 2 +b 10 PLH+b 11 L 3 +b 12 LP 2 +b 13 LH 2 +b 14 L 2 P+b 15 P 3 +b 16 PH 2 +b 17 L 2 H+b 18 P 2 H+b 19 H 3 );

(2)联立所有观测数据,建立观测方程误差方程组有:FY=BVY+ε;式中:(2) Simultaneously combine all observation data to establish the observation equation error equation group: F Y = BV Y + ε; where:

Figure BDA0003323468270000071
Figure BDA0003323468270000071

VY=[a0 a1 … a19 b1 b2 … b19]TV Y = [a 0 a 1 ... a 19 b 1 b 2 ... b 19 ] T ;

Figure BDA0003323468270000072
Figure BDA0003323468270000072

其中,ε为随机误差,根据最小二乘平差原理,可将误差方程变换为法方程进行求解:(BTB)VY=BTFYAmong them, ε is a random error. According to the principle of least squares adjustment, the error equation can be transformed into a normal equation for solution: (B T B)V Y =B T F Y .

作为本发明技术方案的进一步改进,步骤S7中所述的针对方程系数矩阵病态问题,采用基于谱修正迭代法的最小二乘求解,获得RPCs参数的无偏估计;As a further improvement of the technical solution of the present invention, for the ill-conditioned problem of the equation coefficient matrix described in step S7, the unbiased estimation of the RPCs parameters is obtained by using the least squares solution based on the spectral correction iterative method;

(1)针对方程系数矩阵病态问题,采用谱修正迭代法求解法方程,在法方程呈良态或病态情况时均可获得符合要求的无偏参数估计。采用谱修正迭代法对法方程进行修正如下:(1) For the ill-conditioned problem of the coefficient matrix of the equation, the spectral correction iteration method is used to solve the normal equation, and the unbiased parameter estimation that meets the requirements can be obtained when the normal equation is well-conditioned or ill-conditioned. The normal equation is corrected by the spectrum correction iterative method as follows:

(BTB+E)VY=BTFY+VY(B T B+E)V Y =B T F Y +V Y ;

其中,E为单位矩阵,经过k次迭代可得参数估计如下:Among them, E is the identity matrix, and after k iterations, the parameters can be estimated as follows:

VY (k)=(BTB+E)-1(BTFY+VY (k-1));V Y (k) = (B T B + E) -1 (B T F Y + V Y (k-1) );

同理,得到列方向上的第k次参数估计如下:Similarly, the kth parameter estimation in the column direction is obtained as follows:

VX (k)=(ATA+E)-1(ATFX+VX (k-1));V X (k) = (A T A + E) - 1 (A T F X +V X (k-1) );

其中,in,

Figure BDA0003323468270000081
Figure BDA0003323468270000081

VX=[c0 c1 … c19 d1 d2 … d19]TV X = [c 0 c 1 ... c 19 d 1 d 2 ... d 19 ] T ;

Figure BDA0003323468270000082
Figure BDA0003323468270000082

其中,FX=c0+c1L+c2P+c3H+c4LP+c5LH+c6PH+c7L2+c8P2+c9H2+c10PLH+c11L3+c12LP2+c13LH2+c14L2P+c15P3+c16PH2+c17L2H+c18P2H+c19H3-X*(d0+d1L+d2P+d3H+d4LP+d5LH+d6PH+d7L2+d8P2+d9H2+d10PLH+d11L3+d12LP2+d13LH2+d14L2P+d15P3+d16PH2+d17L2H+d18P2H+d19H3);Among them, F X =c 0 +c 1 L+c 2 P+c 3 H+c 4 LP+c 5 LH+c 6 PH+c 7 L 2 +c 8 P 2 +c 9 H 2 +c 10 PLH +c 11 L 3 +c 12 LP 2 +c 13 LH 2 +c 14 L 2 P+c 15 P 3 +c 16 PH 2 +c 17 L 2 H+c 18 P 2 H+c 19 H 3 -X *(d 0 +d 1 L+d 2 P+d 3 H+d 4 LP+d 5 LH+d 6 PH+d 7 L 2 +d 8 P 2 +d 9 H 2 +d 10 PLH+d 11 L 3 +d 12 LP 2 +d 13 LH 2 +d 14 L 2 P+d 15 P 3 +d 16 PH 2 +d 17 L 2 H+d 18 P 2 H+d 19 H 3 );

(2)在求解过程中,迭代计算前后两次结果值之差小于指定限差,则计算停止,一般两次估值之间小于10-5可满足精度要求,得到模型参数RPCs,生成有理函数校正模型。(2) During the solution process, if the difference between the two result values before and after the iterative calculation is less than the specified limit, the calculation stops. Generally, the difference between the two estimates is less than 10 -5 to meet the accuracy requirements, and the model parameters RPCs are obtained to generate rational functions Calibration model.

本发明的优点在于:本发明的技术方案利用逆RD定位模型和真实DEM信息进行成像区域真实空间均匀采样,生成了分布合理的输入控制点数组用于RPCs精确求解,一方面降低了常规方法中RPC模型输入数组冗余信息的使用,另一方面可对待校正成像区域进行真实成像几何模型拟合,从而提高了RPC模型拟合精度,进而也保证了SAR图像的RPC几何定位精度。The advantage of the present invention is that: the technical solution of the present invention uses the inverse RD positioning model and real DEM information to uniformly sample the real space of the imaging area, and generates an array of input control points with reasonable distribution for RPCs to accurately solve. The use of redundant information in the input array of the RPC model, on the other hand, can fit the real imaging geometric model of the imaging area to be corrected, thereby improving the fitting accuracy of the RPC model and ensuring the RPC geometric positioning accuracy of the SAR image.

附图说明Description of drawings

图1为本发明实施例的一种基于逆RD定位模型的星载SAR图像RPC校正参数获取方法的流程图。FIG. 1 is a flow chart of a method for acquiring RPC correction parameters of a spaceborne SAR image based on an inverse RD positioning model according to an embodiment of the present invention.

图2为本发明实施例的一种基于逆RD定位模型的星载SAR图像RPC校正参数获取方法的用于RD定位模型描述的地心坐标的示意图。Fig. 2 is a schematic diagram of geocentric coordinates used for RD positioning model description of a method for acquiring RPC correction parameters of a spaceborne SAR image based on an inverse RD positioning model according to an embodiment of the present invention.

具体实施方式detailed description

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the embodiments of the present invention. Obviously, the described embodiments are part of the present invention Examples, not all examples. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.

下面结合说明书附图以及具体的实施例对本发明的技术方案作进一步描述:The technical solution of the present invention will be further described below in conjunction with the accompanying drawings of the description and specific embodiments:

实施例一Embodiment one

如图1所示,基于逆RD定位模型的星载SAR图像RPC校正参数获取方法,包括以下步骤:As shown in Figure 1, the method for obtaining RPC correction parameters of spaceborne SAR images based on the inverse RD positioning model includes the following steps:

1、SAR成像参数及卫星轨道数据获取1. SAR imaging parameters and satellite orbit data acquisition

获取星载SAR系统成像参数、图像参数、卫星轨道数据、以及地面高程数据等;星载SAR卫星轨道数据包括采样点时刻的位置及速度矢量数据;SAR系统成像及图像参数包括雷达波长、图像大小、成像多普勒频率信息、图像首行成像时间T0、图像第一个像素的脉冲延迟t0或图像近距R0、脉冲重复频率PRF、距离向采样频率RSR等。采用以上参数可以得到图像上任一点(m,n)对应的成像时间t=T0+m/PRF+t0/2+n/RSR。Obtain spaceborne SAR system imaging parameters, image parameters, satellite orbit data, and ground elevation data, etc.; spaceborne SAR satellite orbit data includes position and velocity vector data at sampling points; SAR system imaging and image parameters include radar wavelength and image size , imaging Doppler frequency information, imaging time T 0 of the first line of the image, pulse delay t 0 of the first pixel of the image or image short distance R 0 , pulse repetition frequency PRF, range sampling frequency RSR, etc. Using the above parameters, the imaging time t=T 0 +m/PRF+t 0 /2+n/RSR corresponding to any point (m, n) on the image can be obtained.

2、卫星轨道数据多项式拟合2. Polynomial fitting of satellite orbit data

根据SAR成像系统和图像参数中多个时刻的卫星位置和速度数据,拟合卫星轨道关于方位向像素的函数曲线;关于SAR卫星位置的求解,通常一整景SAR图像方位向上的宽度为万行量级,每一行对应一次卫星位置和速度的计算。为此可将卫星星历表示为行参数多项式。对卫星轨道数据以像素为自变量进行多项式拟合:According to the satellite position and velocity data at multiple times in the SAR imaging system and image parameters, the function curve of the satellite orbit with respect to the azimuth pixel is fitted; for the solution of the SAR satellite position, usually the width of the entire SAR image in the azimuth direction is 10,000 lines The order of magnitude, each row corresponds to a calculation of satellite position and velocity. To this end, the satellite ephemeris can be expressed as a row parameter polynomial. Perform polynomial fitting on satellite orbit data with pixels as independent variables:

关于位置的多项式拟合模型如下:The polynomial fit model with respect to location is as follows:

Figure BDA0003323468270000091
Figure BDA0003323468270000091

其中,m表示像素,xs、ys、zs表示该像素对应的卫星轨道在x方向、y方向、z方向的位置,αi,βi,γi分别是待拟合的轨道曲线多项式系数;Among them, m represents a pixel, x s , y s , and z s represent the position of the satellite orbit corresponding to the pixel in the x direction, y direction, and z direction, and α i , β i , and γ i are respectively the orbit curve polynomials to be fitted coefficient;

关于速度的多项式拟合模型如下:The polynomial fitting model for velocity is as follows:

Figure BDA0003323468270000092
Figure BDA0003323468270000092

其中,vxs、vys、vzs表示像素m对应的卫星轨道在位置xs、ys、zs处的速度。Among them, vx s , vy s , vz s represent the velocity of the satellite orbit corresponding to pixel m at positions x s , y s , z s .

实际处理中,上述多项式的拟合阶数可以适当取舍。此外为了提高计算精度,也可以分别对卫星位置和速度进行拟合处理,再对其拟合多项式系数进行平均处理,得到综合处理后的多项式系数。In actual processing, the fitting orders of the above polynomials can be properly chosen. In addition, in order to improve the calculation accuracy, the satellite position and velocity can also be fitted separately, and then the fitted polynomial coefficients can be averaged to obtain the polynomial coefficients after comprehensive processing.

3、SAR图像四个角点定位3. Positioning of the four corners of the SAR image

由卫星影像的严密成像几何模型,计算图像四个角点对应的地面范围。利用上一步得到的像素对应的卫星轨道位置,构建斜距-多普勒-地球椭球体模型三大定位方程,迭代求解SAR图像的四个角点地面坐标,即分别为SAR图像对应的第一个方位时刻和最后一个方位时刻分别对应的最近斜距和最远斜距的WGS84坐标,确定SAR图像地面区域范围;目前,系统级几何校正方法普遍通过利用迭代求解由斜距方程、多普勒方程以及地球模型构建的非线性方程组来实现星载SAR定位。该方法首先根据卫星轨道数据、SAR系统参数以及成像处理结果构建斜距-多普勒-地球模型的非线性方程组;然后根据平均高程求解出像素地理位置,根据美国地质调查局提供的SRTM DEM提取对应位置处的高程数值,接着重新将新高程数值代入上述非线性方程组中,计算出新的像素位置,通过若干次迭代后,得到准确的像素位置。Calculate the ground range corresponding to the four corner points of the image from the rigorous imaging geometric model of the satellite image. Using the satellite orbit positions corresponding to the pixels obtained in the previous step, the three positioning equations of the slant range-Doppler-Earth ellipsoid model are constructed, and the ground coordinates of the four corners of the SAR image are iteratively solved, that is, the first The WGS84 coordinates of the nearest slant distance and the farthest slant distance corresponding to the first azimuth time and the last azimuth time respectively determine the range of the ground area of the SAR image; at present, the system-level geometric correction method generally uses iterative solutions to solve the equations consisting of the slope range equation, Doppler Equations and nonlinear equations constructed by the earth model to realize spaceborne SAR positioning. This method first constructs the nonlinear equations of the slope-Doppler-Earth model based on the satellite orbit data, SAR system parameters and imaging processing results; then solves the pixel geographic location according to the average elevation, according to the SRTM DEM Extract the elevation value at the corresponding position, and then re-substitute the new elevation value into the above nonlinear equations to calculate the new pixel position. After several iterations, the accurate pixel position is obtained.

常用星载SAR数据提供的卫星轨道数据都是以ECR坐标系定义,因此这里也将RD定位模型建立在ECR坐标系上进行讨论。如图2所示,ECR坐标系的Z轴和地球自转轴重合,X轴自地心指向格林威治子午线与赤道面的交点,Y轴过地心且垂直于ZXO平面,由右手螺旋准则确定方向。若星载SAR位于s位置,地面成像目标点位于位置t,则在ECR坐标系O-XYZ中,RD定位模型由以下三个方程组成:The satellite orbit data provided by commonly used spaceborne SAR data are defined in the ECR coordinate system, so the RD positioning model is also established on the ECR coordinate system for discussion here. As shown in Figure 2, the Z-axis of the ECR coordinate system coincides with the earth's rotation axis, the X-axis points from the center of the earth to the intersection of the Greenwich meridian and the equatorial plane, and the Y-axis passes through the center of the earth and is perpendicular to the ZXO plane, which is determined by the right-handed spiral criterion direction. If the spaceborne SAR is at position s, and the ground imaging target point is at position t, then in the ECR coordinate system O-XYZ, the RD positioning model consists of the following three equations:

1)地球椭球模型方程:

Figure BDA0003323468270000101
其中,Re、Rp分别为椭球体的半长轴、半短轴;h为目标点的高程,通常可设为成像区域的平均高程;
Figure BDA0003323468270000102
为目标点t的位置矢量坐标。1) Earth ellipsoid model equation:
Figure BDA0003323468270000101
Among them, R e and R p are the semi-major axis and semi-minor axis of the ellipsoid respectively; h is the elevation of the target point, which can usually be set as the average elevation of the imaging area;
Figure BDA0003323468270000102
is the position vector coordinate of the target point t.

2)斜距方程:

Figure BDA0003323468270000103
其中,
Figure BDA0003323468270000104
是卫星位置矢量,
Figure BDA0003323468270000105
R为卫星到目标的斜距,即
Figure BDA0003323468270000106
2) Slope distance equation:
Figure BDA0003323468270000103
in,
Figure BDA0003323468270000104
is the satellite position vector,
Figure BDA0003323468270000105
R is the slant distance from the satellite to the target, that is
Figure BDA0003323468270000106

3)多普勒频率方程:

Figure BDA0003323468270000107
其中,λ为雷达波长,
Figure BDA0003323468270000108
卫星速度矢量,
Figure BDA0003323468270000109
为目标速度矢量,采用ECR坐标系统定义时其值可简化为0。3) Doppler frequency equation:
Figure BDA0003323468270000107
where λ is the radar wavelength,
Figure BDA0003323468270000108
satellite velocity vector,
Figure BDA0003323468270000109
is the target velocity vector, and its value can be simplified to 0 when defined by the ECR coordinate system.

4、地面三维网格建立4. Ground 3D grid establishment

根据四角点的地理坐标获得所需图像地理范围,然后基于全球地面DEM数据获取该范围内的高程数据信息;对其进行均匀网格划分如M*N,计算每个格网内的高程最高、最低、及中间值处的三维坐标信息(lati,j,loni,j,heii,j,i=0,1,2,…,3M;j=0,1,2,…,3N),即共得到3M*N个以经度、纬度和高度三个维度构成的地面控制点三维数据;同时对控制点数据组,将其WGS84坐标转换为笛卡尔坐标(xt(i,j),yt(i,j),zt(i,j),i=0,1,2,...,3M;j=0,1,2,...,3N),得到像元在地心坐标系统下新的位置矢量控制点数据组;According to the geographical coordinates of the four corner points, the required geographic range of the image is obtained, and then the elevation data information within the range is obtained based on the global ground DEM data; it is uniformly divided into grids such as M*N, and the highest elevation in each grid is calculated. Three-dimensional coordinate information at the lowest and intermediate values (lat i, j , lon i, j , hei i, j , i=0, 1, 2,..., 3M; j=0, 1, 2,..., 3N) , that is, a total of 3M*N three-dimensional data of ground control points composed of three dimensions of longitude, latitude and height are obtained; at the same time, for the control point data set, its WGS84 coordinates are converted into Cartesian coordinates (x t (i, j), y t (i, j), z t (i, j), i=0, 1, 2, ..., 3M; j = 0, 1, 2, ..., 3N), get the pixel in the New position vector control point data set under the central coordinate system;

Figure BDA0003323468270000111
Figure BDA0003323468270000111

其中,

Figure BDA0003323468270000112
为地球第一偏心率。in,
Figure BDA0003323468270000112
is the first eccentricity of the earth.

5、地面控制点数组的逆RD图像定位5. Inverse RD image positioning of ground control point array

构建逆斜距-多普勒非线性方程,根据卫星轨道像素拟合曲线,对每一个控制点进行逆RD方程牛顿迭代求解,获得每一控制点对应的图像像素位置(m(i,j),n(i,j),i=0,1,2,…,3M;j=0,1,2,…,3N);Construct the inverse slant range-Doppler nonlinear equation, according to the satellite orbit pixel fitting curve, solve the inverse RD equation Newton iteratively for each control point, and obtain the image pixel position (m(i, j) corresponding to each control point , n(i,j), i=0,1,2,...,3M; j=0,1,2,...,3N);

根据卫星拟合曲线,构建斜距误差方程及多普勒频率误差方程如下:According to the satellite fitting curve, the slant range error equation and the Doppler frequency error equation are constructed as follows:

Figure BDA0003323468270000113
Figure BDA0003323468270000113

其中,fs为采样频率RSR,C为光速,λ为雷达波长,fd(n)为像素对应的多普勒中心频率,根据获取的图像多普勒频率信息,对其进行距离向像素拟合为fd(n)=f0+f1n+f2n2Among them, f s is the sampling frequency RSR, C is the speed of light, λ is the radar wavelength, and f d (n) is the Doppler center frequency corresponding to the pixel. Combined into f d (n) = f 0 +f 1 n+f 2 n 2 ;

关于像素位置(m,n)的逆斜距-多普勒方程求解采用牛顿迭代法如下:The solution of the inverse slope range-Doppler equation about the pixel position (m, n) adopts the Newton iterative method as follows:

Figure BDA0003323468270000114
Figure BDA0003323468270000114

其中,(m0,n0)为预设初值,则可以得到迭代过程中的第k组解如下:Among them, (m 0 , n 0 ) is the preset initial value, then the kth group of solutions in the iterative process can be obtained as follows:

Figure BDA0003323468270000121
Figure BDA0003323468270000121

Figure BDA0003323468270000122
Figure BDA0003323468270000122

其中,in,

Figure BDA0003323468270000123
Figure BDA0003323468270000123

Figure BDA0003323468270000124
Figure BDA0003323468270000124

Figure BDA0003323468270000125
Figure BDA0003323468270000125

Figure BDA0003323468270000126
Figure BDA0003323468270000126

Figure BDA0003323468270000127
Figure BDA0003323468270000127

其中,偏导系数

Figure BDA0003323468270000128
可简单通过轨道拟合公式获得。通过多次迭代循环,当相邻两个解的差值精度达到收敛值,即可停止迭代求解,获取目标像素位置。Among them, the partial conduction coefficient
Figure BDA0003323468270000128
It can be obtained simply by orbital fitting formula. Through multiple iterative cycles, when the difference accuracy of two adjacent solutions reaches the convergence value, the iterative solution can be stopped and the target pixel position can be obtained.

6、控制点数组的合规性预判及规则化处理6. Compliance prediction and regular processing of control point arrays

对获得的图像像素位置(m(i,j),n(i,j))及其对应的地面三维坐标信息(xt(i,j),yt(i,j),zt(i,j))进行合规性预判,是否在图像范围内,去除不在图像范围内的点,并进行数据规则化处理,将地面坐标和影像坐标归一化,以减少计算过程中由于数量级差别过大引入的舍入误差;For the obtained image pixel position (m(i, j), n(i, j)) and its corresponding ground three-dimensional coordinate information (x t (i, j), y t (i, j), z t (i , j)) Pre-judgment of compliance, whether it is within the image range, remove points that are not within the image range, and perform data regularization processing, normalize the ground coordinates and image coordinates, in order to reduce the order of magnitude difference in the calculation process The rounding error introduced by too large;

对3M*N个控制点数组的图像坐标和地面坐标进行标准化。设(P,L,H)为地面三维坐标标准化后的地面坐标,(X,Y)为图像像素位置行列值标准化后的影像坐标,其标准化公式如下:Normalize the image coordinates and ground coordinates of the 3M*N array of control points. Let (P, L, H) be the ground coordinates after the standardization of the ground three-dimensional coordinates, and (X, Y) be the image coordinates after the normalization of the row and column values of the image pixel positions, and the normalization formula is as follows:

Figure BDA0003323468270000129
Figure BDA0003323468270000129

Figure BDA00033234682700001210
Figure BDA00033234682700001210

Figure BDA0003323468270000131
Figure BDA0003323468270000131

Figure BDA0003323468270000132
Figure BDA0003323468270000132

Figure BDA0003323468270000133
Figure BDA0003323468270000133

其中,

Figure BDA0003323468270000134
Figure BDA0003323468270000135
为地面坐标的标准化参数,也即偏移值和比例值;moff,mscale,noff和nscale为像素坐标的标准化参数。in,
Figure BDA0003323468270000134
with
Figure BDA0003323468270000135
is the normalization parameter of ground coordinates, that is, offset value and scale value; m off , m scale , n off and n scale are normalization parameters of pixel coordinates.

关于偏移值和比例值计算方法如下:The calculation method of offset value and scale value is as follows:

Figure BDA0003323468270000136
Figure BDA0003323468270000136

Figure BDA0003323468270000137
Figure BDA0003323468270000137

Figure BDA0003323468270000138
Figure BDA0003323468270000138

Figure BDA0003323468270000139
Figure BDA0003323468270000139

mscale=max(|m(i,j)max-moff|,|m(i,j)min-moff|);m scale = max(|m(i, j) max -m off |, |m(i, j) min -m off |);

nscale=max(|n(i,j)max-noff|,|n(i,j)min-noff|)。n scale = max(|n(i, j) max -n off |, |n(i, j) min -n off |).

7、RPC模型方程构建及最小二乘求解7. RPC model equation construction and least square solution

建立地面坐标和图像坐标之间的比值多项式,将地面点坐标(P,L,H)与其对应的像素点坐标(X,Y)用比值多项式关联起来:Establish a ratio polynomial between ground coordinates and image coordinates, and associate the ground point coordinates (P, L, H) with their corresponding pixel coordinates (X, Y) with a ratio polynomial:

Figure BDA00033234682700001310
Figure BDA00033234682700001310

Figure BDA00033234682700001311
Figure BDA00033234682700001311

其中,Numline(P,L,H)=a0+a1L+a2P+a3H+a4LP+a5LH+a6PH+a7L2+a8P2+a9H2+a10PLH+a11L3+a12LP2+a13LH2+a14L2P+a15P3+a16PH2+a17L2H+a18P2H+a19H3Among them, Num line (P, L, H) = a 0 +a 1 L+a 2 P+a 3 H+a 4 LP+a 5 LH+a 6 PH+a 7 L 2 +a 8 P 2 +a 9 H 2 +a 10 PLH+a 11 L 3 +a 12 LP 2 +a 13 LH 2 +a 14 L 2 P+a 15 P 3 +a 16 PH 2 +a 17 L 2 H+a 18 P 2 H +a 19 H 3 ;

Denline(P,L,H)=b0+b1L+b2P+b3H+b4LP+b5LH+b6PH+b7L2+b8P2+b9H2+b10PLH+b11L3+b12LP2+b13LH2+b14L2P+b15P3+b16PH2+b17L2H+b18P2H+b19H3Den line (P, L, H)=b 0 +b 1 L+b 2 P+b 3 H+b 4 LP+b 5 LH+b 6 PH+b 7 L 2 +b 8 P 2 +b 9 H 2 +b 10 PLH+b 11 L 3 +b 12 LP 2 +b 13 LH 2 +b 14 L 2 P+b 15 P 3 +b 16 PH 2 +b 17 L 2 H+b 18 P 2 H+b 19 H 3 ;

Numpixel(P,L,H)=c0+c1L+c2P+c3H+c4LP+c5LH+c6PH+c7L2+c8P2+c9H2+c10PLH+c11L3+c12LP2+c13LH2+c14L2P+c15P3+c16PH2+c17L2H+c18P2H+c19H3Num pixel (P, L, H)=c 0 +c 1 L+c 2 P+c 3 H+c 4 LP+c 5 LH+c 6 PH+c 7 L 2 +c 8 P 2 +c 9 H 2 +c 10 PLH+c 11 L 3 +c 12 LP 2 +c 13 LH 2 +c 14 L 2 P+c 15 P 3 +c 16 PH 2 +c 17 L 2 H+c 18 P 2 H+c 19 H 3 ;

Denpixel(P,L,H)=d0+d1L+d2P+d3H+d4LP+d5LH+d6PH+d7L2+d8P2+d9H2+d10PLH+d11L3+d12LP2+d13LH2+d14L2P+d15P3+d16PH2+d17L2H+d18P2H+d19H3Den pixel (P, L, H)=d 0 +d 1 L+d 2 P+d 3 H+d 4 LP+d 5 LH+d 6 PH+d 7 L 2 +d 8 P 2 +d 9 H 2 +d 10 PLH+d 11 L 3 +d 12 LP 2 +d 13 LH 2 +d 14 L 2 P+d 15 P 3 +d 16 PH 2 +d 17 L 2 H+d 18 P 2 H+d 19 H 3 ;

上述公式中的(ai,bi,ci,di,i=0,1,...,19)即为理函数模型系数RPCs,对比值多项式变形,得到有理函数模型关于各RPCs的线性模型,并将控制点所列的误差方程用矩阵形式来表示;(a i , b i , ci , d i , i=0, 1, ..., 19) in the above formula are the coefficients RPCs of the rational function model, and the comparison value polynomial is transformed to obtain the rational function model for each RPCs Linear model, and express the error equation listed by the control points in matrix form;

FY=Numline(P,L,H)-Y*Denline(P,L,H)=0;F Y =Num line (P, L, H)-Y*Den line (P, L, H) = 0;

FX=Numpixel(P,L,H)-X*Denpixel(P,L,H)=0;F X = Num pixel (P, L, H)-X*Den pixel (P, L, H) = 0;

由上式知行、列RPCs是相互独立的,可分开单独求解;以行RPCs为例,上式中的第一式可写为:From the above formula, we know that row and column RPCs are independent of each other and can be solved separately; taking row RPCs as an example, the first formula in the above formula can be written as:

FY=a0+a1L+a2P+a3H+a4LP+a5LH+a6PH+a7L2+a8P2+a9H2+a10PLH+a11L3+a12LP2+a13LH2+a14L2P+a15P3+a16PH2+a17L2H+a18P2H+a19H3-Y*(b0+b1L+b2P+b3H+b4LP+b5LH+b6PH+b7L2+b8P2+b9H2+b10PLH+b11L3+b12LP2+b13LH2+b14L2P+b15P3+b16PH2+b17L2H+b18P2H+b19H3);F Y =a 0 +a 1 L+a 2 P+a 3 H+a 4 LP+a 5 LH+a 6 PH+a 7 L 2 +a 8 P 2 +a 9 H 2 +a 10 PLH+a 11 L 3 +a 12 LP 2 +a 13 LH 2 +a 14 L 2 P+a 15 P 3 +a 16 PH 2 +a 17 L 2 H+a 18 P 2 H+a 19 H 3 -Y*( b 0 +b 1 L+b 2 P+b 3 H+b 4 LP+b 5 LH+b 6 PH+b 7 L 2 +b 8 P 2 +b 9 H 2 +b 10 PLH+b 11 L 3 +b 12 LP 2 +b 13 LH 2 +b 14 L 2 P+b 15 P 3 +b 16 PH 2 +b 17 L 2 H+b 18 P 2 H+b 19 H 3 );

联立所有观测数据,建立观测方程误差方程组有:FY=BVY+ε;式中:Simultaneously combine all the observation data to establish the observation equation error equation group: F Y = BV Y + ε; where:

Figure BDA0003323468270000141
Figure BDA0003323468270000141

VY=[a0 a1 … a19 b1 b2 … b19]TV Y = [a 0 a 1 ... a 19 b 1 b 2 ... b 19 ] T ;

Figure BDA0003323468270000142
Figure BDA0003323468270000142

其中,ε为随机误差,根据最小二乘平差原理,可将误差方程变换为法方程进行求解:(BTB)VY=BTFYAmong them, ε is a random error. According to the principle of least squares adjustment, the error equation can be transformed into a normal equation for solution: (B T B)V Y =B T F Y .

RPC模型求解中由于法方程的奇异或近似奇异问题,常常导致最小二乘平差不能收敛。为了克服系数矩阵病态问题,采用谱修正迭代法求解系数估计方程,可在法方程呈良态或病态时均可获得符合要求的无偏参数估计。采用谱修正迭代法对法方程进行修正如下:In the solution of RPC model, due to the singularity or near-singularity of the normal equation, the least squares adjustment often fails to converge. In order to overcome the ill-conditioned problem of the coefficient matrix, the spectral correction iterative method is used to solve the coefficient estimation equation, and the unbiased parameter estimation that meets the requirements can be obtained when the normal equation is well-conditioned or ill-conditioned. The normal equation is corrected by the spectrum correction iterative method as follows:

(BTB+E)VY=BTFY+VY(B T B+E)V Y =B T F Y +V Y ;

其中,E为单位矩阵,经过k次迭代可得参数估计如下:Among them, E is the identity matrix, and after k iterations, the parameters can be estimated as follows:

VY (k)=(BTB+E)-1(BTFY+VY (k-1));V Y (k) = (B T B + E) -1 (B T F Y + V Y (k-1) );

同理,得到列方向上的第k次参数估计如下:Similarly, the kth parameter estimation in the column direction is obtained as follows:

VX (k)=(ATA+E)-1(ATFX+VX (k-1));V X (k) = (A T A + E) -1 (A T F X + V X (k-1) );

其中,in,

Figure BDA0003323468270000151
Figure BDA0003323468270000151

VX=[c0 c1 … c19 d1 d2 … d19]TV X = [c 0 c 1 ... c 19 d 1 d 2 ... d 19 ] T ;

Figure BDA0003323468270000152
Figure BDA0003323468270000152

其中,FX=c0+c1L+c2P+c3H+c4LP+c5LH+c6PH+c7L2+c8P2+c9H2+c10PLH+c11L3+c12LP2+c13LH2+c14L2P+c15P3+c16PH2+c17L2H+c18P2H+c19H3-X*(d0+d1L+d2P+d3H+d4LP+d5LH+d6PH+d7L2+d8P2+d9H2+d10PLH+d11L3+d12LP2+d13LH2+d14L2P+d15P3+d16PH2+d17L2H+d18P2H+d19H3);Among them, F X =c 0 +c 1 L+c 2 P+c 3 H+c 4 LP+c 5 LH+c 6 PH+c 7 L 2 +c 8 P 2 +c 9 H 2 +c 10 PLH +c 11 L 3 +c 12 LP 2 +c 13 LH 2 +c 14 L 2 P+c 15 P 3 +c 16 PH 2 +c 17 L 2 H+c 18 P 2 H+c 19 H 3 -X *(d 0 +d 1 L+d 2 P+d 3 H+d 4 LP+d 5 LH+d 6 PH+d 7 L 2 +d 8 P 2 +d 9 H 2 +d 10 PLH+d 11 L 3 +d 12 LP 2 +d 13 LH 2 +d 14 L 2 P+d 15 P 3 +d 16 PH 2 +d 17 L 2 H+d 18 P 2 H+d 19 H 3 );

在求解过程中,迭代计算前后两次结果值之差小于指定限差,则计算停止,一般两次估值之间小于10-5可满足精度要求,得到模型参数RPCs,生成有理函数校正模型。During the solution process, if the difference between the two result values before and after the iterative calculation is less than the specified limit, the calculation stops. Generally, the difference between the two estimates is less than 10 -5 to meet the accuracy requirements, and the model parameters RPCs are obtained to generate a rational function correction model.

8、模型精度验证8. Model accuracy verification

采用已求解RPC模型参数计算检查点对应图像坐标,通过与严密成像几何模型计算结果进行差值,评定RPC模型参数的像方精度,完成星载SAR几何校正RPCs参数获取及精度分析。The image coordinates corresponding to the checkpoints are calculated by using the solved RPC model parameters, and the image square accuracy of the RPC model parameters is evaluated by comparing the calculation results with the rigorous imaging geometric model, and the acquisition and accuracy analysis of the spaceborne SAR geometric correction RPCs parameters are completed.

本发明给出一种精确的基于逆RD定位模型的星载SAR图像RPC校正参数获取方法,该方法为星载SAR几何校正提供完整、稳健的RPCs参数计算流程,主要优化步骤包括:1)根据SAR严密成像模型,采用逆RD定位算法生成分布合理的控制点数组,用于RPC方程模型输入及精确的模型参数生成;2)采用谱修正迭代法进行RPC模型方程的最小二乘精确求解,以解决由于方程未知过多且强相关引起的方程病态问题,从而使SAR图像的精确几何校正得到保证和提高。本发明方法借用真实成像区域DEM数据,基于逆RD定位模型实现对成像区域真实三维空间的均匀采样,生成分布合理的地面控制点数组,而不是常规的对多个高程剖面各自虚拟成图,进而减少了冗余信息输入,增加了真实地形成像投影信息,提高了校正模型拟合精度。此外本发明方法从逆RD变换生成控制数据组输入到RPC方程稳健求解输出校正模型系数,流程可操作性完备,为后续星载SAR的通用几何模型校正提供了有效实施途径。The present invention provides an accurate acquisition method of spaceborne SAR image RPC correction parameters based on the inverse RD positioning model. The method provides a complete and robust RPCs parameter calculation process for spaceborne SAR geometric correction. The main optimization steps include: 1) according to The SAR rigorous imaging model uses the inverse RD positioning algorithm to generate an array of control points with reasonable distribution, which is used for RPC equation model input and accurate model parameter generation; Solve the ill-conditioned problem of the equation caused by too many unknowns and strong correlation, so that the precise geometric correction of SAR images can be guaranteed and improved. The method of the present invention borrows the DEM data of the real imaging area, realizes uniform sampling of the real three-dimensional space of the imaging area based on the inverse RD positioning model, and generates an array of ground control points with reasonable distribution, instead of conventional virtual mapping of multiple elevation profiles, and then Redundant information input is reduced, real terrain imaging projection information is increased, and the accuracy of calibration model fitting is improved. In addition, the method of the present invention is from the input of the control data group generated by the inverse RD transformation to the robust solution of the RPC equation and the output of the correction model coefficients.

以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。The above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be described in the foregoing embodiments Modifications are made to the recorded technical solutions, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.

Claims (10)

1.一种基于逆RD定位模型的星载SAR图像RPC校正参数获取方法,其特征在于,包括以下步骤:1. a method for obtaining the RPC correction parameters of spaceborne SAR images based on the inverse RD positioning model, is characterized in that, comprising the following steps: S1、SAR成像参数及卫星轨道数据获取:获取星载SAR系统成像以及图像参数、卫星轨道数据以及地面高程数据;S1. Acquisition of SAR imaging parameters and satellite orbit data: acquisition of spaceborne SAR system imaging and image parameters, satellite orbit data and ground elevation data; S2、卫星轨道数据多项式拟合:根据SAR成像系统和图像参数中多个时刻的卫星位置和速度数据,拟合卫星轨道关于方位向像素的函数曲线;S2. Polynomial fitting of satellite orbit data: according to the satellite position and velocity data at multiple moments in the SAR imaging system and image parameters, fit the function curve of the satellite orbit with respect to the azimuth pixel; S3、SAR图像四个角点定位:构建斜距-多普勒-地球椭球模型定位方程,迭代求解SAR图像的四个角点地面坐标,即分别为SAR图像对应的第一个方位时刻和最后一个方位时刻分别对应的最近斜距和最远斜距的WGS84坐标,确定SAR图像地面区域范围;S3. Positioning of the four corners of the SAR image: Construct the positioning equation of the slant range-Doppler-Earth ellipsoid model, and iteratively solve the ground coordinates of the four corners of the SAR image, which are the first azimuth moment and the corresponding time of the SAR image respectively. The WGS84 coordinates of the closest slant distance and the farthest slant distance corresponding to the last azimuth moment respectively, determine the range of the ground area of the SAR image; S4、地面三维网格建立:根据四个角点地理坐标及全球地面DEM数据获得所需图像地理范围内的高程数据信息;对其进行均匀划分为M*N个网格,计算每个格网内的高程最高、最低及中间值的三维坐标信息,共得到3M*N个地面控制点数据;再进行笛卡尔坐标转换,得到地心坐标系统下新的控制点位置矢量组;S4. Ground three-dimensional grid establishment: obtain the elevation data information within the geographic range of the required image according to the geographic coordinates of the four corner points and the global ground DEM data; divide it evenly into M*N grids, and calculate each grid The three-dimensional coordinate information of the highest, lowest, and intermediate values of the elevation in the field can obtain 3M*N ground control point data in total; and then carry out Cartesian coordinate conversion to obtain a new control point position vector group under the geocentric coordinate system; S5、地面控制点数组的逆RD图像定位:构建斜距误差方程及多普勒频率误差方程,根据卫星轨道像素拟合曲线,对每一个控制点进行逆RD定位方程牛顿迭代求解,获得每一控制点对应的图像像素位置;S5. Inverse RD image positioning of the ground control point array: construct the slant range error equation and the Doppler frequency error equation, according to the satellite orbit pixel fitting curve, solve the inverse RD positioning equation Newton iteratively for each control point, and obtain each The image pixel position corresponding to the control point; S6、控制点数组的合规性预判及规则化处理:对获得的图像像素位置及其对应的地面三维坐标信息进行合规性预判,去除不在图像范围内的点;进行数据规则化处理,将地面坐标和图像坐标归一化,减少计算过程中的舍入误差;S6. Compliance prediction and regularization processing of the control point array: perform compliance prediction on the obtained image pixel position and its corresponding ground three-dimensional coordinate information, remove points that are not within the image range; perform data regularization processing , to normalize the ground coordinates and image coordinates to reduce rounding errors in the calculation process; S7、RPC模型方程构建及最小二乘求解:建立地面坐标和图像坐标之间的比值多项式,并变形得到关于RPCs的非线性模型;针对方程系数矩阵病态问题,采用基于谱修正迭代法的最小二乘求解,获得RPCs参数的无偏估计;S7. RPC model equation construction and least squares solution: establish a ratio polynomial between ground coordinates and image coordinates, and deform it to obtain a nonlinear model about RPCs; for the ill-conditioned problem of the equation coefficient matrix, use the least squares based on the spectral correction iterative method Multiply the solution to obtain an unbiased estimate of the RPCs parameters; S8、模型精度验证:采用已求解RPCs模型参数计算检查点对应图像坐标,通过与严密成像几何模型计算结果进行差值,评定RPC模型参数的像方精度。S8. Model accuracy verification: use the solved RPCs model parameters to calculate the image coordinates corresponding to the checkpoints, and evaluate the image square accuracy of the RPC model parameters by making a difference with the calculation results of the rigorous imaging geometric model. 2.根据权利要求1所述的一种基于逆RD定位模型的星载SAR图像RPC校正参数获取方法,其特征在于,步骤S1中所述的星载SAR系统成像以及图像参数包括:雷达波长、图像大小、成像多普勒频率信息、图像首行成像时间T0、图像第一个像素的脉冲延迟t0或图像近距R0、脉冲重复频率PRF、距离向采样频率RSR;所述的卫星轨道数据包括:采样点时刻的位置及速度矢量数据。2. A method for obtaining RPC correction parameters of spaceborne SAR images based on the inverse RD positioning model according to claim 1, wherein the spaceborne SAR system imaging and image parameters described in step S1 include: radar wavelength, Image size, imaging Doppler frequency information, imaging time T 0 of the first line of the image, pulse delay t 0 of the first pixel of the image or image short distance R 0 , pulse repetition frequency PRF, range sampling frequency RSR; the satellite The track data includes: the position and velocity vector data of the sampling point at the moment. 3.根据权利要求2所述的一种基于逆RD定位模型的星载SAR图像RPC校正参数获取方法,其特征在于,步骤S2中所述的拟合卫星轨道关于方位向像素的函数曲线的方法如下:3. A kind of method for obtaining RPC correction parameters of spaceborne SAR images based on the inverse RD positioning model according to claim 2, characterized in that, the method of fitting the function curve of the satellite orbit about the azimuth pixel described in step S2 as follows: S21、关于位置的多项式拟合模型如下:S21, the polynomial fitting model about the position is as follows:
Figure FDA0003323468260000021
Figure FDA0003323468260000021
其中,m表示像素,xs、ys、zs表示该像素对应的卫星轨道在x方向、y方向、z方向的位置,αi,βi,γi分别是待拟合的卫星轨道关于方位向像素的函数曲线多项式的系数,i=1,2,3,4,5;Among them, m represents a pixel, x s , y s , and z s represent the position of the satellite orbit corresponding to the pixel in the x direction, y direction, and z direction, and α i , β i , and γ i are the satellite orbits to be fitted about The coefficients of the function curve polynomial of the pixels in the azimuth direction, i=1, 2, 3, 4, 5; S22、关于速度的多项式拟合模型如下:S22, the polynomial fitting model about speed is as follows:
Figure FDA0003323468260000022
Figure FDA0003323468260000022
其中,vxs、vys、vzs表示像素m对应的卫星轨道在位置xs、ys、zs处的速度。Among them, vx s , vy s , vz s represent the velocity of the satellite orbit corresponding to pixel m at positions x s , y s , z s .
4.根据权利要求3所述的一种基于逆RD定位模型的星载SAR图像RPC校正参数获取方法,其特征在于,步骤S3中所述的构建斜距-多普勒-地球椭球模型定位方程如下:4. A kind of method for obtaining RPC correction parameters of spaceborne SAR images based on the inverse RD positioning model according to claim 3, characterized in that, the construction of the slant range-Doppler-Earth ellipsoid model positioning described in step S3 The equation is as follows: 1)地球椭球模型方程:
Figure FDA0003323468260000023
其中,Re、Rp分别为椭球体的半长轴、半短轴;h为目标点的高程,通常可设为成像区域的平均高程;
Figure FDA0003323468260000024
为目标点t的位置矢量坐标;
1) Earth ellipsoid model equation:
Figure FDA0003323468260000023
Among them, R e and R p are the semi-major axis and semi-minor axis of the ellipsoid respectively; h is the elevation of the target point, which can usually be set as the average elevation of the imaging area;
Figure FDA0003323468260000024
is the position vector coordinate of the target point t;
2)斜距方程:
Figure FDA0003323468260000025
其中,
Figure FDA0003323468260000026
是卫星位置矢量,
Figure FDA0003323468260000027
R为卫星到目标的斜距,即
Figure FDA0003323468260000028
2) Slope distance equation:
Figure FDA0003323468260000025
in,
Figure FDA0003323468260000026
is the satellite position vector,
Figure FDA0003323468260000027
R is the slant distance from the satellite to the target, that is
Figure FDA0003323468260000028
3)多普勒频率方程:
Figure FDA0003323468260000029
其中,λ为雷达波长,
Figure FDA00033234682600000210
卫星速度矢量,
Figure FDA00033234682600000211
为目标速度矢量,采用ECR坐标系统定义时其值可简化为0。
3) Doppler frequency equation:
Figure FDA0003323468260000029
where λ is the radar wavelength,
Figure FDA00033234682600000210
satellite velocity vector,
Figure FDA00033234682600000211
is the target velocity vector, and its value can be simplified to 0 when defined by the ECR coordinate system.
5.根据权利要求4所述的一种基于逆RD定位模型的星载SAR图像RPC校正参数获取方法,其特征在于,步骤S4中所述的进行笛卡尔坐标转换的公式为:5. a kind of space-borne SAR image RPC correction parameter acquisition method based on inverse RD positioning model according to claim 4, is characterized in that, the formula that carries out Cartesian coordinate transformation described in step S4 is:
Figure FDA0003323468260000031
Figure FDA0003323468260000031
其中,
Figure FDA0003323468260000032
为地球第一偏心率。
in,
Figure FDA0003323468260000032
is the first eccentricity of the earth.
6.根据权利要求5所述的一种基于逆RD定位模型的星载SAR图像RPC校正参数获取方法,其特征在于,步骤S5中所述的构建斜距误差方程及多普勒频率误差方程,根据卫星轨道像素拟合曲线,对每一个控制点进行逆RD定位方程牛顿迭代求解,获得每一控制点对应的图像像素位置的方法具体如下:6. a kind of space-borne SAR image RPC correction parameter acquisition method based on the inverse RD positioning model according to claim 5, is characterized in that, described in the step S5, constructs the slant range error equation and the Doppler frequency error equation, According to the satellite orbit pixel fitting curve, the inverse RD positioning equation Newton iterative solution is performed for each control point, and the method of obtaining the image pixel position corresponding to each control point is as follows: (1)根据卫星拟合曲线,构建斜距误差方程及多普勒频率误差方程如下:(1) According to the satellite fitting curve, construct the slant range error equation and Doppler frequency error equation as follows:
Figure FDA0003323468260000033
Figure FDA0003323468260000033
其中,fs为采样频率RSR,C为光速,λ为雷达波长,fd(n)为像素对应的多普勒中心频率,根据获取的图像多普勒频率信息,对其进行距离向像素拟合为fd(n)=f0+f1n+f2n2Among them, f s is the sampling frequency RSR, C is the speed of light, λ is the radar wavelength, and f d (n) is the Doppler center frequency corresponding to the pixel. Combined into f d (n) = f 0 +f 1 n+f 2 n 2 ; (2)关于像素位置(m,n)的逆斜距-多普勒方程求解采用牛顿迭代法如下:(2) The Newton iterative method is used to solve the inverse slope range-Doppler equation about the pixel position (m, n) as follows:
Figure FDA0003323468260000034
Figure FDA0003323468260000034
其中,(m0,n0)为预设初值,则可以得到迭代过程中的第k组解如下:Among them, (m 0 , n 0 ) is the preset initial value, then the kth group of solutions in the iterative process can be obtained as follows:
Figure FDA0003323468260000035
Figure FDA0003323468260000035
Figure FDA0003323468260000036
Figure FDA0003323468260000036
其中,in,
Figure FDA0003323468260000041
Figure FDA0003323468260000041
Figure FDA0003323468260000042
Figure FDA0003323468260000042
Figure FDA0003323468260000043
Figure FDA0003323468260000043
Figure FDA0003323468260000044
Figure FDA0003323468260000044
Figure FDA0003323468260000045
Figure FDA0003323468260000045
其中,偏导系数
Figure FDA0003323468260000046
可简单通过轨道拟合公式获得;
Among them, the partial conduction coefficient
Figure FDA0003323468260000046
It can be obtained simply by orbital fitting formula;
(3)通过多次迭代循环,当相邻两个解的差值精度达到收敛值,停止迭代求解,获取目标像素位置。(3) Through multiple iterative loops, when the difference accuracy of two adjacent solutions reaches the convergence value, the iterative solution is stopped and the target pixel position is obtained.
7.根据权利要求6所述的一种基于逆RD定位模型的星载SAR图像RPC校正参数获取方法,其特征在于,步骤S6中所述的进行数据规则化处理,将地面坐标和图像坐标归一化的方法如下:7. A kind of spaceborne SAR image RPC correction parameter acquisition method based on the inverse RD positioning model according to claim 6, is characterized in that, in step S6, carry out data regularization processing, return ground coordinates and image coordinates The unified method is as follows: 对3M*N个控制点数组的图像坐标和地面坐标进行标准化,设(P,L,H)为地面三维坐标标准化后的地面坐标,(X,Y)为图像像素位置行列值标准化后的影像坐标,其标准化公式如下:Standardize the image coordinates and ground coordinates of 3M*N control point arrays, let (P, L, H) be the ground coordinates after the ground three-dimensional coordinates are standardized, and (X, Y) be the images after the normalized row and column values of the image pixel positions Coordinates, the standardized formula is as follows:
Figure FDA0003323468260000047
Figure FDA0003323468260000048
Figure FDA0003323468260000047
Figure FDA0003323468260000048
其中,
Figure FDA0003323468260000049
Figure FDA00033234682600000410
为地面坐标的标准化参数,即偏移值和比例值;moff,mscale,noff和nscale为像素坐标的标准化参数。
in,
Figure FDA0003323468260000049
with
Figure FDA00033234682600000410
is the normalization parameter of ground coordinates, that is, offset value and scale value; m off , m scale , n off and n scale are normalization parameters of pixel coordinates.
8.根据权利要求7所述的一种基于逆RD定位模型的星载SAR图像RPC校正参数获取方法,其特征在于,所述的偏移值和比例值计算公式如下:8. a kind of space-borne SAR image RPC correction parameter acquisition method based on inverse RD positioning model according to claim 7, is characterized in that, described offset value and proportional value calculation formula are as follows:
Figure FDA00033234682600000411
Figure FDA00033234682600000411
Figure FDA0003323468260000051
Figure FDA0003323468260000051
Figure FDA0003323468260000052
Figure FDA0003323468260000052
Figure FDA0003323468260000053
Figure FDA0003323468260000053
mscale=max(|m(i,j)max-moff|,|m(i,j)min-moff|);m scale = max(|m(i, j) max -m off |, |m(i, j) min -m off |); nscale=max(|n(i,j)max-noff|,|n(i,j)min-noff|)。n scale = max(|n(i, j) max -n off |, |n(i, j) min -n off |).
9.根据权利要求8所述的一种基于逆RD定位模型的星载SAR图像RPC校正参数获取方法,其特征在于,步骤S7中所述的建立地面坐标和图像坐标之间的比值多项式,并变形得到关于RPCs的非线性模型的方法如下:9. A kind of space-borne SAR image RPC correction parameter acquisition method based on the inverse RD positioning model according to claim 8, characterized in that, the ratio polynomial between the establishment of ground coordinates and image coordinates described in step S7, and The method of deforming to obtain a nonlinear model of RPCs is as follows: (1)建立地面坐标和图像坐标之间的比值多项式,将地面点坐标(P,L,H)与其对应的像素点坐标(X,Y)用比值多项式关联起来:(1) Establish a ratio polynomial between ground coordinates and image coordinates, and associate the ground point coordinates (P, L, H) with their corresponding pixel point coordinates (X, Y) with a ratio polynomial:
Figure FDA0003323468260000054
Figure FDA0003323468260000054
Figure FDA0003323468260000055
Figure FDA0003323468260000055
其中,Numline(P,L,H)=a0+a1L+a2P+a3H+a4LP+a5LH+a6PH+a7L2+a8P2+a9H2+a10PLH+a11L3+a12LP2+a13LH2+a14L2P+a15P3+a16PH2+a17L2H+a18P2H+a19H3Among them, Num line (P, L, H) = a 0 +a 1 L+a 2 P+a 3 H+a 4 LP+a 5 LH+a 6 PH+a 7 L 2 +a 8 P 2 +a 9 H 2 +a 10 PLH+a 11 L 3 +a 12 LP 2 +a 13 LH 2 +a 14 L 2 P+a 15 P 3 +a 16 PH 2 +a 17 L 2 H+a 18 P 2 H +a 19 H 3 ; Denline(P,L,H)=b0+b1L+b2P+b3H+b4LP+b5LH+b6PH+b7L2+b8P2+b9H2+b10PLH+b11L3+b12LP2+b13LH2+b14L2P+b15P3+b16PH2+b17L2H+b18P2H+b19H3Den line (P, L, H)=b 0 +b 1 L+b 2 P+b 3 H+b 4 LP+b 5 LH+b 6 PH+b 7 L 2 +b 8 P 2 +b 9 H 2 +b 10 PLH+b 11 L 3 +b 12 LP 2 +b 13 LH 2 +b 14 L 2 P+b 15 P 3 +b 16 PH 2 +b 17 L 2 H+b 18 P 2 H+b 19 H 3 ; Numpixel(P,L,H)=c0+c1L+c2P+c3H+c4LP+c5LH+c6PH+c7L2+c8P2+c9H2+c10PLH+c11L3+c12LP2+c13LH2+c14L2P+c15P3+c16PH2+c17L2H+c18P2H+c19H3Num pixel (P, L, H)=c 0 +c 1 L+c 2 P+c 3 H+c 4 LP+c 5 LH+c 6 PH+c 7 L 2 +c 8 P 2 +c 9 H 2 +c 10 PLH+c 11 L 3 +c 12 LP 2 +c 13 LH 2 +c 14 L 2 P+c 15 P 3 +c 16 PH 2 +c 17 L 2 H+c 18 P 2 H+c 19 H 3 ; Denpixel(P,L,H)=d0+d1L+d2P+d3H+d4LP+d5LH+d6PH+d7L2+d8P2+d9H2+d10PLH+d11L3+d12LP2+d13LH2+d14L2P+d15P3+d16PH2+d17L2H+d18P2H+d19H3Den pixel (P, L, H)=d 0 +d 1 L+d 2 P+d 3 H+d 4 LP+d 5 LH+d 6 PH+d 7 L 2 +d 8 P 2 +d 9 H 2 +d 10 PLH+d 11 L 3 +d 12 LP 2 +d 13 LH 2 +d 14 L 2 P+d 15 P 3 +d 16 PH 2 +d 17 L 2 H+d 18 P 2 H+d 19 H 3 ; 上述公式中的(ai,bi,ci,di,i=0,1,...,19)即为理函数模型系数RPCs,对比值多项式变形,得到有理函数模型关于各RPCs的线性模型,并将控制点所列的误差方程用矩阵形式来表示;(a i , b i , ci , d i , i=0, 1, ..., 19) in the above formula are the coefficients RPCs of the rational function model, and the comparison value polynomial is transformed to obtain the rational function model for each RPCs Linear model, and express the error equation listed by the control points in matrix form; FY=Numline(P,L,H)-Y*Denline(P,L,H)=0;F Y =Num line (P, L, H)-Y*Den line (P, L, H) = 0; FX=Numpixel(P,L,H)-X*Denpixel(P,L,H)=0;F X = Num pixel (P, L, H)-X*Den pixel (P, L, H) = 0; 由上式知行、列RPCs是相互独立的,可分开单独求解;以行RPCs为例,上式中的第一式可写为:From the above formula, we know that row and column RPCs are independent of each other and can be solved separately; taking row RPCs as an example, the first formula in the above formula can be written as: FY=a0+a1L+a2P+a3H+a4LP+a5LH+a6PH+a7L2+a8P2+a9H2+a10PLH+a11L3+a12LP2+a13LH2+a14L2P+a15P3+a16PH2+a17L2H+a18P2H+a19H3-Y*(b0+b1L+b2P+b3H+b4LP+b5LH+b6PH+b7L2+b8P2+b9H2+b10PLH+b11L3+b12LP2+b13LH2+b14L2P+b15P3+b16PH2+b17L2H+b18P2H+b19H3);F Y =a 0 +a 1 L+a 2 P+a 3 H+a 4 LP+a 5 LH+a 6 PH+a 7 L 2 +a 8 P 2 +a 9 H 2 +a 10 PLH+a 11 L 3 +a 12 LP 2 +a 13 LH 2 +a 14 L 2 P+a 15 P 3 +a 16 PH 2 +a 17 L 2 H+a 18 P 2 H+a 19 H 3 -Y*( b 0 +b 1 L+b 2 P+b 3 H+b 4 LP+b 5 LH+b 6 PH+b 7 L 2 +b 8 P 2 +b 9 H 2 +b 10 PLH+b 11 L 3 +b 12 LP 2 +b 13 LH 2 +b 14 L 2 P+b 15 P 3 +b 16 PH 2 +b 17 L 2 H+b 18 P 2 H+b 19 H 3 ); (2)联立所有观测数据,建立观测方程误差方程组有:FY=BVY+ε;式中:(2) Simultaneously combine all observation data to establish the observation equation error equation group: F Y = BV Y + ε; where:
Figure FDA0003323468260000061
Figure FDA0003323468260000061
VY=[a0 a1 … a19 b1 b2 … b19]TV Y = [a 0 a 1 ... a 19 b 1 b 2 ... b 19 ] T ;
Figure FDA0003323468260000062
Figure FDA0003323468260000062
其中,ε为随机误差,根据最小二乘平差原理,可将误差方程变换为法方程进行求解:(BTB)VY=BTFYAmong them, ε is a random error. According to the principle of least squares adjustment, the error equation can be transformed into a normal equation for solution: (B T B)V Y =B T F Y .
10.根据权利要求9所述的一种基于逆RD定位模型的星载SAR图像RPC校正参数获取方法,其特征在于,步骤S7中所述的针对方程系数矩阵病态问题,采用基于谱修正迭代法的最小二乘求解,获得RPCs参数的无偏估计;10. A method for obtaining RPC correction parameters of spaceborne SAR images based on an inverse RD positioning model according to claim 9, characterized in that, for the ill-conditioned problem of the equation coefficient matrix described in step S7, an iterative method based on spectral correction is adopted The least squares solution of , to obtain the unbiased estimation of RPCs parameters; (1)针对方程系数矩阵病态问题,采用谱修正迭代法求解法方程,在法方程呈良态或病态时均可获得符合要求的无偏参数估计,采用谱修正迭代法对法方程进行修正如下:(1) For the ill-conditioned problem of the coefficient matrix of the equation, the normal equation is solved by using the spectral correction iterative method, and unbiased parameter estimates that meet the requirements can be obtained when the normal equation is well-conditioned or ill-conditioned, and the normal equation is corrected by the spectral correction iterative method as follows : (BTB+E)VY=BTFY+VY(B T B+E)V Y =B T F Y +V Y ; 其中,E为单位矩阵,经过k次迭代可得参数估计如下:Among them, E is the identity matrix, and after k iterations, the parameters can be estimated as follows: VY (k)=(BTB+E)-1(BTFY+VY (k-1));V Y (k) = (B T B + E) -1 (B T F Y + V Y (k-1) ); 同理,得到列方向上的第k次参数估计如下:Similarly, the kth parameter estimation in the column direction is obtained as follows: VX (k)=(ATA+E)-1(ATFX+VX (k-1));V X (k) = (A T A + E) -1 (A T F X +V X (k-1) ); 其中,in,
Figure FDA0003323468260000071
Figure FDA0003323468260000071
VX=[c0 c1 … c19 d1 d2 … d19]TV X = [c 0 c 1 ... c 19 d 1 d 2 ... d 19 ] T ;
Figure FDA0003323468260000072
Figure FDA0003323468260000072
其中,FX=c0+c1L+c2P+c3H+c4LP+c5LH+c6PH+c7L2+c8P2+c9H2+c10PLH+c11L3+c12LP2+c13LH2+c14L2P+c15P3+c16PH2+c17L2H+c18P2H+c19H3-X*(d0+d1L+d2P+d3H+d4LP+d5LH+d6PH+d7L2+d8P2+d9H2+d10PLH+d11L3+d12LP2+d13LH2+d14L2P+d15P3+d16PH2+d17L2H+d18P2H+d19H3);Among them, F X =c 0 +c 1 L+c 2 P+c 3 H+c 4 LP+c 5 LH+c 6 PH+c 7 L 2 +c 8 P 2 +c 9 H 2 +c 10 PLH +c 11 L 3 +c 12 LP 2 +c 13 LH 2 +c 14 L 2 P+c 15 P 3 +c 16 PH 2 +c 17 L 2 H+c 18 P 2 H+c 19 H 3 -X *(d 0 +d 1 L+d 2 P+d 3 H+d 4 LP+d 5 LH+d 6 PH+d 7 L 2 +d 8 P 2 +d 9 H 2 +d 10 PLH+d 11 L 3 +d 12 LP 2 +d 13 LH 2 +d 14 L 2 P+d 15 P 3 +d 16 PH 2 +d 17 L 2 H+d 18 P 2 H+d 19 H 3 ); (2)在求解过程中,迭代计算前后两次结果值之差小于指定限差,则计算停止,一般两次估值之间小于10-5可满足精度要求,得到模型参数RPCs,生成有理函数校正模型。(2) During the solution process, if the difference between the two result values before and after the iterative calculation is less than the specified limit, the calculation stops. Generally, the difference between the two estimates is less than 10 -5 to meet the accuracy requirements, and the model parameters RPCs are obtained to generate rational functions Calibration model.
CN202111254611.5A 2021-10-27 2021-10-27 A Method for Acquiring RPC Correction Parameters of Spaceborne SAR Images Based on Inverse RD Positioning Model Active CN113902645B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111254611.5A CN113902645B (en) 2021-10-27 2021-10-27 A Method for Acquiring RPC Correction Parameters of Spaceborne SAR Images Based on Inverse RD Positioning Model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111254611.5A CN113902645B (en) 2021-10-27 2021-10-27 A Method for Acquiring RPC Correction Parameters of Spaceborne SAR Images Based on Inverse RD Positioning Model

Publications (2)

Publication Number Publication Date
CN113902645A CN113902645A (en) 2022-01-07
CN113902645B true CN113902645B (en) 2022-12-16

Family

ID=79027141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111254611.5A Active CN113902645B (en) 2021-10-27 2021-10-27 A Method for Acquiring RPC Correction Parameters of Spaceborne SAR Images Based on Inverse RD Positioning Model

Country Status (1)

Country Link
CN (1) CN113902645B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460110B (en) * 2022-03-08 2023-06-06 中国电子科技集团公司第三十八研究所 A Servo System Error Compensation Method
CN115100079B (en) * 2022-08-24 2022-11-22 中国科学院空天信息创新研究院 Geometric correction method for remote sensing image
CN116503269B (en) * 2023-03-27 2023-12-19 中山大学 A method and device for correcting SAR images
CN117152284A (en) * 2023-08-15 2023-12-01 中色蓝图科技股份有限公司 Method for manufacturing image map of satellite-borne SAR
CN117928494B (en) * 2024-03-18 2024-05-24 中国人民解放军战略支援部队航天工程大学 A geometric positioning measurement method, system and device for optical satellite slice image
CN118068331B (en) * 2024-04-22 2024-06-25 中国科学院空天信息创新研究院 Satellite-borne synthetic aperture radar data flow type scenery dividing method, device, equipment and medium
CN119357299A (en) * 2024-10-18 2025-01-24 山东崇霖软件有限公司 Surveying and mapping geographic information data acquisition system based on cloud computing
CN119689412B (en) * 2024-12-17 2025-09-23 西安空间无线电技术研究所 A high-precision stop-and-go azimuth error correction method for spaceborne SAR

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565797B (en) * 2011-12-21 2014-03-12 北京航空航天大学 Geometric correction method for spotlight-mode satellite SAR (synthetic aperture radar) image
CN103218780B (en) * 2013-03-27 2015-09-02 中国科学院电子学研究所 Based on the nothing control satellite-borne SAR image ortho-rectification method of inverse RD location model
CN113378104A (en) * 2021-06-11 2021-09-10 中国人民解放军战略支援部队信息工程大学 RPC parameter solving method of improved adaptive spectrum correction iteration method

Also Published As

Publication number Publication date
CN113902645A (en) 2022-01-07

Similar Documents

Publication Publication Date Title
CN113902645B (en) A Method for Acquiring RPC Correction Parameters of Spaceborne SAR Images Based on Inverse RD Positioning Model
CN102645651B (en) SAR (synthetic aperture radar) tomography super-resolution imaging method
US20220107427A1 (en) System and method for gaussian process enhanced gnss corrections generation
CN102662171B (en) Synthetic aperture radar (SAR) tomography three-dimensional imaging method
CN113093242A (en) GNSS single-point positioning method based on spherical harmonic expansion
CN102168972B (en) An RPC-based three-dimensional satellite block network adjustment improvement and calibration method
WO2022161229A1 (en) Error model calibration method and apparatus, electronic device, error model-based positioning method and apparatus, terminal, computer-readable storage medium, and program product
CN101216555B (en) RPC model parameter extraction method and geometric correction method
CN106526593B (en) Sub-pixel-level corner reflector automatic positioning method based on the tight imaging model of SAR
CN105005047A (en) Forest complex terrain correction and forest height inversion methods and systems with backscattering optimization
CN107193003A (en) A kind of sparse singular value decomposition scanning radar forword-looking imaging method
CN114690208B (en) Ionospheric three-dimensional electron density sparse tomography method and device
CN101598785B (en) Method for generating rational function imaging model of each grade satellite image products
CN103310487B (en) A kind of universal imaging geometric model based on time variable generates method
CN113238229B (en) GeO satellite-machine bistatic SAR (synthetic aperture radar) non-fuzzy imaging method
CN112711022A (en) GNSS chromatography-assisted InSAR (interferometric synthetic aperture radar) atmospheric delay correction method
CN115561716A (en) A unified geometric calibration method for large-scale spaceborne SAR images
CN118013877A (en) Shallow sea topography inversion method and system integrating SAR scattering intensity and Doppler speed
CN110286374A (en) Interference SAR image simulation method based on fractal Brown motion
CN117008154A (en) Rapid ionosphere chromatography method based on relaxation factor reverse time decay function
CN117171971A (en) A downscaling correction method for high-precision surface modeling based on Bayesian optimization
Wang et al. A Novel Phase Error Estimation Method for TomoSAR Imaging Based on Adaptive Momentum Optimizer and Joint Criterion
Chen et al. Global and Local Consistency Methodology for Ionospheric dSTEC Interpolation
CN111611929A (en) River flood risk point identification method, device, server and storage medium based on LiDAR and InSAR technologies
CN118112499B (en) Dynamic target TDOA positioning method and system based on quantum golden eagle optimized layout

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant