[go: up one dir, main page]

CN116619365A - Optimal excitation and high-precision identification method for coordinated dynamics of composite robot arm - Google Patents

Optimal excitation and high-precision identification method for coordinated dynamics of composite robot arm Download PDF

Info

Publication number
CN116619365A
CN116619365A CN202310595560.5A CN202310595560A CN116619365A CN 116619365 A CN116619365 A CN 116619365A CN 202310595560 A CN202310595560 A CN 202310595560A CN 116619365 A CN116619365 A CN 116619365A
Authority
CN
China
Prior art keywords
matrix
parameters
dynamics
dynamic
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310595560.5A
Other languages
Chinese (zh)
Other versions
CN116619365B (en
Inventor
李小飞
王进
张海运
陆国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuyao Robot Research Center
Zhejiang University ZJU
Original Assignee
Yuyao Robot Research Center
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuyao Robot Research Center, Zhejiang University ZJU filed Critical Yuyao Robot Research Center
Priority to CN202310595560.5A priority Critical patent/CN116619365B/en
Publication of CN116619365A publication Critical patent/CN116619365A/en
Application granted granted Critical
Publication of CN116619365B publication Critical patent/CN116619365B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1605Simulation of manipulator lay-out, design, modelling of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

The application belongs to the field of robot model identification, and discloses a method for optimal excitation and high-precision identification of coordination dynamics of a composite robot arm. The method can realize the vehicle-arm coordinated full-state dynamics linearization modeling and optimal synchronous excitation, and meanwhile, high-precision robust identification of dynamics model parameters is realized for measurement noise and abnormal data, and finally, the accuracy and physical consistency of composite robot model identification are effectively improved.

Description

复合机器人车臂协调动力学最优激励与高精度辨识方法Optimal excitation and high-precision identification method for coordinated dynamics of composite robot arm

技术领域technical field

本发明属于机器人模型辨识领域,尤其涉及一种复合机器人车臂协调动力学最优激励与高精度辨识方法。The invention belongs to the field of robot model identification, and in particular relates to an optimal excitation and high-precision identification method for the coordinated dynamics of a composite robot arm.

背景技术Background technique

复合机器人的动力学模型是其运动控制算法开发和物理一致性仿真的重要基础,同时被用于设计干扰观测器和虚拟力/力矩传感器等以提升控制系统的响应性能,可见动力学模型的准确性直接影响复合机器人的作业效率及精度。然而在实际工程中难以准确获取复合机器人的动力学模型参数,比如直接测量方法不能确定复杂结构件惯量参数且忽略关节摩擦特性、CAD软件因电机/减速器/电缆等模型简化也无法有效计算动力学参数。因此,通过实验激励辨识复合机器人的动力学参数是行之有效的唯一途径,并且具有重要的工程意义和实际价值。The dynamic model of the composite robot is an important basis for its motion control algorithm development and physical consistency simulation. It is also used to design disturbance observers and virtual force/torque sensors to improve the response performance of the control system. It can be seen that the dynamic model is accurate. The performance directly affects the working efficiency and precision of the composite robot. However, it is difficult to accurately obtain the dynamic model parameters of composite robots in actual engineering. For example, direct measurement methods cannot determine the inertia parameters of complex structural parts and ignore joint friction characteristics, and CAD software cannot effectively calculate dynamics due to simplified models such as motors/reducers/cables. learning parameters. Therefore, it is the only effective way to identify the dynamic parameters of the composite robot through experimental excitation, and it has important engineering significance and practical value.

机器人动力学模型辨识技术是基于实验激励数据最小化理论模型输出与实际系统输出的偏差来估计模型参数,已有研究主要围绕串联机械臂的线性化动力学模型推导、激励轨迹设计、动力学模型参数求解等方面形成了丰富成果,但较少涉及复合机器人的动力学模型辨识。现有机器人动力学模型构建方法难以有效考虑关节摩擦影响,如库仑摩擦、粘滞摩擦、静态摩擦等将影响动力学建模的准确性;同时动力学线性化回归矩阵的奇异性也将影响模型参数辨识的准确性,对此已有最小惯量参数集构造、岭回归分析、正交三角分解等方法被提出来解决上述问题。此外,有效设计激励轨迹充分体现复合机器人的运动特性并且抑制实验中的外界干扰及测量噪声,是准确辨识其动力学模型参数的前提条件,现有方法多以机器人动力学回归矩阵的整体条件数作为优化指标来求解激励轨迹的最优参数,但相似条件数也可导致不同的激励效果或违背系统的物理特性,并且无法实现复合机器人车-臂协调运动的同步激励。而现有机器人动力学模型参数求解的相关方法,如拟牛顿法、卡尔曼滤波、最小二乘回归、最大似然估计、粒子群优化等,均很少考虑实验过程中的异常数据和噪声对辨识精度的不利影响。因此目前复合机器人的动力学辨识技术在全状态线性化建模、车-臂协调运动激励轨迹设计、动力学参数高精度求解等方面仍存在诸多挑战。The robot dynamics model identification technology is based on the experimental excitation data to minimize the deviation between the theoretical model output and the actual system output to estimate the model parameters. A lot of achievements have been made in parameter solving and other aspects, but less involved in the dynamic model identification of composite robots. It is difficult to effectively consider the influence of joint friction in the existing robot dynamic model construction methods, such as Coulomb friction, viscous friction, static friction, etc. will affect the accuracy of dynamic modeling; at the same time, the singularity of the dynamic linearization regression matrix will also affect the model For the accuracy of parameter identification, methods such as minimum inertia parameter set construction, ridge regression analysis, and orthogonal triangular decomposition have been proposed to solve the above problems. In addition, the effective design of the excitation trajectory to fully reflect the motion characteristics of the composite robot and suppress the external interference and measurement noise in the experiment is a prerequisite for accurately identifying the parameters of its dynamic model. Most existing methods use the overall condition number of the robot dynamic regression matrix As an optimization index to solve the optimal parameters of the excitation trajectory, similar condition numbers can also lead to different excitation effects or violate the physical characteristics of the system, and it is impossible to realize the synchronous excitation of the composite robot vehicle-arm coordinated motion. However, the existing related methods for solving the parameters of robot dynamic models, such as quasi-Newton method, Kalman filter, least squares regression, maximum likelihood estimation, particle swarm optimization, etc., rarely consider the abnormal data and noise in the experimental process. Adverse effects on identification accuracy. Therefore, there are still many challenges in the current dynamics identification technology of composite robots in terms of full-state linear modeling, vehicle-arm coordinated motion excitation trajectory design, and high-precision solution of dynamic parameters.

发明内容Contents of the invention

本发明目的在于提供一种复合机器人车臂协调动力学最优激励与高精度辨识方法,以解决上述的技术问题。The purpose of the present invention is to provide an optimal excitation and high-precision identification method for the coordination dynamics of the composite robot arm, so as to solve the above-mentioned technical problems.

为解决上述技术问题,本发明的复合机器人车臂协调动力学最优激励与高精度辨识方法的具体技术方案如下:In order to solve the above-mentioned technical problems, the specific technical scheme of the optimal excitation and high-precision identification method of the coordinated dynamics of the composite robot arm of the present invention is as follows:

复合机器人车臂协调动力学最优激励与高精度辨识方法,包括如下步骤:The optimal excitation and high-precision identification method for the coordinated dynamics of the composite robot arm includes the following steps:

S1:基于牛顿-欧拉递推方程设计复合机器人车臂协调运动的线性化动力学模型,通S1: Based on the Newton-Euler recursive equation to design the linearized dynamic model of the coordinated motion of the composite robot arm, through

过QR分解得到非奇异线性化回归方程,实现全状态动力学建模;The non-singular linearized regression equation is obtained through QR decomposition, and the full-state dynamics modeling is realized;

S2:基于复合机器人线性化动力学模型回归矩阵及其动态子矩阵的加权条件数构造优化泛函,并采用有限项傅立叶级数设计车臂协调动力学的最优同步激励轨迹,提升机S2: Construct an optimization functional based on the weighted condition number of the regression matrix of the linearized dynamic model of the compound robot and its dynamic sub-matrix, and use the finite term Fourier series to design the optimal synchronous excitation trajectory of the coordinated dynamics of the car arm, and the hoist

器人动态特性激励效果和模型参数物理一致性;The excitation effect of the dynamic characteristics of the robot and the physical consistency of the model parameters;

S3:基于测量噪声协方差矩阵正则化和异常数据加权抑制设计车臂协调动力学模型参数的自适应加权迭代最小二乘求解算法,并设计测试轨迹验证参数辨识结果的有效性,实现复合机器人动力学模型的高精度鲁棒辨识。S3: Based on the regularization of the measurement noise covariance matrix and the weighted suppression of abnormal data, an adaptive weighted iterative least squares solution algorithm for the parameters of the vehicle arm coordination dynamics model is designed, and a test trajectory is designed to verify the validity of the parameter identification results to realize the composite robot dynamics High-precision robust identification of learning models.

进一步地,所述步骤1包括基于牛顿-欧拉递推方程构建复合机器人操作臂各连杆的线性化动力学模型,公式如下Further, the step 1 includes constructing a linearized dynamic model of each link of the manipulator of the composite robot based on the Newton-Euler recurrence equation, the formula is as follows

公式(1)中代表连杆i单独运动时关节i所需的的驱动力/>及力矩In formula (1) Represents the driving force required by the joint i when the link i moves alone /> and torque

且/>分别代表关节i的线加速度和重力加速度,/>代表关节i的角速度,mi代表连杆i的质量,/>代表连杆i的质心,/>代表连杆i相对其连杆坐标系的惯量矩向量,βi=[Iai,Fci,Fsi,Fvi]T且Iai、Fci、Fsi、Fvi分别代表关节i的转动惯量、库仑摩擦、静态摩擦和粘滞摩擦系数, and/> represent the linear acceleration and gravitational acceleration of joint i respectively, /> Represents the angular velocity of joint i, m i represents the mass of link i, /> represents the center of mass of connecting rod i, /> Represents the moment of inertia vector of link i relative to its link coordinate system, β i = [I ai , F ci , F si , F vi ] T and I ai , F ci , F si , F vi represent the rotation of joint i respectively Inertia, Coulomb, static and viscous friction coefficients,

代表关节i的摩擦力矩观测矩阵,其中ωs>0代表静态摩擦的角速度阈值;算子/>分别代表操作向量的反对称矩阵和惯量矩左乘矩阵;/>代表连杆i的线性化动力学回归矩阵,Φi=[mi,mici,Iii]T代表连杆i的未知惯量参数。 Represents the friction torque observation matrix of joint i, where ω s >0 represents the angular velocity threshold of static friction; operator /> Represent the anti-symmetric matrix of the operation vector and the left multiplication matrix of the moment of inertia; /> Represents the linearized dynamic regression matrix of connecting rod i, Φ i =[m i ,mic i , I ii ] T represents the unknown inertia parameter of connecting rod i.

进一步地,所述步骤1包括构建复合机器人全向移动平台的线性化动力学模型,公式如下Further, the step 1 includes constructing a linearized dynamic model of the omnidirectional mobile platform of the composite robot, the formula is as follows

公式(2)中表示移动平台的笛卡尔空间坐标,/> 表示移动平台麦克纳姆轮组的驱动力矩,/>代表驱动力矩转换矩阵,mO、IO分别代表移动平台的质量和转动惯量,βO=[FOvx,FOvy,FOvz,FOcx,FOcy,FOcz]T代表移动平台沿平移轴xO、yO和旋转轴zO方向的粘滞摩擦系数及库仑摩擦系数,其中算子/>和/>代表移动平台摩擦力矩观测矩阵;/>ΦO=[mO,IOO]T分别代表移动平台的线性化动力学回归矩阵和未知惯量参数。In formula (2) Indicates the Cartesian space coordinates of the mobile platform, /> Indicates the driving torque of the mobile platform mecanum wheel set, /> represents the transformation matrix of driving torque, m O and I O represent the mass and moment of inertia of the mobile platform respectively, β O = [F Ovx , F Ovy , F Ovz , F Ocx , F Ocy , F Ocz ] T represents the movement of the mobile platform along the translation axis The viscous friction coefficient and the Coulomb friction coefficient in the direction of x O , y O and the rotation axis z O , where the operator /> and /> Represents the friction moment observation matrix of the mobile platform; /> Φ O =[m O , I O , β O ] T represents the linearized dynamic regression matrix and unknown inertia parameters of the mobile platform, respectively.

进一步地,所述步骤1包括基于公式(1)和公式(2),设计复合机器人车-臂协调运动的全状态线性化动力学模型,公式如下Further, the step 1 includes designing a full-state linearized dynamic model of the compound robot car-arm coordinated motion based on formula (1) and formula (2), the formula is as follows

公式(3)中表示驱动力矩且τ1,…,τn表示操作臂各关节驱动力矩;/>分别代表线性化动力学模型回归矩阵和未知惯量参数,/>代表复合机器人的广义关节空间坐标且θ1,…,θn表示操作臂各关节转角,SO=E-1(qO)AO,/> 且/>其中zi=[0,0,1]T且/>分别代表连杆i+1坐标系相对于连杆i坐标系的姿态旋转矩阵和原点平移向量;In formula (3) represents the driving torque and τ 1 ,…,τ n represent the driving torque of each joint of the manipulator arm;/> represent the regression matrix of the linearized dynamic model and the unknown inertia parameters, respectively, /> Represents the generalized joint space coordinates of the compound robot and θ 1 ,…,θ n represent the joint rotation angles of the manipulator arm, S O =E -1 (q O )A O ,/> and/> where z i =[0,0,1] T , and/> Represent the attitude rotation matrix and the origin translation vector of the link i+1 coordinate system relative to the link i coordinate system;

针对由于复合机器人未知惯量参数Φ包括不可辨识参数、可独立辨识参数和仅可组合辨识参数三部分,导致其线性动力学回归矩阵存在不满秩现象,进而影响惯量参数的辨识精度的问题,首先通过随机采样取值/>计算动力学回归矩阵和删除其零元素列得到/>其中r为随机采样点数且满足(n+4)r≥c、c≤(14n+8),从而排除不可辨识的惯量参数;Because the unknown inertia parameter Φ of the composite robot includes three parts: unidentifiable parameters, independently identifiable parameters and only combinable identifiable parameters, its linear dynamic regression matrix There is a problem of dissatisfaction with the rank phenomenon, which affects the identification accuracy of the inertia parameters. Firstly, the value is selected by random sampling /> Compute the kinetic regression matrix and delete its zero-element columns to get /> Where r is the number of random sampling points and satisfies (n+4)r≥c, c≤(14n+8), thus excluding unidentifiable inertia parameters;

矩阵的秩b代表复合机器人可辨识的最小惯量参数集的元素个数,通过QR分解得到/>其中/>为正交矩阵、/>为上三角矩阵,设定较小常数ε>0,则对角元素|Rii|≤ε对应仅可组合辨识的惯量参数/>及其回归矩阵/>从Sc中删除Sc2对应列得到最小惯量参数集回归矩阵及其参数/>进一步QR分解/> 得到matrix The rank b of represents the number of elements of the minimum inertia parameter set identifiable by the composite robot, which is obtained by QR decomposition /> where /> is an orthogonal matrix, /> is an upper triangular matrix, set the smaller constant ε>0, then the diagonal element |R ii |≤ε corresponds to the inertia parameter that can only be identified in combination /> and its regression matrix /> Delete the corresponding column of S c2 from S c to obtain the regression matrix of the minimum inertia parameter set and its parameters /> Further QR decomposition /> get

公式(4)中是复合机器人动力学的最小惯量参数集,代表对应的线性动力学回归矩阵;/>分别是由S中与Sc1、Sc2对应的列所组成的子回归矩阵;由此得到适用于参数辨识的复合机器人车臂协调全状态线性化动力学模型。In formula (4) is the minimum inertia parameter set for compound robot dynamics, Represents the corresponding linear kinetic regression matrix; /> They are sub-regression matrices composed of the columns corresponding to S c1 and S c2 in S respectively; thus, a linearized full-state linearized dynamics model of the compound robot arm coordination suitable for parameter identification is obtained.

进一步地,所述步骤2包括采用有限项傅立叶级数设计车-臂协调运动的周期性有限带宽激励轨迹,公式如下Further, the step 2 includes using the finite term Fourier series to design the periodic limited bandwidth excitation trajectory of the vehicle-arm coordinated motion, the formula is as follows

公式(5)中qj0代表复合机器人各关节激励轨迹初始偏置,ωf和N分别代表傅立叶级数的基频和阶数,令η=[η1,…,ηn+3]T且ηj=[aj1,…,ajN,bj1,…,bjN,qj0]T代表各关节激励轨迹的待优化系数。为了使动力学回归矩阵Sb具有良好的条件数抑制实验过程中测量噪声对参数辨识精度的不利影响,设计如下优化模型求解激励轨迹系数In formula (5), q j0 represents the initial offset of the excitation trajectory of each joint of the composite robot, ω f and N represent the fundamental frequency and order of the Fourier series respectively, let η=[η 1 ,…,η n+3 ] T and η j =[a j1 ,...,a jN ,b j1 ,...,b jN ,q j0 ] T represents the coefficient to be optimized for each joint excitation trajectory. In order to make the dynamic regression matrix S b have a good condition number and suppress the adverse effect of measurement noise on the parameter identification accuracy during the experiment, the following optimization model is designed to solve the excitation trajectory coefficient

s.t.s.t.

公式(6)中CondF(·)代表矩阵Frobenius范数的条件数,Sbg、Sbi、Sbf分别代表复合机器人动力学回归矩阵Sb中与重力矩参数、惯量矩参数、摩擦矩参数对应的动态子矩阵,优化子矩阵条件数可保证相应物理特性的持续激励和参数一致性;|Sbij|max、|Sbij|min分别代表矩阵Sb各元素绝对值的最大值和最小值,该优化项可保证Sb各元素处于同一数量级和减少异常数据干扰;λ1、λ2、λ3、λ4、λ5代表权重系数;优化约束项用于限制激励轨迹初始值和各关节的位置、速度、加速度满足物理约束,求解上述优化问题,得到复合机器人车臂协调动力学的最优同步激励轨迹,提升动态特性激励效果和模型参数物理一致性。Cond F ( ) in formula (6) represents the condition number of the Frobenius norm of the matrix, S bg , S bi , S bf represent the gravity moment parameters, inertia moment parameters, and friction moment parameters in the dynamic regression matrix S b of the composite robot, respectively For the corresponding dynamic sub-matrix, optimizing the condition number of the sub-matrix can ensure the continuous excitation and parameter consistency of the corresponding physical characteristics; |S bij | max and |S bij | min represent the maximum and minimum absolute values of the elements of matrix S b respectively , this optimization item can ensure that each element of S b is in the same order of magnitude and reduce abnormal data interference; λ 1 , λ 2 , λ 3 , λ 4 , λ 5 represent weight coefficients; the optimization constraint item is used to limit the initial value of the excitation trajectory and the The position, velocity, and acceleration of the robot satisfy the physical constraints, and the above optimization problem is solved to obtain the optimal synchronous excitation trajectory of the coordinated dynamics of the composite robot arm, which improves the dynamic characteristic excitation effect and the physical consistency of the model parameters.

进一步地,所述步骤3包括如下具体步骤:Further, said step 3 includes the following specific steps:

令实验过程中采样点数为m,则对应的动力学观测矩阵和响应力矩向量分别为令动力学模型辨识的力矩残差/>和测量噪声协方差矩阵的初始值其中/>代表单位矩阵,/>代表的变形矩阵;令加权正则化的动力学观测矩阵和响应力矩向量分别为其中ω代表矩阵元素的点乘,/>代表测量数据的权重向量,同时权重矩阵/>的每一列与向量W一致。设计复合机器人动力学模型参数的加权最小二乘求解算法Assuming that the number of sampling points during the experiment is m, the corresponding dynamic observation matrix and response moment vector are respectively Let the moment residuals for the dynamic model identification /> and the initial value of the measurement noise covariance matrix where /> represents the identity matrix, /> represent The deformation matrix of ; let the dynamic observation matrix and response moment vector of weighted regularization be respectively where ω represents the dot product of matrix elements, /> represents the weight vector of the measured data, while the weight matrix /> Each column of is consistent with the vector W. Weighted Least Squares Algorithm for Designing Dynamic Model Parameters of Composite Robot

并设计测量噪声协方差矩阵和测量数据加权向量的自适应律如下And design the adaptive law of measurement noise covariance matrix and measurement data weighting vector as follows

公式(7)和(8)中代表块对角矩阵且对角块元素为协方差矩阵In formulas (7) and (8) Represents a block diagonal matrix and the diagonal block elements are covariance matrices

∑,k代表算法迭代次数,代表单位列向量,α>0代表异常数据加权阈值,算子abs(·)、sgn(·)分别对矩阵各元素求绝对值和符号函数值,得到车臂协调动力学模型参数的自适应加权迭代求解算法。∑, k represents the number of iterations of the algorithm, Represents the unit column vector, α>0 represents the weighted threshold of abnormal data, the operators abs( ) and sgn( ) respectively calculate the absolute value and sign function value of each element of the matrix, and obtain the adaptive weighting of the parameters of the vehicle arm coordination dynamics model Iterative solution algorithm.

进一步地,所述车臂协调动力学模型参数的自适应加权迭代求解算法为自适应加权迭代最小二乘算法,步骤如下:Further, the adaptive weighted iterative solution algorithm for the parameters of the vehicle arm coordination dynamics model is an adaptive weighted iterative least squares algorithm, and the steps are as follows:

输入:采样数据初始权重W、/>加权阈值α;Input: sampled data Initial weight W, /> weighted threshold α;

输出:动力学模型参数ΦbOutput: Kinetic model parameter Φ b ;

初始化协方差矩阵 Initialize the covariance matrix

当条件一:权重向量W未收敛或小于最大迭代次数;循环执行下列步骤:When condition one: the weight vector W does not converge or is less than the maximum number of iterations; the following steps are performed in a loop:

当条件二:协方差矩阵∑未收敛或小于最大迭代次数;循环执行下列步骤:When the second condition: the covariance matrix Σ does not converge or is less than the maximum number of iterations; execute the following steps in a loop:

采用公式(7)计算动力学模型参数ΦbAdopt formula (7) to calculate kinetic model parameter Φ b ;

采用公式(8)更新协方差矩阵∑;Use formula (8) to update the covariance matrix Σ;

更新加权正则化的 Update weighted regularized

结束条件二循环;End condition two loop;

采用公式(8)更新权重向量W;Use formula (8) to update the weight vector W;

结束条件一循环;End condition one loop;

验证动力学模型参数ΦbVerify the kinetic model parameters Φ b ;

基于上述算法得到复合机器人动力学模型的辨识结果,采用公式(6)设计测试轨迹验证模型参数的有效性和鲁棒性。Based on the above algorithm, the identification results of the dynamic model of the composite robot are obtained, and the test trajectory is designed by formula (6) to verify the validity and robustness of the model parameters.

本发明的复合机器人车臂协调动力学最优激励与高精度辨识方法具有以下优点:本发明的复合机器人车臂协调动力学最优激励与高精度辨识方法能够实现车臂协调全状态动力学线性化建模与最优同步激励,同时面向测量噪声和异常数据实现动力学模型参数的高精度鲁棒辨识,最终有效提升复合机器人模型辨识的准确性和物理一致性。The optimal excitation and high-precision identification method for the coordination dynamics of the composite robot arm of the present invention has the following advantages: the optimal excitation and high-precision identification method for the coordination dynamics of the composite robot arm of the present invention can realize the full-state dynamic linearity of the coordination of the vehicle arm Simultaneous modeling and optimal synchronous excitation, and high-precision robust identification of dynamic model parameters for measurement noise and abnormal data, ultimately effectively improving the accuracy and physical consistency of composite robot model identification.

附图说明Description of drawings

图1为本发明的复合机器人车臂协调动力学最优激励与高精度辨识方法流程图;Fig. 1 is the flow chart of the optimal excitation and high-precision identification method of the coordinated dynamics of the composite robot arm of the present invention;

图2是本发明的复合机器人车臂协调动力学最优激励轨迹示意图;Fig. 2 is a schematic diagram of the optimal excitation trajectory of the coordinated dynamics of the composite robot arm of the present invention;

图3是本发明的复合机器人车臂协调动力学模型参数辨识测试效果示意图。Fig. 3 is a schematic diagram of the parameter identification test effect of the coordination dynamics model of the composite robot arm of the present invention.

具体实施方式Detailed ways

为了更好地了解本发明的目的、结构及功能,下面结合附图,对本发明复合机器人车臂协调动力学最优激励与高精度辨识方法做进一步详细的描述。In order to better understand the purpose, structure and function of the present invention, the optimal excitation and high-precision identification method for the coordination dynamics of the composite robot arm of the present invention will be further described in detail in conjunction with the accompanying drawings.

本发明通过复合机器人车-臂协调运动的动力学递推模型设计非奇异线性化回归方程,然后基于有限项傅立叶级数和动力学回归矩阵加权条件数设计车-臂协调运动的最优激励轨迹,并基于异常数据抑制和测量噪声先验知识设计动力学参数的高精度自适应加权迭代求解算法,最终实现复合机器人车-臂协调动力学模型的高精度鲁棒辨识。The present invention designs a non-singular linearized regression equation through the dynamic recursive model of the composite robot car-arm coordinated motion, and then designs the optimal excitation trajectory of the car-arm coordinated motion based on the finite item Fourier series and the weighted condition number of the dynamic regression matrix , and based on abnormal data suppression and prior knowledge of measurement noise, a high-precision adaptive weighted iterative solution algorithm for dynamic parameters is designed, and finally a high-precision robust identification of the vehicle-arm coordination dynamic model of the composite robot is realized.

如图1所示,本发明具体实现方案包含如下步骤:As shown in Figure 1, the specific implementation scheme of the present invention comprises the following steps:

S1:基于牛顿-欧拉递推方程设计复合机器人车-臂协调运动的线性化动力学模型,通过QR分解得到非奇异线性化回归方程,实现全状态动力学建模;S1: Based on the Newton-Euler recursive equation, the linearized dynamic model of the composite robot car-arm coordinated motion is designed, and the non-singular linearized regression equation is obtained through QR decomposition to realize the full-state dynamics modeling;

考虑关节驱动系统惯量及摩擦,基于牛顿-欧拉递推方程构建复合机器人操作臂各连杆的线性化动力学模型如下Considering the inertia and friction of the joint drive system, the linearized dynamic model of each link of the manipulator arm of the composite robot is constructed based on the Newton-Euler recursive equation as follows

公式(1)中代表连杆i单独运动时关节i所需的的驱动力/>及力矩且/>分别代表关节i的线加速度和重力加速度,代表关节i的角速度,mi代表连杆i的质量,/>代表连杆i的质心,/>代表连杆i相对其连杆坐标系的惯量矩向量,βi=[Iai,Fci,Fsi,Fvi]T且Iai、Fci、Fsi、Fvi分别代表关节i的转动惯量、库仑摩擦、静态摩擦和粘滞摩擦系数,/>代表关节i的摩擦力矩观测矩阵,其中ωs>0代表静态摩擦的角速度阈值;算子分别代表操作向量的反对称矩阵和惯量矩左乘矩阵;代表连杆i的线性化动力学回归矩阵,Φi=[mi,mici,Iii]T代表连杆i的未知惯量参数。In formula (1) Represents the driving force required by the joint i when the link i moves alone /> and torque and/> represent the linear acceleration and gravitational acceleration of joint i respectively, Represents the angular velocity of joint i, m i represents the mass of link i, /> represents the center of mass of connecting rod i, /> Represents the moment of inertia vector of link i relative to its link coordinate system, β i = [I ai , F ci , F si , F vi ] T and I ai , F ci , F si , F vi represent the rotation of joint i respectively Inertia, Coulomb, static and viscous friction coefficients, /> Represents the friction torque observation matrix of joint i, where ω s >0 represents the angular velocity threshold of static friction; the operator Represent the anti-symmetric matrix of the operation vector and the left multiplication matrix of the moment of inertia; Represents the linearized dynamic regression matrix of connecting rod i, Φ i =[m i ,mic i , I ii ] T represents the unknown inertia parameter of connecting rod i.

构建复合机器人全向移动平台的线性化动力学模型如下Construct the linearized dynamic model of the omnidirectional mobile platform of the composite robot as follows

公式(2)中表示移动平台的笛卡尔空间坐标,/> 表示移动平台麦克纳姆轮组的驱动力矩,/>代表驱动力矩转换矩阵,mO、IO分别代表移动平台的质量和转动惯量,βO=[FOvx,FOvy,FOvz,FOcx,FOcy,FOcz]T代表移动平台沿平移轴xO、yO和旋转轴zO方向的粘滞摩擦系数及库仑摩擦系数,其中算子/>和/>代表移动平台摩擦力矩观测矩阵;ΦO=[mO,IOO]T分别代表移动平台的线性化动力学回归矩阵和未知惯量参数。In formula (2) Indicates the Cartesian space coordinates of the mobile platform, /> Indicates the driving torque of the mobile platform mecanum wheel set, /> represents the transformation matrix of driving torque, m O and I O represent the mass and moment of inertia of the mobile platform respectively, β O = [F Ovx , F Ovy , F Ovz , F Ocx , F Ocy , F Ocz ] T represents the movement of the mobile platform along the translation axis The viscous friction coefficient and the Coulomb friction coefficient in the direction of x O , y O and the rotation axis z O , where the operator /> and /> Represents the friction moment observation matrix of the mobile platform; Φ O =[m O , I O , β O ] T represents the linearized dynamic regression matrix and unknown inertia parameters of the mobile platform, respectively.

基于公式(1)和公式(2),设计复合机器人车-臂协调运动的全状态线性化动力学模型如下Based on formula (1) and formula (2), the full-state linearized dynamic model of the composite robot car-arm coordinated motion is designed as follows

公式(3)中表示驱动力矩且τ1,…,τn表示操作臂各关节驱动力矩/>分别代表线性化动力学模型回归矩阵和未知惯量参数,/>代表复合机器人的广义关节空间坐标且θ1,…,θn表示操作臂各关节转角,SO=E-1(qO)AO且/>其中zi=[0,0,1]T,/>且/>分别代表连杆i+1坐标系相对于连杆i坐标系的姿态旋转矩阵和原点平移向量。In formula (3) represents the driving torque and τ 1 ,…,τ n represent the driving torque of each joint of the manipulator /> represent the regression matrix of the linearized dynamic model and the unknown inertia parameters, respectively, /> Represents the generalized joint space coordinates of the compound robot and θ 1 ,…,θ n represent the joint rotation angles of the manipulator arm, S O =E -1 (q O )A O , and/> where z i =[0,0,1] T , /> and/> Represent the attitude rotation matrix and the origin translation vector of the link i+1 coordinate system relative to the link i coordinate system, respectively.

由于复合机器人未知惯量参数Φ包括不可辨识参数、可独立辨识参数和仅可组合辨识参数三部分,导致其线性动力学回归矩阵存在不满秩现象,进而影响惯量参数的辨识精度。对此首先通过随机采样取值/>计算动力学回归矩阵和删除其零元素列得到/>其中r为随机采样点数且满足(n+4)r≥c、c≤(14n+8),从而排除不可辨识的惯量参数。Since the unknown inertia parameter Φ of the composite robot includes three parts: unidentifiable parameters, independently identifiable parameters and only combinable identifiable parameters, its linear dynamic regression matrix There is a dissatisfaction rank phenomenon, which affects the identification accuracy of inertia parameters. For this, first take the value by random sampling /> Compute the kinetic regression matrix and delete its zero-element columns to get /> Where r is the number of random sampling points and satisfies (n+4)r≥c, c≤(14n+8), so as to exclude unidentifiable inertia parameters.

易知矩阵的秩b代表复合机器人可辨识的最小惯量参数集的元素个数,通过QR分解得到/>其中/>为正交矩阵、为上三角矩阵,设定较小常数ε>0,则对角元素|Rii|≤ε对应仅可组合辨识的惯量参数/>及其回归矩阵/>从Sc中删除Sc2对应列得到最小惯量参数集回归矩阵/>及其参数/>进一步QR分解可得easy to know matrix The rank b of represents the number of elements of the minimum inertia parameter set identifiable by the composite robot, which is obtained by QR decomposition /> where /> is an orthogonal matrix, is an upper triangular matrix, set the smaller constant ε>0, then the diagonal element |R ii |≤ε corresponds to the inertia parameter that can only be identified in combination /> and its regression matrix /> Delete the corresponding column of S c2 from S c to obtain the regression matrix of the minimum inertia parameter set /> and its parameters /> Further QR decomposition Available

公式(4)中是复合机器人动力学的最小惯量参数集,/>代表对应的线性动力学回归矩阵;/>分别是由S中与Sc1、Sc2对应的列所组成的子回归矩阵;由此得到适用于参数辨识的复合机器人车-臂协调全状态线性化动力学模型。In formula (4) is the minimum inertia parameter set for compound robot dynamics, /> Represents the corresponding linear kinetic regression matrix; /> They are sub-regression matrices composed of columns corresponding to S c1 and S c2 in S, respectively; thus, a full-state linearized dynamic model of the car-arm coordination of the compound robot suitable for parameter identification is obtained.

S2:基于复合机器人线性化动力学模型回归矩阵及其动态子矩阵的加权条件数构造优化泛函,并采用有限项傅立叶级数设计车-臂协调动力学的最优同步激励轨迹,提升机器人动态特性激励效果和模型参数物理一致性;S2: Construct an optimization functional based on the weighted condition number of the regression matrix of the linearized dynamic model of the compound robot and its dynamic sub-matrix, and use the finite term Fourier series to design the optimal synchronous excitation trajectory of the vehicle-arm coordinated dynamics to improve the dynamics of the robot Characteristic incentive effects and physical consistency of model parameters;

为了实现对复合机器人动力学特性的持续激励,采用有限项傅立叶级数设计车-臂协调运动的周期性有限带宽激励轨迹,如下In order to realize the continuous excitation of the dynamic characteristics of the composite robot, the periodic limited-bandwidth excitation trajectory of the vehicle-arm coordinated motion is designed using the finite term Fourier series, as follows

公式(5)中qj0代表复合机器人各关节激励轨迹初始偏置,ωf和N分别代表傅立叶级数的基频和阶数,令η=[η1,…,ηn+3]T且ηj=[aj1,…,ajN,bj1,…,bjN,qj0]T代表各关节激励轨迹的待优化系数。为了使动力学回归矩阵Sb具有良好的条件数抑制实验过程中测量噪声对参数辨识精度的不利影响,设计如下优化模型求解激励轨迹系数In formula (5), q j0 represents the initial offset of the excitation trajectory of each joint of the composite robot, ω f and N represent the fundamental frequency and order of the Fourier series respectively, let η=[η 1 ,…,η n+3 ] T and η j =[a j1 ,...,a jN ,b j1 ,...,b jN ,q j0 ] T represents the coefficient to be optimized for each joint excitation trajectory. In order to make the dynamic regression matrix S b have a good condition number and suppress the adverse effect of measurement noise on the parameter identification accuracy during the experiment, the following optimization model is designed to solve the excitation trajectory coefficient

s.t.s.t.

公式(6)中CondF(·)代表矩阵Frobenius范数的条件数,Sbg、Sbi、Sbf分别代表复合机器人动力学回归矩阵Sb中与重力矩参数、惯量矩参数、摩擦矩参数对应的动态子矩阵,优化子矩阵条件数可保证相应物理特性的持续激励和参数一致性;|Sbij|max、|Sbij|min分别代表矩阵Sb各元素绝对值的最大值和最小值,该优化项可保证Sb各元素处于同一数量级和减少异常数据干扰;λ1、λ2、λ3、λ4、λ5代表权重系数;优化约束项用于限制激励轨迹初始值和各关节的位置、速度、加速度满足物理约束。求解上述优化问题,得到复合机器人车-臂协调动力学的最优同步激励轨迹,提升动态特性激励效果和模型参数物理一致性。Cond F ( ) in formula (6) represents the condition number of the Frobenius norm of the matrix, S bg , S bi , S bf represent the gravity moment parameters, inertia moment parameters, and friction moment parameters in the dynamic regression matrix S b of the composite robot, respectively For the corresponding dynamic sub-matrix, optimizing the condition number of the sub-matrix can ensure the continuous excitation and parameter consistency of the corresponding physical characteristics; |S bij | max and |S bij | min represent the maximum and minimum absolute values of the elements of matrix S b respectively , this optimization item can ensure that each element of S b is in the same order of magnitude and reduce abnormal data interference; λ 1 , λ 2 , λ 3 , λ 4 , λ 5 represent weight coefficients; the optimization constraint item is used to limit the initial value of the excitation trajectory and the The position, velocity, and acceleration of satisfy the physical constraints. By solving the above optimization problem, the optimal synchronous excitation trajectory of the vehicle-arm coordination dynamics of the composite robot is obtained, which improves the dynamic characteristic excitation effect and the physical consistency of the model parameters.

S3:基于测量噪声协方差矩阵正则化和异常数据加权抑制设计车-臂协调动力学模型参数的自适应加权迭代最小二乘求解算法,并设计测试轨迹验证参数辨识结果的有效性,实现复合机器人动力学模型的高精度鲁棒辨识。S3: Based on the regularization of the measurement noise covariance matrix and the weighted suppression of abnormal data, an adaptive weighted iterative least squares solution algorithm for the vehicle-arm coordination dynamics model parameters is designed, and a test trajectory is designed to verify the validity of the parameter identification results to realize the composite robot High-precision robust identification of dynamical models.

令实验过程中采样点数为m,则对应的动力学观测矩阵和响应力矩向量分别为令动力学模型辨识的力矩残差/>和测量噪声协方差矩阵的初始值其中/>代表单位矩阵,/>代表/>的变形矩阵;令加权正则化的动力学观测矩阵和响应力矩向量分别为/> 其中⊙代表矩阵元素的点乘,/>代表测量数据的权重向量,同时权重矩阵/>的每一列与向量W一致。设计复合机器人动力学模型参数的加权最小二乘求解算法Assuming that the number of sampling points during the experiment is m, the corresponding dynamic observation matrix and response moment vector are respectively Let the moment residuals for the dynamic model identification /> and the initial value of the measurement noise covariance matrix where /> represents the identity matrix, /> Representative /> The deformation matrix of the weighted regularization dynamics observation matrix and the response moment vector are respectively /> where ⊙ represents the dot product of matrix elements, /> represents the weight vector of the measured data, while the weight matrix /> Each column of is consistent with the vector W. Weighted Least Squares Algorithm for Designing Dynamic Model Parameters of Composite Robot

并设计测量噪声协方差矩阵和测量数据加权向量的自适应律如下And design the adaptive law of measurement noise covariance matrix and measurement data weighting vector as follows

公式(7)和(8)中代表块对角矩阵且对角块元素为协方差矩阵∑,k代表算法迭代次数,/>代表单位列向量,α>0代表异常数据加权阈值,算子abs(·)、sgn(·)分别对矩阵各元素求绝对值和符号函数值。得到车-臂协调动力学模型参数的自适应加权迭代求解算法如下In formulas (7) and (8) Represents the block diagonal matrix and the diagonal block elements are the covariance matrix Σ, k represents the number of algorithm iterations, /> Represents the unit column vector, α>0 represents the weighted threshold of abnormal data, and the operators abs( ) and sgn( ) respectively calculate the absolute value and sign function value of each element of the matrix. The adaptive weighted iterative solution algorithm to obtain the vehicle-arm coordination dynamics model parameters is as follows

基于上述算法得到复合机器人动力学模型的辨识结果,采用公式(6)设计测试轨迹验证模型参数的有效性和鲁棒性。Based on the above algorithm, the identification results of the dynamic model of the composite robot are obtained, and the test trajectory is designed by formula (6) to verify the validity and robustness of the model parameters.

实施例Example

本发明复合机器人车-臂协调动力学最优激励与高精度辨识的流程如图1所示,具体实施的对象是一个由麦克纳姆轮式移动平台和六自由度机械臂组成的复合机器人,各关节配置Maxsine公司的无刷直流伺服电机,关节角度由17位编码器测量;采用基于Ubuntu14.0RT内核的自研实时控制器,通过EtherCAT通信协议和Beckhoff公司的Acontis主站以1kHz采样频率实现数据处理和算法执行。该复合机器人各关节位置约束为q1min=q2min=-2m、q3min=-6.28rad、q4min=q7min=qsmin=q9min=-3.14rad、q5min=q6min=-1.57rad、q1max=q2max=2m、q3max=6.28rad、q4max=q7max=q8max=q9max=3.14rad、q5max=1.57rad、q6max=3.84rad,速度约束为 加速度约束为/> The process of optimal excitation and high-precision identification of the composite robot car-arm coordinated dynamics of the present invention is shown in Figure 1, and the specific implementation object is a composite robot composed of a Mecanum wheeled mobile platform and a six-degree-of-freedom mechanical arm. Each joint is equipped with a brushless DC servo motor from Maxsine Company, and the joint angle is measured by a 17-bit encoder; a self-developed real-time controller based on the Ubuntu14.0RT kernel is adopted, and the EtherCAT communication protocol and the Acontis master station of Beckhoff Company are realized at a sampling frequency of 1kHz Data processing and algorithm execution. The position constraints of each joint of the composite robot are q 1min =q 2min =-2m, q 3min =-6.28rad, q 4min =q 7min =q smin =q 9min =-3.14rad, q 5min =q 6min =-1.57rad, q 1max =q 2max =2m, q 3max =6.28rad, q 4max =q 7max =q 8max =q 9max =3.14rad, q 5max =1.57rad, q 6max =3.84rad, the speed constraint is The acceleration is constrained to />

本发明复合机器人车-臂协调动力学最优激励设计的优化模型如公式(5)和公式(6)所示,其中傅立叶级数的基频ωf=0.1π和阶数N=5,各优化项权重系数取值为λ1=1、λ2=λ3=λ4=0.5、λ5=0.2。求解上述优化问题得到车-臂协调运动的最优同步激励轨迹,如图2所示,然后在复合机器人上运行该轨迹并实时采集各关节角度和力矩信息,同时考虑到关节电机电流和差分数据处理将不可避免地引入高频噪声影响,利用巴特沃斯滤波算法对激励数据进行预处理,不考虑截止频率坡度使通带内的幅频响应曲线得到最大限度平滑,并达到平滑振幅的滤波要求,获取更准确的各关节位置、速度、加速度和力矩数据。The optimization model of the optimal excitation design of the composite robot car-arm coordinated dynamics of the present invention is shown in formula (5) and formula (6), wherein the fundamental frequency ω f =0.1π and order N=5 of the Fourier series, each The weight coefficients of the optimization items are λ 1 =1, λ 234 =0.5, λ 5 =0.2. Solve the above optimization problem to obtain the optimal synchronous excitation trajectory of the vehicle-arm coordinated motion, as shown in Figure 2, then run the trajectory on the composite robot and collect the angle and torque information of each joint in real time, taking into account the joint motor current and differential data The processing will inevitably introduce the influence of high-frequency noise, and the Butterworth filter algorithm is used to preprocess the excitation data, regardless of the cut-off frequency slope, so that the amplitude-frequency response curve in the passband can be smoothed to the maximum extent, and the filtering requirements for smooth amplitude can be achieved , to obtain more accurate position, velocity, acceleration and torque data of each joint.

本发明复合机器人车-臂协调动力学模型高精度辨识的求解算法如公式(7)和公式(8)所示,其中实验过程中采样点数为m=200,测量数据加权向量初始值为W=12000×1,异常数据加权阈值取为α=2.5,最大迭代次数为200。基于此得到复合机器人动力学模型参数,进一步重新设定公式(6)中的权重系数为λ1=1、λ2=λ3=λ4=0.8、λ5=0.4,求解优化模型得到用于模型参数辨识结果验证的测试轨迹,并在复合机器人上运行采集各关节的运动及力矩数据,然后分析各关节动力学模型计算力矩和实际驱动力矩的跟踪精度,最后获得测试效果如图3所示,并计算各关节的力矩残差值分别为ΔτO1=0.69Nm、ΔτO2=0.75Nm、ΔτO3=0.70Nm、ΔτO4=0.62Nm、Δτ1=0.93Nm、Δτ2=0.60Nm、Δτ3=0.24Nm、Δτ4=0.19Nm、Δτ5=0.21Nm、Δτ6=0.15Nm,可见复合机器人动力学模型计算力矩能够有效跟踪各关节实际驱动力矩,最终实现了车-臂协调动力学模型的高精度鲁棒辨识。The solution algorithm of the high-precision identification of the composite robot car-arm coordination dynamics model of the present invention is shown in formula (7) and formula (8), wherein the number of sampling points is m=200 in the experimental process, and the initial value of the weighted vector of the measurement data is W= 1 2000×1 , the weighted threshold of abnormal data is α=2.5, and the maximum number of iterations is 200. Based on this, the dynamic model parameters of the composite robot are obtained, and the weight coefficients in formula (6) are further reset to λ 1 =1, λ 234 =0.8, λ 5 =0.4, and the optimized model is obtained for The test trajectory verified by the model parameter identification results is run on the composite robot to collect the motion and torque data of each joint, and then the tracking accuracy of the calculated torque and the actual driving torque of each joint dynamic model is analyzed, and finally the test result is obtained as shown in Figure 3 , and calculate the torque residual values of each joint as Δτ O1 = 0.69Nm, Δτ O2 = 0.75Nm, Δτ O3 = 0.70Nm, Δτ O4 = 0.62Nm, Δτ 1 = 0.93Nm, Δτ 2 = 0.60Nm, Δτ 3 = 0.24Nm, Δτ 4 = 0.19Nm, Δτ 5 = 0.21Nm, Δτ 6 = 0.15Nm, it can be seen that the calculated torque of the dynamic model of the composite robot can effectively track the actual driving torque of each joint, and finally realized the vehicle-arm coordination dynamics model High-precision robust identification.

可以理解,本发明是通过一些实施例进行描述的,本领域技术人员知悉的,在不脱离本发明的精神和范围的情况下,可以对这些特征和实施例进行各种改变或等效替换。另外,在本发明的教导下,可以对这些特征和实施例进行修改以适应具体的情况及材料而不会脱离本发明的精神和范围。因此,本发明不受此处所公开的具体实施例的限制,所有落入本申请的权利要求范围内的实施例都属于本发明所保护的范围内。It can be understood that the present invention is described through some embodiments, and those skilled in the art know that various changes or equivalent substitutions can be made to these features and embodiments without departing from the spirit and scope of the present invention. In addition, the features and embodiments may be modified to adapt a particular situation and material to the teachings of the invention without departing from the spirit and scope of the invention. Therefore, the present invention is not limited by the specific embodiments disclosed here, and all embodiments falling within the scope of the claims of the present application belong to the protection scope of the present invention.

Claims (7)

1.一种复合机器人车臂协调动力学最优激励与高精度辨识方法,其特征在于,包括如下步骤:1. A compound robot car arm coordination dynamics optimal excitation and high-precision identification method, is characterized in that, comprises the steps: S1:基于牛顿-欧拉递推方程设计复合机器人车臂协调运动的线性化动力学模型,通过QR分解得到非奇异线性化回归方程,实现全状态动力学建模;S1: Based on the Newton-Euler recurrence equation, the linearized dynamic model of the coordinated motion of the composite robot arm is designed, and the non-singular linearized regression equation is obtained through QR decomposition to realize the full-state dynamics modeling; S2:基于复合机器人线性化动力学模型回归矩阵及其动态子矩阵的加权条件数构造优化泛函,并采用有限项傅立叶级数设计车臂协调动力学的最优同步激励轨迹,提升机器人动态特性激励效果和模型参数物理一致性;S2: Construct an optimization functional based on the regression matrix of the linearized dynamic model of the compound robot and the weighted condition number of its dynamic sub-matrix, and use the finite term Fourier series to design the optimal synchronous excitation trajectory of the coordinated dynamics of the vehicle arm to improve the dynamic characteristics of the robot Incentive effects and physical consistency of model parameters; S3:基于测量噪声协方差矩阵正则化和异常数据加权抑制设计车臂协调动力学模型参数的自适应加权迭代最小二乘求解算法,并设计测试轨迹验证参数辨识结果的有效性,实现复合机器人动力学模型的高精度鲁棒辨识。S3: Based on the regularization of the measurement noise covariance matrix and the weighted suppression of abnormal data, an adaptive weighted iterative least squares solution algorithm for the parameters of the vehicle arm coordination dynamics model is designed, and a test trajectory is designed to verify the validity of the parameter identification results to realize the composite robot dynamics High-precision robust identification of learning models. 2.根据权利要求1所述的复合机器人车臂协调动力学最优激励与高精度辨识方法,其特征在于,所述步骤1包括基于牛顿-欧拉递推方程构建复合机器人操作臂各连杆的线性化动力学模型,公式如下2. The optimal excitation and high-precision identification method of the coordinated dynamics of the composite robot arm according to claim 1, wherein said step 1 includes constructing each connecting rod of the composite robot manipulator based on the Newton-Euler recurrence equation The linearized kinetic model of , the formula is as follows 公式(1)中代表连杆i单独运动时关节i所需的的驱动力/>及力矩且/>分别代表关节i的线加速度和重力加速度,代表关节i的角速度,mi代表连杆i的质量,/>代表连杆i的质心,/>代表连杆i相对其连杆坐标系的惯量矩向量,βi=[Iai,Fci,Fsi,Fvi]T且Iai、Fci、Fsi、Fvi分别代表关节i的转动惯量、库仑摩擦、静态摩擦和粘滞摩擦系数,/>代表关节i的摩擦力矩观测矩阵,其中ωs>0代表静态摩擦的角速度阈值;算子/>分别代表操作向量的反对称矩阵和惯量矩左乘矩阵;/>代表连杆i的线性化动力学回归矩阵,Φi=[mi,mici,Ii,βi]T代表连杆i的未知惯量参数。In formula (1) Represents the driving force required by the joint i when the link i moves alone /> and torque and/> represent the linear acceleration and gravitational acceleration of joint i respectively, Represents the angular velocity of joint i, m i represents the mass of link i, /> represents the center of mass of connecting rod i, /> Represents the moment of inertia vector of link i relative to its link coordinate system, β i =[I ai , F ci , F si , F vi ] T and I ai , F ci , F si , F vi represent the rotation of joint i respectively Inertia, Coulomb, static and viscous friction coefficients, /> Represents the friction torque observation matrix of joint i, where ω s >0 represents the angular velocity threshold of static friction; operator /> Represent the anti-symmetric matrix of the operation vector and the left multiplication matrix of the moment of inertia; /> Represents the linearized dynamic regression matrix of connecting rod i, Φ i =[m i , mi c i , I i , β i ] T represents the unknown inertia parameter of connecting rod i. 3.根据权利要求2所述的复合机器人车臂协调动力学最优激励与高精度辨识方法,其特征在于,所述步骤1包括构建复合机器人全向移动平台的线性化动力学模型,公式如下3. The optimal excitation and high-precision identification method for the coordinated dynamics of the composite robot arm according to claim 2, wherein the step 1 includes constructing a linearized dynamics model of the omnidirectional mobile platform of the composite robot, the formula is as follows 公式(2)中表示移动平台的笛卡尔空间坐标,/> 表示移动平台麦克纳姆轮组的驱动力矩,/>代表驱动力矩转换矩阵,mO、IO分别代表移动平台的质量和转动惯量,βO=[FOvx,FOvy,FOvz,FOcx,FOcy,FOcz]T代表移动平台沿平移轴xO、yO和旋转轴zO方向的粘滞摩擦系数及库仑摩擦系数,其中算子/>代表移动平台摩擦力矩观测矩阵;/>ΦO=[mO,IO,βO]T分别代表移动平台的线性化动力学回归矩阵和未知惯量参数。In formula (2) Indicates the Cartesian space coordinates of the mobile platform, /> Indicates the driving torque of the mobile platform mecanum wheel set, /> represents the transformation matrix of driving torque, m O and I O represent the mass and moment of inertia of the mobile platform respectively, β O = [F Ovx , F Ovy , F Ovz , F Ocx , F Ocy , F Ocz ] T represents the movement of the mobile platform along the translation axis The viscous friction coefficient and the Coulomb friction coefficient in the direction of x O , y O and the rotation axis z O , where the operator /> and Represents the friction moment observation matrix of the mobile platform; /> Φ O = [m O , I O , β O ] T represents the linearized dynamic regression matrix and unknown inertia parameters of the mobile platform, respectively. 4.根据权利要求3所述的复合机器人车臂协调动力学最优激励与高精度辨识方法,其特征在于,所述步骤1包括基于公式(1)和公式(2),设计复合机器人车-臂协调运动的全状态线性化动力学模型,公式如下4. the optimal excitation and high-precision identification method of the coordinated dynamics of the composite robot car arm according to claim 3, is characterized in that, described step 1 comprises based on formula (1) and formula (2), design composite robot car- The full-state linearized dynamic model of arm coordinated motion, the formula is as follows 公式(3)中表示驱动力矩且τ1,…,τn表示操作臂各关节驱动力矩;/>分别代表线性化动力学模型回归矩阵和未知惯量参数,/>代表复合机器人的广义关节空间坐标且θ1,…,θn表示操作臂各关节转角,SO=E-1(qO)AO,/> 且/>其中zi=[0,0,1]T且./>分别代表连杆i+1坐标系相对于连杆i坐标系的姿态旋转矩阵和原点平移向量;In formula (3) represents the driving torque and τ 1 ,...,τ n represent the driving torque of each joint of the manipulator arm;/> represent the regression matrix of the linearized dynamic model and the unknown inertia parameters, respectively, /> Represents the generalized joint space coordinates of the compound robot and θ 1 ,..., θ n represent the rotation angles of each joint of the manipulator arm, S O =E -1 (q O )A O ,/> and/> where z i =[0,0,1] T , and./> Represent the attitude rotation matrix and the origin translation vector of the link i+1 coordinate system relative to the link i coordinate system; 针对由于复合机器人未知惯量参数Φ包括不可辨识参数、可独立辨识参数和仅可组合辨识参数三部分,导致其线性动力学回归矩阵存在不满秩现象,进而影响惯量参数的辨识精度的问题,首先通过随机采样取值/>计算动力学回归矩阵和删除其零元素列得到/>其中r为随机采样点数且满足(n+4)r≥c、c≤(14n+8),从而排除不可辨识的惯量参数;Because the unknown inertia parameter Φ of the composite robot includes three parts: unidentifiable parameters, independently identifiable parameters and only combinable identifiable parameters, its linear dynamic regression matrix There is a problem of dissatisfaction with the rank phenomenon, which affects the identification accuracy of the inertia parameters. Firstly, the value is selected by random sampling /> Compute the kinetic regression matrix and delete its zero-element columns to get /> Where r is the number of random sampling points and satisfies (n+4)r≥c, c≤(14n+8), thus excluding unidentifiable inertia parameters; 矩阵的秩b代表复合机器人可辨识的最小惯量参数集的元素个数,通过QR分解得到/>其中/>为正交矩阵、/>为上三角矩阵,设定较小常数ε>0,则对角元素|Rii|≤ε对应仅可组合辨识的惯量参数/>及其回归矩阵/>从/>中删除Sc2对应列得到最小惯量参数集回归矩阵/>及其参数/>进一步QR分解/> 得到matrix The rank b of represents the number of elements of the minimum inertia parameter set identifiable by the composite robot, which is obtained by QR decomposition /> where /> is an orthogonal matrix, /> is an upper triangular matrix, set the smaller constant ε>0, then the diagonal elements |R ii |≤ε correspond to the inertia parameters that can only be identified in combination/> and its regression matrix /> from /> Delete the corresponding column of S c2 to get the regression matrix of the minimum inertia parameter set /> and its parameters /> Further QR decomposition /> get 公式(4)中是复合机器人动力学的最小惯量参数集,代表对应的线性动力学回归矩阵;/>分别是由S中与Sc1、Sc2对应的列所组成的子回归矩阵;由此得到适用于参数辨识的复合机器人车臂协调全状态线性化动力学模型。In formula (4) is the minimum inertia parameter set for compound robot dynamics, Represents the corresponding linear kinetic regression matrix; /> They are sub-regression matrices composed of the columns corresponding to S c1 and S c2 in S respectively; thus, a linearized full-state linearized dynamics model of the compound robot arm coordination suitable for parameter identification is obtained. 5.根据权利要求3所述的复合机器人车臂协调动力学最优激励与高精度辨识方法,其特征在于,所述步骤2包括采用有限项傅立叶级数设计车-臂协调运动的周期性有限带宽激励轨迹,公式如下5. The optimal excitation and high-precision identification method of the coordinated dynamics of the composite robot arm according to claim 3, wherein said step 2 includes using finite term Fourier series to design the periodic finite period of the coordinated motion of the vehicle-arm. The bandwidth excitation trajectory, the formula is as follows 公式(5)中qj0代表复合机器人各关节激励轨迹初始偏置,ωf和N分别代表傅立叶级数的基频和阶数,令η=[η1,…,ηn+3]T且ηj=[aj1,…,ajN,bj1,…,bjN,qj0]T代表各关节激励轨迹的待优化系数,为了使动力学回归矩阵Sb具有良好的条件数抑制实验过程中测量噪声对参数辨识精度的不利影响,设计如下优化模型求解激励轨迹系数In formula (5), q j0 represents the initial offset of the excitation trajectory of each joint of the compound robot, ω f and N represent the fundamental frequency and order of the Fourier series respectively, let η=[η 1 ,...,η n+3 ] T and η j =[a j1 ,..., a jN , b j1 ,..., b jN , q j0 ] T represents the coefficients to be optimized for each joint excitation trajectory, in order to make the dynamic regression matrix S b have a good condition number to suppress the experimental process In view of the adverse effect of measurement noise on the parameter identification accuracy, the following optimization model is designed to solve the excitation trajectory coefficient s.t.s.t. 公式(6)中CondF(·)代表矩阵Frobenius范数的条件数,Sbg、Sbi、Sbf分别代表复合机器人动力学回归矩阵Sb中与重力矩参数、惯量矩参数、摩擦矩参数对应的动态子矩阵,优化子矩阵条件数可保证相应物理特性的持续激励和参数一致性;|Sbij|max、|Sbij|min分别代表矩阵Sb各元素绝对值的最大值和最小值,该优化项可保证Sb各元素处于同一数量级和减少异常数据干扰;λ1、λ2、λ3、λ4、λ5代表权重系数;优化约束项用于限制激励轨迹初始值和各关节的位置、速度、加速度满足物理约束,求解上述优化问题,得到复合机器人车臂协调动力学的最优同步激励轨迹,提升动态特性激励效果和模型参数物理一致性。Cond F ( ) in formula (6) represents the condition number of the Frobenius norm of the matrix, S bg , S bi , S bf represent the gravity moment parameters, inertia moment parameters, and friction moment parameters in the dynamic regression matrix S b of the composite robot, respectively For the corresponding dynamic sub-matrix, optimizing the condition number of the sub-matrix can ensure the continuous excitation and parameter consistency of the corresponding physical characteristics; |S bij | max and |S bij | min represent the maximum and minimum absolute values of the elements of matrix S b respectively , this optimization item can ensure that each element of S b is in the same order of magnitude and reduce abnormal data interference; λ 1 , λ 2 , λ 3 , λ 4 , λ 5 represent weight coefficients; the optimization constraint item is used to limit the initial value of the excitation trajectory and the The position, velocity, and acceleration of the robot satisfy the physical constraints, and the above optimization problem is solved to obtain the optimal synchronous excitation trajectory of the coordinated dynamics of the composite robot arm, which improves the dynamic characteristic excitation effect and the physical consistency of the model parameters. 6.根据权利要求3所述的复合机器人车臂协调动力学最优激励与高精度辨识方法,其特征在于,所述步骤3包括如下具体步骤:6. The optimal excitation and high-precision identification method for the coordinated dynamics of the composite robot arm according to claim 3, wherein the step 3 includes the following specific steps: 令实验过程中采样点数为m,则对应的动力学观测矩阵和响应力矩向量分别为令动力学模型辨识的力矩残差/>和测量噪声协方差矩阵的初始值其中/>代表单位矩阵,/>代表/>的变形矩阵;令加权正则化的动力学观测矩阵和响应力矩向量分别为其中⊙代表矩阵元素的点乘,/>代表测量数据的权重向量,同时权重矩阵/>的每一列与向量W一致。设计复合机器人动力学模型参数的加权最小二乘求解算法Assuming that the number of sampling points during the experiment is m, the corresponding dynamic observation matrix and response moment vector are respectively Let the moment residuals for the dynamic model identification /> and the initial value of the measurement noise covariance matrix where /> represents the identity matrix, /> Representative /> The deformation matrix of ; let the dynamic observation matrix and response moment vector of weighted regularization be respectively where ⊙ represents the dot product of matrix elements, /> represents the weight vector of the measured data, while the weight matrix /> Each column of is consistent with the vector W. Weighted Least Squares Algorithm for Designing Dynamic Model Parameters of Composite Robot 并设计测量噪声协方差矩阵和测量数据加权向量的自适应律如下And design the adaptive law of measurement noise covariance matrix and measurement data weighting vector as follows 公式(7)和(8)中代表块对角矩阵且对角块元素为协方差矩阵∑,k代表算法迭代次数,/>代表单位列向量,α>0代表异常数据加权阈值,算子abs(·)、sgn(·)分别对矩阵各元素求绝对值和符号函数值,得到车臂协调动力学模型参数的自适应加权迭代求解算法。In formulas (7) and (8) Represents the block diagonal matrix and the diagonal block elements are the covariance matrix Σ, k represents the number of algorithm iterations, /> Represents the unit column vector, α>0 represents the weighted threshold of abnormal data, the operators abs( ) and sgn( ) respectively calculate the absolute value and sign function value of each element of the matrix, and obtain the adaptive weighting of the parameters of the vehicle arm coordination dynamics model Iterative solution algorithm. 7.根据权利要求6所述的复合机器人车臂协调动力学最优激励与高精度辨识方法,其特征在于,所述车臂协调动力学模型参数的自适应加权迭代求解算法为自适应加权迭代最小二乘算法,步骤如下:7. The optimal excitation and high-precision identification method for the coordination dynamics of the composite robot arm according to claim 6, wherein the adaptive weighted iterative solution algorithm for the coordination dynamics model parameters of the vehicle arm is an adaptive weighted iteration The least squares algorithm, the steps are as follows: 输入:采样数据初始权重W、/>加权阈值α;Input: sampled data Initial weight W, /> weighted threshold α; 输出:动力学模型参数ΦbOutput: Kinetic model parameter Φ b ; 初始化协方差矩阵 Initialize the covariance matrix 当条件一:权重向量W未收敛或小于最大迭代次数;循环执行下列步骤:When condition one: the weight vector W does not converge or is less than the maximum number of iterations; the following steps are performed in a loop: 当条件二:协方差矩阵∑未收敛或小于最大迭代次数;循环执行下列步骤:When the second condition: the covariance matrix Σ does not converge or is less than the maximum number of iterations; execute the following steps in a loop: 采用公式(7)计算动力学模型参数ΦbAdopt formula (7) to calculate kinetic model parameter Φ b ; 采用公式(8)更新协方差矩阵∑;Use formula (8) to update the covariance matrix Σ; 更新加权正则化的 Update weighted regularized 结束条件二循环;End condition two loop; 采用公式(8)更新权重向量W;Use formula (8) to update the weight vector W; 结束条件一循环;End condition one loop; 验证动力学模型参数ΦbVerify the kinetic model parameters Φ b ; 基于上述算法得到复合机器人动力学模型的辨识结果,采用公式(6)设计测试轨迹验证模型参数的有效性和鲁棒性。Based on the above algorithm, the identification results of the dynamic model of the composite robot are obtained, and the test trajectory is designed by formula (6) to verify the validity and robustness of the model parameters.
CN202310595560.5A 2023-05-24 2023-05-24 Optimal Excitation and High-Precision Identification Method for Coordinated Dynamics of Composite Robot Arm Active CN116619365B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310595560.5A CN116619365B (en) 2023-05-24 2023-05-24 Optimal Excitation and High-Precision Identification Method for Coordinated Dynamics of Composite Robot Arm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310595560.5A CN116619365B (en) 2023-05-24 2023-05-24 Optimal Excitation and High-Precision Identification Method for Coordinated Dynamics of Composite Robot Arm

Publications (2)

Publication Number Publication Date
CN116619365A true CN116619365A (en) 2023-08-22
CN116619365B CN116619365B (en) 2025-11-04

Family

ID=87641285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310595560.5A Active CN116619365B (en) 2023-05-24 2023-05-24 Optimal Excitation and High-Precision Identification Method for Coordinated Dynamics of Composite Robot Arm

Country Status (1)

Country Link
CN (1) CN116619365B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117331311A (en) * 2023-09-21 2024-01-02 中山大学 Robot dynamics parameter estimation method based on acceleration-free recursive filtering regression
CN117549308A (en) * 2023-12-25 2024-02-13 埃斯顿(南京)医疗科技有限公司 Robot external force estimation method, terminal and medium
CN117549300A (en) * 2023-11-22 2024-02-13 哈尔滨工业大学 A method to identify the dynamic parameters of a robotic arm at the current level
CN118404591A (en) * 2024-07-03 2024-07-30 浙江大学 A method for adaptive identification of nonlinear dynamic parameters of reducer
CN119328757A (en) * 2024-11-06 2025-01-21 浙江大学 Dynamic sliding mode motion control method for mobile manipulator based on dynamics online identification feedforward
CN119369387A (en) * 2024-10-25 2025-01-28 哈尔滨工业大学 Dynamic identification method of manipulator based on data weighting and friction separation
CN119610133A (en) * 2025-01-24 2025-03-14 浙江大学 A method for estimating foot-ground contact force and terrain classification of an ostrich-like robot
CN120023825A (en) * 2025-04-01 2025-05-23 中核武汉核电运行技术股份有限公司 A robot excitation trajectory planning method and system based on observation matrix weighted condition number

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060116783A1 (en) * 2004-12-01 2006-06-01 Canadian Space Agency Method and system for torque/force control of hydraulic actuators
WO2006124390A2 (en) * 2005-05-19 2006-11-23 Intuitive Surgical, Inc Software center and highly configurable robotic systems for surgery and other uses
KR20170008486A (en) * 2015-07-14 2017-01-24 재단법인대구경북과학기술원 Parameter identification for robots with a fast and robust trajectory design approach
CN109773794A (en) * 2019-02-26 2019-05-21 浙江大学 A Neural Network-based Dynamic Parameter Identification Method for 6-axis Robot
KR102170591B1 (en) * 2019-11-01 2020-10-27 주식회사 뉴로메카 Friction Compensation Method for Multi-DOF Cooperative Robots
WO2020260999A1 (en) * 2019-06-27 2020-12-30 Ethicon Llc Robotic surgical system with safety and cooperative sensing control
CN114888812A (en) * 2022-06-20 2022-08-12 上海大学 Mobile mechanical arm station planning method based on rigidity performance optimization

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060116783A1 (en) * 2004-12-01 2006-06-01 Canadian Space Agency Method and system for torque/force control of hydraulic actuators
WO2006124390A2 (en) * 2005-05-19 2006-11-23 Intuitive Surgical, Inc Software center and highly configurable robotic systems for surgery and other uses
KR20170008486A (en) * 2015-07-14 2017-01-24 재단법인대구경북과학기술원 Parameter identification for robots with a fast and robust trajectory design approach
CN109773794A (en) * 2019-02-26 2019-05-21 浙江大学 A Neural Network-based Dynamic Parameter Identification Method for 6-axis Robot
WO2020260999A1 (en) * 2019-06-27 2020-12-30 Ethicon Llc Robotic surgical system with safety and cooperative sensing control
KR102170591B1 (en) * 2019-11-01 2020-10-27 주식회사 뉴로메카 Friction Compensation Method for Multi-DOF Cooperative Robots
CN114888812A (en) * 2022-06-20 2022-08-12 上海大学 Mobile mechanical arm station planning method based on rigidity performance optimization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄开启;叶涛;丁问司;陈荣华;: "凿岩机器人钻臂动力学参数分步理论辨识方法", 机械设计与研究, no. 04, 20 August 2018 (2018-08-20) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117331311A (en) * 2023-09-21 2024-01-02 中山大学 Robot dynamics parameter estimation method based on acceleration-free recursive filtering regression
CN117331311B (en) * 2023-09-21 2024-05-14 中山大学 Robot dynamics parameter estimation method based on acceleration-free recursive filtering regression
CN117549300A (en) * 2023-11-22 2024-02-13 哈尔滨工业大学 A method to identify the dynamic parameters of a robotic arm at the current level
CN117549308A (en) * 2023-12-25 2024-02-13 埃斯顿(南京)医疗科技有限公司 Robot external force estimation method, terminal and medium
CN118404591A (en) * 2024-07-03 2024-07-30 浙江大学 A method for adaptive identification of nonlinear dynamic parameters of reducer
CN119369387A (en) * 2024-10-25 2025-01-28 哈尔滨工业大学 Dynamic identification method of manipulator based on data weighting and friction separation
CN119328757A (en) * 2024-11-06 2025-01-21 浙江大学 Dynamic sliding mode motion control method for mobile manipulator based on dynamics online identification feedforward
CN119328757B (en) * 2024-11-06 2025-06-17 浙江大学 Dynamic sliding mode motion control method for mobile manipulator based on dynamics online identification feedforward
CN119610133A (en) * 2025-01-24 2025-03-14 浙江大学 A method for estimating foot-ground contact force and terrain classification of an ostrich-like robot
CN120023825A (en) * 2025-04-01 2025-05-23 中核武汉核电运行技术股份有限公司 A robot excitation trajectory planning method and system based on observation matrix weighted condition number

Also Published As

Publication number Publication date
CN116619365B (en) 2025-11-04

Similar Documents

Publication Publication Date Title
CN116619365A (en) Optimal excitation and high-precision identification method for coordinated dynamics of composite robot arm
CN109514602B (en) Industrial robot moment compensation control method based on load self-adaptive identification
CN111319036B (en) Self-adaptive algorithm-based mobile mechanical arm position/force active disturbance rejection control method
Huang et al. Dynamic parameter identification of serial robots using a hybrid approach
CN108015763B (en) Anti-noise-interference redundant manipulator path planning method
CN108297093B (en) A step-by-step identification method for dynamic parameters of manipulators
CN110539302A (en) industrial robot overall dynamics modeling and dynamics parameter identification method
CN111368466B (en) Mechanical vibration prediction method based on frequency response function parameter correction
CN107984472A (en) A kind of neural solver design method of change ginseng for redundant manipulator motion planning
CN114516050B (en) Robot external force estimation method and system based on configuration Jacobian condition number optimization
CN104950678A (en) Neural network inversion control method for flexible manipulator system
WO2022051973A1 (en) Milling robot multi-modal frequency response prediction method based on small-sample transfer learning
CN114310911B (en) Driving joint dynamic error prediction and compensation system and method based on neural network
CN116048085B (en) Fault estimation and fault-tolerant iterative learning control method for mobile robot
CN107702709A (en) A kind of noncooperative target moves the time-frequency domain mixing discrimination method with inertial parameter
US12343870B1 (en) Self-adaptive identification method for nonlinear dynamic parameters of reducer
CN112711815A (en) Aircraft modeling and model characteristic analysis system
CN117648864A (en) A method and application of physical field operator construction based on diffeomorphism
CN110065073A (en) A kind of Dynamic Models of Robot Manipulators discrimination method
CN116968020A (en) Method and device for establishing flexible collision detection model of robot
CN114147713A (en) Trajectory tracking control method based on adaptive neural network high-order dynamic sliding mode
CN117840986A (en) A robot positioning error classification calibration compensation method and system
CN116719234A (en) Full parameter identification method of composite robot dynamics based on maximum likelihood estimation
CN118050988A (en) Robot dynamics model identification method, terminal and medium
Ma et al. Active manipulation of elastic rods using optimization-based shape perception and sensorimotor model approximation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant