AU2015261714A1 - Methods for weld purging - Google Patents
Methods for weld purging Download PDFInfo
- Publication number
- AU2015261714A1 AU2015261714A1 AU2015261714A AU2015261714A AU2015261714A1 AU 2015261714 A1 AU2015261714 A1 AU 2015261714A1 AU 2015261714 A AU2015261714 A AU 2015261714A AU 2015261714 A AU2015261714 A AU 2015261714A AU 2015261714 A1 AU2015261714 A1 AU 2015261714A1
- Authority
- AU
- Australia
- Prior art keywords
- welded
- liquid cryogen
- group
- liquid
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000010926 purge Methods 0.000 title claims abstract description 33
- 239000007788 liquid Substances 0.000 claims abstract description 43
- 239000001301 oxygen Substances 0.000 claims abstract description 38
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 38
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 37
- 238000003466 welding Methods 0.000 claims abstract description 26
- 239000007789 gas Substances 0.000 claims description 27
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 22
- 229910052786 argon Inorganic materials 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 11
- 239000000956 alloy Substances 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 229910001220 stainless steel Inorganic materials 0.000 claims description 6
- 239000010959 steel Substances 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 239000001307 helium Substances 0.000 claims description 5
- 229910052734 helium Inorganic materials 0.000 claims description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000010935 stainless steel Substances 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000007792 gaseous phase Substances 0.000 abstract description 3
- 241001016380 Reseda luteola Species 0.000 description 12
- 230000007797 corrosion Effects 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 229910001039 duplex stainless steel Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001235 nimonic Inorganic materials 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
Landscapes
- Arc Welding In General (AREA)
Abstract
A method for purging air from a structure (10) to be joined by welding by feeding a liquid cryogen to the structure. The liquid cryogen (15) will enter the structure, warm up and enter the gaseous phase very rapidly. The gaseous cryogen will displace the air that is present in the structure out of the structure and reduce the content of oxygen in the structure to about 10 parts per million when welding can begin. [Figure 1] c-25=70
Description
-1 METHODS FOR WELD PURGING BACKGROUND OF THE INVENTION [0001] Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field. [0002] During welding operations, it is often necessary to protect the root of the weld from oxidation as this can lead to weld defects and a reduction in corrosion resistance. This is particularly the case in creep resistant materials, alloy steels, stainless steels and its alloys, nickel and its alloys, and titanium and its alloys. The usual method of protecting the area to be welded is to purge it usually by passing a stream of an inert gas such as argon over the weld area. This limits the availability of oxygen at the weld root to cause oxidation. [0003] However, there are a number of factors which may affect the efficiency of the process and the quality of the weld produced. These factors include the method of damming, the oxygen content of the purge gas and the purge flowrate, all of which can affect the service life of the welded component. [0004] Purging is commonly required when gas tungsten arc welding (GTAW) or plasma processes are used, particularly when stainless steel and alloy steels, nimonics and reactive metals such as titanium or zirconium are being joined. [0005] A common application area is for root runs in circumferential welds in pipe. For pipelines used in the production of electronic components, there is also a requirement to ensure the absence of particles, particularly oxides formed during welding operations. [0006] For steel and nickel alloys, inadequate protection of the rear face of the weld will lead to heavy oxidation and poor penetration bead shape and low corrosion resistance as shown in Figure 5 (Pitting corrosion potential graph). Further there will -2 be discoloration in the reactive metals and embrittlement. [0007] The problem to be solved is the extended length of time that is needed for oxygen concentration to be reduced from 200,000 ppm to about 10 ppm. The nature of the purging process follows a mathematical power curve of the form Y =AX-b. The nature of this curve is such that the tail of the curve is very long, leading to extended times for reducing the oxygen concentration from 200 ppm to 10 ppm. This time period is controlled by the diffusion mechanism and cannot appreciably be reduced significantly. This time period is dead time for fabricators and manufacturers as no production can continue until the 10 ppm level is reached. [0008] In its preferred form, the instant invention reduces this waiting time and utilizes the rapid expansion of liquid cryogenic gases from the liquid phase to the gas phase. The rapid expansion from the liquid to the gaseous state displaces air that is present inside a vessel or pipe to be purged, thereby replacing the air and oxygen present therein with the chosen inert cryogen gas. [0009] It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative. SUMMARY OF THE INVENTION [0010] According to a first aspect, the present invention provides a method for purging air from a structure to be welded comprising feeding a liquid cryogen to said structure wherein said liquid cryogen will expand to a gaseous state and displace said air in said structure. [0011] According to a second aspect, the present invention provides a method for welding a structure comprising feeding a liquid cryogen to said structure and allowing said liquid cryogen to expand to the gaseous state thereby displacing air present in said structure. [0012] Unless the context clearly requires otherwise, throughout the description and -3 the claims, the words "comprise", "comprising", and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to". [0013] The structure that is to be welded is typically a pipe or vessel that is capable of entraining air. The liquid cryogen which is selected from the group consisting of argon, helium and nitrogen and mixtures thereof is added to the weld joint between the structure to be welded and the structure it is welded to. As the liquid cryogen warms up inside the structure, it will rapidly enter the gaseous phase and expand. This expansion will force air that is entrained in the structure to be welded out of the structure such as in the case of a pipe, the opposite end from the position that is being welded. This will reduce the oxygen content at the weld joint to about 10 ppm and will do so in a significantly shorter period of time than if traditional purging methods had been employed. The welding operation may commence at this point with the lower oxygen levels present. [0014] The concentration of oxygen in the structure to be welded may be monitored by conventional means such as oxygen meters or oxygen concentration monitors. By measuring the level of reduction of oxygen in the structure to be welded, the welder/fabricator will know when to begin welding. [0015] In another embodiment of the invention, there is disclosed a method for welding a structure comprising feeding a liquid cryogen to said structure and allowing said liquid cryogen to expand to the gaseous state thereby displacing air present in said structure. [0016] The structure is typically a pipe or vessel that is capable of entraining air and having at least one open end to allow the escape of gas. The liquid cryogen which is selected from the group consisting of argon, helium and nitrogen and mixtures thereof is added to the weld joint between the structure to be welded and the structure it is welded to. Welding may begin when a lower level of oxygen present in the structure to be welded is measured.
-4 BRIEF DESCRIPTION OF THE DRAWINGS [0017] Fig. 1 is a representation of a structure to be welded using liquid cryogen to displace air from the structure. [0018] Fig. 2 is a graph showing oxygen amounts versus time for a traditional purging operation. [0019] Fig. 3. is a graph showing oxygen amounts versus time for the inventive purging operation. [0020] Fig. 4 is a graph showing oxygen concentration versus time for a regular gas purge and the inventive method. [0021] Fig. 5 is a graph showing the effects of oxygen levels versus pitting corrosion potential. DETAILED DESCRiPTION OF THE INVENTION [0022] In Figure 1, there is disclosed a structure to be welded according to the methods of the invention. This structure 10 can be a pipe or vessel that contains an empty space that is capable of entraining air. The structure 10 can be welded to an adjacent structure 40 which can be likewise in design (i.e., pipe to pipe fitting). The structure 10 to be welded can be any material that is capable of being welded, for example a material selected from the group consisting of creep resistant materials, alloy steels, stainless steel, nickel, titanium, zirconium and all their respective alloys. [0023] The structure 10 to be joined with adjacent structure 40 can be joined by a variety of welding and joining means selected from the group consisting of GTAW (Gas Tungsten Arc Welding), PAW (Plasma Arc welding), GMAW (Gas Metal Arc Welding), Laser Welding and other suitable welding processes.. [0024] The weld joint 25 is the place where one end of structure 10 is joined with one end of structure 40 and is where the welding operation takes place. Liquid inlet 15 -5 contacts the weld joint through a filling means 20 such as a funnel. The liquid inlet 15 will allow liquid cryogen selected from the group consisting of argon, helium, nitrogen and mixtures thereof to enter the structure 10. The liquid cryogen will be fed to the structure 10 at typical ambient temperatures. As the liquid cryogen warms up inside the structure, it will convert to the gaseous phase and begin to expand. As the liquid cryogen expands to a gas, it will force the air that is already present in the structure 10 and the adjoining structure 40 out their ends 30 and 35 respectively. Typically this expansion of gas will result in oxygen content inside the structure 10 being reduced from around 200,000 ppm to about 10 ppm. [0025] The amount of liquid cryogen employed depends upon the size and volume of the structure to be joined as well as the liquid cryogen itself. Typically this amount ranges from 0.25 of liquid litre to 5 litres depending on how large the pipe or vessel volume is and this amount is fed into the system for an amount of time necessary to allow the requisite amount of liquid cryogen to enter the structure. [0026] Once the appropriate oxygen level has been reached, welding of the structure can commence. In order to maintain this level of oxygen, purging with a purge gas selected from the group consisting of Argon, Nitrogen, and Nitrogen and Hydrogen mixtures, should be performed at about 10 to 20 liters per minute of purge gas during the length of the welding operation. 10027] Figure 2 is a graph showing the concentration of oxygen versus time for a typical purging process. The structure to be purged was a 2205 Duplex Stainless Steel Vessel having a diameter of 460 mm and 1000 mm length. This normal gas purging utilized Argon as the purge gas and consisted of directing the purge gas through the pipe until the requisite oxygen concentration is reached. As noted earlier, the nature of the purging process follows a mathematical power curve of the form Y =A)-b. The nature of this curve is such that the tail of the curve is very long, leading to extended times for reducing the oxygen concentration from 200,000 ppm to about 10 ppm. As seen in Figure 2, the normal gas purging had a formula Y=2863.4X-' 548 and took 65 minutes at a flow rate of 45 litres per minute to reach a 10 ppm oxygen level inside the vessel.
-6 [0028] In Figure 3, the same vessel as in Figure 2 was purged of gas using the inventive method and liquid argon. The power curve formula was Y=20.523X-1.
148 and it can be seen that with the liquid argon being fed into the stainless steel vessel that it took 1 minute and 50 seconds to reach a 10 ppm oxygen level inside the vessel. This is a significant time savings versus the 65 minutes it took using the traditional purging method. [0029] Figure 4 is a graph showing the differences between the gas purging method as described in Figure 2 and the inventive method using a liquid cryogen as described in Figure 3. The normal gas purging process took 65 minutes to reach 10 ppm oxygen level while the inventive process was able to reach this oxygen concentration in I minute and 50 seconds. [0030] Figure 5 is a graph showing the effect of purge gas oxygen levels on pitting corrosion potential in millivolts. As noted in Figure 5, the less oxygen present in a system, the higher the pitting corrosion potential is. Consequently, the higher pitting corrosion potential equates to higher corrosion resistance, therefore corrosion resistance is improved by purging oxygen from the vessel to be joined, [0031] While this invention has been described with respect to particular embodiments thereof, it is apparent that numerous other forms and modifications of the invention will be obvious to those skilled in the art. The appended claims in this invention generally should be construed to cover all such obvious forms and modifications which are within the true spirit and scope of the invention.
Claims (26)
1. A method for purging air from a structure to be welded comprising feeding a liquid cryogen to said structure wherein said liquid cryogen will expand to a gaseous state and displace said air in said structure.
2. The method as claimed in claim 1 wherein said structure to be welded is selected from the group consisting of a vessel and a pipe.
3. The method as claimed in claim 2 wherein said structure is made of a material selected from the group consisting of creep resistant materials, alloy steels, stainless steel, nickel, titanium, zirconium and their respective alloys.
4. The method according to any one of the preceding claims wherein said liquid cryogen is selected from the group consisting of argon, helium, nitrogen and mixtures thereof.
5. The method according to any one of the preceding claims wherein said liquid cryogen is added to a weld joint of said structure to be welded.
6. The method according to any one of the preceding claims wherein said liquid cryogen is fed to said structure at ambient temperature.
7. The method according to any one of the preceding claims wherein said structure to be welded is welded by a process selected from the group consisting of Gas Tungsten Arc Welding, Plasma Arc Welding, Gas Metal Arc Welding, and Laser Welding.
8. The method according to any one of the preceding claims wherein the concentration of oxygen in said structure is about 10 parts per million.
9. The method according to any one of the preceding claims wherein oxygen concentration is measured with an oxygen meter or an oxygen concentration monitor. -8
10. The method according to any one of the preceding claims wherein said displaced air exits through an open end of said structure.
11. The method according to any one of the preceding claims wherein said liquid cryogen is fed to said structure in an amount ranging from about 0.25 liquid litres to about 5 liquid litres.
12. The method as claimed in claim 1 further comprising purging said structure with a purge gas selected from the group consisting of Argon, Nitrogen and Nitrogen and Hydrogen mixtures after said air is purged from said structure.
13. A method for welding a structure comprising feeding a liquid cryogen to said structure and allowing said liquid cryogen to expand to the gaseous state thereby displacing air present in said structure.
14. The method as claimed in claim 13 wherein said structure to be welded is selected from the group consisting of a vessel and a pipe.
15. The method as claimed in claim 14 wherein said structure is made of a material selected from the group consisting of creep resistant materials, alloy steels, stainless steel, nickel, titanium, zirconium and their respective alloys.
16. The method according to any one of claims 13 to 15 wherein said liquid cryogen is selected from the group consisting of argon, helium, nitrogen and mixtures thereof.
17. The method according to any one of claims 13 to 16 wherein said liquid cryogen is added to a weld joint of said structure to be welded.
18. The method according to any one of claims 13 to 17 wherein said liquid cryogen is fed to said structure at ambient temperature.
19. The method according to any one of claims 13 to 18 wherein said structure to -9 be welded is welded by a process selected from the group consisting of Gas Tungsten Arc Welding, Plasma Arc Welding, Gas Metal Arc Welding, and Laser Welding.
20. The method according to any one of claims 13 to 19 wherein the concentration of oxygen in said structure is about 10 parts per million.
21. The method according to any one of claims 13 to 20 wherein oxygen concentration is measured with an oxygen meter or an oxygen concentration monitor.
22. The method according to any one of claims 13 to 21 wherein said displaced air exits through an open end of said structure.
23. The method according to any one of claims 13 to 27 wherein said liquid cryogen is fed to said structure in an amount ranging from about 0.25 liquid litres to about 5 liquid litres.
24. The method according to any one of claims 13 to 23 further comprising purging said structure with a purge gas selected from the group consisting of Argon, Nitrogen and Nitrogen and Hydrogen mixtures after said air is purged from said structure.
25. A method for purging air from a structure to be welded substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or examples.
26. A method for welding a structure substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings and/or examples.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2015261714A AU2015261714B2 (en) | 2011-09-15 | 2015-11-30 | Methods for weld purging |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/233,166 US9849537B2 (en) | 2011-09-15 | 2011-09-15 | Methods for weld purging |
| US13/233,166 | 2011-09-15 | ||
| AU2012216607A AU2012216607A1 (en) | 2011-09-15 | 2012-09-03 | Methods for weld purging |
| AU2015261714A AU2015261714B2 (en) | 2011-09-15 | 2015-11-30 | Methods for weld purging |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2012216607A Division AU2012216607A1 (en) | 2011-09-15 | 2012-09-03 | Methods for weld purging |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| AU2015261714A1 true AU2015261714A1 (en) | 2015-12-17 |
| AU2015261714B2 AU2015261714B2 (en) | 2017-08-31 |
Family
ID=54849002
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| AU2015261714A Ceased AU2015261714B2 (en) | 2011-09-15 | 2015-11-30 | Methods for weld purging |
Country Status (1)
| Country | Link |
|---|---|
| AU (1) | AU2015261714B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3766603A1 (en) * | 2019-07-18 | 2021-01-20 | Linde GmbH | Method and device for purging an additive manufacturing space |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4795490A (en) * | 1987-12-22 | 1989-01-03 | Essex Group, Inc. | Inert gas purging during shaft furnace shut down |
| ZA989702B (en) * | 1998-10-23 | 1999-06-30 | Air Liquide Pty Ltd | Process and apparatus for welding a hollow structure such as a container or a tube with inerting of its internal structure |
-
2015
- 2015-11-30 AU AU2015261714A patent/AU2015261714B2/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| AU2015261714B2 (en) | 2017-08-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10201871B2 (en) | Welding power system with integrated purge gas control | |
| Slobodyan | Arc welding of zirconium and its alloys: a review | |
| WO2012102794A1 (en) | High toughness weld metals with superior ductile tearing resistance | |
| KR20060123167A (en) | Butt welding method | |
| JP5107492B2 (en) | Method for MIG welding of nickel and nickel alloys using a shielding gas based on argon and carbon dioxide | |
| CN108044223B (en) | Welding method of stainless steel strip | |
| US9849537B2 (en) | Methods for weld purging | |
| KR101910216B1 (en) | Flux-cored wire for welding steel having a high nickel content | |
| WO2005023478A1 (en) | Welded structure excellent in resistance to stress corrosion cracking | |
| JP4173076B2 (en) | Ni-based alloy flux cored wire | |
| CN109759681A (en) | A kind of Nickel-Based Steel method for welding pipeline | |
| AU2015261714B2 (en) | Methods for weld purging | |
| US11016000B2 (en) | Purging for welding | |
| AU2010270018B2 (en) | Integrated flow meter | |
| US9586293B2 (en) | Welding gas and plasma welding method | |
| CA2899559C (en) | Welding wire for fe-36ni alloy | |
| CN204018983U (en) | A kind of minor diameter titanium pipe weld seam protection cover | |
| CN106514069A (en) | Device inhibiting welding defects of small-diameter aluminum alloy guiding pipe | |
| JP3588330B2 (en) | Non-consumable electrode type gas shielded arc welding method | |
| EP1752249A1 (en) | Shielding gas comprising 0.2 % of an oxidative gas, the rest being helium ; Welding method using such shielding gas ; Weldment | |
| JP7155816B2 (en) | Manufacturing method and welding equipment for austenitic stainless steel pipe welded joint | |
| Butar et al. | Evolution of structure, phase and mechanical properties duplex stainless steel (DSS) 31803 welding using GMAW with the addition of CO2 to Ar-CO2 shielding gas | |
| JP5579316B1 (en) | Welding method and welded structure | |
| Gordon | Paper technology turns into cash: Weld purging with water-soluble paper saves shops money | |
| US20070084902A1 (en) | Conduit purging device and method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| FGA | Letters patent sealed or granted (standard patent) | ||
| MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |