CA3002954A1 - Dosage regimen for a phosphatidylinositol 3-kinase inhibitor - Google Patents
Dosage regimen for a phosphatidylinositol 3-kinase inhibitor Download PDFInfo
- Publication number
- CA3002954A1 CA3002954A1 CA3002954A CA3002954A CA3002954A1 CA 3002954 A1 CA3002954 A1 CA 3002954A1 CA 3002954 A CA3002954 A CA 3002954A CA 3002954 A CA3002954 A CA 3002954A CA 3002954 A1 CA3002954 A1 CA 3002954A1
- Authority
- CA
- Canada
- Prior art keywords
- phosphatidylinositol
- compound
- kinase inhibitor
- pharmaceutically acceptable
- schedule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229940043441 phosphoinositide 3-kinase inhibitor Drugs 0.000 title claims abstract description 95
- 239000002935 phosphatidylinositol 3 kinase inhibitor Substances 0.000 title claims abstract description 70
- 150000001875 compounds Chemical class 0.000 claims abstract description 124
- 150000003839 salts Chemical class 0.000 claims abstract description 88
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 63
- 239000003814 drug Substances 0.000 claims abstract description 62
- 201000010099 disease Diseases 0.000 claims abstract description 50
- 230000002062 proliferating effect Effects 0.000 claims abstract description 45
- 238000000034 method Methods 0.000 claims abstract description 43
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 20
- 238000011285 therapeutic regimen Methods 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims abstract description 8
- 206010028980 Neoplasm Diseases 0.000 claims description 73
- 229940124597 therapeutic agent Drugs 0.000 claims description 49
- 238000011282 treatment Methods 0.000 claims description 49
- 230000000694 effects Effects 0.000 claims description 25
- 201000011510 cancer Diseases 0.000 claims description 21
- -1 LY2780301 Chemical compound 0.000 claims description 17
- 201000001421 hyperglycemia Diseases 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 12
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 12
- 208000026310 Breast neoplasm Diseases 0.000 claims description 11
- 239000003112 inhibitor Substances 0.000 claims description 11
- 206010006187 Breast cancer Diseases 0.000 claims description 10
- 230000002265 prevention Effects 0.000 claims description 9
- ZGRDYKFVDCFJCZ-UHFFFAOYSA-N 1-[4-[5-[5-amino-6-(5-tert-butyl-1,3,4-oxadiazol-2-yl)pyrazin-2-yl]-1-ethyl-1,2,4-triazol-3-yl]piperidin-1-yl]-3-hydroxypropan-1-one Chemical compound CCN1N=C(C2CCN(CC2)C(=O)CCO)N=C1C(N=1)=CN=C(N)C=1C1=NN=C(C(C)(C)C)O1 ZGRDYKFVDCFJCZ-UHFFFAOYSA-N 0.000 claims description 6
- BEUQXVWXFDOSAQ-UHFFFAOYSA-N 2-methyl-2-[4-[2-(5-methyl-2-propan-2-yl-1,2,4-triazol-3-yl)-5,6-dihydroimidazo[1,2-d][1,4]benzoxazepin-9-yl]pyrazol-1-yl]propanamide Chemical compound CC(C)N1N=C(C)N=C1C1=CN(CCOC=2C3=CC=C(C=2)C2=CN(N=C2)C(C)(C)C(N)=O)C3=N1 BEUQXVWXFDOSAQ-UHFFFAOYSA-N 0.000 claims description 6
- 210000000481 breast Anatomy 0.000 claims description 6
- PZBCKZWLPGJMAO-UHFFFAOYSA-N copanlisib Chemical compound C1=CC=2C3=NCCN3C(NC(=O)C=3C=NC(N)=NC=3)=NC=2C(OC)=C1OCCCN1CCOCC1 PZBCKZWLPGJMAO-UHFFFAOYSA-N 0.000 claims description 6
- 229950002550 copanlisib Drugs 0.000 claims description 6
- 229950004941 pictilisib Drugs 0.000 claims description 6
- LHNIIDJUOCFXAP-UHFFFAOYSA-N pictrelisib Chemical compound C1CN(S(=O)(=O)C)CCN1CC1=CC2=NC(C=3C=4C=NNC=4C=CC=3)=NC(N3CCOCC3)=C2S1 LHNIIDJUOCFXAP-UHFFFAOYSA-N 0.000 claims description 6
- BLGWHBSBBJNKJO-UHFFFAOYSA-N serabelisib Chemical compound C=1C=C2OC(N)=NC2=CC=1C(=CN12)C=CC1=NC=C2C(=O)N1CCOCC1 BLGWHBSBBJNKJO-UHFFFAOYSA-N 0.000 claims description 6
- 229950001269 taselisib Drugs 0.000 claims description 6
- 206010009944 Colon cancer Diseases 0.000 claims description 5
- 210000001072 colon Anatomy 0.000 claims description 5
- 201000002758 colorectal adenoma Diseases 0.000 claims description 5
- 235000013305 food Nutrition 0.000 claims description 5
- 210000000664 rectum Anatomy 0.000 claims description 5
- 208000012609 Cowden disease Diseases 0.000 claims description 4
- 201000002847 Cowden syndrome Diseases 0.000 claims description 4
- 208000008770 Multiple Hamartoma Syndrome Diseases 0.000 claims description 4
- 210000000621 bronchi Anatomy 0.000 claims description 4
- 230000002496 gastric effect Effects 0.000 claims description 4
- 210000001672 ovary Anatomy 0.000 claims description 4
- 210000000496 pancreas Anatomy 0.000 claims description 4
- 210000002307 prostate Anatomy 0.000 claims description 4
- 201000010700 sporadic breast cancer Diseases 0.000 claims description 4
- 206010041823 squamous cell carcinoma Diseases 0.000 claims description 4
- 210000002784 stomach Anatomy 0.000 claims description 4
- 208000020816 lung neoplasm Diseases 0.000 claims description 3
- 229940126062 Compound A Drugs 0.000 description 42
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 42
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 32
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 32
- 239000012071 phase Substances 0.000 description 29
- 239000008103 glucose Substances 0.000 description 28
- 239000000203 mixture Substances 0.000 description 28
- 241000700159 Rattus Species 0.000 description 27
- 239000012828 PI3K inhibitor Substances 0.000 description 25
- 241001465754 Metazoa Species 0.000 description 24
- 210000004369 blood Anatomy 0.000 description 20
- 239000008280 blood Substances 0.000 description 20
- 239000012073 inactive phase Substances 0.000 description 19
- 108091007960 PI3Ks Proteins 0.000 description 18
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 18
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 14
- 208000035475 disorder Diseases 0.000 description 11
- VWUXBMIQPBEWFH-WCCTWKNTSA-N Fulvestrant Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3[C@H](CCCCCCCCCS(=O)CCCC(F)(F)C(F)(F)F)CC2=C1 VWUXBMIQPBEWFH-WCCTWKNTSA-N 0.000 description 10
- 229960002258 fulvestrant Drugs 0.000 description 10
- HPJKCIUCZWXJDR-UHFFFAOYSA-N letrozole Chemical compound C1=CC(C#N)=CC=C1C(N1N=CN=C1)C1=CC=C(C#N)C=C1 HPJKCIUCZWXJDR-UHFFFAOYSA-N 0.000 description 10
- 239000003981 vehicle Substances 0.000 description 10
- 101000605639 Homo sapiens Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform Proteins 0.000 description 9
- 241000699660 Mus musculus Species 0.000 description 9
- 102100038332 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform Human genes 0.000 description 9
- 229960003881 letrozole Drugs 0.000 description 9
- 238000011580 nude mouse model Methods 0.000 description 9
- 241000282412 Homo Species 0.000 description 8
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 8
- 230000000259 anti-tumor effect Effects 0.000 description 8
- 208000024891 symptom Diseases 0.000 description 8
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 7
- 229920002472 Starch Polymers 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 229940043355 kinase inhibitor Drugs 0.000 description 7
- 239000000314 lubricant Substances 0.000 description 7
- 239000008108 microcrystalline cellulose Substances 0.000 description 7
- 229940016286 microcrystalline cellulose Drugs 0.000 description 7
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 7
- 239000003757 phosphotransferase inhibitor Substances 0.000 description 7
- 235000019698 starch Nutrition 0.000 description 7
- 241000699670 Mus sp. Species 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 6
- 239000007884 disintegrant Substances 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000007920 subcutaneous administration Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 208000037844 advanced solid tumor Diseases 0.000 description 5
- 230000000692 anti-sense effect Effects 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 238000011685 brown norway rat Methods 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000000328 estrogen antagonist Substances 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000037023 motor activity Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 4
- 208000031648 Body Weight Changes Diseases 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- 229920002785 Croscarmellose sodium Polymers 0.000 description 4
- 208000010201 Exanthema Diseases 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229930012538 Paclitaxel Natural products 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 4
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 4
- 208000026935 allergic disease Diseases 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 229940046836 anti-estrogen Drugs 0.000 description 4
- 230000001833 anti-estrogenic effect Effects 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 230000004579 body weight change Effects 0.000 description 4
- 229940022399 cancer vaccine Drugs 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 4
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 4
- 229940105329 carboxymethylcellulose Drugs 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 235000010980 cellulose Nutrition 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 4
- 239000008121 dextrose Substances 0.000 description 4
- QKIUAMUSENSFQQ-UHFFFAOYSA-N dimethylazanide Chemical compound C[N-]C QKIUAMUSENSFQQ-UHFFFAOYSA-N 0.000 description 4
- 201000005884 exanthem Diseases 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000012458 free base Substances 0.000 description 4
- 150000004676 glycans Chemical class 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 229960001592 paclitaxel Drugs 0.000 description 4
- 238000009520 phase I clinical trial Methods 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 239000005017 polysaccharide Substances 0.000 description 4
- 229920003124 powdered cellulose Polymers 0.000 description 4
- 235000019814 powdered cellulose Nutrition 0.000 description 4
- 206010037844 rash Diseases 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 208000003265 stomatitis Diseases 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 239000000454 talc Substances 0.000 description 4
- 235000012222 talc Nutrition 0.000 description 4
- 229910052623 talc Inorganic materials 0.000 description 4
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OAWXZFGKDDFTGS-BYPYZUCNSA-N (2s)-pyrrolidine-1,2-dicarboxylic acid Chemical compound OC(=O)[C@@H]1CCCN1C(O)=O OAWXZFGKDDFTGS-BYPYZUCNSA-N 0.000 description 3
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 3
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 description 3
- 239000012981 Hank's balanced salt solution Substances 0.000 description 3
- 206010020772 Hypertension Diseases 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- 108010029485 Protein Isoforms Proteins 0.000 description 3
- 102000001708 Protein Isoforms Human genes 0.000 description 3
- 208000003721 Triple Negative Breast Neoplasms Diseases 0.000 description 3
- 235000010443 alginic acid Nutrition 0.000 description 3
- 229920000615 alginic acid Polymers 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 238000009566 cancer vaccine Methods 0.000 description 3
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 3
- 229960004316 cisplatin Drugs 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229960005167 everolimus Drugs 0.000 description 3
- 239000007903 gelatin capsule Substances 0.000 description 3
- 210000003128 head Anatomy 0.000 description 3
- 229940090044 injection Drugs 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 201000001441 melanoma Diseases 0.000 description 3
- 208000010125 myocardial infarction Diseases 0.000 description 3
- 239000005022 packaging material Substances 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 230000036470 plasma concentration Effects 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 208000022679 triple-negative breast carcinoma Diseases 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- 229960005486 vaccine Drugs 0.000 description 3
- STUWGJZDJHPWGZ-LBPRGKRZSA-N (2S)-N1-[4-methyl-5-[2-(1,1,1-trifluoro-2-methylpropan-2-yl)-4-pyridinyl]-2-thiazolyl]pyrrolidine-1,2-dicarboxamide Chemical compound S1C(C=2C=C(N=CC=2)C(C)(C)C(F)(F)F)=C(C)N=C1NC(=O)N1CCC[C@H]1C(N)=O STUWGJZDJHPWGZ-LBPRGKRZSA-N 0.000 description 2
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 description 2
- QDPVYZNVVQQULH-UHFFFAOYSA-N 4-amino-5-fluoro-3-[6-(4-methylpiperazin-1-yl)-1H-benzimidazol-2-yl]-1H-quinolin-2-one 2-hydroxypropanoic acid hydrate Chemical compound O.CC(O)C(O)=O.C1CN(C)CCN1C1=CC=C(N=C(N2)C=3C(NC4=CC=CC(F)=C4C=3N)=O)C2=C1 QDPVYZNVVQQULH-UHFFFAOYSA-N 0.000 description 2
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
- XAUDJQYHKZQPEU-KVQBGUIXSA-N 5-aza-2'-deoxycytidine Chemical compound O=C1N=C(N)N=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XAUDJQYHKZQPEU-KVQBGUIXSA-N 0.000 description 2
- RHXHGRAEPCAFML-UHFFFAOYSA-N 7-cyclopentyl-n,n-dimethyl-2-[(5-piperazin-1-ylpyridin-2-yl)amino]pyrrolo[2,3-d]pyrimidine-6-carboxamide Chemical compound N1=C2N(C3CCCC3)C(C(=O)N(C)C)=CC2=CN=C1NC(N=C1)=CC=C1N1CCNCC1 RHXHGRAEPCAFML-UHFFFAOYSA-N 0.000 description 2
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 2
- 108010082126 Alanine transaminase Proteins 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 206010002388 Angina unstable Diseases 0.000 description 2
- BFYIZQONLCFLEV-DAELLWKTSA-N Aromasine Chemical compound O=C1C=C[C@]2(C)[C@H]3CC[C@](C)(C(CC4)=O)[C@@H]4[C@@H]3CC(=C)C2=C1 BFYIZQONLCFLEV-DAELLWKTSA-N 0.000 description 2
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 2
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 2
- 108010006654 Bleomycin Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 2
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 2
- 206010048610 Cardiotoxicity Diseases 0.000 description 2
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 2
- 208000034656 Contusions Diseases 0.000 description 2
- 108010037462 Cyclooxygenase 2 Proteins 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- 108010092160 Dactinomycin Proteins 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- 206010012735 Diarrhoea Diseases 0.000 description 2
- 101001024630 Drosophila melanogaster RNA cytidine acetyltransferase Proteins 0.000 description 2
- 101000652705 Drosophila melanogaster Transcription initiation factor TFIID subunit 4 Proteins 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 238000001061 Dunnett's test Methods 0.000 description 2
- 206010013911 Dysgeusia Diseases 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- 108091008794 FGF receptors Proteins 0.000 description 2
- 102000044168 Fibroblast Growth Factor Receptor Human genes 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 229920002907 Guar gum Polymers 0.000 description 2
- 101000873927 Homo sapiens Squamous cell carcinoma antigen recognized by T-cells 3 Proteins 0.000 description 2
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 2
- UIARLYUEJFELEN-LROUJFHJSA-N LSM-1231 Chemical compound C12=C3N4C5=CC=CC=C5C3=C3C(=O)NCC3=C2C2=CC=CC=C2N1[C@]1(C)[C@](CO)(O)C[C@H]4O1 UIARLYUEJFELEN-LROUJFHJSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 206010067125 Liver injury Diseases 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 229920003091 Methocel™ Polymers 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 206010028813 Nausea Diseases 0.000 description 2
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 2
- 108091008606 PDGF receptors Proteins 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- 206010033645 Pancreatitis Diseases 0.000 description 2
- 241000233805 Phoenix Species 0.000 description 2
- 206010034972 Photosensitivity reaction Diseases 0.000 description 2
- 102000011653 Platelet-Derived Growth Factor Receptors Human genes 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 2
- 108090000315 Protein Kinase C Proteins 0.000 description 2
- 102000003923 Protein Kinase C Human genes 0.000 description 2
- 206010037868 Rash maculo-papular Diseases 0.000 description 2
- 101000996915 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Nucleoporin NSP1 Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 206010041067 Small cell lung cancer Diseases 0.000 description 2
- 102100035748 Squamous cell carcinoma antigen recognized by T-cells 3 Human genes 0.000 description 2
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 2
- 208000007814 Unstable Angina Diseases 0.000 description 2
- 108091008605 VEGF receptors Proteins 0.000 description 2
- 102000009484 Vascular Endothelial Growth Factor Receptors Human genes 0.000 description 2
- 206010047700 Vomiting Diseases 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 229940100198 alkylating agent Drugs 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- 229950010482 alpelisib Drugs 0.000 description 2
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 2
- 229940063655 aluminum stearate Drugs 0.000 description 2
- 229960002932 anastrozole Drugs 0.000 description 2
- YBBLVLTVTVSKRW-UHFFFAOYSA-N anastrozole Chemical compound N#CC(C)(C)C1=CC(C(C)(C#N)C)=CC(CN2N=CN=C2)=C1 YBBLVLTVTVSKRW-UHFFFAOYSA-N 0.000 description 2
- 230000002280 anti-androgenic effect Effects 0.000 description 2
- 239000000051 antiandrogen Substances 0.000 description 2
- 229940030495 antiandrogen sex hormone and modulator of the genital system Drugs 0.000 description 2
- 239000003886 aromatase inhibitor Substances 0.000 description 2
- 206010003549 asthenia Diseases 0.000 description 2
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229960000397 bevacizumab Drugs 0.000 description 2
- 229960000997 bicalutamide Drugs 0.000 description 2
- ACWZRVQXLIRSDF-UHFFFAOYSA-N binimetinib Chemical compound OCCONC(=O)C=1C=C2N(C)C=NC2=C(F)C=1NC1=CC=C(Br)C=C1F ACWZRVQXLIRSDF-UHFFFAOYSA-N 0.000 description 2
- 238000004820 blood count Methods 0.000 description 2
- 230000036765 blood level Effects 0.000 description 2
- 238000010241 blood sampling Methods 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- 150000001649 bromium compounds Chemical class 0.000 description 2
- 208000034526 bruise Diseases 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- 239000008116 calcium stearate Substances 0.000 description 2
- 235000013539 calcium stearate Nutrition 0.000 description 2
- 229960004117 capecitabine Drugs 0.000 description 2
- 229960004562 carboplatin Drugs 0.000 description 2
- 231100000259 cardiotoxicity Toxicity 0.000 description 2
- 230000007681 cardiovascular toxicity Effects 0.000 description 2
- 229960005243 carmustine Drugs 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 229960005395 cetuximab Drugs 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- HZCWPKGYTCJSEB-UHFFFAOYSA-N chembl118841 Chemical compound C12=CC(OC)=CC=C2NC2=C([N+]([O-])=O)C=CC3=C2C1=NN3CCCN(C)C HZCWPKGYTCJSEB-UHFFFAOYSA-N 0.000 description 2
- 229940044683 chemotherapy drug Drugs 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 229960001681 croscarmellose sodium Drugs 0.000 description 2
- 229960000913 crospovidone Drugs 0.000 description 2
- 229920006037 cross link polymer Polymers 0.000 description 2
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 2
- 229960000640 dactinomycin Drugs 0.000 description 2
- 206010061428 decreased appetite Diseases 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000003831 deregulation Effects 0.000 description 2
- 229940096516 dextrates Drugs 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- GXGAKHNRMVGRPK-UHFFFAOYSA-N dimagnesium;dioxido-bis[[oxido(oxo)silyl]oxy]silane Chemical compound [Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O GXGAKHNRMVGRPK-UHFFFAOYSA-N 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 235000019564 dysgeusia Nutrition 0.000 description 2
- 201000006549 dyspepsia Diseases 0.000 description 2
- 230000002357 endometrial effect Effects 0.000 description 2
- 229960001433 erlotinib Drugs 0.000 description 2
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 229960000255 exemestane Drugs 0.000 description 2
- 206010016256 fatigue Diseases 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 2
- 229960002074 flutamide Drugs 0.000 description 2
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 208000005017 glioblastoma Diseases 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 239000000665 guar gum Substances 0.000 description 2
- 235000010417 guar gum Nutrition 0.000 description 2
- 229960002154 guar gum Drugs 0.000 description 2
- 208000027700 hepatic dysfunction Diseases 0.000 description 2
- 231100000753 hepatic injury Toxicity 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- 230000009610 hypersensitivity Effects 0.000 description 2
- KTUFNOKKBVMGRW-UHFFFAOYSA-N imatinib Chemical compound C1CN(C)CCN1CC1=CC=C(C(=O)NC=2C=C(NC=3N=C(C=CN=3)C=3C=NC=CC=3)C(C)=CC=2)C=C1 KTUFNOKKBVMGRW-UHFFFAOYSA-N 0.000 description 2
- 229960002411 imatinib Drugs 0.000 description 2
- 239000000367 immunologic factor Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical group O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 2
- 201000004332 intermediate coronary syndrome Diseases 0.000 description 2
- 150000004694 iodide salts Chemical class 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- VHOGYURTWQBHIL-UHFFFAOYSA-N leflunomide Chemical compound O1N=CC(C(=O)NC=2C=CC(=CC=2)C(F)(F)F)=C1C VHOGYURTWQBHIL-UHFFFAOYSA-N 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 208000019423 liver disease Diseases 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000000391 magnesium silicate Substances 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 235000019793 magnesium trisilicate Nutrition 0.000 description 2
- 229940099273 magnesium trisilicate Drugs 0.000 description 2
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- LBWFXVZLPYTWQI-IPOVEDGCSA-N n-[2-(diethylamino)ethyl]-5-[(z)-(5-fluoro-2-oxo-1h-indol-3-ylidene)methyl]-2,4-dimethyl-1h-pyrrole-3-carboxamide;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C LBWFXVZLPYTWQI-IPOVEDGCSA-N 0.000 description 2
- 230000008693 nausea Effects 0.000 description 2
- 230000009826 neoplastic cell growth Effects 0.000 description 2
- 201000001119 neuropathy Diseases 0.000 description 2
- 230000007823 neuropathy Effects 0.000 description 2
- 208000004235 neutropenia Diseases 0.000 description 2
- 239000002547 new drug Substances 0.000 description 2
- 230000000422 nocturnal effect Effects 0.000 description 2
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 2
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 2
- 229950007283 oregovomab Drugs 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 208000033808 peripheral neuropathy Diseases 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 229960002087 pertuzumab Drugs 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 150000003904 phospholipids Chemical class 0.000 description 2
- 230000036211 photosensitivity Effects 0.000 description 2
- 230000037074 physically active Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 2
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 102000016914 ras Proteins Human genes 0.000 description 2
- 108010014186 ras Proteins Proteins 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000033764 rhythmic process Effects 0.000 description 2
- 229950003687 ribociclib Drugs 0.000 description 2
- 239000000333 selective estrogen receptor modulator Substances 0.000 description 2
- 229940095743 selective estrogen receptor modulator Drugs 0.000 description 2
- BTIHMVBBUGXLCJ-OAHLLOKOSA-N seliciclib Chemical compound C=12N=CN(C(C)C)C2=NC(N[C@@H](CO)CC)=NC=1NCC1=CC=CC=C1 BTIHMVBBUGXLCJ-OAHLLOKOSA-N 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 208000000587 small cell lung carcinoma Diseases 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 239000008279 sol Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 229960001603 tamoxifen Drugs 0.000 description 2
- 229960004964 temozolomide Drugs 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- WYWHKKSPHMUBEB-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 2
- PLHJCIYEEKOWNM-HHHXNRCGSA-N tipifarnib Chemical compound CN1C=NC=C1[C@](N)(C=1C=C2C(C=3C=C(Cl)C=CC=3)=CC(=O)N(C)C2=CC=1)C1=CC=C(Cl)C=C1 PLHJCIYEEKOWNM-HHHXNRCGSA-N 0.000 description 2
- 229960000575 trastuzumab Drugs 0.000 description 2
- 238000011269 treatment regimen Methods 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 235000019731 tricalcium phosphate Nutrition 0.000 description 2
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 2
- 229940124676 vascular endothelial growth factor receptor Drugs 0.000 description 2
- 229950000578 vatalanib Drugs 0.000 description 2
- YCOYDOIWSSHVCK-UHFFFAOYSA-N vatalanib Chemical compound C1=CC(Cl)=CC=C1NC(C1=CC=CC=C11)=NN=C1CC1=CC=NC=C1 YCOYDOIWSSHVCK-UHFFFAOYSA-N 0.000 description 2
- 230000008673 vomiting Effects 0.000 description 2
- LSPHULWDVZXLIL-UHFFFAOYSA-N (+/-)-Camphoric acid Chemical compound CC1(C)C(C(O)=O)CCC1(C)C(O)=O LSPHULWDVZXLIL-UHFFFAOYSA-N 0.000 description 1
- XMAYWYJOQHXEEK-OZXSUGGESA-N (2R,4S)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-OZXSUGGESA-N 0.000 description 1
- NECZZOFFLFZNHL-XVGZVFJZSA-N (2s)-2-amino-5-[[(2r)-3-[2-[bis[bis(2-chloroethyl)amino]-oxidophosphaniumyl]oxyethylsulfonyl]-1-[[(r)-carboxy(phenyl)methyl]amino]-1-oxopropan-2-yl]amino]-5-oxopentanoic acid;hydron;chloride Chemical compound Cl.ClCCN(CCCl)P(=O)(N(CCCl)CCCl)OCCS(=O)(=O)C[C@H](NC(=O)CC[C@H](N)C(O)=O)C(=O)N[C@@H](C(O)=O)C1=CC=CC=C1 NECZZOFFLFZNHL-XVGZVFJZSA-N 0.000 description 1
- PSVUJBVBCOISSP-SPFKKGSWSA-N (2s,3r,4s,5s,6r)-2-bis(2-chloroethylamino)phosphoryloxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound OC[C@H]1O[C@@H](OP(=O)(NCCCl)NCCCl)[C@H](O)[C@@H](O)[C@@H]1O PSVUJBVBCOISSP-SPFKKGSWSA-N 0.000 description 1
- NAALWFYYHHJEFQ-ZASNTINBSA-N (2s,5r,6r)-6-[[(2r)-2-[[6-[4-[bis(2-hydroxyethyl)sulfamoyl]phenyl]-2-oxo-1h-pyridine-3-carbonyl]amino]-2-(4-hydroxyphenyl)acetyl]amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid Chemical compound N([C@@H](C(=O)N[C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C=1C=CC(O)=CC=1)C(=O)C(C(N1)=O)=CC=C1C1=CC=C(S(=O)(=O)N(CCO)CCO)C=C1 NAALWFYYHHJEFQ-ZASNTINBSA-N 0.000 description 1
- HLAKJNQXUARACO-ZDUSSCGKSA-N (5'r)-5'-hydroxy-2',5',7'-trimethylspiro[cyclopropane-1,6'-indene]-4'-one Chemical compound O=C([C@@]1(O)C)C2=CC(C)=CC2=C(C)C21CC2 HLAKJNQXUARACO-ZDUSSCGKSA-N 0.000 description 1
- VNTHYLVDGVBPOU-QQYBVWGSSA-N (7s,9s)-9-acetyl-7-[(2r,4s,5s,6s)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy-6,9,11-trihydroxy-4-methoxy-8,10-dihydro-7h-tetracene-5,12-dione;2-hydroxypropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 VNTHYLVDGVBPOU-QQYBVWGSSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- SPMVMDHWKHCIDT-UHFFFAOYSA-N 1-[2-chloro-4-[(6,7-dimethoxy-4-quinolinyl)oxy]phenyl]-3-(5-methyl-3-isoxazolyl)urea Chemical compound C=12C=C(OC)C(OC)=CC2=NC=CC=1OC(C=C1Cl)=CC=C1NC(=O)NC=1C=C(C)ON=1 SPMVMDHWKHCIDT-UHFFFAOYSA-N 0.000 description 1
- PVCULFYROUOVGJ-UHFFFAOYSA-N 1-[2-chloroethyl(methylsulfonyl)amino]-3-methyl-1-methylsulfonylurea Chemical compound CNC(=O)N(S(C)(=O)=O)N(S(C)(=O)=O)CCCl PVCULFYROUOVGJ-UHFFFAOYSA-N 0.000 description 1
- 102100025573 1-alkyl-2-acetylglycerophosphocholine esterase Human genes 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- DGHHQBMTXTWTJV-BQAIUKQQSA-N 119413-54-6 Chemical compound Cl.C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 DGHHQBMTXTWTJV-BQAIUKQQSA-N 0.000 description 1
- PBUUPFTVAPUWDE-UGZDLDLSSA-N 2-[[(2S,4S)-2-[bis(2-chloroethyl)amino]-2-oxo-1,3,2lambda5-oxazaphosphinan-4-yl]sulfanyl]ethanesulfonic acid Chemical compound OS(=O)(=O)CCS[C@H]1CCO[P@](=O)(N(CCCl)CCCl)N1 PBUUPFTVAPUWDE-UGZDLDLSSA-N 0.000 description 1
- RQVKVJIRFKVPBF-VWLOTQADSA-N 2-[[(2s)-2-amino-3-phenylpropyl]amino]-3-methyl-5-naphthalen-2-yl-6-pyridin-4-ylpyrimidin-4-one Chemical compound C([C@H](N)CNC=1N(C(C(C=2C=C3C=CC=CC3=CC=2)=C(C=2C=CN=CC=2)N=1)=O)C)C1=CC=CC=C1 RQVKVJIRFKVPBF-VWLOTQADSA-N 0.000 description 1
- FZDFGHZZPBUTGP-UHFFFAOYSA-N 2-[[2-[bis(carboxymethyl)amino]-3-(4-isothiocyanatophenyl)propyl]-[2-[bis(carboxymethyl)amino]propyl]amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)C(C)CN(CC(O)=O)CC(N(CC(O)=O)CC(O)=O)CC1=CC=C(N=C=S)C=C1 FZDFGHZZPBUTGP-UHFFFAOYSA-N 0.000 description 1
- 229940080296 2-naphthalenesulfonate Drugs 0.000 description 1
- WMPPDTMATNBGJN-UHFFFAOYSA-N 2-phenylethylbromide Chemical class BrCCC1=CC=CC=C1 WMPPDTMATNBGJN-UHFFFAOYSA-N 0.000 description 1
- DZVPGIORVGSQMC-UHFFFAOYSA-N 3,5-dichloro-2,4-dimethoxy-6-(trichloromethyl)pyridine Chemical compound COC1=NC(C(Cl)(Cl)Cl)=C(Cl)C(OC)=C1Cl DZVPGIORVGSQMC-UHFFFAOYSA-N 0.000 description 1
- NHFDRBXTEDBWCZ-ZROIWOOFSA-N 3-[2,4-dimethyl-5-[(z)-(2-oxo-1h-indol-3-ylidene)methyl]-1h-pyrrol-3-yl]propanoic acid Chemical compound OC(=O)CCC1=C(C)NC(\C=C/2C3=CC=CC=C3NC\2=O)=C1C NHFDRBXTEDBWCZ-ZROIWOOFSA-N 0.000 description 1
- WEVYNIUIFUYDGI-UHFFFAOYSA-N 3-[6-[4-(trifluoromethoxy)anilino]-4-pyrimidinyl]benzamide Chemical compound NC(=O)C1=CC=CC(C=2N=CN=C(NC=3C=CC(OC(F)(F)F)=CC=3)C=2)=C1 WEVYNIUIFUYDGI-UHFFFAOYSA-N 0.000 description 1
- WUIABRMSWOKTOF-OYALTWQYSA-N 3-[[2-[2-[2-[[(2s,3r)-2-[[(2s,3s,4r)-4-[[(2s,3r)-2-[[6-amino-2-[(1s)-3-amino-1-[[(2s)-2,3-diamino-3-oxopropyl]amino]-3-oxopropyl]-5-methylpyrimidine-4-carbonyl]amino]-3-[(2r,3s,4s,5s,6s)-3-[(2r,3s,4s,5r,6r)-4-carbamoyloxy-3,5-dihydroxy-6-(hydroxymethyl)ox Chemical compound OS([O-])(=O)=O.N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1NC=NC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C WUIABRMSWOKTOF-OYALTWQYSA-N 0.000 description 1
- ZRPLANDPDWYOMZ-UHFFFAOYSA-N 3-cyclopentylpropionic acid Chemical compound OC(=O)CCC1CCCC1 ZRPLANDPDWYOMZ-UHFFFAOYSA-N 0.000 description 1
- RHKWIGHJGOEUSM-UHFFFAOYSA-N 3h-imidazo[4,5-h]quinoline Chemical class C1=CN=C2C(N=CN3)=C3C=CC2=C1 RHKWIGHJGOEUSM-UHFFFAOYSA-N 0.000 description 1
- JARCFMKMOFFIGZ-UHFFFAOYSA-N 4,6-dioxo-n-phenyl-2-sulfanylidene-1,3-diazinane-5-carboxamide Chemical compound O=C1NC(=S)NC(=O)C1C(=O)NC1=CC=CC=C1 JARCFMKMOFFIGZ-UHFFFAOYSA-N 0.000 description 1
- AKJHMTWEGVYYSE-AIRMAKDCSA-N 4-HPR Chemical compound C=1C=C(O)C=CC=1NC(=O)/C=C(\C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C AKJHMTWEGVYYSE-AIRMAKDCSA-N 0.000 description 1
- JVYNJRBSXBYXQB-UHFFFAOYSA-N 4-[3-(4-carboxyphenoxy)propoxy]benzoic acid;decanedioic acid Chemical compound OC(=O)CCCCCCCCC(O)=O.C1=CC(C(=O)O)=CC=C1OCCCOC1=CC=C(C(O)=O)C=C1 JVYNJRBSXBYXQB-UHFFFAOYSA-N 0.000 description 1
- CVAKNHIXTWLGJO-UHFFFAOYSA-N 4-[3-chloro-4-(1-methylimidazol-2-yl)sulfanylanilino]-6-methoxy-7-(4-pyrrolidin-1-ylpiperidin-1-yl)quinoline-3-carbonitrile Chemical compound N#CC1=CN=C2C=C(N3CCC(CC3)N3CCCC3)C(OC)=CC2=C1NC(C=C1Cl)=CC=C1SC1=NC=CN1C CVAKNHIXTWLGJO-UHFFFAOYSA-N 0.000 description 1
- QCQCHGYLTSGIGX-GHXANHINSA-N 4-[[(3ar,5ar,5br,7ar,9s,11ar,11br,13as)-5a,5b,8,8,11a-pentamethyl-3a-[(5-methylpyridine-3-carbonyl)amino]-2-oxo-1-propan-2-yl-4,5,6,7,7a,9,10,11,11b,12,13,13a-dodecahydro-3h-cyclopenta[a]chrysen-9-yl]oxy]-2,2-dimethyl-4-oxobutanoic acid Chemical compound N([C@@]12CC[C@@]3(C)[C@]4(C)CC[C@H]5C(C)(C)[C@@H](OC(=O)CC(C)(C)C(O)=O)CC[C@]5(C)[C@H]4CC[C@@H]3C1=C(C(C2)=O)C(C)C)C(=O)C1=CN=CC(C)=C1 QCQCHGYLTSGIGX-GHXANHINSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- PBCZSGKMGDDXIJ-HQCWYSJUSA-N 7-hydroxystaurosporine Chemical compound N([C@H](O)C1=C2C3=CC=CC=C3N3C2=C24)C(=O)C1=C2C1=CC=CC=C1N4[C@H]1C[C@@H](NC)[C@@H](OC)[C@]3(C)O1 PBCZSGKMGDDXIJ-HQCWYSJUSA-N 0.000 description 1
- PBCZSGKMGDDXIJ-UHFFFAOYSA-N 7beta-hydroxystaurosporine Natural products C12=C3N4C5=CC=CC=C5C3=C3C(O)NC(=O)C3=C2C2=CC=CC=C2N1C1CC(NC)C(OC)C4(C)O1 PBCZSGKMGDDXIJ-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 208000032467 Aplastic anaemia Diseases 0.000 description 1
- 101100297694 Arabidopsis thaliana PIP2-7 gene Proteins 0.000 description 1
- 229940122815 Aromatase inhibitor Drugs 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- CWHUFRVAEUJCEF-UHFFFAOYSA-N BKM120 Chemical compound C1=NC(N)=CC(C(F)(F)F)=C1C1=CC(N2CCOCC2)=NC(N2CCOCC2)=N1 CWHUFRVAEUJCEF-UHFFFAOYSA-N 0.000 description 1
- OLCWFLWEHWLBTO-HSZRJFAPSA-N BMS-214662 Chemical compound C=1C=CSC=1S(=O)(=O)N([C@@H](C1)CC=2C=CC=CC=2)CC2=CC(C#N)=CC=C2N1CC1=CN=CN1 OLCWFLWEHWLBTO-HSZRJFAPSA-N 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241001631457 Cannula Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 229940123150 Chelating agent Drugs 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 1
- 206010009900 Colitis ulcerative Diseases 0.000 description 1
- 206010048832 Colon adenoma Diseases 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- ZBNZXTGUTAYRHI-UHFFFAOYSA-N Dasatinib Chemical compound C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1Cl ZBNZXTGUTAYRHI-UHFFFAOYSA-N 0.000 description 1
- 206010051055 Deep vein thrombosis Diseases 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- MWWSFMDVAYGXBV-RUELKSSGSA-N Doxorubicin hydrochloride Chemical compound Cl.O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 MWWSFMDVAYGXBV-RUELKSSGSA-N 0.000 description 1
- XXPXYPLPSDPERN-UHFFFAOYSA-N Ecteinascidin 743 Natural products COc1cc2C(NCCc2cc1O)C(=O)OCC3N4C(O)C5Cc6cc(C)c(OC)c(O)c6C(C4C(S)c7c(OC(=O)C)c(C)c8OCOc8c37)N5C XXPXYPLPSDPERN-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 208000032027 Essential Thrombocythemia Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 1
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- LLEUXCDZPQOJMY-AAEUAGOBSA-N Glu-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CCC(O)=O)N)C(O)=O)=CNC2=C1 LLEUXCDZPQOJMY-AAEUAGOBSA-N 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 208000003807 Graves Disease Diseases 0.000 description 1
- 208000015023 Graves' disease Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 101000595741 Homo sapiens Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform Proteins 0.000 description 1
- 101000595746 Homo sapiens Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform Proteins 0.000 description 1
- 101000767631 Human papillomavirus type 16 Protein E7 Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- 206010021245 Idiopathic thrombocytopenic purpura Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical class C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 108090000177 Interleukin-11 Proteins 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 108010002335 Interleukin-9 Proteins 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 102000010638 Kinesin Human genes 0.000 description 1
- 108010063296 Kinesin Proteins 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 239000005517 L01XE01 - Imatinib Substances 0.000 description 1
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 1
- 239000002136 L01XE07 - Lapatinib Substances 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 241000186779 Listeria monocytogenes Species 0.000 description 1
- 208000028018 Lymphocytic leukaemia Diseases 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 102100035133 Lysosome-associated membrane glycoprotein 1 Human genes 0.000 description 1
- 101710116782 Lysosome-associated membrane glycoprotein 1 Proteins 0.000 description 1
- 239000004425 Makrolon Substances 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- HRHKSTOGXBBQCB-UHFFFAOYSA-N Mitomycin E Natural products O=C1C(N)=C(C)C(=O)C2=C1C(COC(N)=O)C1(OC)C3N(C)C3CN12 HRHKSTOGXBBQCB-UHFFFAOYSA-N 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 101000695835 Mus musculus Receptor-type tyrosine-protein phosphatase U Proteins 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 1
- UBQYURCVBFRUQT-UHFFFAOYSA-N N-benzoyl-Ferrioxamine B Chemical compound CC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCNC(=O)CCC(=O)N(O)CCCCCN UBQYURCVBFRUQT-UHFFFAOYSA-N 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 102000038030 PI3Ks Human genes 0.000 description 1
- 101150037263 PIP2 gene Proteins 0.000 description 1
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 description 1
- 102000014160 PTEN Phosphohydrolase Human genes 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102100036061 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform Human genes 0.000 description 1
- 102100036056 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform Human genes 0.000 description 1
- 101150063858 Pik3ca gene Proteins 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- HFVNWDWLWUCIHC-GUPDPFMOSA-N Prednimustine Chemical compound O=C([C@@]1(O)CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)[C@@H](O)C[C@@]21C)COC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 HFVNWDWLWUCIHC-GUPDPFMOSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 1
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 108010029869 Proto-Oncogene Proteins c-raf Proteins 0.000 description 1
- 102100033479 RAF proto-oncogene serine/threonine-protein kinase Human genes 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 102000000505 Ribonucleotide Reductases Human genes 0.000 description 1
- 108010041388 Ribonucleotide Reductases Proteins 0.000 description 1
- 101100456541 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) MEC3 gene Proteins 0.000 description 1
- 101100262439 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) UBA2 gene Proteins 0.000 description 1
- 101100483663 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) UFD1 gene Proteins 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- UIRKNQLZZXALBI-MSVGPLKSSA-N Squalamine Chemical compound C([C@@H]1C[C@H]2O)[C@@H](NCCCNCCCCN)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@H](C)CC[C@H](C(C)C)OS(O)(=O)=O)[C@@]2(C)CC1 UIRKNQLZZXALBI-MSVGPLKSSA-N 0.000 description 1
- UIRKNQLZZXALBI-UHFFFAOYSA-N Squalamine Natural products OC1CC2CC(NCCCNCCCCN)CCC2(C)C2C1C1CCC(C(C)CCC(C(C)C)OS(O)(=O)=O)C1(C)CC2 UIRKNQLZZXALBI-UHFFFAOYSA-N 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 101000930762 Sulfolobus acidocaldarius (strain ATCC 33909 / DSM 639 / JCM 8929 / NBRC 15157 / NCIMB 11770) Signal recognition particle receptor FtsY Proteins 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 108700011582 TER 286 Proteins 0.000 description 1
- 238000012338 Therapeutic targeting Methods 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 1
- 102000011117 Transforming Growth Factor beta2 Human genes 0.000 description 1
- 101800000304 Transforming growth factor beta-2 Proteins 0.000 description 1
- YCPOZVAOBBQLRI-WDSKDSINSA-N Treosulfan Chemical compound CS(=O)(=O)OC[C@H](O)[C@@H](O)COS(C)(=O)=O YCPOZVAOBBQLRI-WDSKDSINSA-N 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- 201000006704 Ulcerative Colitis Diseases 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 108010053096 Vascular Endothelial Growth Factor Receptor-1 Proteins 0.000 description 1
- 102000016548 Vascular Endothelial Growth Factor Receptor-1 Human genes 0.000 description 1
- 206010047249 Venous thrombosis Diseases 0.000 description 1
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 1
- VWQVUPCCIRVNHF-OUBTZVSYSA-N Yttrium-90 Chemical compound [90Y] VWQVUPCCIRVNHF-OUBTZVSYSA-N 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 208000017733 acquired polycythemia vera Diseases 0.000 description 1
- 208000009621 actinic keratosis Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- HLAKJNQXUARACO-UHFFFAOYSA-N acylfulvene Natural products CC1(O)C(=O)C2=CC(C)=CC2=C(C)C21CC2 HLAKJNQXUARACO-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 210000004100 adrenal gland Anatomy 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 108010081667 aflibercept Proteins 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 108700025316 aldesleukin Proteins 0.000 description 1
- 229960005310 aldesleukin Drugs 0.000 description 1
- 229960000548 alemtuzumab Drugs 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 1
- AWUCVROLDVIAJX-UHFFFAOYSA-N alpha-glycerophosphate Natural products OCC(O)COP(O)(O)=O AWUCVROLDVIAJX-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229960000473 altretamine Drugs 0.000 description 1
- 150000001413 amino acids Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 229940045988 antineoplastic drug protein kinase inhibitors Drugs 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 210000000702 aorta abdominal Anatomy 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- NMYKBZSMOUFOJV-FJSWQEPZSA-N aprinocarsen Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C3=C(C(NC(N)=N3)=O)N=C2)CO)[C@@H](OP(O)(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)OP(O)(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C3=C(C(NC(N)=N3)=O)N=C2)OP(O)(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C(NC(=O)C(C)=C2)=O)OP(O)(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C(N=C(N)C=C2)=O)OP(O)(=S)OC[C@@H]2[C@H](C[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)C1 NMYKBZSMOUFOJV-FJSWQEPZSA-N 0.000 description 1
- 229950004932 aprinocarsen Drugs 0.000 description 1
- 229940046844 aromatase inhibitors Drugs 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 description 1
- 238000012042 bayesian logistic regression model Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 229940050390 benzoate Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 229960004395 bleomycin sulfate Drugs 0.000 description 1
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 1
- 229960001467 bortezomib Drugs 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 201000008275 breast carcinoma Diseases 0.000 description 1
- 229950004271 brostallicin Drugs 0.000 description 1
- RXOVOXFAAGIKDQ-UHFFFAOYSA-N brostallicin Chemical compound C1=C(C(=O)NCCN=C(N)N)N(C)C=C1NC(=O)C1=CC(NC(=O)C=2N(C=C(NC(=O)C=3N(C=C(NC(=O)C(Br)=C)C=3)C)C=2)C)=CN1C RXOVOXFAAGIKDQ-UHFFFAOYSA-N 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 229940111214 busulfan injection Drugs 0.000 description 1
- KVUAALJSMIVURS-ZEDZUCNESA-L calcium folinate Chemical compound [Ca+2].C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC([O-])=O)C([O-])=O)C=C1 KVUAALJSMIVURS-ZEDZUCNESA-L 0.000 description 1
- 235000008207 calcium folinate Nutrition 0.000 description 1
- 239000011687 calcium folinate Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- MIOPJNTWMNEORI-UHFFFAOYSA-N camphorsulfonic acid Chemical compound C1CC2(CS(O)(=O)=O)C(=O)CC1C2(C)C MIOPJNTWMNEORI-UHFFFAOYSA-N 0.000 description 1
- 239000012830 cancer therapeutic Substances 0.000 description 1
- 208000025085 carcinoma of parotid gland Diseases 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000012578 cell culture reagent Substances 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000027288 circadian rhythm Effects 0.000 description 1
- 229940001468 citrate Drugs 0.000 description 1
- 229960002436 cladribine Drugs 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 208000029078 coronary artery disease Diseases 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229960004397 cyclophosphamide Drugs 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 229940077926 cytarabine liposome injection Drugs 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 229960002448 dasatinib Drugs 0.000 description 1
- 229940052372 daunorubicin citrate liposome Drugs 0.000 description 1
- 229960003109 daunorubicin hydrochloride Drugs 0.000 description 1
- 229960003603 decitabine Drugs 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000012350 deep sequencing Methods 0.000 description 1
- 229960000958 deferoxamine Drugs 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 150000008050 dialkyl sulfates Chemical class 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- LFQCJSBXBZRMTN-OAQYLSRUSA-N diflomotecan Chemical compound CC[C@@]1(O)CC(=O)OCC(C2=O)=C1C=C1N2CC2=CC3=CC(F)=C(F)C=C3N=C21 LFQCJSBXBZRMTN-OAQYLSRUSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- GAFRWLVTHPVQGK-UHFFFAOYSA-N dipentyl sulfate Chemical class CCCCCOS(=O)(=O)OCCCCC GAFRWLVTHPVQGK-UHFFFAOYSA-N 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- 229940042396 direct acting antivirals thiosemicarbazones Drugs 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 1
- 229940043264 dodecyl sulfate Drugs 0.000 description 1
- 230000007783 downstream signaling Effects 0.000 description 1
- 229960002918 doxorubicin hydrochloride Drugs 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- 229960003649 eribulin Drugs 0.000 description 1
- UFNVPOGXISZXJD-XJPMSQCNSA-N eribulin Chemical compound C([C@H]1CC[C@@H]2O[C@@H]3[C@H]4O[C@H]5C[C@](O[C@H]4[C@H]2O1)(O[C@@H]53)CC[C@@H]1O[C@H](C(C1)=C)CC1)C(=O)C[C@@H]2[C@@H](OC)[C@@H](C[C@H](O)CN)O[C@H]2C[C@@H]2C(=C)[C@H](C)C[C@H]1O2 UFNVPOGXISZXJD-XJPMSQCNSA-N 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 102000015694 estrogen receptors Human genes 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- 201000007281 estrogen-receptor positive breast cancer Diseases 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- LIQODXNTTZAGID-OCBXBXKTSA-N etoposide phosphate Chemical compound COC1=C(OP(O)(O)=O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 LIQODXNTTZAGID-OCBXBXKTSA-N 0.000 description 1
- 229960000752 etoposide phosphate Drugs 0.000 description 1
- 229940087476 femara Drugs 0.000 description 1
- 210000003191 femoral vein Anatomy 0.000 description 1
- 229950003662 fenretinide Drugs 0.000 description 1
- DBEPLOCGEIEOCV-WSBQPABSSA-N finasteride Chemical compound N([C@@H]1CC2)C(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](C(=O)NC(C)(C)C)[C@@]2(C)CC1 DBEPLOCGEIEOCV-WSBQPABSSA-N 0.000 description 1
- 229960004039 finasteride Drugs 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 229960005304 fludarabine phosphate Drugs 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- PIZALBORPSCYJU-QSQMUHTISA-H gadofosveset Chemical compound O.[Na+].[Na+].[Na+].[Gd+3].C1CC(OP([O-])(=O)OC[C@@H](CN(CCN(CC([O-])=O)CC([O-])=O)CC(=O)[O-])N(CC([O-])=O)CC([O-])=O)CCC1(C=1C=CC=CC=1)C1=CC=CC=C1 PIZALBORPSCYJU-QSQMUHTISA-H 0.000 description 1
- 229960003935 gadofosveset Drugs 0.000 description 1
- 229960002584 gefitinib Drugs 0.000 description 1
- 229960005277 gemcitabine Drugs 0.000 description 1
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 1
- 229960003297 gemtuzumab ozogamicin Drugs 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 229940045109 genistein Drugs 0.000 description 1
- 230000004153 glucose metabolism Effects 0.000 description 1
- 229950011595 glufosfamide Drugs 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 239000003979 granulating agent Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 208000007475 hemolytic anemia Diseases 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- MNWFXJYAOYHMED-UHFFFAOYSA-N heptanoic acid Chemical compound CCCCCCC(O)=O MNWFXJYAOYHMED-UHFFFAOYSA-N 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-M hydrogensulfate Chemical compound OS([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-M 0.000 description 1
- 229960001330 hydroxycarbamide Drugs 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 229960002751 imiquimod Drugs 0.000 description 1
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 210000003228 intrahepatic bile duct Anatomy 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 206010073095 invasive ductal breast carcinoma Diseases 0.000 description 1
- 201000010985 invasive ductal carcinoma Diseases 0.000 description 1
- 229960004768 irinotecan Drugs 0.000 description 1
- GURKHSYORGJETM-WAQYZQTGSA-N irinotecan hydrochloride (anhydrous) Chemical compound Cl.C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 GURKHSYORGJETM-WAQYZQTGSA-N 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- SUMDYPCJJOFFON-UHFFFAOYSA-N isethionic acid Chemical compound OCCS(O)(=O)=O SUMDYPCJJOFFON-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 210000004731 jugular vein Anatomy 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 210000000244 kidney pelvis Anatomy 0.000 description 1
- 229960004891 lapatinib Drugs 0.000 description 1
- BCFGMOOMADDAQU-UHFFFAOYSA-N lapatinib Chemical compound O1C(CNCCS(=O)(=O)C)=CC=C1C1=CC=C(N=CN=C2NC=3C=C(Cl)C(OCC=4C=C(F)C=CC=4)=CC=3)C2=C1 BCFGMOOMADDAQU-UHFFFAOYSA-N 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 229960000681 leflunomide Drugs 0.000 description 1
- 229960002293 leucovorin calcium Drugs 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 208000026535 luminal A breast carcinoma Diseases 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 208000003747 lymphoid leukemia Diseases 0.000 description 1
- 229950000547 mafosfamide Drugs 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 229960001428 mercaptopurine Drugs 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- GKFPROVOIQKYTO-UZLBHIALSA-N methyl (2s)-2-[[4-[[(2r)-2-amino-3-sulfanylpropyl]amino]-2-phenylbenzoyl]amino]-4-methylsulfanylbutanoate Chemical compound CSCC[C@@H](C(=O)OC)NC(=O)C1=CC=C(NC[C@@H](N)CS)C=C1C1=CC=CC=C1 GKFPROVOIQKYTO-UZLBHIALSA-N 0.000 description 1
- HRHKSTOGXBBQCB-VFWICMBZSA-N methylmitomycin Chemical compound O=C1C(N)=C(C)C(=O)C2=C1[C@@H](COC(N)=O)[C@@]1(OC)[C@H]3N(C)[C@H]3CN12 HRHKSTOGXBBQCB-VFWICMBZSA-N 0.000 description 1
- BMGQWWVMWDBQGC-IIFHNQTCSA-N midostaurin Chemical compound CN([C@H]1[C@H]([C@]2(C)O[C@@H](N3C4=CC=CC=C4C4=C5C(=O)NCC5=C5C6=CC=CC=C6N2C5=C43)C1)OC)C(=O)C1=CC=CC=C1 BMGQWWVMWDBQGC-IIFHNQTCSA-N 0.000 description 1
- 229950010895 midostaurin Drugs 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 229960001156 mitoxantrone Drugs 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 206010028537 myelofibrosis Diseases 0.000 description 1
- 208000025113 myeloid leukemia Diseases 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- KVBGVZZKJNLNJU-UHFFFAOYSA-M naphthalene-2-sulfonate Chemical compound C1=CC=CC2=CC(S(=O)(=O)[O-])=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-M 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229960000435 oblimersen Drugs 0.000 description 1
- MIMNFCVQODTQDP-NDLVEFNKSA-N oblimersen Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(S)(=O)O[C@@H]2[C@H](O[C@H](C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C3=C(C(NC(N)=N3)=O)N=C2)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C3=NC=NC(N)=C3N=C2)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(N=C(N)C=C2)=O)COP(O)(=S)O[C@@H]2[C@H](O[C@H](C2)N2C(NC(=O)C(C)=C2)=O)CO)[C@@H](O)C1 MIMNFCVQODTQDP-NDLVEFNKSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 229960001756 oxaliplatin Drugs 0.000 description 1
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 229960002340 pentostatin Drugs 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- SZFPYBIJACMNJV-UHFFFAOYSA-N perifosine Chemical compound CCCCCCCCCCCCCCCCCCOP([O-])(=O)OC1CC[N+](C)(C)CC1 SZFPYBIJACMNJV-UHFFFAOYSA-N 0.000 description 1
- 229950010632 perifosine Drugs 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L peroxydisulfate Chemical compound [O-]S(=O)(=O)OOS([O-])(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- 150000003906 phosphoinositides Chemical class 0.000 description 1
- DCWXELXMIBXGTH-QMMMGPOBSA-N phosphonotyrosine Chemical group OC(=O)[C@@H](N)CC1=CC=C(OP(O)(O)=O)C=C1 DCWXELXMIBXGTH-QMMMGPOBSA-N 0.000 description 1
- 229940075930 picrate Drugs 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-M picrate anion Chemical compound [O-]C1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-M 0.000 description 1
- 229950010765 pivalate Drugs 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 229940098901 polifeprosan 20 Drugs 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 208000037244 polycythemia vera Diseases 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229950004406 porfiromycin Drugs 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229960004694 prednimustine Drugs 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 208000003476 primary myelofibrosis Diseases 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- HKGUHEGKBLYKHY-QMOZSOIISA-N propan-2-yl (2s)-2-[[2-[2-(4-fluorophenyl)ethyl]-5-[[(2s,4s)-4-(pyridine-3-carbonylsulfanyl)pyrrolidin-2-yl]methylamino]benzoyl]amino]-4-methylsulfanylbutanoate Chemical compound S([C@H]1C[C@H](NC1)CNC=1C=C(C(=CC=1)CCC=1C=CC(F)=CC=1)C(=O)N[C@@H](CCSC)C(=O)OC(C)C)C(=O)C1=CC=CN=C1 HKGUHEGKBLYKHY-QMOZSOIISA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003528 protein farnesyltransferase inhibitor Substances 0.000 description 1
- 239000003909 protein kinase inhibitor Substances 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 229940083082 pyrimidine derivative acting on arteriolar smooth muscle Drugs 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- KGRPHHFLPMPUBB-UHFFFAOYSA-N pyrrolo[2,1-f][1,2,4]triazine Chemical class C1=NC=NN2C=CC=C21 KGRPHHFLPMPUBB-UHFFFAOYSA-N 0.000 description 1
- 229960004622 raloxifene Drugs 0.000 description 1
- GZUITABIAKMVPG-UHFFFAOYSA-N raloxifene Chemical compound C1=CC(O)=CC=C1C1=C(C(=O)C=2C=CC(OCCN3CCCCC3)=CC=2)C2=CC=C(O)C=C2S1 GZUITABIAKMVPG-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- BXNMTOQRYBFHNZ-UHFFFAOYSA-N resiquimod Chemical compound C1=CC=CC2=C(N(C(COCC)=N3)CC(C)(C)O)C3=C(N)N=C21 BXNMTOQRYBFHNZ-UHFFFAOYSA-N 0.000 description 1
- 229950010550 resiquimod Drugs 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229950003647 semaxanib Drugs 0.000 description 1
- WUWDLXZGHZSWQZ-WQLSENKSSA-N semaxanib Chemical compound N1C(C)=CC(C)=C1\C=C/1C2=CC=CC=C2NC\1=O WUWDLXZGHZSWQZ-WQLSENKSSA-N 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- AWUCVROLDVIAJX-GSVOUGTGSA-N sn-glycerol 3-phosphate Chemical compound OC[C@@H](O)COP(O)(O)=O AWUCVROLDVIAJX-GSVOUGTGSA-N 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- IVDHYUQIDRJSTI-UHFFFAOYSA-N sorafenib tosylate Chemical compound [H+].CC1=CC=C(S([O-])(=O)=O)C=C1.C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 IVDHYUQIDRJSTI-UHFFFAOYSA-N 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229950001248 squalamine Drugs 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 239000007940 sugar coated tablet Substances 0.000 description 1
- 238000009495 sugar coating Methods 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229960003454 tamoxifen citrate Drugs 0.000 description 1
- FQZYTYWMLGAPFJ-OQKDUQJOSA-N tamoxifen citrate Chemical compound [H+].[H+].[H+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 FQZYTYWMLGAPFJ-OQKDUQJOSA-N 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- CXVCSRUYMINUSF-UHFFFAOYSA-N tetrathiomolybdate(2-) Chemical compound [S-][Mo]([S-])(=S)=S CXVCSRUYMINUSF-UHFFFAOYSA-N 0.000 description 1
- 238000011287 therapeutic dose Methods 0.000 description 1
- 150000003584 thiosemicarbazones Chemical class 0.000 description 1
- 229960001196 thiotepa Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- 229950009158 tipifarnib Drugs 0.000 description 1
- 229950002376 tirapazamine Drugs 0.000 description 1
- QVMPZNRFXAKISM-UHFFFAOYSA-N tirapazamine Chemical compound C1=CC=C2[N+]([O-])=NC(=N)N(O)C2=C1 QVMPZNRFXAKISM-UHFFFAOYSA-N 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- 229960002190 topotecan hydrochloride Drugs 0.000 description 1
- 229960005026 toremifene Drugs 0.000 description 1
- XFCLJVABOIYOMF-QPLCGJKRSA-N toremifene Chemical compound C1=CC(OCCN(C)C)=CC=C1C(\C=1C=CC=CC=1)=C(\CCCl)C1=CC=CC=C1 XFCLJVABOIYOMF-QPLCGJKRSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- PKVRCIRHQMSYJX-AIFWHQITSA-N trabectedin Chemical compound C([C@@]1(C(OC2)=O)NCCC3=C1C=C(C(=C3)O)OC)S[C@@H]1C3=C(OC(C)=O)C(C)=C4OCOC4=C3[C@H]2N2[C@@H](O)[C@H](CC=3C4=C(O)C(OC)=C(C)C=3)N(C)[C@H]4[C@@H]21 PKVRCIRHQMSYJX-AIFWHQITSA-N 0.000 description 1
- 229960000977 trabectedin Drugs 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229960003181 treosulfan Drugs 0.000 description 1
- 229960001727 tretinoin Drugs 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 1
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 1
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 210000001215 vagina Anatomy 0.000 description 1
- 229960000241 vandetanib Drugs 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229960003048 vinblastine Drugs 0.000 description 1
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4427—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
- A61K31/4439—Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4196—1,2,4-Triazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/437—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/4965—Non-condensed pyrazines
- A61K31/497—Non-condensed pyrazines containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/506—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5377—1,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/55—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
- A61K31/553—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having at least one nitrogen and one oxygen as ring hetero atoms, e.g. loxapine, staurosporine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0053—Mouth and digestive tract, i.e. intraoral and peroral administration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Landscapes
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Nutrition Science (AREA)
- Physiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present disclosure relates to methods of treating or preventing a proliferative disease in a patient in need thereof by orally administering a therapeutically effective amount of a phosphatidylinositol 3-kinase inhibitor compound or a pharmaceutically acceptable salt thereof once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep; the use of said compound pharmaceutically acceptable salt thereof for the manufacture of a medicament for treating or preventing a proliferative disease administered in accordance with said dosage regimen; a therapeutic regimen comprising administration of said compound or a pharmaceutically acceptable salt thereof in accordance with said dosage regimen; and related pharmaceutical compositions and packages thereof.
Description
DOSAGE REGIMEN FOR A
Field of the Disclosure The present disclosure relates to methods of treating or preventing a proliferative disease in a patient in need thereof by orally administering a therapeutically effective amount of a phosphatidylinositol 3-kinase inhibitor compound to the patient once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleeping; the use of said phosphatidylinositol 3-kinase inhibitor for the manufacture of a medicament for treating or preventing a proliferative disease administered in accordance with said dosage regimen; a therapeutic regimen comprising administration of said phosphatidylinositol 3-kinase inhibitor in accordance with said dosage regimen; and related pharmaceutical compositions and packages thereof.
Background of the Disclosure Phosphatidylinositol 3-kinases ("PI-3 kinase" or "P13K") comprise a family of lipid kinases that catalyze the transfer of phosphate to the D-3' position of inositol lipids to produce phosphoinosito1-3-phosphate ("PIP"), phosphoinosito1-3,4-diphosphate ("PIP2") and phosphoinosito1-3,4,5-triphosphate ("PIP3") that, in turn, act as second messengers in signaling cascades by docking proteins containing pleckstrin-homology, FYVE, Phox and other phospholipid-binding domains into a variety of signaling complexes often at the plasma membrane (Vanhaesebroeck et al., Annu. Rev. Biochem 70:535 (2001); Katso et al., Annu.
Rev. Cell Dev. Biol. 17:615 (2001)). Human cells contain three genes (PIK3CA, PIK3CB and PIK3CD) encoding the catalytic p110 subunits (u., 3, 6 isoforms) of class IA
PI3K enzymes.
These catalytic p110u., p11013, and p1106 subunits are constitutively associated with a regulatory subunit that can be p85u., p55u., p5Ou., p8513 or p557. p110u. and p11013 are expressed in most tissues. Class 1B PI3K has one family member, a heterodimer composed of a catalytic p1107 subunit associated with one of two regulatory subunits, either the p101 or the p84 (Fruman et al., Annu Rev. Biochem. 67:481 (1998); Suire et al., Curr.
Biol. 15:566 (2005)).
The modular domains of the p85/55/50 subunits include Src Homology (SH2) domains that bind phosphotyrosine residues in a specific sequence context on activated receptor and cytoplasmic tyrosine kinases, resulting in activation and localization of Class 1A PI3Ks.
Class 1B, as well as p1106 in some circumstances, is activated directly by G protein-coupled receptors that bind a diverse repertoire of peptide and non-peptide ligands (Stephens et al., Cell 89:105 (1997));
Katso et al., Annu. Rev. Cell Dev. Biol. 17:615-675 (2001)). Consequently, the resultant phospholipid products of class I PI3K link upstream receptors with downstream cellular activities including proliferation, survival, chemotaxis, cellular trafficking, motility, metabolism, inflammatory and allergic responses, transcription and translation (Cantley et al., Cell 64:281 (1991); Escobedo and Williams, Nature 335:85 (1988); Fantl et al., Cell 69:413 (1992)).
PI3K inhibitors are useful therapeutic compounds for the treatment of various conditions in humans. Aberrant regulation of PI3K, which often increases survival through Akt activation, is one of the most prevalent events in human cancer and has been shown to occur at multiple levels. The tumor suppressor gene PTEN, which dephosphorylates phosphoinositides at the 3' position of the inositol ring and in so doing antagonizes PI3K activity, is functionally deleted in a variety of tumors. In other tumors, the genes for the p110u. isoform, PIK3CA, and for Akt are amplified and increased protein expression of their gene products has been demonstrated in several human cancers. Furthermore, mutations and translocation of p85x that serve to up-regulate the p85-p110 complex have been described in human cancers. Finally, somatic missense mutations in PIK3CA that activate downstream signaling pathways have been described at significant frequencies in a wide diversity of human cancers, including 32% of colorectal cancers, 27% of glioblastomas, 25% of gastric cancers, 36% of hepatocellular carcinomas, and 18-40% of breast cancers. (Samuels et al., Cell Cycle 3(10):1221 (2004);
Hartmann et al, Acta Neuropathol., 109(6):639 (June 2005); Li et al, BMC
Cancer 5 :29 (March 2005) ; Lee et al, Oncogene, 24(8):1477 (2005); Backman et al, Cancer Biol.
Ther. 3(8): 772-775 (2004); Campbell et al., Cancer Research, 64(21): 7678-7681 (2004); Levine et al., Clin.
Cancer Res., 11(8): 2875-2878 (2005); and Wu et al, Breast Cancer Res., 7(5):R609-R616 (2005)). Deregulation of PI3Kis one of the most common deregulations associated with human cancers and other proliferative diseases (Parsons et al., Nature 436:792 (2005); Hennessey at el., Nature Rev. Drug Disc. 4:988-1004 (2005)).
In a Phase I clinical trial, the PI3K inhibitor compound (S)-pyrrolidine-1,2-dicarboxylic acid 2-amide 1-({4-methyl-542-(2,2,2-trifluoro-1,1-dimethyl-ethyl)-pyridin-4-ylythiazol-2-y1)-amide) demonstrated clinical efficacy in the single-agent treatment of patients having advanced solid malignancies carrying an alteration in the PIK3CA gene. In the dose escalation phase, patients were orally administered this compound either (a) at a dosage ranging from 30 mg to 450 mg once-perOday (q.d.) on a continuous daily schedule for 28-days, or (b) at a dosage ranging from 120 mg to 200 mg twice per day (b.i.d.) on a continuous daily schedule for 28-days, as guided by Bayesian logistic regression model with overdose control.
After determination of the maximal tolerated dose (MTD), the dose expansion phase was conducted
Field of the Disclosure The present disclosure relates to methods of treating or preventing a proliferative disease in a patient in need thereof by orally administering a therapeutically effective amount of a phosphatidylinositol 3-kinase inhibitor compound to the patient once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleeping; the use of said phosphatidylinositol 3-kinase inhibitor for the manufacture of a medicament for treating or preventing a proliferative disease administered in accordance with said dosage regimen; a therapeutic regimen comprising administration of said phosphatidylinositol 3-kinase inhibitor in accordance with said dosage regimen; and related pharmaceutical compositions and packages thereof.
Background of the Disclosure Phosphatidylinositol 3-kinases ("PI-3 kinase" or "P13K") comprise a family of lipid kinases that catalyze the transfer of phosphate to the D-3' position of inositol lipids to produce phosphoinosito1-3-phosphate ("PIP"), phosphoinosito1-3,4-diphosphate ("PIP2") and phosphoinosito1-3,4,5-triphosphate ("PIP3") that, in turn, act as second messengers in signaling cascades by docking proteins containing pleckstrin-homology, FYVE, Phox and other phospholipid-binding domains into a variety of signaling complexes often at the plasma membrane (Vanhaesebroeck et al., Annu. Rev. Biochem 70:535 (2001); Katso et al., Annu.
Rev. Cell Dev. Biol. 17:615 (2001)). Human cells contain three genes (PIK3CA, PIK3CB and PIK3CD) encoding the catalytic p110 subunits (u., 3, 6 isoforms) of class IA
PI3K enzymes.
These catalytic p110u., p11013, and p1106 subunits are constitutively associated with a regulatory subunit that can be p85u., p55u., p5Ou., p8513 or p557. p110u. and p11013 are expressed in most tissues. Class 1B PI3K has one family member, a heterodimer composed of a catalytic p1107 subunit associated with one of two regulatory subunits, either the p101 or the p84 (Fruman et al., Annu Rev. Biochem. 67:481 (1998); Suire et al., Curr.
Biol. 15:566 (2005)).
The modular domains of the p85/55/50 subunits include Src Homology (SH2) domains that bind phosphotyrosine residues in a specific sequence context on activated receptor and cytoplasmic tyrosine kinases, resulting in activation and localization of Class 1A PI3Ks.
Class 1B, as well as p1106 in some circumstances, is activated directly by G protein-coupled receptors that bind a diverse repertoire of peptide and non-peptide ligands (Stephens et al., Cell 89:105 (1997));
Katso et al., Annu. Rev. Cell Dev. Biol. 17:615-675 (2001)). Consequently, the resultant phospholipid products of class I PI3K link upstream receptors with downstream cellular activities including proliferation, survival, chemotaxis, cellular trafficking, motility, metabolism, inflammatory and allergic responses, transcription and translation (Cantley et al., Cell 64:281 (1991); Escobedo and Williams, Nature 335:85 (1988); Fantl et al., Cell 69:413 (1992)).
PI3K inhibitors are useful therapeutic compounds for the treatment of various conditions in humans. Aberrant regulation of PI3K, which often increases survival through Akt activation, is one of the most prevalent events in human cancer and has been shown to occur at multiple levels. The tumor suppressor gene PTEN, which dephosphorylates phosphoinositides at the 3' position of the inositol ring and in so doing antagonizes PI3K activity, is functionally deleted in a variety of tumors. In other tumors, the genes for the p110u. isoform, PIK3CA, and for Akt are amplified and increased protein expression of their gene products has been demonstrated in several human cancers. Furthermore, mutations and translocation of p85x that serve to up-regulate the p85-p110 complex have been described in human cancers. Finally, somatic missense mutations in PIK3CA that activate downstream signaling pathways have been described at significant frequencies in a wide diversity of human cancers, including 32% of colorectal cancers, 27% of glioblastomas, 25% of gastric cancers, 36% of hepatocellular carcinomas, and 18-40% of breast cancers. (Samuels et al., Cell Cycle 3(10):1221 (2004);
Hartmann et al, Acta Neuropathol., 109(6):639 (June 2005); Li et al, BMC
Cancer 5 :29 (March 2005) ; Lee et al, Oncogene, 24(8):1477 (2005); Backman et al, Cancer Biol.
Ther. 3(8): 772-775 (2004); Campbell et al., Cancer Research, 64(21): 7678-7681 (2004); Levine et al., Clin.
Cancer Res., 11(8): 2875-2878 (2005); and Wu et al, Breast Cancer Res., 7(5):R609-R616 (2005)). Deregulation of PI3Kis one of the most common deregulations associated with human cancers and other proliferative diseases (Parsons et al., Nature 436:792 (2005); Hennessey at el., Nature Rev. Drug Disc. 4:988-1004 (2005)).
In a Phase I clinical trial, the PI3K inhibitor compound (S)-pyrrolidine-1,2-dicarboxylic acid 2-amide 1-({4-methyl-542-(2,2,2-trifluoro-1,1-dimethyl-ethyl)-pyridin-4-ylythiazol-2-y1)-amide) demonstrated clinical efficacy in the single-agent treatment of patients having advanced solid malignancies carrying an alteration in the PIK3CA gene. In the dose escalation phase, patients were orally administered this compound either (a) at a dosage ranging from 30 mg to 450 mg once-perOday (q.d.) on a continuous daily schedule for 28-days, or (b) at a dosage ranging from 120 mg to 200 mg twice per day (b.i.d.) on a continuous daily schedule for 28-days, as guided by Bayesian logistic regression model with overdose control.
After determination of the maximal tolerated dose (MTD), the dose expansion phase was conducted
2 to additionally treat patients having PIK3CA wildtype ER+/ HER2- breast cancer. Clinical efficacy of this compound has been demonstrated preliminarily. As of March 10, 2014, 15 of 132 evaluable patients had partial responses to treatment, and 7 were confirmed (2 at 270 mg/QD, 1 at 350 mg/QD, 2 at 400 mg/QD, and 2 at 150 mg/BID). Disease control rates (Complete response, partial response or stable disease) were 53.2% (95% Cl:
40.1-66.0) and 66.7% (95% Cl: 38.4-88.2) in those treated with alpelisib 400 mg/QD and 150 mg/BID, respectively. (Juric et al, "Phase I study of the PI3Ka Inhibitor BYL719, as a Single Agent in Patients with Advanced Solid Tumors (AST)", Annals of Oncology (2014), 25 (Supp. 4): iv150.) In a Phase I clinical trial, the PI3K inhibitor compound 4-(trifluoromethyl)-5-(2,6-dimorpholinopyrimidin-4-Apyridin-2-amine showed preliminary antitumor activity in patients with advanced solid tumors. Patients with advanced solid tumors (N-83) enrolled in the dose-escalation and -expansion study, and the most common cancers were colorectal (n = 31) and breast cancer (n=21). One confirmed partial response (PR; triple-negative breast cancer) and three unconfirmed PRs (parotid gland carcinoma, epithelioid hemangiothelioma, ER + breast cancer) were reported. (Rodon et al., "Phase I dose-escalation and ¨expansion study of buparlisib (BKM120), an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors", Invest New Drugs, 2014 Aug, 32(4): 670-81).
However, PI3K inhibitors may produce a negative side effect of hyperglycemia at therapeutic doses. In the Phase I clinical trials above, daily administration of (S)-pyrrolidine-1,2-dicarboxylic acid 2-amide 1-({4-methyl-542-(2,2,2-trifluoro-1,1-dimethyl-ethyl)-pyridin-4-A-thiazol-2-y1}-amide) to human patients induced hyperglycemia in 49% of the patients. (Juric et al, Annals of Oncology (2014), 25 (Supp. 4): iv150.) In a Phase I clinical trial, daily administration of 4-(trifluoromethyl)-5-(2,6-dimorpholinopyrimidin-4-Apyridin-2-amine to human patients induced hyperglycemia in 31% of the patients. (Rodon et al, Invest New Drugs, 2014 Aug, 32(4):670-81.) Currently, there is an unmet need for a PI3K inhibitor which can be administered to patients in a dosage or dosage regimen that is clinically effective for treatment of proliferative diseases, particularly cancer, but also that relieves, reduces, or alleviates hyperglycemia (e.g, by severity, occurrence rate, or frequency). It is believed that this has not been achieved for PI3K inhibitors prior to the present disclosure.
40.1-66.0) and 66.7% (95% Cl: 38.4-88.2) in those treated with alpelisib 400 mg/QD and 150 mg/BID, respectively. (Juric et al, "Phase I study of the PI3Ka Inhibitor BYL719, as a Single Agent in Patients with Advanced Solid Tumors (AST)", Annals of Oncology (2014), 25 (Supp. 4): iv150.) In a Phase I clinical trial, the PI3K inhibitor compound 4-(trifluoromethyl)-5-(2,6-dimorpholinopyrimidin-4-Apyridin-2-amine showed preliminary antitumor activity in patients with advanced solid tumors. Patients with advanced solid tumors (N-83) enrolled in the dose-escalation and -expansion study, and the most common cancers were colorectal (n = 31) and breast cancer (n=21). One confirmed partial response (PR; triple-negative breast cancer) and three unconfirmed PRs (parotid gland carcinoma, epithelioid hemangiothelioma, ER + breast cancer) were reported. (Rodon et al., "Phase I dose-escalation and ¨expansion study of buparlisib (BKM120), an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors", Invest New Drugs, 2014 Aug, 32(4): 670-81).
However, PI3K inhibitors may produce a negative side effect of hyperglycemia at therapeutic doses. In the Phase I clinical trials above, daily administration of (S)-pyrrolidine-1,2-dicarboxylic acid 2-amide 1-({4-methyl-542-(2,2,2-trifluoro-1,1-dimethyl-ethyl)-pyridin-4-A-thiazol-2-y1}-amide) to human patients induced hyperglycemia in 49% of the patients. (Juric et al, Annals of Oncology (2014), 25 (Supp. 4): iv150.) In a Phase I clinical trial, daily administration of 4-(trifluoromethyl)-5-(2,6-dimorpholinopyrimidin-4-Apyridin-2-amine to human patients induced hyperglycemia in 31% of the patients. (Rodon et al, Invest New Drugs, 2014 Aug, 32(4):670-81.) Currently, there is an unmet need for a PI3K inhibitor which can be administered to patients in a dosage or dosage regimen that is clinically effective for treatment of proliferative diseases, particularly cancer, but also that relieves, reduces, or alleviates hyperglycemia (e.g, by severity, occurrence rate, or frequency). It is believed that this has not been achieved for PI3K inhibitors prior to the present disclosure.
3 Summary of the Disclosure The present disclosure relates to a method of treating or preventing a proliferative disease in a patient in need thereof, comprising orally administering a therapeutically effective amount of a PI3K inhibitor once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep. In a further embodiment, the phosphatidylinositol 3-kinase inhibitor is selected from the compound of formula (I) N H /
===="1---N
õfr ............................ s 6 e'NH
F,(2. (I), the compound of formula (II) CF
(II), pictilisib, taselisib, LY2780301, copanlisib, MLN1117, and AZD8835 or a pharmaceutically acceptable salt thereof. In one embodiment, the phosphatidylinositol 3-kinase inhibitor is the compound of formula (I) N
`7T¨Ny.
\ 0%."¨ N
///
\s/
F 3C. (I) or a pharmaceutically acceptable salt thereof and administered orally in a therapeutically effective amount of about 50 mg to about 450 mg once-per-day either on a continuous daily
===="1---N
õfr ............................ s 6 e'NH
F,(2. (I), the compound of formula (II) CF
(II), pictilisib, taselisib, LY2780301, copanlisib, MLN1117, and AZD8835 or a pharmaceutically acceptable salt thereof. In one embodiment, the phosphatidylinositol 3-kinase inhibitor is the compound of formula (I) N
`7T¨Ny.
\ 0%."¨ N
///
\s/
F 3C. (I) or a pharmaceutically acceptable salt thereof and administered orally in a therapeutically effective amount of about 50 mg to about 450 mg once-per-day either on a continuous daily
4
5 PCT/1B2016/056556 schedule or an intermittent schedule. In another embodiment, the phosphatidylinositol 3-kinase inhibitor is the compound of formula (II) CF
(II) or a pharmaceutically acceptable salt thereof and administered orally in a therapeutically effective amount of about 60 mg to about 120 mg once-per-day either on a continuous daily schedule or an intermittent schedule.
In a further embodiment, the phosphatidylinositol 3-kinase inhibitor is administered at about one to about two hours prior to sleep. In a still further embodiment, the phosphatidylinositol 3-kinase inhibitor is administered at night.
In another embodiment, the phosphatidylinositol 3-kinase inhibitor is administered with food at about one to three hours prior to sleep. In a further embodiment, the phosphatidylinositol 3-kinase inhibitor is administered within about zero to about one hour of ingesting food and at about one to three hours prior to sleep.
In one embodiment, the phosphatidylinositol 3-kinase inhibitor is administered on a continuous daily schedule. In another embodiment, the phosphatidylinositol 3-kinase inhibitor is administered on an intermittent schedule.
The present disclosure also relates to a method of treating or preventing a proliferative disease comprising first administering to a patient in need thereof a therapeutically effective amount of a phosphatidylinositol 3-kinase inhibitor once in each morning or twice daily; second determining said patient has a side effect of hyperglycemia after administration of said phosphatidylinositol 3-kinase inhibitor to said patient; and third shifting the administration of the phosphatidylinositol 3-kinase inhibitor to once-per-day either on a continuous daily schedule or an intermittent schedule about zero to about three hours prior to sleep.
The present disclosure also relates to the use of a phosphatidylinositol 3-kinase inhibitor, or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for treating or preventing a proliferative disease, wherein a therapeutically effective amount of said medicament is orally administered to a patient in need thereof of said phosphatidylinositol 3-kinase inhibitor at about zero to about three hours prior to sleep.
In one embodiment, the proliferative disease is a cancer. In a further embodiment, the proliferative disease is a cancer selected from a cancer of the lung (including small cell lung cancer and non-small cell lung cancer), bronchus, prostate, breast (including triple negative breast cancer, sporadic breast cancers and sufferers of Cowden disease), colon, rectum, colon carcinoma, colorectal adenoma, pancreas, gastrointestine, hepatocellular, stomach, gastric, ovary, squamous cell carcinoma, and head and neck. Preferably, the proliferative disease is breast cancer.
In one embodiment, the phosphatidylinositol 3-kinase inhibitor, or a pharmaceutically acceptable salt thereof, is administered in combination with at least one additional therapeutic agent.
The present disclosure also relates to a therapeutic regimen for the treatment or prevention of a proliferative disease comprising administering a therapeutically effective amount of a phosphatidylinositol 3-kinase inhibitor once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep.
In another embodiment, the phosphatidylinositol 3-kinase inhibitor is selected from the compound of formula (I) N.
\'µ) s 6 =
'NH-:
/
F-j2. (I), the compound of formula (II)
(II) or a pharmaceutically acceptable salt thereof and administered orally in a therapeutically effective amount of about 60 mg to about 120 mg once-per-day either on a continuous daily schedule or an intermittent schedule.
In a further embodiment, the phosphatidylinositol 3-kinase inhibitor is administered at about one to about two hours prior to sleep. In a still further embodiment, the phosphatidylinositol 3-kinase inhibitor is administered at night.
In another embodiment, the phosphatidylinositol 3-kinase inhibitor is administered with food at about one to three hours prior to sleep. In a further embodiment, the phosphatidylinositol 3-kinase inhibitor is administered within about zero to about one hour of ingesting food and at about one to three hours prior to sleep.
In one embodiment, the phosphatidylinositol 3-kinase inhibitor is administered on a continuous daily schedule. In another embodiment, the phosphatidylinositol 3-kinase inhibitor is administered on an intermittent schedule.
The present disclosure also relates to a method of treating or preventing a proliferative disease comprising first administering to a patient in need thereof a therapeutically effective amount of a phosphatidylinositol 3-kinase inhibitor once in each morning or twice daily; second determining said patient has a side effect of hyperglycemia after administration of said phosphatidylinositol 3-kinase inhibitor to said patient; and third shifting the administration of the phosphatidylinositol 3-kinase inhibitor to once-per-day either on a continuous daily schedule or an intermittent schedule about zero to about three hours prior to sleep.
The present disclosure also relates to the use of a phosphatidylinositol 3-kinase inhibitor, or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament for treating or preventing a proliferative disease, wherein a therapeutically effective amount of said medicament is orally administered to a patient in need thereof of said phosphatidylinositol 3-kinase inhibitor at about zero to about three hours prior to sleep.
In one embodiment, the proliferative disease is a cancer. In a further embodiment, the proliferative disease is a cancer selected from a cancer of the lung (including small cell lung cancer and non-small cell lung cancer), bronchus, prostate, breast (including triple negative breast cancer, sporadic breast cancers and sufferers of Cowden disease), colon, rectum, colon carcinoma, colorectal adenoma, pancreas, gastrointestine, hepatocellular, stomach, gastric, ovary, squamous cell carcinoma, and head and neck. Preferably, the proliferative disease is breast cancer.
In one embodiment, the phosphatidylinositol 3-kinase inhibitor, or a pharmaceutically acceptable salt thereof, is administered in combination with at least one additional therapeutic agent.
The present disclosure also relates to a therapeutic regimen for the treatment or prevention of a proliferative disease comprising administering a therapeutically effective amount of a phosphatidylinositol 3-kinase inhibitor once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep.
In another embodiment, the phosphatidylinositol 3-kinase inhibitor is selected from the compound of formula (I) N.
\'µ) s 6 =
'NH-:
/
F-j2. (I), the compound of formula (II)
6 eLN
(II), pictilisib, taselisib, LY2780301, copanlisib, MLN1117, and AZD8835 or a pharmaceutically acceptable salt thereof. In one embodiment, the phosphatidylinositol 3-kinase inhibitor is the compound of formula (I) N
8 \ \
/:\ S 011 1 \ a NHL
.1/
N
F 2C/ (I) or a pharmaceutically acceptable salt thereof and administered orally in a therapeutically effective amount of about 50 mg to about 450 mg once-per-day either on a continuous daily schedule or an intermittent schedule. In another embodiment, the phosphatidylinositol 3-kinase inhibitor is the compound of formula (II) (II) or a pharmaceutically acceptable salt thereof and administered orally in a therapeutically effective amount of about 60 mg to about 120 mg once-per-day either on a continuous daily schedule or an intermittent schedule.
The present disclosure also relates to a package comprising a pharmaceutical composition comprising a phosphatidylinositol 3-kinase inhibitor together with one or more pharmaceutically acceptable excipients in combination with instructions to administer said
(II), pictilisib, taselisib, LY2780301, copanlisib, MLN1117, and AZD8835 or a pharmaceutically acceptable salt thereof. In one embodiment, the phosphatidylinositol 3-kinase inhibitor is the compound of formula (I) N
8 \ \
/:\ S 011 1 \ a NHL
.1/
N
F 2C/ (I) or a pharmaceutically acceptable salt thereof and administered orally in a therapeutically effective amount of about 50 mg to about 450 mg once-per-day either on a continuous daily schedule or an intermittent schedule. In another embodiment, the phosphatidylinositol 3-kinase inhibitor is the compound of formula (II) (II) or a pharmaceutically acceptable salt thereof and administered orally in a therapeutically effective amount of about 60 mg to about 120 mg once-per-day either on a continuous daily schedule or an intermittent schedule.
The present disclosure also relates to a package comprising a pharmaceutical composition comprising a phosphatidylinositol 3-kinase inhibitor together with one or more pharmaceutically acceptable excipients in combination with instructions to administer said
7 pharmaceutical composition once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep.
Detailed Description of the Figures FIGURE 1 shows a twenty-four-hour pattern of blood glucose values and motor activity measured in conscious Brown Norway rats freely moving in their home cages.
FIGURE 2 shows a continuous 5-day record of hourly values of blood glucose levels and motor activity in conscious Brown Norway rats freely moving in their home cages.
FIGURE 3 shows a continuous 7-day record of hourly values of blood glucose values following treatment with vehicle or Compound A (50 mg/kg p.o. qd) dosed at 10 A.M. (inactive phase, upper panel, n=6) or at 5 P.M. (active phase, lower panel, n=5) in conscious Brown Norway rats freely moving in their home cages.
FIGURE 4 shows the PK/PD relationship of changes in blood glucose levels over 24h following treatment with Compound A (50 mg/kg p.o. dosed at 10 A.M, inactive phase, n=6) for days and the corresponding simulated plasma concentration curve in conscious Brown Norway rats freely moving in their home cages.
FIGURE 5 shows the fractional tumor growth and change in body weight profiles for female nude rats bearing Rat1-myr-p110a subcutaneous xenografts that were treated with either Compound A (14 mg/kg) or a vehicle at the indicated doses and schedule.
FIGURE 6 shows the fractional tumor growth and change in body weight profiles for female nude rats bearing Rat1-myr-p110a subcutaneous xenografts that were treated with either Compound A (25 mg/kg) or a vehicle at the indicated doses and schedule.
FIGURE 7 shows a continuous 4-day record of hourly values of blood glucose values following daily treatment with Compound A (50 mg/kg p.o. qd) for 4 days dosed at 10 A.M.
(inactive phase, white circles, n=13) or at 5 P.M. (active phase, black circles, n=11) in conscious BN rats freely moving in their home cages.
FIGURE 8 shows plasma levels of Compound A at the indicated schedule following daily treatment with Compound A (50 mg/kg p.o. qd) for 1 to 4 days dosed at 10 A.M.
(inactive phase,
Detailed Description of the Figures FIGURE 1 shows a twenty-four-hour pattern of blood glucose values and motor activity measured in conscious Brown Norway rats freely moving in their home cages.
FIGURE 2 shows a continuous 5-day record of hourly values of blood glucose levels and motor activity in conscious Brown Norway rats freely moving in their home cages.
FIGURE 3 shows a continuous 7-day record of hourly values of blood glucose values following treatment with vehicle or Compound A (50 mg/kg p.o. qd) dosed at 10 A.M. (inactive phase, upper panel, n=6) or at 5 P.M. (active phase, lower panel, n=5) in conscious Brown Norway rats freely moving in their home cages.
FIGURE 4 shows the PK/PD relationship of changes in blood glucose levels over 24h following treatment with Compound A (50 mg/kg p.o. dosed at 10 A.M, inactive phase, n=6) for days and the corresponding simulated plasma concentration curve in conscious Brown Norway rats freely moving in their home cages.
FIGURE 5 shows the fractional tumor growth and change in body weight profiles for female nude rats bearing Rat1-myr-p110a subcutaneous xenografts that were treated with either Compound A (14 mg/kg) or a vehicle at the indicated doses and schedule.
FIGURE 6 shows the fractional tumor growth and change in body weight profiles for female nude rats bearing Rat1-myr-p110a subcutaneous xenografts that were treated with either Compound A (25 mg/kg) or a vehicle at the indicated doses and schedule.
FIGURE 7 shows a continuous 4-day record of hourly values of blood glucose values following daily treatment with Compound A (50 mg/kg p.o. qd) for 4 days dosed at 10 A.M.
(inactive phase, white circles, n=13) or at 5 P.M. (active phase, black circles, n=11) in conscious BN rats freely moving in their home cages.
FIGURE 8 shows plasma levels of Compound A at the indicated schedule following daily treatment with Compound A (50 mg/kg p.o. qd) for 1 to 4 days dosed at 10 A.M.
(inactive phase,
8 white circles) or at 5 P.M. (active phase, black circles) in conscious freely moving Brown Norway rats.
FIGURE 9 shows ratio tumor volume changes for female nude mice bearing HBCx-19 subcutaneous patient derived xenografts that were treated with Fulvestrant as single agent or in combination with Compound A or vehicle at the indicated doses and schedule.
FIGURE 10 shows ratio tumor volume changes for female nude mice bearing HBRX3077 subcutaneous patient derived xenografts that were treated with Fulvestrant as single agent or in combination with Compound A or vehicle at the indicated doses and schedule.
FIGURE 11 shows ratio tumor volume changes for female nude mice bearing HBRX3077 subcutaneous patient derived xenografts that were treated with letrozole as single agent or in combination with Compound A or vehicle at the indicated doses and schedule.
Detailed Description of the Disclosure The present disclosure relates to a method of treating or preventing a proliferative disease in a patient in need thereof, comprising orally administering a therapeutically effective amount of a PI3K inhibitor once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep. The disclosed compositions and methods provide a convenient method of administration in that a single dose can be taken typically in the evening prior to going to bed, or at whatever time of day one retires for an extended period of sleep.
Although the present compositions are described as effective as a once-a-day dosage either on a continuous daily schedule or an intermittent schedule, it is understood that additional doses can be administered as needed at the direction of a physician. The description herein is primarily directed to treatment of persons with a typical schedule of going to sleep from around
FIGURE 9 shows ratio tumor volume changes for female nude mice bearing HBCx-19 subcutaneous patient derived xenografts that were treated with Fulvestrant as single agent or in combination with Compound A or vehicle at the indicated doses and schedule.
FIGURE 10 shows ratio tumor volume changes for female nude mice bearing HBRX3077 subcutaneous patient derived xenografts that were treated with Fulvestrant as single agent or in combination with Compound A or vehicle at the indicated doses and schedule.
FIGURE 11 shows ratio tumor volume changes for female nude mice bearing HBRX3077 subcutaneous patient derived xenografts that were treated with letrozole as single agent or in combination with Compound A or vehicle at the indicated doses and schedule.
Detailed Description of the Disclosure The present disclosure relates to a method of treating or preventing a proliferative disease in a patient in need thereof, comprising orally administering a therapeutically effective amount of a PI3K inhibitor once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep. The disclosed compositions and methods provide a convenient method of administration in that a single dose can be taken typically in the evening prior to going to bed, or at whatever time of day one retires for an extended period of sleep.
Although the present compositions are described as effective as a once-a-day dosage either on a continuous daily schedule or an intermittent schedule, it is understood that additional doses can be administered as needed at the direction of a physician. The description herein is primarily directed to treatment of persons with a typical schedule of going to sleep from around
9 P.M. to about midnight, for example, and sleeping for 6-9 hours. It is understood, however, that the use and efficacy of the compositions and methods is not limited to such a schedule, but can be adopted for use with different daily schedules, such as night workers, or people with longer, shorter or more variable sleep patterns.
The general terms used herein are defined with the following meanings, unless explicitly stated otherwise:
The terms "comprising" and "including" are used herein in their open-ended and non-limiting sense unless otherwise noted.
The terms "a" and "an" and "the" and similar references in the context of describing the disclosure (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context.
Where the plural form is used for compounds, salts, and the like, this is taken to mean also a single compound, salt, or the like.
The term "a phosphatidylinositol 3-kinase inhibitor" or "P13K inhibitor" is defined herein to refer to a compound which targets, decreases or inhibits activity of the phosphatidylinositol 3-kinase.
The term "pharmaceutically acceptable" is defined herein to refer to those compounds, materials, compositions and/or dosage forms, which are, within the scope of sound medical judgment, suitable for contact with the tissues a patient without excessive toxicity, irritation allergic response and other problem complications commensurate with a reasonable benefit /
risk ratio.
The term "pharmaceutically acceptable salt", as used herein, unless otherwise indicated, includes salts of acidic and basic groups which may be present in the compounds of the present invention. Such salts can be prepared in situ during the final isolation and purification of the compounds, or by separately reacting the base or acid functions with a suitable organic or inorganic acid or base, respectively. Suitable salts of the compound include but are not limited to the following: acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, cyclopentanepropionate, dodecylsulfate, ethanesulfonate, glucoheptanoate, glycerophosphate, hemi-sulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2 hydroxyethanesulfonate, lactate, maleate, methanesulfonate, nicotinate, 2 naphth-alenesulfonate, oxalate, pamoate, pectinate, persulfate, 3 phenylproionate, picrate, pivalate, propionate, succinate, sulfate, tartrate, thiocyanate, p toluenesulfonate, and undecanoate. Also, the basic nitrogen-containing groups can be quaternized with such agents as alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides, and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl, and steely' chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides, and others.
The term "treat", "treating" or "treatment" as used herein comprises a treatment or therapeutic regimen relieving, reducing or alleviating at least one symptom in a patient or effecting a delay of progression of a proliferative disorder. For example, treatment can be the diminishment of one or several symptoms of a disorder or complete eradication of a disorder, such as cancer. Within the meaning of the present disclosure, the term "treat"
also denotes to arrest, delay the onset (i.e., the period prior to clinical manifestation of a disorder) and/or reduce the risk of developing or worsening a disorder.
The term "prevent", "preventing" or "prevention" as used herein comprises the prevention of at least one symptom associated with or caused by the state, disease or disorder being prevented.
The term "therapeutically effective" is an observable improvement over the baseline clinically observable signs and symptoms of the state, disease or disorder treated with the therapeutic agent.
The term "therapeutically effective amount" is an amount sufficient to provide an observable improvement over the baseline clinically observable signs and symptoms of the state, disease or disorder treated with the therapeutic agent.
The term "pharmaceutical composition" is defined herein to refer to a mixture or solution containing at least one therapeutic agent to be administered to a patient, in order to prevent or treat a particular disease or condition affecting the patient.
The phrase "continuous daily schedule" as used herein means the therapeutic agent is administered to the patient during each day for at least seven days or for an unspecified period of time or for as long as treatment is necessary. It is understood that the therapeutic agent may be administered each day in a single dosage unit or multiple dosage units.
The phrase "intermittent schedule" as used herein means the therapeutic agent is administered to the patient for a period of time and then not administered for a period of time before the same therapeutic agent is next administered to the patient. The phrase "five-consecutive day cycle" as used herein means the specified therapeutic agent is administered to the patient during each day for five-consecutive days and then not administered for a period of time before the same therapeutic agent is next administered to the patient. It is understood that the therapeutic agent may be administered each day in a single dosage unit or multiple dosage units.
The term "day" as used herein refers to either one calendar day or one 24-hour period.
The term "combination" is used herein to refer to either a fixed combination in one dosage unit form, a non-fixed combination or a kit of parts for the combined administration where the compound of formula (I) or a pharmaceutically acceptable salt thereof, and at least one additional therapeutic agent may be administered simultaneously, independently at the same time or separately within time intervals that allow that the combination partners show a cooperative, e.g., synergistic, effect. The term "fixed combination" means that the therapeutic agents, e.g. the compound of formula (I) or a pharmaceutically acceptable salt thereof and at least one additional therapeutic agent, are both administered to a patient simultaneously in the form of a single entity or dosage unit. The term "non-fixed combination" or "kit of parts" means that the therapeutic agents, e.g. the compound of formula (I) or a pharmaceutically acceptable salt thereof and at least one additional therapeutic agent, are both administered to a patient as separate entities or dosage units either simultaneously, concurrently or sequentially with no specific time limits, wherein such administration provides therapeutically effective levels of the two therapeutic agents in the body of the patient. The latter also applies to cocktail therapy, e.g.
the administration of three or more therapeutic agents.
The term "combined administration" as used herein is defined to encompass the administration of the selected therapeutic agents to a single patient, and is intended to include treatment regimens in which the agents are not necessarily administered by the same route of administration or at the same time.
The terms "patient", "subject" or "warm-blooded animal" is intended to include animals.
Examples of subjects include mammals, e.g., humans, dogs, cows, horses, pigs, sheep, goats, cats, mice, rabbits, rats, and transgenic non-human animals. In certain embodiments, the subject is a human, e.g., a human suffering from, at risk of suffering from, or potentially capable of suffering from a brain tumor disease. Particularly preferred, the patient or warm-blooded animal is human.
The terms "about" or "approximately" usually mean within 10%, more preferably within 5%, of a given value or range.
Examples of phosphatidylinositol 3-kinanse inhibitors for use in the current invention include, but are not limited to, the compound of formula (I) ii N
'1µ
-\
Fse (I), the compound of formula (II) CF
(II), pictilisib, taselisib, LY2780301, copanlisib, MLN1117, and AZD8835 or a pharmaceutically acceptable salt thereof.
W02010/029082 describes specific 2-carboxamide cycloamino urea derivatives, which have been found to have highly selective inhibitory activity for the alpha-isoform of phosphatidylinositol 3-kinase (PI3K). A PI3K inhibitor suitable for the present invention is a compound having the following formula (I):
-r S
Y---F3C/ (I) (hereinafter "compound of formula (I)" or "Compound A") and pharmaceutically acceptable salts thereof. The compound of formula (I) is also known as the chemical compound (S)-Pyrrolidine-1, 2-dicarboxylic acid 2-amide 1-({4-methyl-542-(2,2,2-trifluoro-1,1-dimethyl-ethyl)-pyridin-4-y1]-thiazol-2-y1}-amide). The compound of formula (I), its pharmaceutically acceptable salts and suitable formulations are described in PCT Application No. W02010/029082, which is hereby incorporated by reference in its entirety, and methods of its preparation have been described, for example, in Example 15 therein. The compound of formula (I) may be present in the form of the free base or any pharmaceutically acceptable salt thereto. Preferably, compound of formula (I) is in the form of its free base.
Further, W007/084786 describes pyrimidine derivatives, which have been found to inhibit the activity of phosphatidylinositol 3-kinase (PI3K). A PI3K inhibitor suitable for the present invention is a compound having the following formula (II) (II) (hereinafter "compound of formula (II)" or "Compound B") and pharmaceutically acceptable salts thereof. The compound of formula (II) is also known as the chemical compound 4-(trifluoromethyl)-5-(2,6-dimorpholinopyrimidin-4-Apyridin-2-amine. The compound of formula (II), its pharmaceutically acceptable salts and suitable formulations are described in PCT
Application No. W007/084786, which is hereby incorporated by reference in its entirety, and methods of its preparation have been described, for example, in Example 10 therein. The compound of formula (II) may be present in the form of the free base or any pharmaceutically acceptable salt thereto. Preferably, the compound of formula (II), is in the form of its hydrochloride salt.
As used herein, the term "salts" (including "or salts thereof" or "or a salt thereof"), can be present alone or in mixture with the free base of the identified PI3K
inhibitor, preferably the compound of formula (I) or the compound of formula (II) and are preferably pharmaceutically acceptable salts. For therapeutic use, only pharmaceutically acceptable salts or free compound are employed (where applicable in the form of pharmaceutical preparations), and these are therefore preferred. In view of the close relationship between the PI3K
inhibitor compound in free form and those in the form of its salts, any reference to the free PI3K
inhibitor herein before and hereinafter is to be understood as referring also to the corresponding salts, as appropriate and expedient.
In a preferred embodiment, the PI3K inhibitor is a compound of formula (I) or a compound of formula (II) or a pharmaceutically acceptable salt thereof.
In a preferred embodiment, the PI3K inhibitor is a compound of formula (I) or a pharmaceutically acceptable salt thereof.
The compound of formula (I) or its pharmaceutically acceptable salts may be orally administered at a therapeutically effective amount of about 50 mg to about 450 mg per day to a human patient in need thereof. In further embodiments, the compound of formula (I) may be administered to patient at a therapeutically effective amount of about 200 to about 400 mg per day, or about 240 mg to about 400 mg per day, or about 300 mg to about 400 mg per day, or about 350 mg to about 400 mg per day. In a preferred embodiment, the compound of formula (I) is administered to a human patient at a therapeutically effective amount of about 350 mg to about 400 mg per day.
The compound of formula (II) or its pharmaceutically acceptable salts may be orally administered at a therapeutically effective amount of about 60 mg to about 120 mg per day to a human patient in need thereof.
In accordance with the dosage regimen of the present disclosure, the PI3K
inhibitor is orally administered to a patient in need thereof once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours, e.g., about 30 minutes to about 3 hours, about 1 hour to about 3 hours, about 1 hour to about 2 hours, about 2 hours to about 3 hours, etc., prior to sleep. Preferably, the PI3K inhibitor is administered for about one to three hours prior to sleep. More preferably, the PI3K inhibitor is administered about 2 hours prior to sleep.
In one embodiment of the dosage regimen of the present disclosure, the compound of formula (I) or a pharmaceutically acceptable salt thereof is orally administered to a patient in need thereof at a therapeutically effective amount of about 100 mg to about 450 mg at about zero to about three hours prior to sleep. Preferably, the compound of formula (I) or a pharmaceutically acceptable salt thereof is administered for about one to three hours prior to sleep. More preferably, the compound of formula (I) or a pharmaceutically acceptable salt thereof is administered for about two hours prior to sleep.
In one embodiment of the dosage regimen of the present disclosure, the compound of formula (II) or a pharmaceutically acceptable salt thereof is orally administered to a patient in need thereof at a therapeutically effective amount of about 60 mg to about 120 mg at about zero to about three hours prior to sleep. Preferably, the compound of formula (II) or a pharmaceutically acceptable salt thereof is administered for about one to three hours prior to sleep. More preferably, the compound of formula (II) or a pharmaceutically acceptable salt thereof is administered for about two hours prior to sleep.
In accordance with the dosage regimen of the present disclosure, the PI3K
inhibitor is orally administered to a patient in need thereof once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep. In one embodiment, the PI3K inhibitor is orally administered to a patient in need thereof once-per-day either on a continuous daily schedule at about zero to about three hours prior to sleep. . In one embodiment, the PI3K inhibitor is orally administered to a patient in need thereof once-per-day either on an intermittent schedule at about zero to about three hours prior to sleep. An example of an intermittent schedule is a five-consecutive day cycle preferably followed by a two-day period during which the therapeutic agent is not administered to the patient.
Proliferative diseases that may be treated or prevented by the administration of the compound of formula (I) or a pharmaceutically acceptable in accordance with the dosage regimen of the present disclosure. It is understood that one embodiment of the present disclosure includes the treatment of the proliferative disease and that a further embodiment of the present disclosure includes the prevention of the proliferative disease.
Examples of proliferative diseases which may be treated or prevented in accordance with the present disclosure include, cancer, myelofibrosis, haematogical disorders (e.g.
haemolytic anaemia, aplastic anaemia, pure red cell anaemia and idiopathic thrombocytopenia), autoimmune inflammatory bowel disease (e.g. ulcerative colitis and Crohn's disease), Grave's disease, multiple sclerosis, uveitis (anterior and posterior), cardiovascular diseases, atherosclerosis, hypertension, deep venous thrombosis, stroke, myocardial infarction, and coronary artery disease.
Preferably, the proliferative disease is a cancer. The term "cancer" refers to tumors and/or cancerous cell growth preferably mediated by PI3K. In particular, the compounds are useful in the treatment of cancers including, for example, sarcoma, lung, bronchus, prostate, breast (including sporadic breast cancers and sufferers of Cowden disease), pancreas, gastrointestine, colon, rectum, colon carcinoma, colorectal adenoma, thyroid, liver, intrahepatic bile duct, hepatocellular, adrenal gland, stomach, gastric, glioma, glioblastoma, endometrial, melanoma, kidney, renal pelvis, urinary bladder, uterine corpus, uterine cervix, vagina, ovary, multiple myeloma, esophagus, a leukemia, acute myelogenous leukemia, chronic myelogenous leukemia, lymphocytic leukemia, myeloid leukemia, brain, oral cavity and pharynx, larynx, small intestine, non-Hodgkin lymphoma, melanoma, villous colon adenoma, a neoplasia, a neoplasia of epithelial character, lymphomas, a mammary carcinoma, basal cell carcinoma, squamous cell carcinoma, actinic keratosis, head and neck, polycythemia vera, essential thrombocythemia, myelofibrosis with myeloid metaplasia, and Waldenstroem disease.
In one embodiment, the proliferative disease is a cancer of the lung (including small cell lung cancer and non-small cell lung cancer), bronchus, prostate, breast (including triple negative breast cancer, sporadic breast cancers and sufferers of Cowden disease), colon, rectum, colon carcinoma, colorectal adenoma, pancreas, gastrointestine, hepatocellular, stomach, gastric, ovary, squamous cell carcinoma, and head and neck.
In a further embodiment, the proliferative disease is a cancer selected from a cancer of the breast, colon, rectum, colon carcinoma, colorectal adenoma, endometrial, and cervical.
In a further embodiment, the proliferative disease is a breast cancer.
In a further embodiment, the present disclosure relates to the treatment of a cancer by the administration of the compound of formula (I) or a pharmaceutically acceptable in accordance with the dosage regimen of the present disclosure.
It is believed that altering the dosing of a PI3K inhibitor compound from oral administration at (a) a daily dose prior to the patient's active phase to (b) a daily dose administered at about zero to about three hours prior to sleeping (inactive phase), is effective to treat or prevent a proliferative disease while relieving, reducing, or alleviating the severity, occurrence rate and/or frequency of any side effects. This is particularly applicable to treatment or prevention of a cancer. The term "active phase" refers to the phase in a patient's daily schedule when the patient is awake and physically active. There term "inactive phase" refers to the phase in a patient's daily schedule when the patient is sleeping for an extended period of time and not physically active.
Examples of such side effects which may be relieved, reduced, or alleviated by the dosage regimen of the present disclosure include, but are not limited to, neutropenia, elevated bilirubin, cardiac toxicity, unstable angina, myocardial infarction, persistent hypertension, peripheral sensory or motor neuropathy/ pain, hepatic dysfunction (e.g., liver injury or liver disease, aspartate transaminase level elevation, alanine aminotransferase level elevation, etc.), reduced red and/or white blood cell count, hyperglycemia, nausea, decreased appetite, diarrhea, rash (e.g., maculopapular, acneiform, etc.) and hypersensitivity (e.g., increased sensitivity to bruise), photosensitivity, asthenia/ fatigue, vomiting, stomatitis, oral mucositis, pancreatitis, dysgeusia, and dyspepsia. It is understood by one of ordinary skill in the art how to assess such side effects in a patient suffering from proliferative diseases using one's experience or prior knowledge and/or by referencing standard side effect grading criteria, for example, by assessing such patient using the NCI Common Terminology Criteria for Adverse Events, version 4.03 (website located at:
http://evs.nci.nih.gov/ftp1/CTCAE/About.html), which is hereby incorporated by reference in its entirety.
Particularly, the side effects relieved, reduced, or alleviated by the dosage regimen of the present disclosure is hyperglycemia or rash.
It can be shown by established test models that the dosage regimen of the present disclosure results in the beneficial effects described herein before. The person skilled in the art is fully enabled to select a relevant test model to prove such beneficial effects. The pharmacological activity of the PI3K inhibitors, particularly compounds of formula (I) or (II) or their pharmaceutically acceptable salt, may, for example, be demonstrated in a clinical study, an animal study or in a test procedure as essentially described hereinafter.
Suitable clinical studies are in particular, for example, open label, dose escalation studies in patients with a proliferative disease, including for example a tumor disease, e.g., breast cancer, wherein said patients are orally administered a phosphatidylinositol 3-kinase inhibitor in accordance with the dosage regimen of the present disclosure.
Preferably, patients are assigned to different groups wherein at least one group is administered the PI3K on a continuous daily schedule prior to the patients' active phase and at least one group is administered the PI3K in accordance with the dosage regimen of the present disclosure. Such studies prove in particular the efficacy of the therapeutic agent and its impact on existing or potential side effects. The beneficial effects on a proliferative disease may be determined directly through the results of these studies which are known as such to a person skilled in the art. Such studies may be, in particular, suitable to compare the effects of a continuous daily schedule using the therapeutic agents and the dosing schedule of the present disclosure. The efficacy of the treatment may be determined in such studies, e.g., after 12, 18 or 24 weeks by evaluation of glucose levels, symptom scores and/or tumor size measurements every 6 weeks.
In accordance with the present disclosure, the PI3K is preferably used or administered in the form of pharmaceutically compositions that contain a therapeutically effective amount of the PI3K together with one or more pharmaceutically acceptable excipients suitable for oral administration.
In one embodiment, the compound of formula (I) or a pharmaceutically acceptable salt thereof is preferably used or administered in the form of pharmaceutically compositions that contain a therapeutically effective amount of the compound of formula (I) or pharmaceutically acceptable salt thereof together with one or more pharmaceutically acceptable excipients suitable for oral administration. The pharmaceutical composition may comprise an amount of about 100 mg to about 450 mg of a compound of formula (I) or pharmaceutically acceptable salt thereof to be administered in a single dosage unit. Alternatively, the pharmaceutical composition may comprise an amount of the compound of formula (I) or pharmaceutically acceptable salt thereof which is subdivided into multiple dosage units and administered for a therapeutically effective amount of about 50 mg to about 450 mg of the compound of formula (I) or pharmaceutically acceptable salt thereof.
In another embodiment, the compound of formula (II) or a pharmaceutically acceptable salt thereof is preferably used or administered in the form of pharmaceutically compositions that contain a therapeutically effective amount of the compound of formula (II) or pharmaceutically acceptable salt thereof together with one or more pharmaceutically acceptable excipients suitable for oral administration. The pharmaceutical composition may comprise an amount of about 60 mg to about 120 mg of a compound of formula (II) or pharmaceutically acceptable salt thereof to be administered in a single dosage unit. Alternatively, the pharmaceutical composition may comprise an amount of the compound of formula (II) or pharmaceutically acceptable salt thereof which is subdivided into multiple dosage units and administered for a therapeutically effective amount of about 60 mg to about 120 mg of the compound of formula (II) or pharmaceutically acceptable salt thereof.
The pharmaceutical compositions used according to the present disclosure can be prepared in a manner known per se to be suitable for oral administration to mammals (warm-blooded animals), including humans. Pharmaceutical compositions for oral administration may include, for example, those in dosage unit forms, such as sugar-coated tablets, tablets, capsules, sachets and furthermore ampoules. If not indicated otherwise, these are prepared in a manner known per se, for example by means of conventional mixing, granulating, sugar-coating, dissolving or lyophilizing processes. It will be appreciated that the amount of the active ingredient contained in an individual dose or dosage unit need not in itself constitute a therapeutically effective amount since the necessary effective amount can be reached by administration of a plurality of dosage units.
The novel pharmaceutical composition may contain, for example, from about 10 %
to about 100 %, preferably from about 20 % to about 60 %, of the active ingredient.
In preparing the compositions for oral dosage unit form, any of the usual pharmaceutically acceptable excipients may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents; or excipients such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations such as, for example, powders, capsules and tablets, with the solid oral preparations being preferred over the liquid preparations. Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit form in which case solid pharmaceutical carriers are obviously employed.
One of ordinary skill in the art may select one or more of the aforementioned excipients with respect to the particular desired properties of the dosage unit form by routine experimentation and without any undue burden. The amount of each excipient used may vary within ranges conventional in the art. The following references which are all hereby incorporated by reference disclose techniques and excipients used to formulate oral dosage forms. (See The Handbook of Pharmaceutical Excipients, 4th edition, Rowe et al., Eds., American Pharmaceuticals Association (2003); and Remington: the Science and Practice of Pharmacy, 20th edition, Gennaro, Ed., Lippincott Williams & Wilkins (2003).) Examples of pharmaceutically acceptable disintegrants include, but are not limited to, starches; clays; celluloses; alginates; gums; cross-linked polymers, e.g., cross-linked polyvinyl pyrrolidone or crospovidone, e.g., POLYPLASDONE XL from International Specialty Products (Wayne, NJ); cross-linked sodium carboxymethylcellulose or croscarmellose sodium, e.g., AC-DI-SOL from FMC; and cross-linked calcium carboxymethylcellulose; soy polysaccharides; and guar gum. The disintegrant may be present in an amount from about 0% to about
The general terms used herein are defined with the following meanings, unless explicitly stated otherwise:
The terms "comprising" and "including" are used herein in their open-ended and non-limiting sense unless otherwise noted.
The terms "a" and "an" and "the" and similar references in the context of describing the disclosure (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context.
Where the plural form is used for compounds, salts, and the like, this is taken to mean also a single compound, salt, or the like.
The term "a phosphatidylinositol 3-kinase inhibitor" or "P13K inhibitor" is defined herein to refer to a compound which targets, decreases or inhibits activity of the phosphatidylinositol 3-kinase.
The term "pharmaceutically acceptable" is defined herein to refer to those compounds, materials, compositions and/or dosage forms, which are, within the scope of sound medical judgment, suitable for contact with the tissues a patient without excessive toxicity, irritation allergic response and other problem complications commensurate with a reasonable benefit /
risk ratio.
The term "pharmaceutically acceptable salt", as used herein, unless otherwise indicated, includes salts of acidic and basic groups which may be present in the compounds of the present invention. Such salts can be prepared in situ during the final isolation and purification of the compounds, or by separately reacting the base or acid functions with a suitable organic or inorganic acid or base, respectively. Suitable salts of the compound include but are not limited to the following: acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate, digluconate, cyclopentanepropionate, dodecylsulfate, ethanesulfonate, glucoheptanoate, glycerophosphate, hemi-sulfate, heptanoate, hexanoate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2 hydroxyethanesulfonate, lactate, maleate, methanesulfonate, nicotinate, 2 naphth-alenesulfonate, oxalate, pamoate, pectinate, persulfate, 3 phenylproionate, picrate, pivalate, propionate, succinate, sulfate, tartrate, thiocyanate, p toluenesulfonate, and undecanoate. Also, the basic nitrogen-containing groups can be quaternized with such agents as alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides, and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl, and steely' chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides, and others.
The term "treat", "treating" or "treatment" as used herein comprises a treatment or therapeutic regimen relieving, reducing or alleviating at least one symptom in a patient or effecting a delay of progression of a proliferative disorder. For example, treatment can be the diminishment of one or several symptoms of a disorder or complete eradication of a disorder, such as cancer. Within the meaning of the present disclosure, the term "treat"
also denotes to arrest, delay the onset (i.e., the period prior to clinical manifestation of a disorder) and/or reduce the risk of developing or worsening a disorder.
The term "prevent", "preventing" or "prevention" as used herein comprises the prevention of at least one symptom associated with or caused by the state, disease or disorder being prevented.
The term "therapeutically effective" is an observable improvement over the baseline clinically observable signs and symptoms of the state, disease or disorder treated with the therapeutic agent.
The term "therapeutically effective amount" is an amount sufficient to provide an observable improvement over the baseline clinically observable signs and symptoms of the state, disease or disorder treated with the therapeutic agent.
The term "pharmaceutical composition" is defined herein to refer to a mixture or solution containing at least one therapeutic agent to be administered to a patient, in order to prevent or treat a particular disease or condition affecting the patient.
The phrase "continuous daily schedule" as used herein means the therapeutic agent is administered to the patient during each day for at least seven days or for an unspecified period of time or for as long as treatment is necessary. It is understood that the therapeutic agent may be administered each day in a single dosage unit or multiple dosage units.
The phrase "intermittent schedule" as used herein means the therapeutic agent is administered to the patient for a period of time and then not administered for a period of time before the same therapeutic agent is next administered to the patient. The phrase "five-consecutive day cycle" as used herein means the specified therapeutic agent is administered to the patient during each day for five-consecutive days and then not administered for a period of time before the same therapeutic agent is next administered to the patient. It is understood that the therapeutic agent may be administered each day in a single dosage unit or multiple dosage units.
The term "day" as used herein refers to either one calendar day or one 24-hour period.
The term "combination" is used herein to refer to either a fixed combination in one dosage unit form, a non-fixed combination or a kit of parts for the combined administration where the compound of formula (I) or a pharmaceutically acceptable salt thereof, and at least one additional therapeutic agent may be administered simultaneously, independently at the same time or separately within time intervals that allow that the combination partners show a cooperative, e.g., synergistic, effect. The term "fixed combination" means that the therapeutic agents, e.g. the compound of formula (I) or a pharmaceutically acceptable salt thereof and at least one additional therapeutic agent, are both administered to a patient simultaneously in the form of a single entity or dosage unit. The term "non-fixed combination" or "kit of parts" means that the therapeutic agents, e.g. the compound of formula (I) or a pharmaceutically acceptable salt thereof and at least one additional therapeutic agent, are both administered to a patient as separate entities or dosage units either simultaneously, concurrently or sequentially with no specific time limits, wherein such administration provides therapeutically effective levels of the two therapeutic agents in the body of the patient. The latter also applies to cocktail therapy, e.g.
the administration of three or more therapeutic agents.
The term "combined administration" as used herein is defined to encompass the administration of the selected therapeutic agents to a single patient, and is intended to include treatment regimens in which the agents are not necessarily administered by the same route of administration or at the same time.
The terms "patient", "subject" or "warm-blooded animal" is intended to include animals.
Examples of subjects include mammals, e.g., humans, dogs, cows, horses, pigs, sheep, goats, cats, mice, rabbits, rats, and transgenic non-human animals. In certain embodiments, the subject is a human, e.g., a human suffering from, at risk of suffering from, or potentially capable of suffering from a brain tumor disease. Particularly preferred, the patient or warm-blooded animal is human.
The terms "about" or "approximately" usually mean within 10%, more preferably within 5%, of a given value or range.
Examples of phosphatidylinositol 3-kinanse inhibitors for use in the current invention include, but are not limited to, the compound of formula (I) ii N
'1µ
-\
Fse (I), the compound of formula (II) CF
(II), pictilisib, taselisib, LY2780301, copanlisib, MLN1117, and AZD8835 or a pharmaceutically acceptable salt thereof.
W02010/029082 describes specific 2-carboxamide cycloamino urea derivatives, which have been found to have highly selective inhibitory activity for the alpha-isoform of phosphatidylinositol 3-kinase (PI3K). A PI3K inhibitor suitable for the present invention is a compound having the following formula (I):
-r S
Y---F3C/ (I) (hereinafter "compound of formula (I)" or "Compound A") and pharmaceutically acceptable salts thereof. The compound of formula (I) is also known as the chemical compound (S)-Pyrrolidine-1, 2-dicarboxylic acid 2-amide 1-({4-methyl-542-(2,2,2-trifluoro-1,1-dimethyl-ethyl)-pyridin-4-y1]-thiazol-2-y1}-amide). The compound of formula (I), its pharmaceutically acceptable salts and suitable formulations are described in PCT Application No. W02010/029082, which is hereby incorporated by reference in its entirety, and methods of its preparation have been described, for example, in Example 15 therein. The compound of formula (I) may be present in the form of the free base or any pharmaceutically acceptable salt thereto. Preferably, compound of formula (I) is in the form of its free base.
Further, W007/084786 describes pyrimidine derivatives, which have been found to inhibit the activity of phosphatidylinositol 3-kinase (PI3K). A PI3K inhibitor suitable for the present invention is a compound having the following formula (II) (II) (hereinafter "compound of formula (II)" or "Compound B") and pharmaceutically acceptable salts thereof. The compound of formula (II) is also known as the chemical compound 4-(trifluoromethyl)-5-(2,6-dimorpholinopyrimidin-4-Apyridin-2-amine. The compound of formula (II), its pharmaceutically acceptable salts and suitable formulations are described in PCT
Application No. W007/084786, which is hereby incorporated by reference in its entirety, and methods of its preparation have been described, for example, in Example 10 therein. The compound of formula (II) may be present in the form of the free base or any pharmaceutically acceptable salt thereto. Preferably, the compound of formula (II), is in the form of its hydrochloride salt.
As used herein, the term "salts" (including "or salts thereof" or "or a salt thereof"), can be present alone or in mixture with the free base of the identified PI3K
inhibitor, preferably the compound of formula (I) or the compound of formula (II) and are preferably pharmaceutically acceptable salts. For therapeutic use, only pharmaceutically acceptable salts or free compound are employed (where applicable in the form of pharmaceutical preparations), and these are therefore preferred. In view of the close relationship between the PI3K
inhibitor compound in free form and those in the form of its salts, any reference to the free PI3K
inhibitor herein before and hereinafter is to be understood as referring also to the corresponding salts, as appropriate and expedient.
In a preferred embodiment, the PI3K inhibitor is a compound of formula (I) or a compound of formula (II) or a pharmaceutically acceptable salt thereof.
In a preferred embodiment, the PI3K inhibitor is a compound of formula (I) or a pharmaceutically acceptable salt thereof.
The compound of formula (I) or its pharmaceutically acceptable salts may be orally administered at a therapeutically effective amount of about 50 mg to about 450 mg per day to a human patient in need thereof. In further embodiments, the compound of formula (I) may be administered to patient at a therapeutically effective amount of about 200 to about 400 mg per day, or about 240 mg to about 400 mg per day, or about 300 mg to about 400 mg per day, or about 350 mg to about 400 mg per day. In a preferred embodiment, the compound of formula (I) is administered to a human patient at a therapeutically effective amount of about 350 mg to about 400 mg per day.
The compound of formula (II) or its pharmaceutically acceptable salts may be orally administered at a therapeutically effective amount of about 60 mg to about 120 mg per day to a human patient in need thereof.
In accordance with the dosage regimen of the present disclosure, the PI3K
inhibitor is orally administered to a patient in need thereof once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours, e.g., about 30 minutes to about 3 hours, about 1 hour to about 3 hours, about 1 hour to about 2 hours, about 2 hours to about 3 hours, etc., prior to sleep. Preferably, the PI3K inhibitor is administered for about one to three hours prior to sleep. More preferably, the PI3K inhibitor is administered about 2 hours prior to sleep.
In one embodiment of the dosage regimen of the present disclosure, the compound of formula (I) or a pharmaceutically acceptable salt thereof is orally administered to a patient in need thereof at a therapeutically effective amount of about 100 mg to about 450 mg at about zero to about three hours prior to sleep. Preferably, the compound of formula (I) or a pharmaceutically acceptable salt thereof is administered for about one to three hours prior to sleep. More preferably, the compound of formula (I) or a pharmaceutically acceptable salt thereof is administered for about two hours prior to sleep.
In one embodiment of the dosage regimen of the present disclosure, the compound of formula (II) or a pharmaceutically acceptable salt thereof is orally administered to a patient in need thereof at a therapeutically effective amount of about 60 mg to about 120 mg at about zero to about three hours prior to sleep. Preferably, the compound of formula (II) or a pharmaceutically acceptable salt thereof is administered for about one to three hours prior to sleep. More preferably, the compound of formula (II) or a pharmaceutically acceptable salt thereof is administered for about two hours prior to sleep.
In accordance with the dosage regimen of the present disclosure, the PI3K
inhibitor is orally administered to a patient in need thereof once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep. In one embodiment, the PI3K inhibitor is orally administered to a patient in need thereof once-per-day either on a continuous daily schedule at about zero to about three hours prior to sleep. . In one embodiment, the PI3K inhibitor is orally administered to a patient in need thereof once-per-day either on an intermittent schedule at about zero to about three hours prior to sleep. An example of an intermittent schedule is a five-consecutive day cycle preferably followed by a two-day period during which the therapeutic agent is not administered to the patient.
Proliferative diseases that may be treated or prevented by the administration of the compound of formula (I) or a pharmaceutically acceptable in accordance with the dosage regimen of the present disclosure. It is understood that one embodiment of the present disclosure includes the treatment of the proliferative disease and that a further embodiment of the present disclosure includes the prevention of the proliferative disease.
Examples of proliferative diseases which may be treated or prevented in accordance with the present disclosure include, cancer, myelofibrosis, haematogical disorders (e.g.
haemolytic anaemia, aplastic anaemia, pure red cell anaemia and idiopathic thrombocytopenia), autoimmune inflammatory bowel disease (e.g. ulcerative colitis and Crohn's disease), Grave's disease, multiple sclerosis, uveitis (anterior and posterior), cardiovascular diseases, atherosclerosis, hypertension, deep venous thrombosis, stroke, myocardial infarction, and coronary artery disease.
Preferably, the proliferative disease is a cancer. The term "cancer" refers to tumors and/or cancerous cell growth preferably mediated by PI3K. In particular, the compounds are useful in the treatment of cancers including, for example, sarcoma, lung, bronchus, prostate, breast (including sporadic breast cancers and sufferers of Cowden disease), pancreas, gastrointestine, colon, rectum, colon carcinoma, colorectal adenoma, thyroid, liver, intrahepatic bile duct, hepatocellular, adrenal gland, stomach, gastric, glioma, glioblastoma, endometrial, melanoma, kidney, renal pelvis, urinary bladder, uterine corpus, uterine cervix, vagina, ovary, multiple myeloma, esophagus, a leukemia, acute myelogenous leukemia, chronic myelogenous leukemia, lymphocytic leukemia, myeloid leukemia, brain, oral cavity and pharynx, larynx, small intestine, non-Hodgkin lymphoma, melanoma, villous colon adenoma, a neoplasia, a neoplasia of epithelial character, lymphomas, a mammary carcinoma, basal cell carcinoma, squamous cell carcinoma, actinic keratosis, head and neck, polycythemia vera, essential thrombocythemia, myelofibrosis with myeloid metaplasia, and Waldenstroem disease.
In one embodiment, the proliferative disease is a cancer of the lung (including small cell lung cancer and non-small cell lung cancer), bronchus, prostate, breast (including triple negative breast cancer, sporadic breast cancers and sufferers of Cowden disease), colon, rectum, colon carcinoma, colorectal adenoma, pancreas, gastrointestine, hepatocellular, stomach, gastric, ovary, squamous cell carcinoma, and head and neck.
In a further embodiment, the proliferative disease is a cancer selected from a cancer of the breast, colon, rectum, colon carcinoma, colorectal adenoma, endometrial, and cervical.
In a further embodiment, the proliferative disease is a breast cancer.
In a further embodiment, the present disclosure relates to the treatment of a cancer by the administration of the compound of formula (I) or a pharmaceutically acceptable in accordance with the dosage regimen of the present disclosure.
It is believed that altering the dosing of a PI3K inhibitor compound from oral administration at (a) a daily dose prior to the patient's active phase to (b) a daily dose administered at about zero to about three hours prior to sleeping (inactive phase), is effective to treat or prevent a proliferative disease while relieving, reducing, or alleviating the severity, occurrence rate and/or frequency of any side effects. This is particularly applicable to treatment or prevention of a cancer. The term "active phase" refers to the phase in a patient's daily schedule when the patient is awake and physically active. There term "inactive phase" refers to the phase in a patient's daily schedule when the patient is sleeping for an extended period of time and not physically active.
Examples of such side effects which may be relieved, reduced, or alleviated by the dosage regimen of the present disclosure include, but are not limited to, neutropenia, elevated bilirubin, cardiac toxicity, unstable angina, myocardial infarction, persistent hypertension, peripheral sensory or motor neuropathy/ pain, hepatic dysfunction (e.g., liver injury or liver disease, aspartate transaminase level elevation, alanine aminotransferase level elevation, etc.), reduced red and/or white blood cell count, hyperglycemia, nausea, decreased appetite, diarrhea, rash (e.g., maculopapular, acneiform, etc.) and hypersensitivity (e.g., increased sensitivity to bruise), photosensitivity, asthenia/ fatigue, vomiting, stomatitis, oral mucositis, pancreatitis, dysgeusia, and dyspepsia. It is understood by one of ordinary skill in the art how to assess such side effects in a patient suffering from proliferative diseases using one's experience or prior knowledge and/or by referencing standard side effect grading criteria, for example, by assessing such patient using the NCI Common Terminology Criteria for Adverse Events, version 4.03 (website located at:
http://evs.nci.nih.gov/ftp1/CTCAE/About.html), which is hereby incorporated by reference in its entirety.
Particularly, the side effects relieved, reduced, or alleviated by the dosage regimen of the present disclosure is hyperglycemia or rash.
It can be shown by established test models that the dosage regimen of the present disclosure results in the beneficial effects described herein before. The person skilled in the art is fully enabled to select a relevant test model to prove such beneficial effects. The pharmacological activity of the PI3K inhibitors, particularly compounds of formula (I) or (II) or their pharmaceutically acceptable salt, may, for example, be demonstrated in a clinical study, an animal study or in a test procedure as essentially described hereinafter.
Suitable clinical studies are in particular, for example, open label, dose escalation studies in patients with a proliferative disease, including for example a tumor disease, e.g., breast cancer, wherein said patients are orally administered a phosphatidylinositol 3-kinase inhibitor in accordance with the dosage regimen of the present disclosure.
Preferably, patients are assigned to different groups wherein at least one group is administered the PI3K on a continuous daily schedule prior to the patients' active phase and at least one group is administered the PI3K in accordance with the dosage regimen of the present disclosure. Such studies prove in particular the efficacy of the therapeutic agent and its impact on existing or potential side effects. The beneficial effects on a proliferative disease may be determined directly through the results of these studies which are known as such to a person skilled in the art. Such studies may be, in particular, suitable to compare the effects of a continuous daily schedule using the therapeutic agents and the dosing schedule of the present disclosure. The efficacy of the treatment may be determined in such studies, e.g., after 12, 18 or 24 weeks by evaluation of glucose levels, symptom scores and/or tumor size measurements every 6 weeks.
In accordance with the present disclosure, the PI3K is preferably used or administered in the form of pharmaceutically compositions that contain a therapeutically effective amount of the PI3K together with one or more pharmaceutically acceptable excipients suitable for oral administration.
In one embodiment, the compound of formula (I) or a pharmaceutically acceptable salt thereof is preferably used or administered in the form of pharmaceutically compositions that contain a therapeutically effective amount of the compound of formula (I) or pharmaceutically acceptable salt thereof together with one or more pharmaceutically acceptable excipients suitable for oral administration. The pharmaceutical composition may comprise an amount of about 100 mg to about 450 mg of a compound of formula (I) or pharmaceutically acceptable salt thereof to be administered in a single dosage unit. Alternatively, the pharmaceutical composition may comprise an amount of the compound of formula (I) or pharmaceutically acceptable salt thereof which is subdivided into multiple dosage units and administered for a therapeutically effective amount of about 50 mg to about 450 mg of the compound of formula (I) or pharmaceutically acceptable salt thereof.
In another embodiment, the compound of formula (II) or a pharmaceutically acceptable salt thereof is preferably used or administered in the form of pharmaceutically compositions that contain a therapeutically effective amount of the compound of formula (II) or pharmaceutically acceptable salt thereof together with one or more pharmaceutically acceptable excipients suitable for oral administration. The pharmaceutical composition may comprise an amount of about 60 mg to about 120 mg of a compound of formula (II) or pharmaceutically acceptable salt thereof to be administered in a single dosage unit. Alternatively, the pharmaceutical composition may comprise an amount of the compound of formula (II) or pharmaceutically acceptable salt thereof which is subdivided into multiple dosage units and administered for a therapeutically effective amount of about 60 mg to about 120 mg of the compound of formula (II) or pharmaceutically acceptable salt thereof.
The pharmaceutical compositions used according to the present disclosure can be prepared in a manner known per se to be suitable for oral administration to mammals (warm-blooded animals), including humans. Pharmaceutical compositions for oral administration may include, for example, those in dosage unit forms, such as sugar-coated tablets, tablets, capsules, sachets and furthermore ampoules. If not indicated otherwise, these are prepared in a manner known per se, for example by means of conventional mixing, granulating, sugar-coating, dissolving or lyophilizing processes. It will be appreciated that the amount of the active ingredient contained in an individual dose or dosage unit need not in itself constitute a therapeutically effective amount since the necessary effective amount can be reached by administration of a plurality of dosage units.
The novel pharmaceutical composition may contain, for example, from about 10 %
to about 100 %, preferably from about 20 % to about 60 %, of the active ingredient.
In preparing the compositions for oral dosage unit form, any of the usual pharmaceutically acceptable excipients may be employed, such as, for example, water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents; or excipients such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations such as, for example, powders, capsules and tablets, with the solid oral preparations being preferred over the liquid preparations. Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit form in which case solid pharmaceutical carriers are obviously employed.
One of ordinary skill in the art may select one or more of the aforementioned excipients with respect to the particular desired properties of the dosage unit form by routine experimentation and without any undue burden. The amount of each excipient used may vary within ranges conventional in the art. The following references which are all hereby incorporated by reference disclose techniques and excipients used to formulate oral dosage forms. (See The Handbook of Pharmaceutical Excipients, 4th edition, Rowe et al., Eds., American Pharmaceuticals Association (2003); and Remington: the Science and Practice of Pharmacy, 20th edition, Gennaro, Ed., Lippincott Williams & Wilkins (2003).) Examples of pharmaceutically acceptable disintegrants include, but are not limited to, starches; clays; celluloses; alginates; gums; cross-linked polymers, e.g., cross-linked polyvinyl pyrrolidone or crospovidone, e.g., POLYPLASDONE XL from International Specialty Products (Wayne, NJ); cross-linked sodium carboxymethylcellulose or croscarmellose sodium, e.g., AC-DI-SOL from FMC; and cross-linked calcium carboxymethylcellulose; soy polysaccharides; and guar gum. The disintegrant may be present in an amount from about 0% to about
10% by weight of the composition. In one embodiment, the disintegrant is present in an amount from about 0.1% to about 5% by weight of composition.
Examples of pharmaceutically acceptable binders include, but are not limited to, starches; celluloses and derivatives thereof, for example, microcrystalline cellulose, e.g., AVICEL PH from FMC (Philadelphia, PA), hydroxypropyl cellulose hydroxylethyl cellulose and hydroxylpropylmethyl cellulose METHOCEL from Dow Chemical Corp. (Midland, MI);
sucrose;
dextrose; corn syrup; polysaccharides; and gelatin. The binder may be present in an amount from about 0% to about 50%, e.g., 2-20% by weight of the composition.
Examples of pharmaceutically acceptable lubricants and pharmaceutically acceptable glidants include, but are not limited to, colloidal silica, magnesium trisilicate, starches, talc, tribasic calcium phosphate, magnesium stearate, aluminum stearate, calcium stearate, magnesium carbonate, magnesium oxide, polyethylene glycol, powdered cellulose and microcrystalline cellulose. The lubricant may be present in an amount from about 0% to about 10% by weight of the composition. In one embodiment, the lubricant may be present in an amount from about 0.1% to about 1.5% by weight of composition. The glidant may be present in an amount from about 0.1% to about 10% by weight.
Examples of pharmaceutically acceptable fillers and pharmaceutically acceptable diluents include, but are not limited to, confectioner's sugar, compressible sugar, dextrates, dextrin, dextrose, lactose, mannitol, microcrystalline cellulose, powdered cellulose, sorbitol, sucrose and talc. The filler and/or diluent, e.g., may be present in an amount from about 0% to about 80% by weight of the composition.
A dosage unit form containing the compound of formula (I) or a pharmaceutically acceptable salt thereof may be in the form of micro-tablets enclosed inside a capsule, e.g. a gelatin capsule. For this, a gelatin capsule as is employed in pharmaceutical formulations can be used, such as the hard gelatin capsule known as CAPSUGEL, available from Pfizer.
Examples of pharmaceutically acceptable disintegrants include, but are not limited to, starches; clays; celluloses; alginates; gums; cross-linked polymers, e.g., cross-linked polyvinyl pyrrolidone or crospovidone, e.g., POLYPLASDONE XL from International Specialty Products (Wayne, NJ); cross-linked sodium carboxymethylcellulose or croscarmellose sodium, e.g., AC-DI-SOL from FMC; and cross-linked calcium carboxymethylcellulose; soy polysaccharides; and guar gum. The disintegrant may be present in an amount from about 0% to about 10% by weight of the composition. In one embodiment, the disintegrant is present in an amount from about 0.1% to about 5% by weight of composition.
Examples of pharmaceutically acceptable binders include, but are not limited to, starches; celluloses and derivatives thereof, for example, microcrystalline cellulose, e.g., AVICEL PH from FMC (Philadelphia, PA), hydroxypropyl cellulose hydroxylethyl cellulose and hydroxylpropylmethyl cellulose METHOCEL from Dow Chemical Corp. (Midland, MI);
sucrose;
dextrose; corn syrup; polysaccharides; and gelatin. The binder may be present in an amount from about 0% to about 50%, e.g., 2-20% by weight of the composition.
Examples of pharmaceutically acceptable lubricants and pharmaceutically acceptable glidants include, but are not limited to, colloidal silica, magnesium trisilicate, starches, talc, tribasic calcium phosphate, magnesium stearate, aluminum stearate, calcium stearate, magnesium carbonate, magnesium oxide, polyethylene glycol, powdered cellulose, Sodium steely' fumarate and microcrystalline cellulose. The lubricant may be present in an amount from about 0% to about 10% by weight of the composition. In one embodiment, the lubricant may be present in an amount from about 0.1% to about 1.5% by weight of composition. The glidant may be present in an amount from about 0.1% to about 10% by weight.
Examples of pharmaceutically acceptable fillers and pharmaceutically acceptable diluents include, but are not limited to, confectioner's sugar, compressible sugar, dextrates, dextrin, dextrose, lactose, mannitol, microcrystalline cellulose, powdered cellulose, sorbitol, sucrose and talc. The filler and/or diluent, e.g., may be present in an amount from about 0% to about 80% by weight of the composition.
In a further embodiment, the present disclosure relates to a method of reducing at least one side effect selected from neutropenia, elevated bilirubin, cardiac toxicity, unstable angina, myocardial infarction, persistent hypertension, peripheral sensory or motor neuropathy/ pain, hepatic dysfunction (e.g., liver injury or liver disease, aspartate transaminase level elevation, alanine aminotransferase level elevation, etc.), reduced red and/or white blood cell count, hyperglycemia, nausea, decreased appetite, diarrhea, rash (e.g., maculopapular, acneiform, etc.) and hypersensitivity (e.g., increased sensitivity to bruise), photosensitivity, asthenia/
fatigue, vomiting, stomatitis, oral mucositis, pancreatitis, dysgeusia, and dyspepsia from prior treatment with a phosphatidylinositol 3-kinase inhibitor comprising orally administering a therapeutically effective amount of the a phosphatidylinositol 3-kinase inhibitor to the patient in a therapeutically effective amount of about 100 mg to about 450 mg, preferably about 200 mg to about 400 mg or more preferably about 350 mg to about 400 mg, once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep. Preferably, the side effect is hyperglycemia. In another embodiment, the side effect is rash.
Further, the present disclosure includes a method of treating or preventing a proliferative disorder in accordance with any other embodiment disclosed above for the present disclosure.
In one embodiment, the present disclosure relates to the use of a phosphatidylinositol 3-kinase inhibitor for the manufacture of a medicament for treating or preventing a proliferative disease, wherein a therapeutically effective amount of said medicament is orally administered to a patient in need thereof of said phosphatidylinositol 3-kinase inhibitor once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep.
Further, the present disclosure includes any use of the compound of formula (I) or a pharmaceutically acceptable salt thereof in accordance with the methods of treatment, uses for the manufacture of a medicament, or any embodiment disclosed above for the present disclosure.
Still further, the present disclosure includes any use of the compound of formula (II), or a pharmaceutically acceptable salt thereof in accordance with the methods of treatment, uses for the manufacture of a medicament, or any embodiment disclosed above for the present disclosure.
The present disclosure further relates to a therapeutic regimen comprising orally administering a therapeutically effective amount of a phosphatidylinositol 3-kinase inhibitor to a patient in need thereof once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep. In one embodiment, the phosphatidylinositol 3-kinase inhibitor is the compound of formula (I), or a pharmaceutically acceptable salt thereof is administered to a patient in need thereof in a therapeutically effective amount of about 50 mg to about 450 mg. In one embodiment, the phosphatidylinositol 3-kinase inhibitor is the compound of formula (II), or a pharmaceutically acceptable salt thereof is administered to a patient in need thereof in a therapeutically effective amount of about 60 mg to about 120 mg.
The present disclosure further relates to the phosphatidylinositol 3-kinase inhibitor administered in combination with at least one additional therapeutic agent for the treatment or prevention of a proliferative disease, wherein the phosphatidylinositol 3-kinase inhibitor is administered once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep. In one embodiment, the compound of formula (I) or a pharmaceutically acceptable salt thereof is administered in combination with at least one additional therapeutic agent for the treatment or prevention of a proliferative disease, wherein the compound of formula (I) or a pharmaceutically acceptable salt thereof is administered in a therapeutically effective amount of about 50 mg to about 450 mg once a day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep. In another embodiment, the compound of formula (II) or a pharmaceutically acceptable salt thereof is administered in combination with at least one additional therapeutic agent for the treatment or prevention of a proliferative disease, wherein the compound of formula (II) or a pharmaceutically acceptable salt thereof is administered in a therapeutically effective amount of about 60 mg to about 120 mg once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep.
Suitable therapeutic agents for use in accordance with the present disclosure include, but are not limited to, kinase inhibitors, anti-estrogens, anti androgens, other inhibitors, cancer chemotherapeutic drugs, alkylating agents, chelating agents, biological response modifiers, cancer vaccines, agents for antisense therapy. Examples are set forth below:
A. Kinase Inhibitors including inhibitors of Epidermal Growth Factor Receptor (EGFR) kinases such as small molecule quinazolines, for example gefitinib (US
5457105, US 5616582, and US 5770599), ZD-6474 (WO 01/32651), erlotinib (TarcevaO, US 5,747,498 and WO
96/30347), and lapatinib (US 6,727,256 and WO 02/02552), and cetuximab;
Vascular Endothelial Growth Factor Receptor (VEGFR) kinase inhibitors, including SU-11248 (WO
01/60814), SU 5416 (US 5,883,113 and WO 99/61422), SU 6668 (US 5,883,113 and WO
99/61422), CHIR-258 (US 6,605,617 and US 6,774,237), vatalanib or PTK-787 (US
6,258,812), VEGF-Trap (WO 02/57423), B43-Genistein (WO-09606116), fenretinide (retinoic acid p-hydroxyphenylamine) (US 4,323,581), IM-862 (WO 02/62826), bevacizumab or Avastin0 (WO
94/10202), KRN-951, 3-[5-(methylsulfonylpiperadine methyl)-indoly1]-quinolone, AG-13736 and AG-13925, pyrrolo[2,1-f][1,2,4]triazines, ZK-304709, VeglinO, VMDA-3601, EG-004, CEP-701 (US 5,621,100), Cand5 (WO 04/09769); Erb2 tyrosine kinase inhibitors such as pertuzumab (WO 01/00245), trastuzumab, and rituximab; Akt protein kinase inhibitors, such as RX-0201;
Protein Kinase C (PKC) inhibitors, such as LY-317615 (WO 95/17182), and perifosine (US
2003171303); Raf/Map/MEK/Ras kinase inhibitors including sorafenib (BAY 43-9006), ARQ-350RP, LErafAON, BMS-354825 AMG-548, MEK162, and others disclosed in WO
03/82272;
Fibroblast Growth Factor Receptor (FGFR) kinase inhibitors; Cell Dependent Kinase (CDK) inhibitors, including CYC-202, roscovitine (WO 97/20842 and WO 99/02162), or 7-Cyclopenty1-2-(5-piperazin-1-yl-pyridin-2-ylamino)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylic acid dimethylamide (also known as "LEE011" or "ribociclib")(W02010/020675 in example 74);
Platelet-Derived Growth Factor Receptor (PDGFR) kinase inhibitors such as CHIR-258, 3G3 mAb, AG-13736, SU-11248 and 5U6668; and Bcr-Abl kinase inhibitors and fusion proteins such as STI-571 or Gleevec0 (imatinib).
B. Anti-Estrogens: Estrogen-targeting agents include Selective Estrogen Receptor Modulators (SERMs) including tamoxifen, toremifene, raloxifene; aromatase inhibitors including Arimidex0 or anastrozole; Estrogen Receptor Downregulators (ERDs) including Faslodex0 or fulvestrant.
C. Anti-Androgens: Androgen-targeting agents including flutamide, bicalutamide, finasteride, aminoglutethamide, ketoconazole, and corticosteroids.
D. Other Inhibitors including Protein farnesyl transferase inhibitors including tipifarnib or R-115777 (US 2003134846 and WO 97/21701), BMS-214662, AZD-3409, and FTI-277;
topoisomerase inhibitors including merbarone and diflomotecan (BN-80915);
mitotic kinesin spindle protein (KSP) inhibitors including SB-743921 and MKI-833; proteasome modulators such as bortezomib or Velcade0 (US 5,780,454), XL-784; cyclooxygenase 2 (COX-2) inhibitors including non-steroidal antiinflammatory drugs I (NSAIDs); letrozole;
exemestane; and eribulin.
E. Cancer Chemotherapeutic Drugs including anastrozole (Arimidex0), bicalutamide (Casodex0), bleomycin sulfate (Blenoxane0), busulfan (Myleran0), busulfan injection (Busulfex0), capecitabine (Xeloda0), N4-pentoxycarbony1-5-deoxy-5-fluorocytidine, carboplatin (ParaplatinO), carmustine (BiCNUO), chlorambucil (Leukeran0), cisplatin (Platino10), cladribine (Leustatin0), cyclophosphamide (Cytoxan0 or Neosar0), cytarabine, cytosine arabinoside (Cytosar-U0), cytarabine liposome injection (DepoCyt0), dacarbazine (DTIC-Dome ), dactinomycin (Actinomycin D, Cosmegan), daunorubicin hydrochloride (Cerubidine0), daunorubicin citrate liposome injection (DaunoXome0), dexamethasone, docetaxel (Taxotere0), doxorubicin hydrochloride (AdriamycinO, Rubex0), etoposide (Vepesid0), fludarabine phosphate (Fludara0), 5-fluorouracil (AdruciI0, Efudex0), flutamide (Eulexin0), tezacitibine, Gemcitabine (difluorodeoxycitidine), hydroxyurea (Hydrea0), Idarubicin (Idamycin0), ifosfamide (IFEXO), irinotecan (Camptosar0), L-asparaginase (ELSPAR0), leucovorin calcium, melphalan (Alkeran0), 6-mercaptopurine (Purinethol0), methotrexate (Folex0), mitoxantrone (Novantrone0), mylotarg, paclitaxel (Taxo10), phoenix (Yttrium90/MX-DTPA), pentostatin, polifeprosan 20 with carmustine implant (Gliadel0), tamoxifen citrate (Nolvadex0), teniposide (Vumon0), 6-thioguanine, thiotepa, tirapazamine (Tirazone0), topotecan hydrochloride for injection (Hycamptin0), vinblastine (Velban0), vincristine (Oncovin0), and vinorelbine (Navelbine0).
F. Alkylating Agents including VNP-40101M or cloretizine, oxaliplatin (US
4,169,846, WO 03/24978 and WO 03/04505), glufosfamide, mafosfamide, etopophos (US
5,041,424), prednimustine; treosulfan; busulfan; irofluven (acylfulvene); penclomedine;
pyrazoloacridine (PD-115934); 06-benzylguanine; decitabine (5-aza-2-deoxycytidine);
brostallicin; mitomycin C
(MitoExtra); TLK-286 (Telcyta0); temozolomide; trabectedin (US 5,478,932); AP-5280 (Platinate formulation of Cisplatin); porfiromycin; and clearazide (meclorethamine).
G. Chelating Agents including tetrathiomolybdate (WO 01/60814); RP-697;
Chimeric T84.66 (cT84.66); gadofosveset (Vasovist0); deferoxamine; and bleomycin optionally in combination with electorporation (EPT).
H. Biological Response Modifiers, such as immune modulators, including staurosprine and macrocyclic analogs thereof, including UCN-01, CEP-701 and midostaurin (see WO
02/30941, WO 97/07081, WO 89/07105, US 5,621,100, WO 93/07153, WO 01/04125, WO
02/30941, WO 93/08809, WO 94/06799, WO 00/27422, WO 96/13506 and WO 88/07045);
squalamine (WO 01/79255); DA-9601 (WO 98/04541 and US 6,025,387); alemtuzumab;
interferons (e.g. IFN-a, IFN-b etc.); interleukins, specifically IL-2 or aldesleukin as well as IL-1, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, and active biological variants thereof having amino acid sequences greater than 70% of the native human sequence;
altretamine (Hexalen0); SU 101 or leflunomide (WO 04/06834 and US 6,331,555);
imidazoquinolines such as resiquimod and imiquimod (US 4,689,338, 5,389,640, 5,268,376, 4,929,624, 5,266,575, 5,352,784, 5,494,916, 5,482,936, 5,346,905, 5,395,937, 5,238,944, and 5,525,612); and SMIPs, including benzazoles, anthraquinones, thiosemicarbazones, and tryptanthrins (WO 04/87153, WO 04/64759, and WO 04/60308).
I. Cancer Vaccines: Anticancer vaccines including Avicine0 (Tetrahedron Lett.
26:2269-70 (1974)); oregovomab (OvaRex()); Theratope0 (STn-KLH); Melanoma Vaccines; GI-series (GI-4014, GI-4015, and GI-4016), which are directed to five mutations in the Ras protein;
GlioVax-1; MelaVax; Advexin0 or INGN-201 (WO 95/12660); Sig/E7/LAMP-1, encoding HPV-16 E7; MAGE-3 Vaccine or M3TK (WO 94/05304); HER-2VAX; ACTIVE, which stimulates T-cells specific for tumors; GM-CSF cancer vaccine; and Listeria monocytogenes-based vaccines.
J. Antisense Therapy: Anticancer agents including antisense compositions, such as AEG-35156 (GEM-640); AP-12009 and AP-11014 (TGF-beta2-specific antisense oligonucleotides); AVI-4126; AVI-4557; AVI-4472; oblimersen (Genasense0);
JFS2;
aprinocarsen (WO 97/29780); GTI-2040 (R2 ribonucleotide reductase mRNA
antisense oligo) (WO 98/05769); GTI-2501 (WO 98/05769); liposome-encapsulated c-Raf antisense oligodeoxynucleotides (LErafAON) (WO 98/43095); and Sirna-027 (RNAi-based therapeutic targeting VEGFR-1 mRNA).
In one embodiment, the additional therapeutic agent is selected from gefinitib, erlotinib, bevacizumab or AvastinO, pertuzumab, trastuzumab, MEK162, tamoxifen, fulvestrant, capecitabine, cisplatin, carboplatin, cetuximab, paclitaxel, temozolamide, letrozole, everolimus or Affinitor0, 7-Cyclopenty1-2-(5-piperazin-1-yl-pyridin-2-ylamino)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylic acid dimethylamide, or exemestane.
In a further embodiment, Compound A is administered in combination with 7-Cyclopenty1-2-(5-piperazin-1-yl-pyridin-2-ylamino)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylic acid dimethylamide. In another embodiment, Compound A is administered in combination with paclitaxel. In another embodiment, Compound A is administered in combination with letrozole.
In another embodiment, Compound A is administered in combination with fulvestrant. In another embodiment, Compound A is administered in combination with everolimus.
In a further embodiment, Compound B is administered in combination with 7-Cyclopenty1-2-(5-piperazin-1-yl-pyridin-2-ylamino)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylic acid dimethylamide. In still another embodiment, Compound B is administered in combination with paclitaxel. In another embodiment, Compound B is administered in combination with letrozole.
In another embodiment, Compound B is administered in combination with fulvestrant. In another embodiment, Compound B is administered in combination with everolimus.
The structure of the drug substances identified by code numbers, generic or trade names may be taken from the Internet, actual edition of the standard compendium "The Merck Index" or from databases, e.g., Patents International, e.g., IMS World Publications, or the publications mentioned above and below. The corresponding content thereof is hereby incorporated by reference.
The phosphatidylinositol 3-kinase inhibitor and the additional therapeutic agent may be administered together in a single pharmaceutical composition, separately in two or more separate unit dosage forms, or sequentially. The pharmaceutical composition or dosage unit form comprising the additional therapeutic agent may be prepared in a manner known per se and are those suitable for enteral, such as oral or rectal, topical, and parenteral administration to subjects, including mammals (warm-blooded animals) such as humans.
In particular, a therapeutically effective amount of each of the therapeutic agents may be administered simultaneously or sequentially and in any order, and the components may be administered separately or as a fixed combination. For example, the combination of the present disclosure may comprise: (i) administration of the first therapeutic agent (a) in free or pharmaceutically acceptable salt form; and (ii) administration of an therapeutic agent (b) in free or pharmaceutically acceptable salt form, simultaneously or sequentially in any order, in jointly therapeutically effective amounts, preferably in synergistically effective amounts, e.g., in daily or intermittent dosages corresponding to the amounts described herein. The individual therapeutic agents of the combination may be administered separately at different times during the course of therapy or concurrently in divided or single combination forms.
"Synergy" or "synergistic" refers to the action of two therapeutic agents such as, for example, (a) a compound of formula (I) or a pharmaceutically acceptable salt thereof and (b) an aromatase inhibitor, producing an effect, for example, slowing the symptomatic progression of a cancer disease or disorder, particularly cancer, or symptoms thereof, which is greater than the simple addition of the effects of each therapeutic agent administered by themselves. A
synergistic effect can be calculated, for example, using suitable methods such as the Sigmoid-Emax equation (Holford, N. H. G. and Scheiner, L. B., Clin. Pharmacokinet. 6:
429-453 (1981)), the equation of Loewe additivity (Loewe, S. and Muischnek, H., Arch. Exp.
Pathol Pharmacol.
114: 313-326 (1926)) and the median-effect equation (Chou, T. C. and Talelay, P., Adv.
Enzyme Regul. 22: 27-55 (1984)). Each equation referred to above can be applied to experimental data to generate a corresponding graph to aid in assessing the effects of the therapeutic agent combination. The corresponding graphs associated with the equations referred to above are the concentration-effect curve, isobologram curve and combination index curve, respectively. Synergy may be further shown by calculating the synergy score of the combination according to methods known by one of ordinary skill.
The effective dosage of each of therapeutic agent (a) or therapeutic agent (b) employed in the combination may vary depending on the particular compound or pharmaceutical composition employed, the mode of administration, the condition being treated, and the severity of the condition being treated. Thus, the dosage regimen of the combination is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration;
the renal and hepatic function of the patient; and the particular compound employed. A
physician, clinician or veterinarian of ordinary skill can readily determine and prescribe the effective amount of the therapeutic agent required to prevent, counter or arrest the progress of the condition. Optimal precision in achieving concentration of therapeutic agent within the range that yields efficacy requires a regimen based on the kinetics of the therapeutic agent's availability to target sites. This involves a consideration of the distribution, equilibrium, and elimination of a therapeutic agent.
Examples of proliferative diseases that may be treated with a combination of a compound of formula (I) or a pharmaceutically acceptable salt thereof and at least one additional therapeutic agent include, but not limited to, those set forth above.
It can be shown by established test models that the combination of the present disclosure results in the beneficial effects described herein before. The person skilled in the art is fully enabled to select a relevant test model to prove such beneficial effects. The pharmacological activity of a combination of the present disclosure may, for example, be demonstrated in a clinical study or in a test procedure as essentially described hereinafter.
Suitable clinical studies are in particular, for example, open label, dose escalation studies in patients with a proliferative disease, including for example a tumor disease, e.g., breast cancer. Such studies prove in particular the synergism of the therapeutic agents of the combination of the present disclosure. The beneficial effects on a proliferative disease may be determined directly through the results of these studies which are known as such to a person skilled in the art. Such studies may be, in particular, suitable to compare the effects of a monotherapy using the therapeutic agents and a combination of the present disclosure. In one embodiment, the dose of the PI3K inhibitor compound of formula (I) or its pharmaceutically acceptable salt is escalated until the Maximum Tolerated Dosage is reached, and the combination partner is administered with a fixed dose. Alternatively, the compound of formula (I) or its pharmaceutically acceptable salt may be administered in a fixed dose and the dose of the combination partner may be escalated. Each patient may receive doses of the compound of formula (I) or its pharmaceutically acceptable salt either once-per-day either on a continuous daily schedule or an intermittent schedule or more than once (e.g., twice) per day. The efficacy of the treatment may be determined in such studies, e.g., after 12, 18 or 24 weeks by evaluation of symptom scores every 6 weeks.
In one embodiment, the present disclosure relates to a method of treating or preventing a proliferative disease by administration in accordance with the dosage regimen of the present disclosure, wherein said phosphatidylinositol 3-kinase inhibitor is administered in combination with at least one additional therapeutic agent.
In a further embodiment, the present disclosure relates to the use of the compound of formula (I) or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for treating or preventing a proliferative disease in accordance with the dosage regimen of the present disclosure, wherein said phosphatidylinositol 3-kinase inhibitor is administered in combination with at least one additional therapeutic agent.
In a further embodiment, the present disclosure relates to the use of the compound of formula (I) or a pharmaceutically acceptable salt thereof for treating or preventing a proliferative disease in accordance with the dosage regimen of the present disclosure, wherein said phosphatidylinositol 3-kinase inhibitor is administered in combination with at least one additional therapeutic agent.
The present disclosure further relates to a package comprising a pharmaceutical composition comprising a phosphatidylinositol 3-kinase inhibitor with one or more pharmaceutically acceptable excipients in combination with instructions to orally administer said pharmaceutical composition once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep. In one embodiment, the phosphatidylinositol 3-kinase inhibitor is the compound of formula (I) or a pharmaceutically acceptable salt thereof in a dose of about 50 mg to about 450 mg. In another embodiment, the phosphatidylinositol 3-kinase inhibitor is the compound of formula (II) or a pharmaceutically acceptable salt thereof in a dose of about 60 mg to about 120 mg.
Utility of the dosage regimen of the compounds of formula (I) of the present disclosure may be demonstrated in animal test methods as well as in clinic studies. For example in the utility of the compounds of formula (I) in accordance with the present disclosure may be demonstrated in accordance with the methods hereinafter described:
Example 1:
Materials and Methods Animals and maintenance conditions: Experiments were performed in female nude Rowett rats Hsd: RH-Fox1rnu or female Brown-Norway (BN) rats (Harlan (The Netherlands).
Animals were 6-9 weeks of age at time of application of the compound. Animals were housed under Optimized Hygienic Conditions in Makrolon type III cages (max. 2 animals per cage) with free access to food and water. They were allowed to adapt for at least 6 days before the experiment was started.
Cell line and cell culture: Rat1-Myr-p110a cells were grown in Dulbecco's Modified Eagle Medium (DMEM) culture medium containing 4.5g/I glucose supplemented with 10% heat-inactivated fetal calf serum (FCS), 2mM L-glutamine, 1mM sodium pyruvate and incubated at 37 C in a 5% CO2 humidified atmosphere. Cells were harvested with trypsin-EDTA, re-suspended in culture medium (with additives) and counted with a Casy system.
Finally, cells were centrifuged, suspended in ice-cold Hanks' balanced salt solution (HBSS) at a concentration of 3x107cells/ml. Cell culture reagents were purchased from BioConcept (Allschwil, Switzerland).
Rat1-myr-p110a cells were generated by the method described in Maira et al., Molecular Cancer Therapeutics, 11:317-328 (2012), which is incorporated herein by reference in its entirety. Briefly, Rat1 cells were transfected to stably express the constitutively active form of the catalytic PI3K class I p110 isoforms a by addition of a myristylation signal to the N-terminus.
Establishment of tumor xenografts in vivo: Rat1-Myr-p110a tumors were established by subcutaneous injection of 5x106 cells in 100 pL HBSS (Sigma #H8264) into the right flank of nude rats. For the efficacy experiments, treatments were initiated when the mean tumor volumes were approx. 900-1200 mm3 (21 to 23 days post tumor cells injection).
Compound formulation and animal treatment:
Compound A was prepared for dosing as homogenous suspensions in 1% carboxymethyl cellulose: 0.5% Tween 80: 98.5%
deionized water. Fresh suspensions were prepared once every 7 days and stored at 4 C.
Compound A or vehicle was administered orally at a volume of 10mL/kg.
Evaluation of antitumor activity:
Tumor volumes were measured with calipers and determined according to the formula: length x diameter2 x -rr / 6. In addition to presenting changes of tumor volumes over the course of treatments, antitumor activity is expressed as T/C% (mean change of tumor volume of treated animals / mean change of tumor volume of control animals) x 100.
Regressions (%) were calculated according to the formula ((mean tumor volume at end of treatment - mean tumor volume at start of treatment) /
mean tumor volume at start of treatment) x 100. Body weights and tumor volumes were recorded two to three times a week.
Blood glucose measurements via radio-telemetry technology (HD-XG radio telemetry transmitter; Data Sciences International): Blood glucose levels were measured continuously in conscious non-restrained freely moving rats by the method described in Brockway et al., Journal of Diabetes Science and Technology., 9(4):771-81 (2015), which is incorporated herein by reference in its entirety. Briefly, the 1.4cc telemetry device provides direct continuous blood glucose readings along with temperature and activity for 4 weeks or longer.
The device was used in non-tumor bearing Brown Norway (BN) rats. Each animal was surgically instrumented with glucose sensors in the abdominal aorta and the device placed in the intraperitoneal cavity.
Continuous glucose readings were recorded with the Dataquest A.R.T. data acquisition system.
Reference glucose values were measured from tail vein blood samples using the Nova StatStrip glucometer twice per week. Each animal was measured in cyclic runs of 1 minute for 10 seconds with a sampling rate of 1 Hz. Mean values for blood glucose levels, body temperature and motor activity were then computed and stored. Fifteen minutes or hourly averages were determined using the interval averaging routine on the Dataquest Analysis Software (Dataquest A.R.T, version 4.36; Data Sciences). Blood glucose values are expressed in mmol/L, body temperature in degree Celsius ( C) and motor activity in number of movements (units) per minute.
Determination of pharmacokinetic (PK) parameters after oral administration of compound A in freely moving catheterized rats using automated blood sampling (ABS) technology: The highly automated ABS system (Instech ABS2TM) allows for unattended blood sample collection via an in-dwelling venous catheter placed in the jugular or femoral vein. For all animals, cannulas were filled with 1:1 heparin¨glycerol solution when not on study. The ABS
freely-moving system is a well-recognized method to reduce stress during blood sampling and it only marginally impedes the animal in its freedom to move, drink, eat and sleep. Furthermore, this method allows obtaining pharmacokinetic parameters at night time (active phase of the animal).
Statistical analysis: Absolute values for primary tumor growth and body weight were used to make the statistical comparisons between groups (one way ANOVA
followed by Dunnett's test for normally distributed data; ANOVA on Ranks for not normally distributed data followed by Dunnett's test for equal group size or Dunn's for unequal group size). Absolute values for blood glucose (calculated mean over 6 hours' time periods) and PK
data were used to make the statistical comparisons between groups (two-tailed Student's t-tests). The significant level was set at p < 0.05. All statistical calculations were carried out using SigmaStat.
Results Circadian rhythms of glucose and motor activity measured in conscious unrestrained BN
rats: A consistent diurnal rhythm of blood glucose level was observed (Fig.
1). Values were significantly lower (P< 0.005) during the day (inactive phase) than during the night (active phase). A remarkable consistency in the pattern of diurnal variation of blood glucose levels (n=9) was observed for each of the 5 days of the experiment (Fig. 2).
Effects of vehicle and Compound A treatment on blood glucose levels measured in conscious unrestrained BN rats: Vehicle treatment at 10 AM (inactive phase) or 5 PM (active phase) had no effect on blood glucose levels (Fig. 3). At day 1 of treatment with Compound A at AM (inactive phase) or 5 PM (active phase), a slight hyperglycemia was evidenced (Fig. 3).
At steady state (Day 4-5 of daily treatment), a transient hyperglycemia profile was observed.
Dosing before the inactive phase (10 a.m.) allowed blood glucose to normalize in between 2 doses, which could not be achieved when dosing before the active phase (5 p.m.). These observations could be confirmed when adding additional animals to our initial cohorts of rats (Fig. 7). After treatment discontinuation (recovery day 1) a significant transient hyperglycemia profile remained for a period up to 12h in the group dosed before the active phase (5 p.m.). In contrast blood glucose was already normalized to baseline levels at the start of recovery day 1 in the group dosed before the inactive phase (10 a.m., Fig. 7). Plasma PK
profile assessed in conscious freely moving BN rats connected to an ABS system at day 1 or 4 (steady state) of treatment with Compound A at 10 AM (inactive phase) or 5 PM (active phase) did not revealed any significant differences (at 2, 4, 6, 8, 10, 12, 18 and 24h post treatment, Fig. 8).
PK-PD modeling: Phoenix WinNonlin 6.3 (Pharsight) was used to simulate the mean plasma concentration time profiles after multiple dosing using the non-compartmental nonparametric superposition approach of data generated from previous nude rats efficacy study. The predictions are based upon an accumulation ratio computed from the terminal slope (Lambda Z), allowing predictions from simple or complicated dosing schedules.
PK/PD relationship at steady state (Day 4) following Compound A treatment:
Compound A (50 mg/kg p.o. qd, n=6) treatment in BN rats induced a transient glucose level increase suggestive of glucose metabolism impairment consistent with hyperglycemia seen in patients treated with Compound A. This profile is reproducible over time (Fig. 3) and a PK/PD
relationship based on modeled PK data in nude rats and measured glucose data in BN rats could be demonstrated (Fig. 4).
Case study: 14 and 25 mg/kg qd in "ALTERNATIVE SCHEDULE 1" dosing regimen in nude rats Based upon the foregoing analysis, the pre-clinical blood glucose diurnal rhythms obtained for Compound A dosed either at 10 A.M. (during the inactive phase) or at 5 P.M.
(during the active phase) described above would predict better tolerability of the following dosing schedule of Compound A: oral administration of Compound A once-per-day (q.d.) at 10 A.M. (inactive phase) for at least five-consecutive days. This alternative dosing schedule is referred to as "ALTERNATIVE SCHEDULE 1". However, we wanted to confirm that the 10 A.M.
(inactive phase) and 5 P.M. (active phase) dosing scheduling will not impair anti-tumor efficacy of Compound A. Thus we initiated 2 in-vivo efficacy experiments to address this question. As described herein, this model is here used to explore and guide dose scheduling in clinical studies.
Figure 5 provides graphs showing the efficacy (left panel) of Compound A in Rat1-myr P110a tumor bearing nude rats treated orally with COMPOUND A at 14 mg/kg in ALTERNATIVE SCHEDULE 1 for 14 consecutive days as compared to 14 mg/kg qd dosed at 5 p.m. (i.e., during the active phase of the rat). No significant differences in tumor volume inhibition could be evidenced between the two scheduling's over the 2 weeks of continuous treatment. A very similar pattern was observed with body weight changes (right panel).
Figure 6 provides the efficacy (left panel) of Compound A in Rat1-myr P110a tumor bearing nude rats treated orally with COMPOUND A at 25 mg/kg in ALTERNATIVE
SCHEDULE
1 for 14 consecutive days as compared to 25 mg/kg qd dosed at 5 p.m. (i.e., during the active phase of the rat). No significant differences in tumor volume inhibition could be evidenced between the two scheduling's over the 2 weeks of continuous treatment. A very similar pattern was observed with body weight changes (right panel).
Based on our data, ALTERNATIVE SCHEDULE 1 for Compound A can achieve similar anti-tumor efficacy observed in nude rats orally administered Compound A once each day (q.d.) at 5 P.M. (active phase) on a continuous daily schedule at (a) 14 mg/kg, a dose which induces stasis and (b) at 25 mg/kg, a dose which achieve clear regression (50% tumor regression) following 2 weeks of treatment.
Assuming that the relationship between PD (glucose blood levels) and efficacy is similar in humans and tumor bearing rats, this model and analysis may be useful to predict host and tumor response in humans to ALTERNATIVE SCHEDULE 1.
IMPORTANT to notice: Given that the rats are nocturnal animals, their inactive phase applied with a ¨12-hour time difference to clinically active human subjects.
Case study: 35 mg/kg qd in "ALTERNATIVE SCHEDULE 1" dosing regimen in combination with an antiestrogen (Fulvestrant at 5 mg/kg s.c. qw or Letrozole at 2.5 mg/kg p.o. qd) in HBCx-19 and HBRX3077 (both ER+/HER2-/PIK3CA mutant PDX breast cancer) sc tumor bearing nude mice Based upon the foregoing analysis ALTERNATIVE SCHEDULE 1 for Compound A can achieve similar anti-tumor efficacy observed in nude rats orally administered Compound A either at 10 a.m.(inactive phase) or 5 P.M. (active phase). To confirm that the 10 A.M. (inactive phase) and 5 P.M. (active phase) dosing scheduling will not impair anti-tumor efficacy of Compound A.
in combination with 2 different standard of cares (antiestrogen) in patient derived breast xenografts (PDX) tumor bearing nude mice, we initiated 3 in-vivo efficacy experiments. As described herein, this model is here used to explore and guide dose scheduling in clinical studies.
The experiment was conducted as described above and as further described in this Example.
Establishment of patient-derived breast xenograft (PDX) models in vivo: PDX
models were established by implanting surgical tumor tissues from treatment-naive cancer patients into nude mice. All samples were anonymized and obtained with informed consent and under the approval of the institutional review boards of the tissue providers and Novartis. All PDX models were histologically characterized and independently confirmed for the external diagnosis and were genetically profiled using various technology platforms after serial passages in mice.
PIK3CA mutation was determined by both RNA and DNA deep sequencing technologies and PIK3CA amplification was determined by SNP array 6Ø For efficacy studies, tumor-bearing animals were enrolled when subcutaneously implanted tumors reached about 200-300 mm3.
HBCx-19 is an ER+ Her2-negative luminal A tumor model with mutated PIK3CA.
HBRX3077 is an ER+ Her2-negative invasive ductal carcinoma tumor model with mutated PIK3CA.
Compound formulation and animal treatment:
Compound A was prepared for dosing as homogenous suspensions in 1% carboxymethyl cellulose: 0.5% TweenO
80: 98.5%
deionized water. Fresh suspensions were prepared once every 7 days and stored at 4 C.
Compound A or vehicle was administered orally at a volume of 10mL/kg.
Fulvestrant (FaslodexO, Astra Zeneca) stock solution at 50 mg/mL, was ready to use and stored at 4 C in a light protected cabinet. It was administered subcutaneously once a week at a volume of 4mL/kg.
Letrozole (Femara O, Novartis) 2.5 mg tablets were ready to use and stored at 4 C in a light protected cabinet. It was administered orally daily as a suspension at a volume of 10mL/kg.
Figures 9 and 10 respectively provide graphs showing the efficacy of Compound A in combination with Fulvestrant in HBCx-19 and HBRX3077 tumor bearing nude mice treated orally with COMPOUND A at 35 mg/kg (¨equivalent of the MTD of 400 mg QD in patients) in ALTERNATIVE SCHEDULE 1 for 21 (Figure 9) or 17 (Figure 10) consecutive days as compared to 35 mg/kg qd dosed at 5 p.m. (i.e., during the active phase of the mice). No significant differences in tumor volume inhibition could be evidenced between the two scheduling's over the 2-3 weeks of continuous treatment. A very similar pattern was observed with body weight changes (data not shown).
Figure 11 provides graphs showing the efficacy of Compound A in combination with Letrozole in HBRX3077 tumor bearing nude mice treated orally with COMPOUND A
at 35 mg/kg in ALTERNATIVE SCHEDULE 1 for 17 consecutive days as compared to 35 mg/kg qd dosed at 5 p.m. (i.e., during the active phase of the mice). No significant differences in tumor volume inhibition could be evidenced between the two scheduling's over the 2-3 weeks of continuous treatment. A very similar pattern was observed with body weight changes (data not shown).
Based on the foregoing data, ALTERNATIVE SCHEDULE 1 for Compound A combined with the antiestrogen agents fulvestrant or letrozole can achieve similar anti-tumor efficacy observed in nude mice orally administered Compound A once each day (q.d.) at 5 P.M. (active phase) on a continuous daily schedule at 35 mg/kg, a dose which achieve clear regression (35 to 50% tumor regression in 2 out of 3 model tested) following 17 days of treatment.
Assuming that the relationship between PD (glucose blood levels) and efficacy is similar in humans and tumor bearing mice, this model and analysis may be useful to predict host and tumor response in humans to ALTERNATIVE SCHEDULE 1. IMPORTANT to notice: Given that the mice are nocturnal animals, their inactive phase applied with a ¨12-hour time difference to clinically active human subjects.
Examples of pharmaceutically acceptable binders include, but are not limited to, starches; celluloses and derivatives thereof, for example, microcrystalline cellulose, e.g., AVICEL PH from FMC (Philadelphia, PA), hydroxypropyl cellulose hydroxylethyl cellulose and hydroxylpropylmethyl cellulose METHOCEL from Dow Chemical Corp. (Midland, MI);
sucrose;
dextrose; corn syrup; polysaccharides; and gelatin. The binder may be present in an amount from about 0% to about 50%, e.g., 2-20% by weight of the composition.
Examples of pharmaceutically acceptable lubricants and pharmaceutically acceptable glidants include, but are not limited to, colloidal silica, magnesium trisilicate, starches, talc, tribasic calcium phosphate, magnesium stearate, aluminum stearate, calcium stearate, magnesium carbonate, magnesium oxide, polyethylene glycol, powdered cellulose and microcrystalline cellulose. The lubricant may be present in an amount from about 0% to about 10% by weight of the composition. In one embodiment, the lubricant may be present in an amount from about 0.1% to about 1.5% by weight of composition. The glidant may be present in an amount from about 0.1% to about 10% by weight.
Examples of pharmaceutically acceptable fillers and pharmaceutically acceptable diluents include, but are not limited to, confectioner's sugar, compressible sugar, dextrates, dextrin, dextrose, lactose, mannitol, microcrystalline cellulose, powdered cellulose, sorbitol, sucrose and talc. The filler and/or diluent, e.g., may be present in an amount from about 0% to about 80% by weight of the composition.
A dosage unit form containing the compound of formula (I) or a pharmaceutically acceptable salt thereof may be in the form of micro-tablets enclosed inside a capsule, e.g. a gelatin capsule. For this, a gelatin capsule as is employed in pharmaceutical formulations can be used, such as the hard gelatin capsule known as CAPSUGEL, available from Pfizer.
Examples of pharmaceutically acceptable disintegrants include, but are not limited to, starches; clays; celluloses; alginates; gums; cross-linked polymers, e.g., cross-linked polyvinyl pyrrolidone or crospovidone, e.g., POLYPLASDONE XL from International Specialty Products (Wayne, NJ); cross-linked sodium carboxymethylcellulose or croscarmellose sodium, e.g., AC-DI-SOL from FMC; and cross-linked calcium carboxymethylcellulose; soy polysaccharides; and guar gum. The disintegrant may be present in an amount from about 0% to about 10% by weight of the composition. In one embodiment, the disintegrant is present in an amount from about 0.1% to about 5% by weight of composition.
Examples of pharmaceutically acceptable binders include, but are not limited to, starches; celluloses and derivatives thereof, for example, microcrystalline cellulose, e.g., AVICEL PH from FMC (Philadelphia, PA), hydroxypropyl cellulose hydroxylethyl cellulose and hydroxylpropylmethyl cellulose METHOCEL from Dow Chemical Corp. (Midland, MI);
sucrose;
dextrose; corn syrup; polysaccharides; and gelatin. The binder may be present in an amount from about 0% to about 50%, e.g., 2-20% by weight of the composition.
Examples of pharmaceutically acceptable lubricants and pharmaceutically acceptable glidants include, but are not limited to, colloidal silica, magnesium trisilicate, starches, talc, tribasic calcium phosphate, magnesium stearate, aluminum stearate, calcium stearate, magnesium carbonate, magnesium oxide, polyethylene glycol, powdered cellulose, Sodium steely' fumarate and microcrystalline cellulose. The lubricant may be present in an amount from about 0% to about 10% by weight of the composition. In one embodiment, the lubricant may be present in an amount from about 0.1% to about 1.5% by weight of composition. The glidant may be present in an amount from about 0.1% to about 10% by weight.
Examples of pharmaceutically acceptable fillers and pharmaceutically acceptable diluents include, but are not limited to, confectioner's sugar, compressible sugar, dextrates, dextrin, dextrose, lactose, mannitol, microcrystalline cellulose, powdered cellulose, sorbitol, sucrose and talc. The filler and/or diluent, e.g., may be present in an amount from about 0% to about 80% by weight of the composition.
In a further embodiment, the present disclosure relates to a method of reducing at least one side effect selected from neutropenia, elevated bilirubin, cardiac toxicity, unstable angina, myocardial infarction, persistent hypertension, peripheral sensory or motor neuropathy/ pain, hepatic dysfunction (e.g., liver injury or liver disease, aspartate transaminase level elevation, alanine aminotransferase level elevation, etc.), reduced red and/or white blood cell count, hyperglycemia, nausea, decreased appetite, diarrhea, rash (e.g., maculopapular, acneiform, etc.) and hypersensitivity (e.g., increased sensitivity to bruise), photosensitivity, asthenia/
fatigue, vomiting, stomatitis, oral mucositis, pancreatitis, dysgeusia, and dyspepsia from prior treatment with a phosphatidylinositol 3-kinase inhibitor comprising orally administering a therapeutically effective amount of the a phosphatidylinositol 3-kinase inhibitor to the patient in a therapeutically effective amount of about 100 mg to about 450 mg, preferably about 200 mg to about 400 mg or more preferably about 350 mg to about 400 mg, once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep. Preferably, the side effect is hyperglycemia. In another embodiment, the side effect is rash.
Further, the present disclosure includes a method of treating or preventing a proliferative disorder in accordance with any other embodiment disclosed above for the present disclosure.
In one embodiment, the present disclosure relates to the use of a phosphatidylinositol 3-kinase inhibitor for the manufacture of a medicament for treating or preventing a proliferative disease, wherein a therapeutically effective amount of said medicament is orally administered to a patient in need thereof of said phosphatidylinositol 3-kinase inhibitor once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep.
Further, the present disclosure includes any use of the compound of formula (I) or a pharmaceutically acceptable salt thereof in accordance with the methods of treatment, uses for the manufacture of a medicament, or any embodiment disclosed above for the present disclosure.
Still further, the present disclosure includes any use of the compound of formula (II), or a pharmaceutically acceptable salt thereof in accordance with the methods of treatment, uses for the manufacture of a medicament, or any embodiment disclosed above for the present disclosure.
The present disclosure further relates to a therapeutic regimen comprising orally administering a therapeutically effective amount of a phosphatidylinositol 3-kinase inhibitor to a patient in need thereof once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep. In one embodiment, the phosphatidylinositol 3-kinase inhibitor is the compound of formula (I), or a pharmaceutically acceptable salt thereof is administered to a patient in need thereof in a therapeutically effective amount of about 50 mg to about 450 mg. In one embodiment, the phosphatidylinositol 3-kinase inhibitor is the compound of formula (II), or a pharmaceutically acceptable salt thereof is administered to a patient in need thereof in a therapeutically effective amount of about 60 mg to about 120 mg.
The present disclosure further relates to the phosphatidylinositol 3-kinase inhibitor administered in combination with at least one additional therapeutic agent for the treatment or prevention of a proliferative disease, wherein the phosphatidylinositol 3-kinase inhibitor is administered once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep. In one embodiment, the compound of formula (I) or a pharmaceutically acceptable salt thereof is administered in combination with at least one additional therapeutic agent for the treatment or prevention of a proliferative disease, wherein the compound of formula (I) or a pharmaceutically acceptable salt thereof is administered in a therapeutically effective amount of about 50 mg to about 450 mg once a day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep. In another embodiment, the compound of formula (II) or a pharmaceutically acceptable salt thereof is administered in combination with at least one additional therapeutic agent for the treatment or prevention of a proliferative disease, wherein the compound of formula (II) or a pharmaceutically acceptable salt thereof is administered in a therapeutically effective amount of about 60 mg to about 120 mg once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep.
Suitable therapeutic agents for use in accordance with the present disclosure include, but are not limited to, kinase inhibitors, anti-estrogens, anti androgens, other inhibitors, cancer chemotherapeutic drugs, alkylating agents, chelating agents, biological response modifiers, cancer vaccines, agents for antisense therapy. Examples are set forth below:
A. Kinase Inhibitors including inhibitors of Epidermal Growth Factor Receptor (EGFR) kinases such as small molecule quinazolines, for example gefitinib (US
5457105, US 5616582, and US 5770599), ZD-6474 (WO 01/32651), erlotinib (TarcevaO, US 5,747,498 and WO
96/30347), and lapatinib (US 6,727,256 and WO 02/02552), and cetuximab;
Vascular Endothelial Growth Factor Receptor (VEGFR) kinase inhibitors, including SU-11248 (WO
01/60814), SU 5416 (US 5,883,113 and WO 99/61422), SU 6668 (US 5,883,113 and WO
99/61422), CHIR-258 (US 6,605,617 and US 6,774,237), vatalanib or PTK-787 (US
6,258,812), VEGF-Trap (WO 02/57423), B43-Genistein (WO-09606116), fenretinide (retinoic acid p-hydroxyphenylamine) (US 4,323,581), IM-862 (WO 02/62826), bevacizumab or Avastin0 (WO
94/10202), KRN-951, 3-[5-(methylsulfonylpiperadine methyl)-indoly1]-quinolone, AG-13736 and AG-13925, pyrrolo[2,1-f][1,2,4]triazines, ZK-304709, VeglinO, VMDA-3601, EG-004, CEP-701 (US 5,621,100), Cand5 (WO 04/09769); Erb2 tyrosine kinase inhibitors such as pertuzumab (WO 01/00245), trastuzumab, and rituximab; Akt protein kinase inhibitors, such as RX-0201;
Protein Kinase C (PKC) inhibitors, such as LY-317615 (WO 95/17182), and perifosine (US
2003171303); Raf/Map/MEK/Ras kinase inhibitors including sorafenib (BAY 43-9006), ARQ-350RP, LErafAON, BMS-354825 AMG-548, MEK162, and others disclosed in WO
03/82272;
Fibroblast Growth Factor Receptor (FGFR) kinase inhibitors; Cell Dependent Kinase (CDK) inhibitors, including CYC-202, roscovitine (WO 97/20842 and WO 99/02162), or 7-Cyclopenty1-2-(5-piperazin-1-yl-pyridin-2-ylamino)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylic acid dimethylamide (also known as "LEE011" or "ribociclib")(W02010/020675 in example 74);
Platelet-Derived Growth Factor Receptor (PDGFR) kinase inhibitors such as CHIR-258, 3G3 mAb, AG-13736, SU-11248 and 5U6668; and Bcr-Abl kinase inhibitors and fusion proteins such as STI-571 or Gleevec0 (imatinib).
B. Anti-Estrogens: Estrogen-targeting agents include Selective Estrogen Receptor Modulators (SERMs) including tamoxifen, toremifene, raloxifene; aromatase inhibitors including Arimidex0 or anastrozole; Estrogen Receptor Downregulators (ERDs) including Faslodex0 or fulvestrant.
C. Anti-Androgens: Androgen-targeting agents including flutamide, bicalutamide, finasteride, aminoglutethamide, ketoconazole, and corticosteroids.
D. Other Inhibitors including Protein farnesyl transferase inhibitors including tipifarnib or R-115777 (US 2003134846 and WO 97/21701), BMS-214662, AZD-3409, and FTI-277;
topoisomerase inhibitors including merbarone and diflomotecan (BN-80915);
mitotic kinesin spindle protein (KSP) inhibitors including SB-743921 and MKI-833; proteasome modulators such as bortezomib or Velcade0 (US 5,780,454), XL-784; cyclooxygenase 2 (COX-2) inhibitors including non-steroidal antiinflammatory drugs I (NSAIDs); letrozole;
exemestane; and eribulin.
E. Cancer Chemotherapeutic Drugs including anastrozole (Arimidex0), bicalutamide (Casodex0), bleomycin sulfate (Blenoxane0), busulfan (Myleran0), busulfan injection (Busulfex0), capecitabine (Xeloda0), N4-pentoxycarbony1-5-deoxy-5-fluorocytidine, carboplatin (ParaplatinO), carmustine (BiCNUO), chlorambucil (Leukeran0), cisplatin (Platino10), cladribine (Leustatin0), cyclophosphamide (Cytoxan0 or Neosar0), cytarabine, cytosine arabinoside (Cytosar-U0), cytarabine liposome injection (DepoCyt0), dacarbazine (DTIC-Dome ), dactinomycin (Actinomycin D, Cosmegan), daunorubicin hydrochloride (Cerubidine0), daunorubicin citrate liposome injection (DaunoXome0), dexamethasone, docetaxel (Taxotere0), doxorubicin hydrochloride (AdriamycinO, Rubex0), etoposide (Vepesid0), fludarabine phosphate (Fludara0), 5-fluorouracil (AdruciI0, Efudex0), flutamide (Eulexin0), tezacitibine, Gemcitabine (difluorodeoxycitidine), hydroxyurea (Hydrea0), Idarubicin (Idamycin0), ifosfamide (IFEXO), irinotecan (Camptosar0), L-asparaginase (ELSPAR0), leucovorin calcium, melphalan (Alkeran0), 6-mercaptopurine (Purinethol0), methotrexate (Folex0), mitoxantrone (Novantrone0), mylotarg, paclitaxel (Taxo10), phoenix (Yttrium90/MX-DTPA), pentostatin, polifeprosan 20 with carmustine implant (Gliadel0), tamoxifen citrate (Nolvadex0), teniposide (Vumon0), 6-thioguanine, thiotepa, tirapazamine (Tirazone0), topotecan hydrochloride for injection (Hycamptin0), vinblastine (Velban0), vincristine (Oncovin0), and vinorelbine (Navelbine0).
F. Alkylating Agents including VNP-40101M or cloretizine, oxaliplatin (US
4,169,846, WO 03/24978 and WO 03/04505), glufosfamide, mafosfamide, etopophos (US
5,041,424), prednimustine; treosulfan; busulfan; irofluven (acylfulvene); penclomedine;
pyrazoloacridine (PD-115934); 06-benzylguanine; decitabine (5-aza-2-deoxycytidine);
brostallicin; mitomycin C
(MitoExtra); TLK-286 (Telcyta0); temozolomide; trabectedin (US 5,478,932); AP-5280 (Platinate formulation of Cisplatin); porfiromycin; and clearazide (meclorethamine).
G. Chelating Agents including tetrathiomolybdate (WO 01/60814); RP-697;
Chimeric T84.66 (cT84.66); gadofosveset (Vasovist0); deferoxamine; and bleomycin optionally in combination with electorporation (EPT).
H. Biological Response Modifiers, such as immune modulators, including staurosprine and macrocyclic analogs thereof, including UCN-01, CEP-701 and midostaurin (see WO
02/30941, WO 97/07081, WO 89/07105, US 5,621,100, WO 93/07153, WO 01/04125, WO
02/30941, WO 93/08809, WO 94/06799, WO 00/27422, WO 96/13506 and WO 88/07045);
squalamine (WO 01/79255); DA-9601 (WO 98/04541 and US 6,025,387); alemtuzumab;
interferons (e.g. IFN-a, IFN-b etc.); interleukins, specifically IL-2 or aldesleukin as well as IL-1, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, and active biological variants thereof having amino acid sequences greater than 70% of the native human sequence;
altretamine (Hexalen0); SU 101 or leflunomide (WO 04/06834 and US 6,331,555);
imidazoquinolines such as resiquimod and imiquimod (US 4,689,338, 5,389,640, 5,268,376, 4,929,624, 5,266,575, 5,352,784, 5,494,916, 5,482,936, 5,346,905, 5,395,937, 5,238,944, and 5,525,612); and SMIPs, including benzazoles, anthraquinones, thiosemicarbazones, and tryptanthrins (WO 04/87153, WO 04/64759, and WO 04/60308).
I. Cancer Vaccines: Anticancer vaccines including Avicine0 (Tetrahedron Lett.
26:2269-70 (1974)); oregovomab (OvaRex()); Theratope0 (STn-KLH); Melanoma Vaccines; GI-series (GI-4014, GI-4015, and GI-4016), which are directed to five mutations in the Ras protein;
GlioVax-1; MelaVax; Advexin0 or INGN-201 (WO 95/12660); Sig/E7/LAMP-1, encoding HPV-16 E7; MAGE-3 Vaccine or M3TK (WO 94/05304); HER-2VAX; ACTIVE, which stimulates T-cells specific for tumors; GM-CSF cancer vaccine; and Listeria monocytogenes-based vaccines.
J. Antisense Therapy: Anticancer agents including antisense compositions, such as AEG-35156 (GEM-640); AP-12009 and AP-11014 (TGF-beta2-specific antisense oligonucleotides); AVI-4126; AVI-4557; AVI-4472; oblimersen (Genasense0);
JFS2;
aprinocarsen (WO 97/29780); GTI-2040 (R2 ribonucleotide reductase mRNA
antisense oligo) (WO 98/05769); GTI-2501 (WO 98/05769); liposome-encapsulated c-Raf antisense oligodeoxynucleotides (LErafAON) (WO 98/43095); and Sirna-027 (RNAi-based therapeutic targeting VEGFR-1 mRNA).
In one embodiment, the additional therapeutic agent is selected from gefinitib, erlotinib, bevacizumab or AvastinO, pertuzumab, trastuzumab, MEK162, tamoxifen, fulvestrant, capecitabine, cisplatin, carboplatin, cetuximab, paclitaxel, temozolamide, letrozole, everolimus or Affinitor0, 7-Cyclopenty1-2-(5-piperazin-1-yl-pyridin-2-ylamino)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylic acid dimethylamide, or exemestane.
In a further embodiment, Compound A is administered in combination with 7-Cyclopenty1-2-(5-piperazin-1-yl-pyridin-2-ylamino)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylic acid dimethylamide. In another embodiment, Compound A is administered in combination with paclitaxel. In another embodiment, Compound A is administered in combination with letrozole.
In another embodiment, Compound A is administered in combination with fulvestrant. In another embodiment, Compound A is administered in combination with everolimus.
In a further embodiment, Compound B is administered in combination with 7-Cyclopenty1-2-(5-piperazin-1-yl-pyridin-2-ylamino)-7H-pyrrolo[2,3-d]pyrimidine-6-carboxylic acid dimethylamide. In still another embodiment, Compound B is administered in combination with paclitaxel. In another embodiment, Compound B is administered in combination with letrozole.
In another embodiment, Compound B is administered in combination with fulvestrant. In another embodiment, Compound B is administered in combination with everolimus.
The structure of the drug substances identified by code numbers, generic or trade names may be taken from the Internet, actual edition of the standard compendium "The Merck Index" or from databases, e.g., Patents International, e.g., IMS World Publications, or the publications mentioned above and below. The corresponding content thereof is hereby incorporated by reference.
The phosphatidylinositol 3-kinase inhibitor and the additional therapeutic agent may be administered together in a single pharmaceutical composition, separately in two or more separate unit dosage forms, or sequentially. The pharmaceutical composition or dosage unit form comprising the additional therapeutic agent may be prepared in a manner known per se and are those suitable for enteral, such as oral or rectal, topical, and parenteral administration to subjects, including mammals (warm-blooded animals) such as humans.
In particular, a therapeutically effective amount of each of the therapeutic agents may be administered simultaneously or sequentially and in any order, and the components may be administered separately or as a fixed combination. For example, the combination of the present disclosure may comprise: (i) administration of the first therapeutic agent (a) in free or pharmaceutically acceptable salt form; and (ii) administration of an therapeutic agent (b) in free or pharmaceutically acceptable salt form, simultaneously or sequentially in any order, in jointly therapeutically effective amounts, preferably in synergistically effective amounts, e.g., in daily or intermittent dosages corresponding to the amounts described herein. The individual therapeutic agents of the combination may be administered separately at different times during the course of therapy or concurrently in divided or single combination forms.
"Synergy" or "synergistic" refers to the action of two therapeutic agents such as, for example, (a) a compound of formula (I) or a pharmaceutically acceptable salt thereof and (b) an aromatase inhibitor, producing an effect, for example, slowing the symptomatic progression of a cancer disease or disorder, particularly cancer, or symptoms thereof, which is greater than the simple addition of the effects of each therapeutic agent administered by themselves. A
synergistic effect can be calculated, for example, using suitable methods such as the Sigmoid-Emax equation (Holford, N. H. G. and Scheiner, L. B., Clin. Pharmacokinet. 6:
429-453 (1981)), the equation of Loewe additivity (Loewe, S. and Muischnek, H., Arch. Exp.
Pathol Pharmacol.
114: 313-326 (1926)) and the median-effect equation (Chou, T. C. and Talelay, P., Adv.
Enzyme Regul. 22: 27-55 (1984)). Each equation referred to above can be applied to experimental data to generate a corresponding graph to aid in assessing the effects of the therapeutic agent combination. The corresponding graphs associated with the equations referred to above are the concentration-effect curve, isobologram curve and combination index curve, respectively. Synergy may be further shown by calculating the synergy score of the combination according to methods known by one of ordinary skill.
The effective dosage of each of therapeutic agent (a) or therapeutic agent (b) employed in the combination may vary depending on the particular compound or pharmaceutical composition employed, the mode of administration, the condition being treated, and the severity of the condition being treated. Thus, the dosage regimen of the combination is selected in accordance with a variety of factors including type, species, age, weight, sex and medical condition of the patient; the severity of the condition to be treated; the route of administration;
the renal and hepatic function of the patient; and the particular compound employed. A
physician, clinician or veterinarian of ordinary skill can readily determine and prescribe the effective amount of the therapeutic agent required to prevent, counter or arrest the progress of the condition. Optimal precision in achieving concentration of therapeutic agent within the range that yields efficacy requires a regimen based on the kinetics of the therapeutic agent's availability to target sites. This involves a consideration of the distribution, equilibrium, and elimination of a therapeutic agent.
Examples of proliferative diseases that may be treated with a combination of a compound of formula (I) or a pharmaceutically acceptable salt thereof and at least one additional therapeutic agent include, but not limited to, those set forth above.
It can be shown by established test models that the combination of the present disclosure results in the beneficial effects described herein before. The person skilled in the art is fully enabled to select a relevant test model to prove such beneficial effects. The pharmacological activity of a combination of the present disclosure may, for example, be demonstrated in a clinical study or in a test procedure as essentially described hereinafter.
Suitable clinical studies are in particular, for example, open label, dose escalation studies in patients with a proliferative disease, including for example a tumor disease, e.g., breast cancer. Such studies prove in particular the synergism of the therapeutic agents of the combination of the present disclosure. The beneficial effects on a proliferative disease may be determined directly through the results of these studies which are known as such to a person skilled in the art. Such studies may be, in particular, suitable to compare the effects of a monotherapy using the therapeutic agents and a combination of the present disclosure. In one embodiment, the dose of the PI3K inhibitor compound of formula (I) or its pharmaceutically acceptable salt is escalated until the Maximum Tolerated Dosage is reached, and the combination partner is administered with a fixed dose. Alternatively, the compound of formula (I) or its pharmaceutically acceptable salt may be administered in a fixed dose and the dose of the combination partner may be escalated. Each patient may receive doses of the compound of formula (I) or its pharmaceutically acceptable salt either once-per-day either on a continuous daily schedule or an intermittent schedule or more than once (e.g., twice) per day. The efficacy of the treatment may be determined in such studies, e.g., after 12, 18 or 24 weeks by evaluation of symptom scores every 6 weeks.
In one embodiment, the present disclosure relates to a method of treating or preventing a proliferative disease by administration in accordance with the dosage regimen of the present disclosure, wherein said phosphatidylinositol 3-kinase inhibitor is administered in combination with at least one additional therapeutic agent.
In a further embodiment, the present disclosure relates to the use of the compound of formula (I) or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for treating or preventing a proliferative disease in accordance with the dosage regimen of the present disclosure, wherein said phosphatidylinositol 3-kinase inhibitor is administered in combination with at least one additional therapeutic agent.
In a further embodiment, the present disclosure relates to the use of the compound of formula (I) or a pharmaceutically acceptable salt thereof for treating or preventing a proliferative disease in accordance with the dosage regimen of the present disclosure, wherein said phosphatidylinositol 3-kinase inhibitor is administered in combination with at least one additional therapeutic agent.
The present disclosure further relates to a package comprising a pharmaceutical composition comprising a phosphatidylinositol 3-kinase inhibitor with one or more pharmaceutically acceptable excipients in combination with instructions to orally administer said pharmaceutical composition once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep. In one embodiment, the phosphatidylinositol 3-kinase inhibitor is the compound of formula (I) or a pharmaceutically acceptable salt thereof in a dose of about 50 mg to about 450 mg. In another embodiment, the phosphatidylinositol 3-kinase inhibitor is the compound of formula (II) or a pharmaceutically acceptable salt thereof in a dose of about 60 mg to about 120 mg.
Utility of the dosage regimen of the compounds of formula (I) of the present disclosure may be demonstrated in animal test methods as well as in clinic studies. For example in the utility of the compounds of formula (I) in accordance with the present disclosure may be demonstrated in accordance with the methods hereinafter described:
Example 1:
Materials and Methods Animals and maintenance conditions: Experiments were performed in female nude Rowett rats Hsd: RH-Fox1rnu or female Brown-Norway (BN) rats (Harlan (The Netherlands).
Animals were 6-9 weeks of age at time of application of the compound. Animals were housed under Optimized Hygienic Conditions in Makrolon type III cages (max. 2 animals per cage) with free access to food and water. They were allowed to adapt for at least 6 days before the experiment was started.
Cell line and cell culture: Rat1-Myr-p110a cells were grown in Dulbecco's Modified Eagle Medium (DMEM) culture medium containing 4.5g/I glucose supplemented with 10% heat-inactivated fetal calf serum (FCS), 2mM L-glutamine, 1mM sodium pyruvate and incubated at 37 C in a 5% CO2 humidified atmosphere. Cells were harvested with trypsin-EDTA, re-suspended in culture medium (with additives) and counted with a Casy system.
Finally, cells were centrifuged, suspended in ice-cold Hanks' balanced salt solution (HBSS) at a concentration of 3x107cells/ml. Cell culture reagents were purchased from BioConcept (Allschwil, Switzerland).
Rat1-myr-p110a cells were generated by the method described in Maira et al., Molecular Cancer Therapeutics, 11:317-328 (2012), which is incorporated herein by reference in its entirety. Briefly, Rat1 cells were transfected to stably express the constitutively active form of the catalytic PI3K class I p110 isoforms a by addition of a myristylation signal to the N-terminus.
Establishment of tumor xenografts in vivo: Rat1-Myr-p110a tumors were established by subcutaneous injection of 5x106 cells in 100 pL HBSS (Sigma #H8264) into the right flank of nude rats. For the efficacy experiments, treatments were initiated when the mean tumor volumes were approx. 900-1200 mm3 (21 to 23 days post tumor cells injection).
Compound formulation and animal treatment:
Compound A was prepared for dosing as homogenous suspensions in 1% carboxymethyl cellulose: 0.5% Tween 80: 98.5%
deionized water. Fresh suspensions were prepared once every 7 days and stored at 4 C.
Compound A or vehicle was administered orally at a volume of 10mL/kg.
Evaluation of antitumor activity:
Tumor volumes were measured with calipers and determined according to the formula: length x diameter2 x -rr / 6. In addition to presenting changes of tumor volumes over the course of treatments, antitumor activity is expressed as T/C% (mean change of tumor volume of treated animals / mean change of tumor volume of control animals) x 100.
Regressions (%) were calculated according to the formula ((mean tumor volume at end of treatment - mean tumor volume at start of treatment) /
mean tumor volume at start of treatment) x 100. Body weights and tumor volumes were recorded two to three times a week.
Blood glucose measurements via radio-telemetry technology (HD-XG radio telemetry transmitter; Data Sciences International): Blood glucose levels were measured continuously in conscious non-restrained freely moving rats by the method described in Brockway et al., Journal of Diabetes Science and Technology., 9(4):771-81 (2015), which is incorporated herein by reference in its entirety. Briefly, the 1.4cc telemetry device provides direct continuous blood glucose readings along with temperature and activity for 4 weeks or longer.
The device was used in non-tumor bearing Brown Norway (BN) rats. Each animal was surgically instrumented with glucose sensors in the abdominal aorta and the device placed in the intraperitoneal cavity.
Continuous glucose readings were recorded with the Dataquest A.R.T. data acquisition system.
Reference glucose values were measured from tail vein blood samples using the Nova StatStrip glucometer twice per week. Each animal was measured in cyclic runs of 1 minute for 10 seconds with a sampling rate of 1 Hz. Mean values for blood glucose levels, body temperature and motor activity were then computed and stored. Fifteen minutes or hourly averages were determined using the interval averaging routine on the Dataquest Analysis Software (Dataquest A.R.T, version 4.36; Data Sciences). Blood glucose values are expressed in mmol/L, body temperature in degree Celsius ( C) and motor activity in number of movements (units) per minute.
Determination of pharmacokinetic (PK) parameters after oral administration of compound A in freely moving catheterized rats using automated blood sampling (ABS) technology: The highly automated ABS system (Instech ABS2TM) allows for unattended blood sample collection via an in-dwelling venous catheter placed in the jugular or femoral vein. For all animals, cannulas were filled with 1:1 heparin¨glycerol solution when not on study. The ABS
freely-moving system is a well-recognized method to reduce stress during blood sampling and it only marginally impedes the animal in its freedom to move, drink, eat and sleep. Furthermore, this method allows obtaining pharmacokinetic parameters at night time (active phase of the animal).
Statistical analysis: Absolute values for primary tumor growth and body weight were used to make the statistical comparisons between groups (one way ANOVA
followed by Dunnett's test for normally distributed data; ANOVA on Ranks for not normally distributed data followed by Dunnett's test for equal group size or Dunn's for unequal group size). Absolute values for blood glucose (calculated mean over 6 hours' time periods) and PK
data were used to make the statistical comparisons between groups (two-tailed Student's t-tests). The significant level was set at p < 0.05. All statistical calculations were carried out using SigmaStat.
Results Circadian rhythms of glucose and motor activity measured in conscious unrestrained BN
rats: A consistent diurnal rhythm of blood glucose level was observed (Fig.
1). Values were significantly lower (P< 0.005) during the day (inactive phase) than during the night (active phase). A remarkable consistency in the pattern of diurnal variation of blood glucose levels (n=9) was observed for each of the 5 days of the experiment (Fig. 2).
Effects of vehicle and Compound A treatment on blood glucose levels measured in conscious unrestrained BN rats: Vehicle treatment at 10 AM (inactive phase) or 5 PM (active phase) had no effect on blood glucose levels (Fig. 3). At day 1 of treatment with Compound A at AM (inactive phase) or 5 PM (active phase), a slight hyperglycemia was evidenced (Fig. 3).
At steady state (Day 4-5 of daily treatment), a transient hyperglycemia profile was observed.
Dosing before the inactive phase (10 a.m.) allowed blood glucose to normalize in between 2 doses, which could not be achieved when dosing before the active phase (5 p.m.). These observations could be confirmed when adding additional animals to our initial cohorts of rats (Fig. 7). After treatment discontinuation (recovery day 1) a significant transient hyperglycemia profile remained for a period up to 12h in the group dosed before the active phase (5 p.m.). In contrast blood glucose was already normalized to baseline levels at the start of recovery day 1 in the group dosed before the inactive phase (10 a.m., Fig. 7). Plasma PK
profile assessed in conscious freely moving BN rats connected to an ABS system at day 1 or 4 (steady state) of treatment with Compound A at 10 AM (inactive phase) or 5 PM (active phase) did not revealed any significant differences (at 2, 4, 6, 8, 10, 12, 18 and 24h post treatment, Fig. 8).
PK-PD modeling: Phoenix WinNonlin 6.3 (Pharsight) was used to simulate the mean plasma concentration time profiles after multiple dosing using the non-compartmental nonparametric superposition approach of data generated from previous nude rats efficacy study. The predictions are based upon an accumulation ratio computed from the terminal slope (Lambda Z), allowing predictions from simple or complicated dosing schedules.
PK/PD relationship at steady state (Day 4) following Compound A treatment:
Compound A (50 mg/kg p.o. qd, n=6) treatment in BN rats induced a transient glucose level increase suggestive of glucose metabolism impairment consistent with hyperglycemia seen in patients treated with Compound A. This profile is reproducible over time (Fig. 3) and a PK/PD
relationship based on modeled PK data in nude rats and measured glucose data in BN rats could be demonstrated (Fig. 4).
Case study: 14 and 25 mg/kg qd in "ALTERNATIVE SCHEDULE 1" dosing regimen in nude rats Based upon the foregoing analysis, the pre-clinical blood glucose diurnal rhythms obtained for Compound A dosed either at 10 A.M. (during the inactive phase) or at 5 P.M.
(during the active phase) described above would predict better tolerability of the following dosing schedule of Compound A: oral administration of Compound A once-per-day (q.d.) at 10 A.M. (inactive phase) for at least five-consecutive days. This alternative dosing schedule is referred to as "ALTERNATIVE SCHEDULE 1". However, we wanted to confirm that the 10 A.M.
(inactive phase) and 5 P.M. (active phase) dosing scheduling will not impair anti-tumor efficacy of Compound A. Thus we initiated 2 in-vivo efficacy experiments to address this question. As described herein, this model is here used to explore and guide dose scheduling in clinical studies.
Figure 5 provides graphs showing the efficacy (left panel) of Compound A in Rat1-myr P110a tumor bearing nude rats treated orally with COMPOUND A at 14 mg/kg in ALTERNATIVE SCHEDULE 1 for 14 consecutive days as compared to 14 mg/kg qd dosed at 5 p.m. (i.e., during the active phase of the rat). No significant differences in tumor volume inhibition could be evidenced between the two scheduling's over the 2 weeks of continuous treatment. A very similar pattern was observed with body weight changes (right panel).
Figure 6 provides the efficacy (left panel) of Compound A in Rat1-myr P110a tumor bearing nude rats treated orally with COMPOUND A at 25 mg/kg in ALTERNATIVE
SCHEDULE
1 for 14 consecutive days as compared to 25 mg/kg qd dosed at 5 p.m. (i.e., during the active phase of the rat). No significant differences in tumor volume inhibition could be evidenced between the two scheduling's over the 2 weeks of continuous treatment. A very similar pattern was observed with body weight changes (right panel).
Based on our data, ALTERNATIVE SCHEDULE 1 for Compound A can achieve similar anti-tumor efficacy observed in nude rats orally administered Compound A once each day (q.d.) at 5 P.M. (active phase) on a continuous daily schedule at (a) 14 mg/kg, a dose which induces stasis and (b) at 25 mg/kg, a dose which achieve clear regression (50% tumor regression) following 2 weeks of treatment.
Assuming that the relationship between PD (glucose blood levels) and efficacy is similar in humans and tumor bearing rats, this model and analysis may be useful to predict host and tumor response in humans to ALTERNATIVE SCHEDULE 1.
IMPORTANT to notice: Given that the rats are nocturnal animals, their inactive phase applied with a ¨12-hour time difference to clinically active human subjects.
Case study: 35 mg/kg qd in "ALTERNATIVE SCHEDULE 1" dosing regimen in combination with an antiestrogen (Fulvestrant at 5 mg/kg s.c. qw or Letrozole at 2.5 mg/kg p.o. qd) in HBCx-19 and HBRX3077 (both ER+/HER2-/PIK3CA mutant PDX breast cancer) sc tumor bearing nude mice Based upon the foregoing analysis ALTERNATIVE SCHEDULE 1 for Compound A can achieve similar anti-tumor efficacy observed in nude rats orally administered Compound A either at 10 a.m.(inactive phase) or 5 P.M. (active phase). To confirm that the 10 A.M. (inactive phase) and 5 P.M. (active phase) dosing scheduling will not impair anti-tumor efficacy of Compound A.
in combination with 2 different standard of cares (antiestrogen) in patient derived breast xenografts (PDX) tumor bearing nude mice, we initiated 3 in-vivo efficacy experiments. As described herein, this model is here used to explore and guide dose scheduling in clinical studies.
The experiment was conducted as described above and as further described in this Example.
Establishment of patient-derived breast xenograft (PDX) models in vivo: PDX
models were established by implanting surgical tumor tissues from treatment-naive cancer patients into nude mice. All samples were anonymized and obtained with informed consent and under the approval of the institutional review boards of the tissue providers and Novartis. All PDX models were histologically characterized and independently confirmed for the external diagnosis and were genetically profiled using various technology platforms after serial passages in mice.
PIK3CA mutation was determined by both RNA and DNA deep sequencing technologies and PIK3CA amplification was determined by SNP array 6Ø For efficacy studies, tumor-bearing animals were enrolled when subcutaneously implanted tumors reached about 200-300 mm3.
HBCx-19 is an ER+ Her2-negative luminal A tumor model with mutated PIK3CA.
HBRX3077 is an ER+ Her2-negative invasive ductal carcinoma tumor model with mutated PIK3CA.
Compound formulation and animal treatment:
Compound A was prepared for dosing as homogenous suspensions in 1% carboxymethyl cellulose: 0.5% TweenO
80: 98.5%
deionized water. Fresh suspensions were prepared once every 7 days and stored at 4 C.
Compound A or vehicle was administered orally at a volume of 10mL/kg.
Fulvestrant (FaslodexO, Astra Zeneca) stock solution at 50 mg/mL, was ready to use and stored at 4 C in a light protected cabinet. It was administered subcutaneously once a week at a volume of 4mL/kg.
Letrozole (Femara O, Novartis) 2.5 mg tablets were ready to use and stored at 4 C in a light protected cabinet. It was administered orally daily as a suspension at a volume of 10mL/kg.
Figures 9 and 10 respectively provide graphs showing the efficacy of Compound A in combination with Fulvestrant in HBCx-19 and HBRX3077 tumor bearing nude mice treated orally with COMPOUND A at 35 mg/kg (¨equivalent of the MTD of 400 mg QD in patients) in ALTERNATIVE SCHEDULE 1 for 21 (Figure 9) or 17 (Figure 10) consecutive days as compared to 35 mg/kg qd dosed at 5 p.m. (i.e., during the active phase of the mice). No significant differences in tumor volume inhibition could be evidenced between the two scheduling's over the 2-3 weeks of continuous treatment. A very similar pattern was observed with body weight changes (data not shown).
Figure 11 provides graphs showing the efficacy of Compound A in combination with Letrozole in HBRX3077 tumor bearing nude mice treated orally with COMPOUND A
at 35 mg/kg in ALTERNATIVE SCHEDULE 1 for 17 consecutive days as compared to 35 mg/kg qd dosed at 5 p.m. (i.e., during the active phase of the mice). No significant differences in tumor volume inhibition could be evidenced between the two scheduling's over the 2-3 weeks of continuous treatment. A very similar pattern was observed with body weight changes (data not shown).
Based on the foregoing data, ALTERNATIVE SCHEDULE 1 for Compound A combined with the antiestrogen agents fulvestrant or letrozole can achieve similar anti-tumor efficacy observed in nude mice orally administered Compound A once each day (q.d.) at 5 P.M. (active phase) on a continuous daily schedule at 35 mg/kg, a dose which achieve clear regression (35 to 50% tumor regression in 2 out of 3 model tested) following 17 days of treatment.
Assuming that the relationship between PD (glucose blood levels) and efficacy is similar in humans and tumor bearing mice, this model and analysis may be useful to predict host and tumor response in humans to ALTERNATIVE SCHEDULE 1. IMPORTANT to notice: Given that the mice are nocturnal animals, their inactive phase applied with a ¨12-hour time difference to clinically active human subjects.
Claims (27)
1. A method of treating or preventing a proliferative disease in a patient in need thereof, comprising administering a therapeutically effective amount of a phosphatidylinositol 3-kinase inhibitor to the patient once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep.
2. The method of claim 1, wherein the phosphatidylinositol 3-kinase inhibitor is selected from the compound of formula (I) the compound of formula (II) pictilisib, taselisib, LY2780301, copanlisib, MLN1117, and AZD8835 or a pharmaceutically acceptable salt thereof.
3. The method of claim 1, wherein the phosphatidylinositol 3-kinase inhibitor is the compound of formula (I) or a pharmaceutically acceptable salt thereof and administered orally in a therapeutically effective amount of about 50 mg to about 450 mg once-per-day either on a continuous daily schedule or an intermittent schedule.
4. The method of claim 1, wherein the phosphatidylinositol 3-kinase inhibitor is the compound of formula (II) or a pharmaceutically acceptable salt thereof and administered orally in a therapeutically effective amount of about 60 mg to about 120 mg once-per-day either on a continuous daily schedule or an intermittent schedule.
5. The method of any one of claims 1 to 4, wherein the phosphatidylinositol 3-kinase inhibitor is administered at about one to about two hours prior to sleep.
6. The method of any one of claims 1 to 5, wherein the phosphatidylinositol 3-kinase inhibitor is administered at night.
7. The method of any one of claims 1 to 6, wherein the phosphatidylinositol 3-kinase inhibitor is administered with food at about one to three hours prior to sleep.
8. The method of claim 7, wherein the phosphatidylinositol 3-kinase inhibitor is administered within about zero to about one hour of ingesting food.
9. The method of any one of claims 1 to 8, further comprising administering the phosphatidylinositol 3-kinase inhibitor on a continuous daily schedule.
10. The method of any one of claims 1 to 8, further comprising administering the phosphatidylinositol 3-kinase inhibitor on an intermittent schedule.
11. A method of treating or preventing a proliferative disease comprising first administering to a patient in need thereof a therapeutically effective amount of a phosphatidylinositol 3-kinase inhibitor once in each morning or twice daily; second determining said patient has a side effect of hyperglycemia after administration of said phosphatidylinositol 3-kinase inhibitor to said patient; and third shifting the administration of the phosphatidylinositol 3-kinase inhibitor to once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep.
12. The method according to claim 11, wherein the phosphatidylinositol 3-kinase inhibitor is inhibitor is selected from the compound of formula (I) the compound of formula (II) pictilisib, taselisib, LY2780301, copanlisib, MLN1117, and AZD8835 or a pharmaceutically acceptable salt thereof.
13. The method of claim 12, wherein the phosphatidylinositol 3-kinase inhibitor is the compound of formula (I) or a pharmaceutically acceptable salt thereof and administered orally in a therapeutically effective amount of about 50 mg to about 450 mg per day.
14. The method of claim 12, wherein the phosphatidylinositol 3-kinase inhibitor is the compound of formula (II) or a pharmaceutically acceptable salt thereof and administered orally in a therapeutically effective amount of about 60 mg to about 120 mg once-per-day either on a continuous daily schedule or an intermittent schedule.
15. The use of a phosphatidylinositol 3-kinase inhibitor for the manufacture of a medicament for treating or preventing a proliferative disease, wherein a therapeutically effective amount of said medicament is orally administered to a patient in need thereof of said phosphatidylinositol 3-kinase inhibitor once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep.
16. The use according to claim 15, wherein the phosphatidylinositol 3-kinase inhibitor is selected from the compound of formula (I) the compound of formula (II) pictilisib, taselisib, LY2780301, copanlisib, MLN1117, and AZD8835 or a pharmaceutically acceptable salt thereof.
17. The use according to claim 15, wherein the phosphatidylinositol 3-kinase inhibitor is the compound of formula (I) or a pharmaceutically acceptable salt thereof and administered orally in a therapeutically effective amount of about 50 mg to about 450 mg once-per-day either on a continuous daily schedule or an intermittent schedule.
18. The use according to claim 15, wherein the phosphatidylinositol 3-kinase inhibitor is the compound of formula (II) or a pharmaceutically acceptable salt thereof and administered orally in a therapeutically effective amount of about 60 mg to about 120 mg once-per-day either on a continuous daily schedule or an intermittent schedule.
19. A method or use according to any one of claims 1 to 18, wherein the proliferative disease is a cancer.
20. A method or use according to any one of claims 1 to 19, wherein the proliferative disease is a cancer selected from a cancer of the lung, bronchus, prostate, breast (including sporadic breast cancers and sufferers of Cowden disease), colon, rectum, colon carcinoma, colorectal adenoma, pancreas, gastrointestine, hepatocellular, stomach, gastric, ovary, squamous cell carcinoma, and head and neck.
21. A method or use according to any one of claims 1 to 20, wherein the proliferative disease is breast cancer.
22. A method or use according to any one of claims 1 to 21, wherein the phosphatidylinositol 3-kinase inhibitor, or a pharmaceutically acceptable salt thereof, is administered in combination with at least one additional therapeutic agent.
23. A therapeutic regimen for the treatment or prevention of a proliferative disease comprising administering a therapeutically effective amount of a phosphatidylinositol 3-kinase inhibitor once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep.
24. A therapeutic regimen according to claim 23, wherein the phosphatidylinositol 3-kinase inhibitor is an agent according to claim 2.
25. A therapeutic regimen according to claim 23, wherein the phosphatidylinositol 3-kinase inhibitor is the compound of formula (I) or a pharmaceutically acceptable salt thereof and administered orally in a therapeutically effective amount of about 50 mg to about 450 mg once-per-day either on a continuous daily schedule or an intermittent schedule.
26. A therapeutic regimen according to claim 23, wherein the phosphatidylinositol 3-kinase inhibitor is the compound of formula (II) or a pharmaceutically acceptable salt thereof and administered orally in a therapeutically effective amount of about 60 mg to about 120 mg once-per-day either on a continuous daily schedule or an intermittent schedule.
27. A
package comprising a pharmaceutical composition comprising a phosphatidylinositol 3-kinase inhibitor according to claim 1 or 2, or a pharmaceutically acceptable salt thereof together with one or more pharmaceutically acceptable excipients in combination with instructions to administer said pharmaceutical composition once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep.
package comprising a pharmaceutical composition comprising a phosphatidylinositol 3-kinase inhibitor according to claim 1 or 2, or a pharmaceutically acceptable salt thereof together with one or more pharmaceutically acceptable excipients in combination with instructions to administer said pharmaceutical composition once-per-day either on a continuous daily schedule or an intermittent schedule at about zero to about three hours prior to sleep.
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562249543P | 2015-11-02 | 2015-11-02 | |
| US62/249,543 | 2015-11-02 | ||
| US201662393777P | 2016-09-13 | 2016-09-13 | |
| US62/393,777 | 2016-09-13 | ||
| PCT/IB2016/056556 WO2017077445A1 (en) | 2015-11-02 | 2016-10-31 | Dosage regimen for a phosphatidylinositol 3-kinase inhibitor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CA3002954A1 true CA3002954A1 (en) | 2017-05-11 |
Family
ID=57256378
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CA3002954A Abandoned CA3002954A1 (en) | 2015-11-02 | 2016-10-31 | Dosage regimen for a phosphatidylinositol 3-kinase inhibitor |
Country Status (13)
| Country | Link |
|---|---|
| US (1) | US20180280370A1 (en) |
| EP (1) | EP3370719A1 (en) |
| JP (1) | JP2018532750A (en) |
| KR (1) | KR20180073674A (en) |
| CN (1) | CN108472289A (en) |
| AU (1) | AU2016347881A1 (en) |
| CA (1) | CA3002954A1 (en) |
| HK (1) | HK1252411A1 (en) |
| IL (1) | IL258836A (en) |
| MX (1) | MX2018005298A (en) |
| RU (1) | RU2018119085A (en) |
| TW (1) | TW201720460A (en) |
| WO (1) | WO2017077445A1 (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018060833A1 (en) * | 2016-09-27 | 2018-04-05 | Novartis Ag | Dosage regimen for alpha-isoform selective phosphatidylinositol 3-kinase inhibitor alpelisib |
| EP3716969A1 (en) * | 2017-12-01 | 2020-10-07 | Novartis AG | Pharmaceutical combination comprising lsz102 and alpelisib |
| WO2019232403A1 (en) | 2018-06-01 | 2019-12-05 | Cornell University | Combination therapy for pi3k-associated disease or disorder |
| US20230119759A1 (en) * | 2020-03-10 | 2023-04-20 | Chia Tai Tianqing Pharmaceutical Group Co., Ltd. | Pharmaceutical combination comprising pyridino[1,2-a]pyrimidinone compound |
Family Cites Families (70)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6041077B2 (en) | 1976-09-06 | 1985-09-13 | 喜徳 喜谷 | Cis platinum(2) complex of 1,2-diaminocyclohexane isomer |
| US4323581A (en) | 1978-07-31 | 1982-04-06 | Johnson & Johnson | Method of treating carcinogenesis |
| IL73534A (en) | 1983-11-18 | 1990-12-23 | Riker Laboratories Inc | 1h-imidazo(4,5-c)quinoline-4-amines,their preparation and pharmaceutical compositions containing certain such compounds |
| US4923986A (en) | 1987-03-09 | 1990-05-08 | Kyowa Hakko Kogyo Co., Ltd. | Derivatives of physiologically active substance K-252 |
| US4904768A (en) | 1987-08-04 | 1990-02-27 | Bristol-Myers Company | Epipodophyllotoxin glucoside 4'-phosphate derivatives |
| JP2766360B2 (en) | 1988-02-04 | 1998-06-18 | 協和醗酵工業株式会社 | Staurosporine derivative |
| US5238944A (en) | 1988-12-15 | 1993-08-24 | Riker Laboratories, Inc. | Topical formulations and transdermal delivery systems containing 1-isobutyl-1H-imidazo[4,5-c]quinolin-4-amine |
| US4929624A (en) | 1989-03-23 | 1990-05-29 | Minnesota Mining And Manufacturing Company | Olefinic 1H-imidazo(4,5-c)quinolin-4-amines |
| US5389640A (en) | 1991-03-01 | 1995-02-14 | Minnesota Mining And Manufacturing Company | 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
| US6410010B1 (en) | 1992-10-13 | 2002-06-25 | Board Of Regents, The University Of Texas System | Recombinant P53 adenovirus compositions |
| US5268376A (en) | 1991-09-04 | 1993-12-07 | Minnesota Mining And Manufacturing Company | 1-substituted 1H-imidazo[4,5-c]quinolin-4-amines |
| WO1993007153A1 (en) | 1991-10-10 | 1993-04-15 | Schering Corporation | 4'-(n-substituted-n-oxide)staurosporine derivatives |
| US5266575A (en) | 1991-11-06 | 1993-11-30 | Minnesota Mining And Manufacturing Company | 2-ethyl 1H-imidazo[4,5-ciquinolin-4-amines |
| EP0610433A1 (en) | 1991-11-08 | 1994-08-17 | The University Of Southern California | Compositions containing k-252 compounds for potentiation of neurotrophin activity |
| AU661533B2 (en) | 1992-01-20 | 1995-07-27 | Astrazeneca Ab | Quinazoline derivatives |
| US5948898A (en) | 1992-03-16 | 1999-09-07 | Isis Pharmaceuticals, Inc. | Methoxyethoxy oligonucleotides for modulation of protein kinase C expression |
| US5756494A (en) | 1992-07-24 | 1998-05-26 | Cephalon, Inc. | Protein kinase inhibitors for treatment of neurological disorders |
| US5621100A (en) | 1992-07-24 | 1997-04-15 | Cephalon, Inc. | K-252a derivatives for treatment of neurological disorders |
| DE69333670T2 (en) | 1992-08-31 | 2005-03-10 | Ludwig Institute For Cancer Research | MAGE-3 GEN DERIVED AND HLA-A1 PRESENTED, ISOLATED NONPEPTIDE AND ITS APPLICATIONS |
| US5674867A (en) | 1992-09-21 | 1997-10-07 | Kyowa Hakko Kogyo Co., Ltd. | Indolocarbazole derivatives and therapeutic method for stimulating megakaicyocyte production |
| HU221343B1 (en) | 1992-10-28 | 2002-09-28 | Genentech Inc | Use of anti-vegf antibodies for the treatment of cancer |
| US5395937A (en) | 1993-01-29 | 1995-03-07 | Minnesota Mining And Manufacturing Company | Process for preparing quinoline amines |
| US5352784A (en) | 1993-07-15 | 1994-10-04 | Minnesota Mining And Manufacturing Company | Fused cycloalkylimidazopyridines |
| DK0708772T3 (en) | 1993-07-15 | 2000-09-18 | Minnesota Mining & Mfg | Imidazo [4,5-c] pyridin-4-amines |
| US5478932A (en) | 1993-12-02 | 1995-12-26 | The Board Of Trustees Of The University Of Illinois | Ecteinascidins |
| EP1449529B1 (en) | 1993-12-23 | 2010-01-27 | Eli Lilly And Company | Protein Kinase C Inhibitors |
| US5587459A (en) | 1994-08-19 | 1996-12-24 | Regents Of The University Of Minnesota | Immunoconjugates comprising tyrosine kinase inhibitors |
| US6083903A (en) | 1994-10-28 | 2000-07-04 | Leukosite, Inc. | Boronic ester and acid compounds, synthesis and uses |
| US5482936A (en) | 1995-01-12 | 1996-01-09 | Minnesota Mining And Manufacturing Company | Imidazo[4,5-C]quinoline amines |
| EP3103799B1 (en) | 1995-03-30 | 2018-06-06 | OSI Pharmaceuticals, LLC | Quinazoline derivatives |
| GB9508538D0 (en) | 1995-04-27 | 1995-06-14 | Zeneca Ltd | Quinazoline derivatives |
| US6331555B1 (en) | 1995-06-01 | 2001-12-18 | University Of California | Treatment of platelet derived growth factor related disorders such as cancers |
| US5747498A (en) | 1996-05-28 | 1998-05-05 | Pfizer Inc. | Alkynyl and azido-substituted 4-anilinoquinazolines |
| US5880141A (en) | 1995-06-07 | 1999-03-09 | Sugen, Inc. | Benzylidene-Z-indoline compounds for the treatment of disease |
| WO1997007081A2 (en) | 1995-08-11 | 1997-02-27 | Yale University | Glycosylated indolocarbazole synthesis |
| FR2741881B1 (en) | 1995-12-01 | 1999-07-30 | Centre Nat Rech Scient | NOVEL PURINE DERIVATIVES HAVING IN PARTICULAR ANTI-PROLIFERATIVE PRORIETES AND THEIR BIOLOGICAL APPLICATIONS |
| WO1997021701A1 (en) | 1995-12-08 | 1997-06-19 | Janssen Pharmaceutica N.V. | Farnesyl protein transferase inhibiting (imidazol-5-yl)methyl-2-quinolinone derivatives |
| KR100447918B1 (en) | 1996-07-25 | 2005-09-28 | 동아제약주식회사 | Flavones and flavanone compounds with protective gastrointestinal tract including large intestine |
| JP4301576B2 (en) | 1996-08-02 | 2009-07-22 | ローラス セラピューティクス インコーポレイテッド | Anti-tumor antisense sequences directed against the R1 and R2 components of ribonucleotide reductase |
| CO4950519A1 (en) | 1997-02-13 | 2000-09-01 | Novartis Ag | PHTHALAZINES, PHARMACEUTICAL PREPARATIONS THAT UNDERSTAND THEM AND THE PROCESS FOR THEIR PREPARATION |
| US6126965A (en) | 1997-03-21 | 2000-10-03 | Georgetown University School Of Medicine | Liposomes containing oligonucleotides |
| ATE311884T1 (en) | 1997-07-12 | 2005-12-15 | Cancer Rec Tech Ltd | CYCLIN DEPENDENT KINASE INHIBITING PURINE DERIVATIVES |
| RS49779B (en) | 1998-01-12 | 2008-06-05 | Glaxo Group Limited, | BICYCLIC HETEROAROMATIC COMPOUNDS AS PROTEIN TYROSINE KINASE INHIBITORS |
| AU759226B2 (en) | 1998-05-29 | 2003-04-10 | Sugen, Inc. | Pyrrole substituted 2-indolinone protein kinase inhibitors |
| US20030083242A1 (en) | 1998-11-06 | 2003-05-01 | Alphonse Galdes | Methods and compositions for treating or preventing peripheral neuropathies |
| CH694589A5 (en) | 1999-06-25 | 2005-04-15 | Genentech Inc | Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies. |
| CA2379035A1 (en) | 1999-07-13 | 2001-01-18 | Shiro Akinaga | Staurosporin derivatives |
| HK1049664B (en) | 1999-11-05 | 2006-11-10 | Genzyme Corporation | Quinazoline derivatives as vegf inhibitors |
| BRPI0108394B8 (en) | 2000-02-15 | 2021-05-25 | Upjohn Co | substituted pyrrole 2-indolinone protein kinase inhibitors, their salts and pharmaceutical compositions comprising the same |
| WO2001079255A1 (en) | 2000-04-12 | 2001-10-25 | Genaera Corporation | A process for the preparation of 7.alpha.-hydroxy 3-aminosubstituted sterols using intermediates with an unprotected 7.alpha.-hydroxy group |
| KR100815681B1 (en) | 2000-06-30 | 2008-03-20 | 글락소 그룹 리미티드 | Quinazolin Ditosylate Salt Compound |
| AU9327501A (en) | 2000-09-11 | 2002-03-26 | Chiron Corp | Quinolinone derivatives |
| US6677450B2 (en) | 2000-10-06 | 2004-01-13 | Bristol-Myers Squibb Company | Topoisomerase inhibitors |
| WO2002057423A2 (en) | 2001-01-16 | 2002-07-25 | Regeneron Pharmaceuticals, Inc. | Isolating cells expressing secreted proteins |
| WO2002062826A1 (en) | 2001-02-07 | 2002-08-15 | Vadim Viktorovich Novikov | Method for producing peptides |
| US20040186172A1 (en) | 2001-07-02 | 2004-09-23 | Houssam Ibrahim | Oxaliplatin active substance with a very low content of oxalic acid |
| KR100484504B1 (en) | 2001-09-18 | 2005-04-20 | 학교법인 포항공과대학교 | Inclusion compound comprising curcurbituril derivatives as host molecule and pharmaceutical composition comprising the same |
| US20030134846A1 (en) | 2001-10-09 | 2003-07-17 | Schering Corporation | Treatment of trypanosoma brucei with farnesyl protein transferase inhibitors |
| US6927036B2 (en) | 2002-02-19 | 2005-08-09 | Xero Port, Inc. | Methods for synthesis of prodrugs from 1-acyl-alkyl derivatives and compositions thereof |
| BR0308854A (en) | 2002-03-29 | 2005-02-22 | Chiron Corp | Substituted benzazoles and their uses as raf kinase inhibitors |
| US6727272B1 (en) | 2002-07-15 | 2004-04-27 | Unitech Pharmaceuticals, Inc. | Leflunomide analogs for treating rheumatoid arthritis |
| US7148342B2 (en) | 2002-07-24 | 2006-12-12 | The Trustees Of The University Of Pennyslvania | Compositions and methods for sirna inhibition of angiogenesis |
| US7521062B2 (en) | 2002-12-27 | 2009-04-21 | Novartis Vaccines & Diagnostics, Inc. | Thiosemicarbazones as anti-virals and immunopotentiators |
| EP1594524B1 (en) | 2003-01-21 | 2012-08-15 | Novartis Vaccines and Diagnostics, Inc. | Use of tryptanthrin compounds for immune potentiation |
| EP1608369B1 (en) | 2003-03-28 | 2013-06-26 | Novartis Vaccines and Diagnostics, Inc. | Use of organic compounds for immunopotentiation |
| JO2660B1 (en) | 2006-01-20 | 2012-06-17 | نوفارتيس ايه جي | PI-3 Kinase inhibitors and methods of their use |
| EP2716643A1 (en) | 2008-08-22 | 2014-04-09 | Novartis AG | Pyrrolopyrimidine compounds and their uses |
| UA104147C2 (en) | 2008-09-10 | 2014-01-10 | Новартис Аг | PYROLIDINDICARBONIC ACID DERIVATIVE AND ITS APPLICATION IN THE TREATMENT OF PROLIFERATIVE DISEASES |
| MX360892B (en) * | 2012-05-16 | 2018-11-20 | Novartis Ag | Dosage regimen for a pi-3 kinase inhibitor. |
| MX378409B (en) * | 2013-12-06 | 2025-03-10 | Novartis Ag | DOSAGE REGIMEN FOR AN ALPHA-ISOMORPHIC SELECTIVE PHOSPHATIDYLINOSITOL 3-KINASE INHIBITOR. |
-
2016
- 2016-10-31 HK HK18111708.0A patent/HK1252411A1/en unknown
- 2016-10-31 EP EP16794067.5A patent/EP3370719A1/en not_active Withdrawn
- 2016-10-31 JP JP2018522638A patent/JP2018532750A/en active Pending
- 2016-10-31 AU AU2016347881A patent/AU2016347881A1/en not_active Abandoned
- 2016-10-31 RU RU2018119085A patent/RU2018119085A/en not_active Application Discontinuation
- 2016-10-31 KR KR1020187015265A patent/KR20180073674A/en not_active Withdrawn
- 2016-10-31 US US15/772,302 patent/US20180280370A1/en not_active Abandoned
- 2016-10-31 CN CN201680077777.5A patent/CN108472289A/en active Pending
- 2016-10-31 CA CA3002954A patent/CA3002954A1/en not_active Abandoned
- 2016-10-31 WO PCT/IB2016/056556 patent/WO2017077445A1/en not_active Ceased
- 2016-10-31 MX MX2018005298A patent/MX2018005298A/en unknown
- 2016-11-02 TW TW105135499A patent/TW201720460A/en unknown
-
2018
- 2018-04-22 IL IL258836A patent/IL258836A/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| KR20180073674A (en) | 2018-07-02 |
| EP3370719A1 (en) | 2018-09-12 |
| IL258836A (en) | 2018-06-28 |
| HK1252411A1 (en) | 2019-05-24 |
| JP2018532750A (en) | 2018-11-08 |
| MX2018005298A (en) | 2018-06-22 |
| WO2017077445A1 (en) | 2017-05-11 |
| AU2016347881A1 (en) | 2018-05-10 |
| TW201720460A (en) | 2017-06-16 |
| US20180280370A1 (en) | 2018-10-04 |
| CN108472289A (en) | 2018-08-31 |
| RU2018119085A (en) | 2019-12-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| RU2607944C2 (en) | Synergistic combinations of pi3k- and mek-inhibitors | |
| US20220280523A1 (en) | Combination of pi3k inhibitor and c-met inhibitor | |
| US20160129003A1 (en) | Pharmaceutical Combinations | |
| US20180280370A1 (en) | Dosage regimen for a phosphatidylinositol 3-kinase inhibitor | |
| US20160120871A1 (en) | Pharmaceutical combinations of a pi3k inhibitor and a microtubule destabilizing agent | |
| US20210196696A1 (en) | Dosage regimen for an alpha-isoform selective phosphatidylinositol 3-kinase inhibitor | |
| HK1223549B (en) | Dosage regimen for an alpha-isoform selective phosphatidylinositol 3-kinase inhibitor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FZDE | Discontinued |
Effective date: 20210831 |
|
| FZDE | Discontinued |
Effective date: 20210831 |