| False information on web and social media: A survey S Kumar, N Shah arXiv preprint arXiv:1804.08559, 2018 | 654 | 2018 |
| Data Augmentation for Graph Neural Networks T Zhao, Y Liu, L Neves, O Woodford, M Jiang, N Shah AAAI, 2021 | 601 | 2021 |
| FRAUDAR: Bounding Graph Fraud in the Face of Camouflage B Hooi, HA Song, A Beutel, N Shah, K Shin, C Faloutsos Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge …, 2016 | 486 | 2016 |
| An Introduction to R N Shah Practical Graph Mining with R, 49-74, 2013 | 449* | 2013 |
| Is Homophily a Necessity for Graph Neural Networks? Y Ma, X Liu, N Shah, J Tang ICLR, 2022 | 419 | 2022 |
| Graph-less Neural Networks: Teaching Old MLPs New Tricks via Distillation S Zhang, Y Liu, Y Sun, N Shah ICLR, 2022 | 310 | 2022 |
| From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness L Zhao, W Jin, L Akoglu, N Shah ICLR, 2022 | 260 | 2022 |
| Graph Condensation for Graph Neural Networks W Jin, L Zhao, S Zhang, Y Liu, J Tang, N Shah ICLR, 2022 | 257 | 2022 |
| Compressing the incompressible with ISABELA: In-situ reduction of spatio-temporal data S Lakshminarasimhan, N Shah, S Ethier, S Klasky, R Latham, R Ross, ... European Conference on Parallel Processing, 366-379, 2011 | 257 | 2011 |
| A unified view on graph neural networks as graph signal denoising Y Ma, X Liu, T Zhao, Y Liu, J Tang, N Shah Proceedings of the 30th ACM International Conference on Information …, 2021 | 244 | 2021 |
| TimeCrunch: Interpretable Dynamic Graph Summarization N Shah, D Koutra, T Zou, B Gallagher, C Faloutsos Proceedings of the 21th ACM SIGKDD International Conference on Knowledge …, 2015 | 206 | 2015 |
| DeltaCon: Principled Massive-Graph Similarity Function with Attribution D Koutra, N Shah, JT Vogelstein, B Gallagher, C Faloutsos ACM Transactions on Knowledge Discovery from Data (TKDD) 10 (3), 28, 2016 | 192 | 2016 |
| Retrieval-Augmented Generation with Graphs (GraphRAG) H Han, Y Wang, H Shomer, K Guo, J Ding, Y Lei, M Halappanavar, ... arXiv preprint arXiv:2501.00309, 2024 | 182 | 2024 |
| LLaGA: Large Language and Graph Assistant R Chen, T Zhao, A Jaiswal, N Shah, Z Wang arXiv preprint arXiv:2402.08170, 2024 | 181 | 2024 |
| Birdnest: Bayesian inference for ratings-fraud detection B Hooi, N Shah, A Beutel, S Günnemann, L Akoglu, M Kumar, D Makhija, ... Proceedings of the 2016 SIAM International Conference on Data Mining, 495-503, 2016 | 168 | 2016 |
| Graph data augmentation for graph machine learning: A survey T Zhao, W Jin, Y Liu, Y Wang, G Liu, S Günnemann, N Shah, M Jiang arXiv preprint arXiv:2202.08871, 2022 | 163 | 2022 |
| Semi-supervised Content-based Detection of Misinformation via Tensor Embeddings GB Guacho, S Abdali, N Shah, EE Papalexakis 2018 IEEE/ACM International Conference on Advances in Social Networks …, 2018 | 151 | 2018 |
| Evaluating graph neural networks for link prediction: Current pitfalls and new benchmarking J Li, H Shomer, H Mao, S Zeng, Y Ma, N Shah, J Tang, D Yin Advances in Neural Information Processing Systems 36, 3853-3866, 2023 | 140 | 2023 |
| Spotting suspicious link behavior with fbox: An adversarial perspective N Shah, A Beutel, B Gallagher, C Faloutsos 2014 IEEE International Conference on Data Mining, 959-964, 2014 | 140 | 2014 |
| ISABELA for effective in situ compression of scientific data S Lakshminarasimhan, N Shah, S Ethier, SH Ku, CS Chang, S Klasky, ... Concurrency and Computation: Practice and Experience 25 (4), 524-540, 2013 | 132 | 2013 |