US4323581A - Method of treating carcinogenesis - Google Patents
Method of treating carcinogenesis Download PDFInfo
- Publication number
- US4323581A US4323581A US05/929,094 US92909478A US4323581A US 4323581 A US4323581 A US 4323581A US 92909478 A US92909478 A US 92909478A US 4323581 A US4323581 A US 4323581A
- Authority
- US
- United States
- Prior art keywords
- retinamide
- hydroxyphenyl
- mnu
- diet
- carcinogenesis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 208000005623 Carcinogenesis Diseases 0.000 title claims description 13
- 230000036952 cancer formation Effects 0.000 title claims description 13
- 231100000504 carcinogenesis Toxicity 0.000 title claims description 13
- 238000000034 method Methods 0.000 title claims description 11
- AKJHMTWEGVYYSE-AIRMAKDCSA-N 4-HPR Chemical compound C=1C=C(O)C=CC=1NC(=O)/C=C(\C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C AKJHMTWEGVYYSE-AIRMAKDCSA-N 0.000 claims abstract description 28
- 241000124008 Mammalia Species 0.000 claims abstract description 8
- 210000000981 epithelium Anatomy 0.000 claims description 8
- 210000000481 breast Anatomy 0.000 claims description 3
- 210000001519 tissue Anatomy 0.000 claims description 2
- AKJHMTWEGVYYSE-DRYRGIGMSA-N (2z,4e,6e,8e)-n-(4-hydroxyphenyl)-3,7-dimethyl-9-(2,6,6-trimethylcyclohexen-1-yl)nona-2,4,6,8-tetraenamide Chemical compound C=1C=C(O)C=CC=1NC(=O)/C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C AKJHMTWEGVYYSE-DRYRGIGMSA-N 0.000 claims 4
- 239000000203 mixture Substances 0.000 claims 2
- 239000006186 oral dosage form Substances 0.000 claims 1
- 230000009885 systemic effect Effects 0.000 claims 1
- 206010006187 Breast cancer Diseases 0.000 abstract description 8
- 208000026310 Breast neoplasm Diseases 0.000 abstract description 6
- 230000000737 periodic effect Effects 0.000 abstract 1
- ZRKWMRDKSOPRRS-UHFFFAOYSA-N N-Methyl-N-nitrosourea Chemical compound O=NN(C)C(N)=O ZRKWMRDKSOPRRS-UHFFFAOYSA-N 0.000 description 30
- 235000005911 diet Nutrition 0.000 description 26
- 230000037213 diet Effects 0.000 description 25
- QGNJRVVDBSJHIZ-QHLGVNSISA-N retinyl acetate Chemical compound CC(=O)OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C QGNJRVVDBSJHIZ-QHLGVNSISA-N 0.000 description 20
- 150000004492 retinoid derivatives Chemical class 0.000 description 18
- 201000009030 Carcinoma Diseases 0.000 description 10
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 10
- 229930002330 retinoic acid Natural products 0.000 description 10
- 229960000342 retinol acetate Drugs 0.000 description 10
- 235000019173 retinyl acetate Nutrition 0.000 description 10
- 239000011770 retinyl acetate Substances 0.000 description 10
- 241000700159 Rattus Species 0.000 description 9
- 239000000902 placebo Substances 0.000 description 9
- 229940068196 placebo Drugs 0.000 description 9
- 229960001727 tretinoin Drugs 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 206010028980 Neoplasm Diseases 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 239000003183 carcinogenic agent Substances 0.000 description 6
- 230000002265 prevention Effects 0.000 description 6
- 231100000357 carcinogen Toxicity 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 210000003437 trachea Anatomy 0.000 description 5
- 210000003932 urinary bladder Anatomy 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- SHGAZHPCJJPHSC-NUEINMDLSA-N Isotretinoin Chemical compound OC(=O)C=C(C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-NUEINMDLSA-N 0.000 description 4
- 206010054949 Metaplasia Diseases 0.000 description 4
- 230000000711 cancerogenic effect Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 229960005280 isotretinoin Drugs 0.000 description 4
- 230000015689 metaplastic ossification Effects 0.000 description 4
- 210000000056 organ Anatomy 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 235000012054 meals Nutrition 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 125000000946 retinyl group Chemical group [H]C([*])([H])/C([H])=C(C([H])([H])[H])/C([H])=C([H])/C([H])=C(C([H])([H])[H])/C([H])=C([H])/C1=C(C([H])([H])[H])C([H])([H])C([H])([H])C([H])([H])C1(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- OBWAFSRXIGEEKA-YCNIQYBTSA-N (2e,4e,6e,8e)-3,7-dimethyl-9-(2,6,6-trimethylcyclohexen-1-yl)nona-2,4,6,8-tetraenoyl chloride Chemical compound ClC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OBWAFSRXIGEEKA-YCNIQYBTSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 2
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
- 239000011627 DL-alpha-tocopherol Substances 0.000 description 2
- 235000001815 DL-alpha-tocopherol Nutrition 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 102000011782 Keratins Human genes 0.000 description 2
- 108010076876 Keratins Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- VYGQUTWHTHXGQB-FFHKNEKCSA-N Retinol Palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C VYGQUTWHTHXGQB-FFHKNEKCSA-N 0.000 description 2
- BGNXCDMCOKJUMV-UHFFFAOYSA-N Tert-Butylhydroquinone Chemical compound CC(C)(C)C1=CC(O)=CC=C1O BGNXCDMCOKJUMV-UHFFFAOYSA-N 0.000 description 2
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 231100001231 less toxic Toxicity 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000013223 sprague-dawley female rat Methods 0.000 description 2
- 238000012453 sprague-dawley rat model Methods 0.000 description 2
- 229960000984 tocofersolan Drugs 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- VLPFTAMPNXLGLX-UHFFFAOYSA-N trioctanoin Chemical compound CCCCCCCC(=O)OCC(OC(=O)CCCCCCC)COC(=O)CCCCCCC VLPFTAMPNXLGLX-UHFFFAOYSA-N 0.000 description 2
- 235000019155 vitamin A Nutrition 0.000 description 2
- 239000011719 vitamin A Substances 0.000 description 2
- 229940045997 vitamin a Drugs 0.000 description 2
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 206010019851 Hepatotoxicity Diseases 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- DIKPQFXYECAYPC-UHFFFAOYSA-N N-butyl-N-(4-hydroxybutyl)nitrosamine Chemical compound CCCCN(N=O)CCCCO DIKPQFXYECAYPC-UHFFFAOYSA-N 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 208000010011 Vitamin A Deficiency Diseases 0.000 description 1
- -1 Vitamin A Hydrocarbon Chemical class 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- IDMGVRDNZFQORW-JWBAUCAFSA-N axerophthene Chemical compound C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C IDMGVRDNZFQORW-JWBAUCAFSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 210000000621 bronchi Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000002113 chemopreventative effect Effects 0.000 description 1
- OQNGCCWBHLEQFN-UHFFFAOYSA-N chloroform;hexane Chemical compound ClC(Cl)Cl.CCCCCC OQNGCCWBHLEQFN-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000011393 cytotoxic chemotherapy Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000009786 epithelial differentiation Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000007686 hepatotoxicity Effects 0.000 description 1
- 231100000304 hepatotoxicity Toxicity 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 230000002390 hyperplastic effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000000622 irritating effect Effects 0.000 description 1
- 230000003780 keratinization Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000004748 mammary carcinogenesis Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000000051 modifying effect Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 210000000277 pancreatic duct Anatomy 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000001855 preneoplastic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229940100552 retinamide Drugs 0.000 description 1
- 229940108325 retinyl palmitate Drugs 0.000 description 1
- 235000019172 retinyl palmitate Nutrition 0.000 description 1
- 239000011769 retinyl palmitate Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 231100000057 systemic toxicity Toxicity 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C403/00—Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
- C07C403/20—Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by carboxyl groups or halides, anhydrides, or (thio)esters thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/16—Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
Definitions
- This invention relates to the use of chemicals to prevent the development of cancer in mammals. More particularly, it relates to the use of a retinoid, N-(4-hydroxyphenyl)-all-trans-retinamide, to prevent certain forms of epithelial cancer.
- an alternative approach to the problem of epithelial cancer is to consider the disease as a process which takes many years to reach its final, invasive stage in man and which might be controlled by physiological or pharmacological mechanisms during its early stages, with the goal of prevention of end-stage, invasive, terminal disease.
- Retinoids play an essential role in controlling the normal differentiation of epithelial tissues and are therefore important for controlling premalignant epithelial cell differentiation. It has even been found that retinoids can cause cellular repair of hyperplastic and anaplastic lesions caused by chemical carcinogens. Moreover, retinoid deficiency has been shown, in experimental animals, to enhance susceptibility to chemical carcinogenesis. Indeed, retinoids are essential for the normal cellular differentiation of epithelia that account for more than half of the total primary cancer in both men and women. These epithelia include those of the bronchi and trachea, stomach, intestine, uterus, kidney and bladder, testis, prostate, pancreatic ducts, and skin. In the absence of retinoids in the diet, normal cellular differentiation does not occur in these epithelia.
- N-(4-hydroxyphenyl)-all-trans-retinamide is disclosed as being a good ultraviolet absorber that does not have the irritating effect on skin that would be expected from the use of sunscreening amounts of retinoic acid.
- This compound is claimed in a divisional of the above-identified application, U.S. patent application Ser. No. 906,168, filed May 15, 1978.
- a solution of retinoyl chloride was prepared by magnetically stirring 3.00 g. of all-trans-retinoic acid and 0.92 g. of phosphorous trichloride for 2.25 hours in 50 ml. of dry benzene. During 21 minutes, the retinoyl chloride solution was then added to a solution of 5.46 g. of 4-aminophenol in 16 ml. of anhydrous N,N-dimethylformamide and 2 ml. of anhydrous ethyl ether, while stirring under a nitrogen atmosphere and cooling in an ice bath. Stirring was then continued for three hours at room temperature and for an hour more at 50° C.
- the reaction mixture was diluted with 150 ml. of ethyl ether.
- the ether solution was extracted with two 25-ml. portions of cold 5% hydrochloric acid and then was washed with four 25-ml. portions of cold water. After the washed solution was dried over sodium sulfate, the solvent was evaporated, leaving a dark-yellow solid.
- the solid was recrystallized first from methanol (6 ml. per gram), then from 1:1.7 chloroform-n-hexane (8 ml. per gram).
- the product had a melting point of 159°-160° C.
- the proton magnetic resonance spectrum of the product was consistent with the structure with no extraneous resonances.
- the N-(4-hydroxyphenyl)-all-trans-retinamide is administered systemically, preferably orally, in a pharmaceutically acceptable vehicle compatible therewith at a dosage level effective to prevent or retard carcinogenesis but below that which would be toxic.
- the drug is administered at regular intervals, conveniently at meal times or once daily. It has been established that the LD 50 of the active compound (in Swiss mice) is 436 mg/kg when given interperitoneally and in excess of 400 mg/kg when given orally. On the other hand, oral doses of 32 and 64 mg/kg/day have been found to be very effective in preventing breast cancer in rats. It is believed that for other mammals, a suitable effective dosage level will be within the above range and, probably, lower doses will also prove useful.
- N-(4-hydroxyphenyl)-all-trans-retinamide was compared with retinoic acid in an in vitro screening model for identifying retinoids having activity in preventing carcinogenesis in epithelial tissue.
- the experimental method which is described in Experimental Lung Cancer:Intern'l Symp, 575-82, 1974, involves reversal of keratinization in tracheal organ culture.
- test organ culture of tracheal epithelium undergoes abnormal differentiation.
- Addition of small concentrations of retinoic acid (as low as 10 -9 M) will cause reversion to normal tracheal epithelium.
- Test compounds are compared in activity to retinoic acid or another active standard both as regards squamous metaplasia and keratin production, both of which are measures of abnormal development of the epithelial culture.
- N-(4-hydroxyphenyl)-all-trans-retinamide was compared to retinyl acetate in the experimental assay for efficacy against rat breast cancer described in Nature Vol. 267, pp 620-621 (June 16, 1977), which measures the ability to inhibit mammary carcinogenesis induced by N-methyl-N-nitrosourea (MNU).
- MNU N-methyl-N-nitrosourea
- Table II The results of further extension of the tests, comparing the 4-hydroxyphenyl retinamide only to placebo, after 18 weeks with high dose MNU and 21 weeks with low dose MNU, are set forth in Table III.
- the results using these two different levels of MNU and two dietary levels of retinoid are shown graphically in FIGS. 1 and 2 after 18 weeks of testing.
- the 4-hydroxyphenyl retinamide substantially as efficacious as retinyl acetate, it is also less toxic.
- this retinamide does not accumulate in the liver in appreciable amounts, thus avoiding the hepatotoxicity associated with prolonged use of the natural esters.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
Periodic administration of N-(4-hydroxyphenyl)-all-trans-retinamide has been found to prevent breast cancer in mammals.
Description
This invention relates to the use of chemicals to prevent the development of cancer in mammals. More particularly, it relates to the use of a retinoid, N-(4-hydroxyphenyl)-all-trans-retinamide, to prevent certain forms of epithelial cancer.
As pointed out in a paper entitled "Approaches to Prevention of Epithelial Cancer During The Preneoplastic Period", Cancer Research, 36 (July, 1976), 2699-2702, presented at a Conference on "Early Lesions and The Development of Epithelial Cancer" (National Cancer Institute, Oct. 21-23, 1975), the death rates for several common forms of epithelial cancer either increased or showed no decrease during the 20-year period from 1950 to 1970. These epithelial cancer sites included the lung and pancreas in both men and women, the colon and bladder in men, the breast and ovary in women. The conventional clinical approach that has been followed with most epithelial cancer has been to wait until the patient has invasive disease and then treat this disease with cytotoxic chemotherapy, surgery, or radiation. None of these modalities has been overwhelmingly successful for the treatment of all types of epithelial cancer, in spite of some advances that have occurred.
Accordingly, it has been suggested that an alternative approach to the problem of epithelial cancer is to consider the disease as a process which takes many years to reach its final, invasive stage in man and which might be controlled by physiological or pharmacological mechanisms during its early stages, with the goal of prevention of end-stage, invasive, terminal disease.
Retinoids play an essential role in controlling the normal differentiation of epithelial tissues and are therefore important for controlling premalignant epithelial cell differentiation. It has even been found that retinoids can cause cellular repair of hyperplastic and anaplastic lesions caused by chemical carcinogens. Moreover, retinoid deficiency has been shown, in experimental animals, to enhance susceptibility to chemical carcinogenesis. Indeed, retinoids are essential for the normal cellular differentiation of epithelia that account for more than half of the total primary cancer in both men and women. These epithelia include those of the bronchi and trachea, stomach, intestine, uterus, kidney and bladder, testis, prostate, pancreatic ducts, and skin. In the absence of retinoids in the diet, normal cellular differentiation does not occur in these epithelia.
However, natural retinyl esters, such as retinyl acetate and retinyl palmitate, as well as retinoic acid, have been found to be too toxic at high dosage levels to be of practical value for cancer prevention in higher mammals. Progress has been made recently in identifying synthetic retinoids, for example 13-cis-retinoic acid, that are considerably less toxic than retinoic acid or the natural retinyl esters, and are also more potent in preventing chemical carcinogenesis. See "13-cis-Retinoic Acid:Inhibitor of Bladder Carcinogenesis in the Rat", Science, Feb. 4, 1977, Volume 195, pp 487-489 as well as "13-cis-Retinoic Acid: Inhibition of Bladder Carcinogenesis Induced in Rats by N-Butyl-N-(4-hydroxybutyl) nitrosamine", Science, Nov. 18, 1977, Volume 198, pages 743-744. 13-cis-retinoic acid, however, has not been found to be particularly effective against breast cancer in the rat model discussed hereinafter.
Recent developments in this field, as summarized above, are also discussed in an article entitled "Prevention of Chemical Carcinogenesis by Vitamin A and its Synthetic Analogs (Retinoids)", Federation Proceedings, 35, (May 1, 1976), 1332-1338, in which it is noted that it still remains a goal to find, for practical application to man and other mammals, highly effective synthetic retinoids that also have low toxicity and a high degree of tissue specificity against cancer at any particular organ site. See also the articles in the Fall, 1977, issue of The Southern Research Institute Bulletin (Volume 30, Number 2), pages 3-9 ("CHEMOPREVENTION OF CANCER-Steps Leading to Some Malignancies May Be Reversible" and "How Do Retinoids Work? Studies on Retinoic Acid-Binding Protein"). Other recent publications of interest in this field include "Biological Activity and Metabolism of the Retinoid Axerophthene (Vitamin A Hydrocarbon)", Cancer Research 38, 1734-1738, June 1978; and "Retinoids and Cancer Prevention: The importance of the Terminal Group of the Retinoid Molecule In Modifying Activity and Toxicity" in Carcinogens: Identification and Mechanism of Action, A. C. Griffin & C. R. Shaw, Editors, N.Y. Raven Press, 1978 (in Press).
In prior U.S. patent application Ser. No. 628,177, filed Nov. 3, 1975, now U.S. Pat. No. 4,108,880, N-(4-hydroxyphenyl)-all-trans-retinamide is disclosed as being a good ultraviolet absorber that does not have the irritating effect on skin that would be expected from the use of sunscreening amounts of retinoic acid. This compound is claimed in a divisional of the above-identified application, U.S. patent application Ser. No. 906,168, filed May 15, 1978.
It has now been found that N-(4-hydroxyphenyl)-all-trans-retinamide, ##STR1##
has an unusually desirable combination of properties-low systemic toxicity, good effectiveness in preventing epithelial cancer in mammals at reasonable dose levels, and adequate target specificity in concentrating at the breast. It is expected that it will also concentrate at one or more other common sites of epithelial cancer such as the bladder, colon, lung and pancreas.
A suitable method for preparing N-(4-hydroxyphenyl)-all-trans-retinamide is described in Example 1 below.
A solution of retinoyl chloride was prepared by magnetically stirring 3.00 g. of all-trans-retinoic acid and 0.92 g. of phosphorous trichloride for 2.25 hours in 50 ml. of dry benzene. During 21 minutes, the retinoyl chloride solution was then added to a solution of 5.46 g. of 4-aminophenol in 16 ml. of anhydrous N,N-dimethylformamide and 2 ml. of anhydrous ethyl ether, while stirring under a nitrogen atmosphere and cooling in an ice bath. Stirring was then continued for three hours at room temperature and for an hour more at 50° C.
The reaction mixture was diluted with 150 ml. of ethyl ether. The ether solution was extracted with two 25-ml. portions of cold 5% hydrochloric acid and then was washed with four 25-ml. portions of cold water. After the washed solution was dried over sodium sulfate, the solvent was evaporated, leaving a dark-yellow solid. The solid was recrystallized first from methanol (6 ml. per gram), then from 1:1.7 chloroform-n-hexane (8 ml. per gram). The product had a melting point of 159°-160° C. The proton magnetic resonance spectrum of the product was consistent with the structure with no extraneous resonances.
Anal. Calcd. for C26 H33 NO2 :C, 79.8; H, 8.49; N, 3.58. Found: C, 79.5; H, 8.67; N, 3.56.
In use for the prevention of carcinogenesis, the N-(4-hydroxyphenyl)-all-trans-retinamide is administered systemically, preferably orally, in a pharmaceutically acceptable vehicle compatible therewith at a dosage level effective to prevent or retard carcinogenesis but below that which would be toxic. The drug is administered at regular intervals, conveniently at meal times or once daily. It has been established that the LD50 of the active compound (in Swiss mice) is 436 mg/kg when given interperitoneally and in excess of 400 mg/kg when given orally. On the other hand, oral doses of 32 and 64 mg/kg/day have been found to be very effective in preventing breast cancer in rats. It is believed that for other mammals, a suitable effective dosage level will be within the above range and, probably, lower doses will also prove efficaceous.
N-(4-hydroxyphenyl)-all-trans-retinamide was compared with retinoic acid in an in vitro screening model for identifying retinoids having activity in preventing carcinogenesis in epithelial tissue. The experimental method, which is described in Experimental Lung Cancer:Intern'l Symp, 575-82, 1974, involves reversal of keratinization in tracheal organ culture.
In brief summary, in the absence of retinoic acid or a synthetic retinoid having similar activity, the test organ culture of tracheal epithelium undergoes abnormal differentiation. Addition of small concentrations of retinoic acid (as low as 10-9 M) will cause reversion to normal tracheal epithelium. Test compounds are compared in activity to retinoic acid or another active standard both as regards squamous metaplasia and keratin production, both of which are measures of abnormal development of the epithelial culture. The results, summarized in Table I below, show that the 4-hydroxyphenyl retinamide is at least as efficacious as retinoic acid at a concentration of 10-8 M, and nearly as efficaceous at 10-9 M, although virtually inefficacious at 10-10 M.
In carrying out the tests reported in Table I, all tracheas were cultured for the first 3 days in medium without retinoid. At this time, some tracheas were collected, while the rest were cultured for a further week in medium containing either no retinoid, or retinoid added at the concentrations shown. These tracheas were collected on the 10th day of culture. Cultures were graded as to the percentage of their total epithelium showing squamous metaplasia on eight cross sections from the middle of each trachea. If more than 40% of the total epithelial length was squamous, it was graded as having severe squamous metaplasia; between 10-40% was graded as marked; between 2-10% was graded as mild; and less than 2% was graded as minimal.
TABLE I
__________________________________________________________________________
Reversal of Keratinized Squamous Metaplastic Lesions of Vitamin A
Deficiency
in Tracheal Organ Cultures Treated with Retinoids
% of Cultures with
% of Cultures with Respective Amounts
Keratin and
Treatment of Cultures
of Squamous Metaplasia
Keratohyaline
(number of cultures)
None
Minimal
Mild
Marked
Severe
Granules
__________________________________________________________________________
No Retinoid,
collected day 3
(152)
12 8 42 26 79 71
No Retinoid,
collected day 10
(140)
1 2 11 50 34 95
Retinoic Acid
10.sup.-8 M (26)
27 49 23 0 0 0
10.sup.-9 M (134)
16 37 32 12 2 3
10.sup.-10 M (47)
9 4 43 17 28 32
4-Hydroxyphenyl Retinamide
10.sup.-8 M (10)
20 80 0 0 0 0
10.sup.-9 M (10)
20 20 30 0 30 40
10.sup.-10 M (8)
0 0 12 75 12 100
__________________________________________________________________________
On the basis of the encouraging results summarized in the foregoing example, N-(4-hydroxyphenyl)-all-trans-retinamide was compared to retinyl acetate in the experimental assay for efficacy against rat breast cancer described in Nature Vol. 267, pp 620-621 (June 16, 1977), which measures the ability to inhibit mammary carcinogenesis induced by N-methyl-N-nitrosourea (MNU). The test conditions and results after 10 1/2 weeks of testing are set forth in Table II. The results of further extension of the tests, comparing the 4-hydroxyphenyl retinamide only to placebo, after 18 weeks with high dose MNU and 21 weeks with low dose MNU, are set forth in Table III. The results using these two different levels of MNU and two dietary levels of retinoid are shown graphically in FIGS. 1 and 2 after 18 weeks of testing.
Not only is the 4-hydroxyphenyl retinamide substantially as efficacious as retinyl acetate, it is also less toxic. Of particular importance is the fact that, unlike the natural retinyl esters, this retinamide does not accumulate in the liver in appreciable amounts, thus avoiding the hepatotoxicity associated with prolonged use of the natural esters.
TABLE II
__________________________________________________________________________
Relative Effects of Retinyl Acetate and 4-Hydroxyphenyl Retinamide
On N-Methyl-N-Nitrosourea (MNU) - Induced Mammary Cancer (73 days)
Mammary Tumor
Carcinogen Retinoid Incidence
__________________________________________________________________________
Saline Placebo 0/10 (0%)
Saline Retinyl Acetate, 328 mg/kg diet
0/10 (0%)
Saline Retinyl Acetate, 656 mg/kg diet
0/10 (0%)
Saline 4-Hydroxyphenyl Retinamide, 391 mg/kg diet
0/10 (0%)
Saline 4-hydroxyphenyl Retinamide, 782 mg/kg diet
0/10 (0%)
MNU, high dose
Placebo 14/17 (82%)
MNU, high dose
Retinyl Acetate, 328 mg/kg diet
5/19 (26%)
MNU, high dose
Retinyl Acetate, 656 mg/kg diet
4/17 (24%)
MNU, high dose
4-Hydroxyphenyl Retinamide, 391 mg/kg diet
5/16 (31%)
MNU, high dose
4-Hydroxyphenyl Retinamide, 782 mg/kg diet
0/17 (0%)
MNU, low dose
Placebo 1/40 (2.5%)
MNU, low dose
Retinyl Acetate, 328 mg/kg diet
0/39 (0%)
MNU, low dose
Retinyl Acetate, 656 mg/kg diet
0/40 (0%)
MNU, low dose
4-Hydroxyphenyl Retinamide, 391 mg/kg diet
0/40 (0%)
MNU, low dose
4-Hydroxyphenyl Retinamide, 782 mg/kg diet
0/39 (0%)
__________________________________________________________________________
Animals: Female Sprague-Dawley rats obtained from ARS Sprague-Dawley.
Carcinogen:
Crystalline MNU. Rats received 2 I.V. injections at 50 and 57
days of age.
High dose is 50 mg/kg; low dose 15 mg/kg.
Retinoids:
Retinoids were dissolved in solvent and blended into the diets.
Rats were
placed on diets 3 days after last MNU injection.
Retinoid Solvent:
50 gm trioctanoin:ethanol (3:1), 0.05 ml Tenox 20, 0.05 ml
DL-α-Tocopherol/kg
Wayne lab meal.
Retinoid Placebo:
50 gm retinoid solvent/kg diet.
__________________________________________________________________________
TABLE III
__________________________________________________________________________
Effect of 4-Hydroxyphenyl Retinamide on N-Methyl-N-Nitrosourea
(MNU) - Induced Mammary Cancer
Mammary Tumor
Total Number
Carcinogen
Retinoid Incidence
of Tumors
__________________________________________________________________________
Saline Placebo 0/10 (0%)
0
Saline 4-Hydroxyphenyl Retinamide, 391 mg/kg diet
0/10 (0%)
0
Saline 4-Hydroxyphenyl Retinamide, 782 mg/kg diet
0/10 (0%)
0
MNU, high dose
Placebo 17/17
(100%)
85
MNU, high dose
4-Hydroxyphenyl Retinamide, 391 mg/kg diet
13/16
(81%)
48
MNU, high dose
4-Hydroxyphenyl Retinamide, 782 mg/kg diet
11/17
(64%)
37
MNU, low dose
Placebo 12/40
(30%)
13
MNU, low dose
4-Hydroxyphenyl Retinamide, 391 mg/kg diet
5/40 (12%)
5
MNU, low dose
4-Hydroxyphenyl Retinamide, 782 mg/kg diet
3/39 (8%)
4
__________________________________________________________________________
Animals: Female Sprague-Dawley rats obtained from ARS Sprague-Dawley.
Carcinogen:
Crystalline MNU. Rats received 2 I.V. injections at 50 and 57
days of age.
High dose is 50 mg/kg; low dose 15 mg/kg. Rats on high dose of
MNU were
sacrificed after 18 weeks.
Retinoids:
Retinoids were dissolved in solvent and blended into the diets.
Rats were
placed on diets 3 days after last MNU injection.
Retinoid Solvent:
50 gm trioctanoin:ethanol (3:1), 0.05 ml Tenox 20, 0.05 ml
DL-α-Tocopherol/kg
Wayne lab meal.
Placebo: 50 gm retinoid solvent/kg diet.
__________________________________________________________________________
Variations can, of course, be made without departing from the spirit and scope of the invention.
Claims (10)
1. A method of treating carcinogenesis in epithelial tissue in a mammal in need of said treatment, which comprises periodically administering to the subject mammal an effective amount for treating carcinogenesis of N-(4-hydroxyphenyl)-all-trans-retinamide.
2. The method of claim 1 wherein said hydroxyphenyl retinamide is administered orally.
3. The method of claim 2 wherein said hydroxyphenyl retinamide is administered at least once daily.
4. The method of claim 3 wherein said hydroxyphenyl retinamide is administered in an amount up to about 65 mg/kg/day.
5. The method of claim 4 wherein said amount does not exceed about 35 mg/kg/day.
6. The method of claim 1 wherein said hydroxyphenyl retinamide is administered in an amount up to about 65 mg/kg/day.
7. The method of claim 6 wherein said amount does not exceed about 35 mg/kg/day.
8. The method of claim 1 wherein said epithelial tissue is breast tissue.
9. A composition for treating carcinogenesis in epithelial tissue comprising an effective amount for treating carcinogenesis of N-(4-hydroxyphenyl)-all-trans-retinamide in a pharmaceutically acceptable systemic vehicle compatible therewith.
10. The composition of claim 9 in oral dosage form.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US05/929,094 US4323581A (en) | 1978-07-31 | 1978-07-31 | Method of treating carcinogenesis |
| ZA786950A ZA786950B (en) | 1978-07-31 | 1978-12-12 | Method of preventing carcinogenesis |
| CA000329784A CA1142092A (en) | 1978-07-31 | 1979-06-14 | Method of preventing carcinogenesis |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US05/929,094 US4323581A (en) | 1978-07-31 | 1978-07-31 | Method of treating carcinogenesis |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US4323581A true US4323581A (en) | 1982-04-06 |
Family
ID=25457315
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US05/929,094 Expired - Lifetime US4323581A (en) | 1978-07-31 | 1978-07-31 | Method of treating carcinogenesis |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US4323581A (en) |
| CA (1) | CA1142092A (en) |
| ZA (1) | ZA786950B (en) |
Cited By (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3610531A1 (en) * | 1985-03-28 | 1986-10-16 | Mcneilab, Inc., Springhouse, Pa. | MEDICINAL PRODUCTS WITH A N- (4-HYDROXYPHENYL) -RETINAMIDE CONTENT WITH INCREASED BIOAVAILABILITY |
| US4743400A (en) * | 1986-09-22 | 1988-05-10 | Mcneilab, Inc. | Process for preparing retinoyl chlorides |
| AU682878B2 (en) * | 1993-07-20 | 1997-10-23 | Ortho Pharmaceutical Corporation | Process for the preparation of (N)-(4-hydroxyphenyl)-retinamide |
| US5703130A (en) * | 1995-06-07 | 1997-12-30 | Institute Of Materia Medica, An Institute Of The Chinese Academy Of Medical Sciences | Chalcone retinoids and methods of use of same |
| US5716982A (en) * | 1995-06-07 | 1998-02-10 | Institute Of Materia Medica, An Institute Of The Chinese Academy Of Medical Sciences | Retinoids and methods of use of same |
| US5968940A (en) * | 1995-06-08 | 1999-10-19 | Institute Of Materia Medica | Retinoids and methods of use of same |
| US6352844B1 (en) | 1998-06-29 | 2002-03-05 | Childrens Hospital Los Angeles | Treatment of hyperproliferative disorders |
| US6368831B1 (en) | 1998-06-29 | 2002-04-09 | Childrens Hospital Los Angeles | Treatment of hyperproliferative disorders |
| US20030153740A1 (en) * | 1987-12-16 | 2003-08-14 | Institut Pasteur | Novel steroid/thyroid hormone receptor-related gene, which is inappropriately expressed in human heptocellular carcinoma, and which is a retinoic acid receptor |
| US20060094063A1 (en) * | 2004-11-04 | 2006-05-04 | Sytera, Inc. | Modulators of retinol-retinol binding protein (RBP)-transthyretin (TTR) complex formation |
| US20060099714A1 (en) * | 2004-10-25 | 2006-05-11 | Sytera, Inc. | Detection and analysis of ophthalmically-relevant fluorescent molecules |
| US20060167088A1 (en) * | 2004-06-23 | 2006-07-27 | Sytera, Inc. | Methods and compositions for treating ophthalmic conditions with retinyl derivatives |
| US20070015827A1 (en) * | 2005-07-11 | 2007-01-18 | Sytera, Inc. | Methods and compositions for treating ophthalmic conditions via serum retinol, serum retinol binding protein (RBP), and/or serum retinol-RBP modulation |
| US7169819B2 (en) | 2000-12-05 | 2007-01-30 | Childrens Hospital Los Angeles | Pharmaceutical compositions of fenretinide having increased bioavailability and methods of using the same |
| WO2007084786A1 (en) | 2006-01-20 | 2007-07-26 | Novartis Ag | Pyrimidine derivatives used as pi-3 kinase inhibitors |
| US20070258970A1 (en) * | 2003-12-09 | 2007-11-08 | Robert Blumenthal | Methods for Inhibiting Hiv and Other Viral Infections by Modulating Ceramide Metabolism |
| US7321064B1 (en) | 2007-03-08 | 2008-01-22 | Cedarburg Pharmaceuticals, Inc. | Preparation of amides of retinoic acid via mixed anhydride and mixed carbonate intermediates |
| US20080153907A1 (en) * | 2005-02-25 | 2008-06-26 | Nanohybrid Co., Ltd. | Pharmaceutical Composition for the Treatment of Cancer Comprising Lhm-Ra Complex |
| WO2009080694A1 (en) | 2007-12-20 | 2009-07-02 | Novartis Ag | Thiazole derivatives used as pi 3 kinase inhibitors |
| US20100048561A1 (en) * | 2006-04-06 | 2010-02-25 | Novartis Vaccines & Diagnostics, Inc. | Quinazolines for pdk1 inhibition |
| US20100075965A1 (en) * | 2006-02-14 | 2010-03-25 | Novartis Ag | Pi3 kinase inhibitors and methods of their use |
| CN101229147B (en) * | 2007-12-24 | 2010-09-01 | 复旦大学 | Use of N-4-hydroxyphenyl retinamide on preparing anti-hepatic fibrosis medicine |
| EP2266590A2 (en) | 2002-02-22 | 2010-12-29 | Shire LLC | Active agent delivery sytems and methods for protecting and administering active agents |
| WO2011000905A1 (en) | 2009-07-02 | 2011-01-06 | Novartis Ag | Substituted 2-carboxamide cycloamino ureas |
| EP2277595A2 (en) | 2004-06-24 | 2011-01-26 | Novartis Vaccines and Diagnostics, Inc. | Compounds for immunopotentiation |
| WO2012016970A1 (en) | 2010-08-02 | 2012-02-09 | Novartis Ag | A crystalline form of (s)-pyrrolidine-1,2-dicarboxylic acid 2-amide 1-(4 -methyl-5-[2-(2,2,2-trifluoro-1,1-dimethyl-ethyl)-pyridin-4-yl]-thiazol-2-yl)-amide and its use as pi3k inhibitor |
| WO2012104776A1 (en) | 2011-01-31 | 2012-08-09 | Novartis Ag | Novel heterocyclic derivatives |
| WO2013061305A1 (en) | 2011-10-28 | 2013-05-02 | Novartis Ag | Novel purine derivatives and their use in the treatment of disease |
| WO2013173283A1 (en) | 2012-05-16 | 2013-11-21 | Novartis Ag | Dosage regimen for a pi-3 kinase inhibitor |
| US8709379B2 (en) | 2006-03-29 | 2014-04-29 | Scitech Development, Llc | Liposomal nanoparticles and other formulations of fenretinide for use in therapy and drug delivery |
| WO2017077445A1 (en) | 2015-11-02 | 2017-05-11 | Novartis Ag | Dosage regimen for a phosphatidylinositol 3-kinase inhibitor |
| WO2018060833A1 (en) | 2016-09-27 | 2018-04-05 | Novartis Ag | Dosage regimen for alpha-isoform selective phosphatidylinositol 3-kinase inhibitor alpelisib |
| EP4000619A1 (en) | 2013-12-06 | 2022-05-25 | Novartis AG | Dosage regimen for an alpha-isoform selective phosphatidylinositol 3-kinase inhibitor |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4108880A (en) * | 1975-11-03 | 1978-08-22 | Johnson & Johnson | Esters of retinoic acid |
-
1978
- 1978-07-31 US US05/929,094 patent/US4323581A/en not_active Expired - Lifetime
- 1978-12-12 ZA ZA786950A patent/ZA786950B/en unknown
-
1979
- 1979-06-14 CA CA000329784A patent/CA1142092A/en not_active Expired
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4108880A (en) * | 1975-11-03 | 1978-08-22 | Johnson & Johnson | Esters of retinoic acid |
Cited By (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3610531A1 (en) * | 1985-03-28 | 1986-10-16 | Mcneilab, Inc., Springhouse, Pa. | MEDICINAL PRODUCTS WITH A N- (4-HYDROXYPHENYL) -RETINAMIDE CONTENT WITH INCREASED BIOAVAILABILITY |
| US4665098A (en) * | 1985-03-28 | 1987-05-12 | Mcneilab, Inc. | Pharmaceutical composition of N-(4-hydroxyphenyl) retinamide having increased bioavailability |
| US4743400A (en) * | 1986-09-22 | 1988-05-10 | Mcneilab, Inc. | Process for preparing retinoyl chlorides |
| US20030153740A1 (en) * | 1987-12-16 | 2003-08-14 | Institut Pasteur | Novel steroid/thyroid hormone receptor-related gene, which is inappropriately expressed in human heptocellular carcinoma, and which is a retinoic acid receptor |
| AU682878B2 (en) * | 1993-07-20 | 1997-10-23 | Ortho Pharmaceutical Corporation | Process for the preparation of (N)-(4-hydroxyphenyl)-retinamide |
| US5703130A (en) * | 1995-06-07 | 1997-12-30 | Institute Of Materia Medica, An Institute Of The Chinese Academy Of Medical Sciences | Chalcone retinoids and methods of use of same |
| US5716982A (en) * | 1995-06-07 | 1998-02-10 | Institute Of Materia Medica, An Institute Of The Chinese Academy Of Medical Sciences | Retinoids and methods of use of same |
| US5968940A (en) * | 1995-06-08 | 1999-10-19 | Institute Of Materia Medica | Retinoids and methods of use of same |
| US6352844B1 (en) | 1998-06-29 | 2002-03-05 | Childrens Hospital Los Angeles | Treatment of hyperproliferative disorders |
| US6368831B1 (en) | 1998-06-29 | 2002-04-09 | Childrens Hospital Los Angeles | Treatment of hyperproliferative disorders |
| US7169819B2 (en) | 2000-12-05 | 2007-01-30 | Childrens Hospital Los Angeles | Pharmaceutical compositions of fenretinide having increased bioavailability and methods of using the same |
| EP2316468A1 (en) | 2002-02-22 | 2011-05-04 | Shire LLC | Delivery system and methods for protecting and administering dextroamphetamine |
| EP2316469A1 (en) | 2002-02-22 | 2011-05-04 | Shire LLC | Delivery system and methods for protecting and administering dextroamphetamine |
| EP2266590A2 (en) | 2002-02-22 | 2010-12-29 | Shire LLC | Active agent delivery sytems and methods for protecting and administering active agents |
| US20070258970A1 (en) * | 2003-12-09 | 2007-11-08 | Robert Blumenthal | Methods for Inhibiting Hiv and Other Viral Infections by Modulating Ceramide Metabolism |
| US20060167088A1 (en) * | 2004-06-23 | 2006-07-27 | Sytera, Inc. | Methods and compositions for treating ophthalmic conditions with retinyl derivatives |
| US8314152B2 (en) | 2004-06-23 | 2012-11-20 | Acucela, Inc. | Methods and compositions for treating ophthalmic conditions with retinyl derivatives |
| US8410168B2 (en) | 2004-06-23 | 2013-04-02 | Acucela, Inc. | Methods and compositions for treating ophthalmic conditions with retinyl derivatives |
| EP2025336A1 (en) | 2004-06-23 | 2009-02-18 | Sirion Therapeutics, Inc. | Retinyl derivatives for treating ophtalmic conditions |
| EP2277516A1 (en) | 2004-06-23 | 2011-01-26 | ReVision Therapeutics, Inc. | Retinyl derivatives for treating ophtalmic conditions |
| EP2277595A2 (en) | 2004-06-24 | 2011-01-26 | Novartis Vaccines and Diagnostics, Inc. | Compounds for immunopotentiation |
| US20060099714A1 (en) * | 2004-10-25 | 2006-05-11 | Sytera, Inc. | Detection and analysis of ophthalmically-relevant fluorescent molecules |
| US20060094063A1 (en) * | 2004-11-04 | 2006-05-04 | Sytera, Inc. | Modulators of retinol-retinol binding protein (RBP)-transthyretin (TTR) complex formation |
| US7432307B2 (en) | 2004-11-04 | 2008-10-07 | Sirion Therapeutics, Inc. | Modulators of retinol-retinol binding protein (RBP)-transthyretin (TTR) complex formation |
| US20080153907A1 (en) * | 2005-02-25 | 2008-06-26 | Nanohybrid Co., Ltd. | Pharmaceutical Composition for the Treatment of Cancer Comprising Lhm-Ra Complex |
| US20070015827A1 (en) * | 2005-07-11 | 2007-01-18 | Sytera, Inc. | Methods and compositions for treating ophthalmic conditions via serum retinol, serum retinol binding protein (RBP), and/or serum retinol-RBP modulation |
| WO2007084786A1 (en) | 2006-01-20 | 2007-07-26 | Novartis Ag | Pyrimidine derivatives used as pi-3 kinase inhibitors |
| EP2261223A1 (en) | 2006-01-20 | 2010-12-15 | Novartis AG | Pyrimidine derivatives used as pi-3 kinase inhibitors |
| US20100075965A1 (en) * | 2006-02-14 | 2010-03-25 | Novartis Ag | Pi3 kinase inhibitors and methods of their use |
| US8709379B2 (en) | 2006-03-29 | 2014-04-29 | Scitech Development, Llc | Liposomal nanoparticles and other formulations of fenretinide for use in therapy and drug delivery |
| US20100048561A1 (en) * | 2006-04-06 | 2010-02-25 | Novartis Vaccines & Diagnostics, Inc. | Quinazolines for pdk1 inhibition |
| US7932262B2 (en) | 2006-04-06 | 2011-04-26 | Novartis Ag | Quinazolines for PDK1 inhibition |
| US20080221349A1 (en) * | 2007-03-08 | 2008-09-11 | Cabaj John E | Preparation of Amides of Retinoic Acid Via Mixed Anhydride and Mixed Carbonate Intermediates |
| US7321064B1 (en) | 2007-03-08 | 2008-01-22 | Cedarburg Pharmaceuticals, Inc. | Preparation of amides of retinoic acid via mixed anhydride and mixed carbonate intermediates |
| WO2009080694A1 (en) | 2007-12-20 | 2009-07-02 | Novartis Ag | Thiazole derivatives used as pi 3 kinase inhibitors |
| CN101229147B (en) * | 2007-12-24 | 2010-09-01 | 复旦大学 | Use of N-4-hydroxyphenyl retinamide on preparing anti-hepatic fibrosis medicine |
| WO2011000905A1 (en) | 2009-07-02 | 2011-01-06 | Novartis Ag | Substituted 2-carboxamide cycloamino ureas |
| WO2012016970A1 (en) | 2010-08-02 | 2012-02-09 | Novartis Ag | A crystalline form of (s)-pyrrolidine-1,2-dicarboxylic acid 2-amide 1-(4 -methyl-5-[2-(2,2,2-trifluoro-1,1-dimethyl-ethyl)-pyridin-4-yl]-thiazol-2-yl)-amide and its use as pi3k inhibitor |
| WO2012104776A1 (en) | 2011-01-31 | 2012-08-09 | Novartis Ag | Novel heterocyclic derivatives |
| WO2013061305A1 (en) | 2011-10-28 | 2013-05-02 | Novartis Ag | Novel purine derivatives and their use in the treatment of disease |
| WO2013173283A1 (en) | 2012-05-16 | 2013-11-21 | Novartis Ag | Dosage regimen for a pi-3 kinase inhibitor |
| EP4000619A1 (en) | 2013-12-06 | 2022-05-25 | Novartis AG | Dosage regimen for an alpha-isoform selective phosphatidylinositol 3-kinase inhibitor |
| WO2017077445A1 (en) | 2015-11-02 | 2017-05-11 | Novartis Ag | Dosage regimen for a phosphatidylinositol 3-kinase inhibitor |
| WO2018060833A1 (en) | 2016-09-27 | 2018-04-05 | Novartis Ag | Dosage regimen for alpha-isoform selective phosphatidylinositol 3-kinase inhibitor alpelisib |
Also Published As
| Publication number | Publication date |
|---|---|
| CA1142092A (en) | 1983-03-01 |
| ZA786950B (en) | 1980-08-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4323581A (en) | Method of treating carcinogenesis | |
| US4310546A (en) | Novel retinoids and their use in preventing carcinogenesis | |
| AU667864B2 (en) | Pharmaceutical compositions | |
| US5736576A (en) | Method of treating malignant tumors with thyroxine analogues having no significant hormonal activity | |
| JPH08504408A (en) | 5-Methanesulfonamide-1-indanone as a cyclooxygenase-2 inhibitor | |
| JP2023520668A (en) | Nanoparticles containing drug dimers and uses thereof | |
| KR100201749B1 (en) | Pharmaceutical compositions containing diphenyl compounds which inhibit arachidonic acid metabolism | |
| Swanson et al. | Biotransformation and biological activity of N-(4-hydroxyphenyl) retinamide derivatives in rodents. | |
| JPS62145019A (en) | Anti-inflammatory agent | |
| US5552389A (en) | Suppressory compositions against hepatic metastases of tumors | |
| Thompson et al. | Inhibition of urinary bladder cancer by N-(ethyl)-all-trans-retinamide and N-(2-hydroxyethyl)-all-trans-retinamide in rats and mice | |
| CA1137873A (en) | Composition of treatment of hyperpigmentary dermatoses and the like | |
| US4194007A (en) | α-Hydroxyretinoic acid, α-ketoretinoic acid and mixtures and their use in treating skin conditions | |
| BR9814053B1 (en) | lipophilic diesters of chelating agents. | |
| WO2018086241A1 (en) | Ph-sensitive 1,4-disubstituted zinc phthalocyanine coordination complex, preparation method therefore, and application thereof in medicine | |
| JPH06507390A (en) | Use of cucurbitin for the preparation of cosmetic or especially dermatological pharmaceutical antiallergic compositions and methods involving its application | |
| EP0650473B1 (en) | Radioimaging and radiochemotherapy phenolic thioether amines and acyl derivatives thereof for use in diagnosing and treating pigmentation disorders | |
| CN116444408B (en) | A multi-target disulfiram derivative, pharmaceutical composition and its anti-tumor application | |
| JPH0368515A (en) | Antiallergic drug | |
| EP3756660B1 (en) | Medicament having anti-inflammatory bowel disease function, and preparation method therefor and application thereof | |
| EP0755917A1 (en) | N,N'-di(aralkyl) N,N'-di(carboxyalkyl) alkylen- di- or triamino-derivatives and N-(aralkyl) N'-(carboxyalkyl) N,N'-di (carboxyalkyl) alkylen- di- or triamino-derivatives and their use in pharmacy and cosmetics | |
| EP0606614B1 (en) | Nonatetraenoic acid derivative | |
| Lambelin et al. | Carcinogenicity of 6-aminochrysene in mice | |
| US4863969A (en) | Treatment of premalignant lesions and certain malignant tumors | |
| JP4008534B2 (en) | Acne treatment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: JOHNSON & JOHNSON, A CORP. OF NJ. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GANDER, ROBERT J.;REEL/FRAME:003938/0287 Effective date: 19780728 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |