[go: up one dir, main page]

WO2025231663A1 - Rrm, rlm et bfd dans une adaptation de ssb - Google Patents

Rrm, rlm et bfd dans une adaptation de ssb

Info

Publication number
WO2025231663A1
WO2025231663A1 PCT/CN2024/091787 CN2024091787W WO2025231663A1 WO 2025231663 A1 WO2025231663 A1 WO 2025231663A1 CN 2024091787 W CN2024091787 W CN 2024091787W WO 2025231663 A1 WO2025231663 A1 WO 2025231663A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
adaptation
smtc
processors
rrm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/CN2024/091787
Other languages
English (en)
Inventor
Peng Cheng
Ping-Heng Kuo
Naveen Kumar R Palle VENKATA
Zhibin Wu
Haijing Hu
Alexander Sirotkin
Fangli Xu
Yuqin Chen
Ralf ROSSBACH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Priority to PCT/CN2024/091787 priority Critical patent/WO2025231663A1/fr
Publication of WO2025231663A1 publication Critical patent/WO2025231663A1/fr
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Definitions

  • Embodiments of the invention relate to wireless communications, including apparatuses, systems, and methods for radio resource management (RRM) , radio link monitoring (RLM) and beam failure detection (BFD) in SSB adaptation in a cellular communications network.
  • RRM radio resource management
  • RLM radio link monitoring
  • BFD beam failure detection
  • Wireless communication systems are rapidly growing in usage.
  • wireless devices such as smart phones and tablet computers have become increasingly sophisticated.
  • many mobile devices now provide access to the internet, email, text messaging, and navigation using the global positioning system (GPS) and are capable of operating sophisticated applications that utilize these functionalities.
  • GPS global positioning system
  • 5G-NR also simply referred to as NR
  • NR provides, as compared to LTE, a higher capacity for a higher density of mobile broadband users, while also supporting device-to-device, ultra-reliable, and massive machine type communications with lower latency and/or lower battery consumption.
  • NR may allow for more flexible UE scheduling as compared to current LTE. Consequently, efforts are being made in ongoing developments of 5G-NR to take advantage of higher throughputs possible at higher frequencies.
  • FIG. 1B illustrates an example of a base station and an access point in communication with a user equipment (UE) device, according to some embodiments.
  • UE user equipment
  • FIG. 3 illustrates an example block diagram of a server according to some embodiments.
  • FIG. 4 illustrates an example block diagram of a UE according to some embodiments.
  • FIG. 7 illustrates an example block diagram of an interface of baseband circuitry according to some embodiments.
  • FIG. 8 illustrates an example of a control plane protocol stack in accordance with some embodiments.
  • FIG. 10 illustrates example components of a core network in accordance with some embodiments.
  • FIG. 13 illustrates an example of a determination of Out-of-Sync and In-Sync for SSB based monitoring in the time domain, according to some embodiments.
  • FIG. 14 illustrates an example of a determination of Out-of-Sync and In-Sync for SSB based monitoring in the time domain, according to some embodiments.
  • FIG. 16 illustrates a flow chart of an example of a method performing radio resource management (RRM) with a Synchronization Signal Physical Broadcast Channel (PBCH) Block (SSB) adaptation, according to some embodiments.
  • RRM radio resource management
  • PBCH Synchronization Signal Physical Broadcast Channel
  • SSB Synchronization Signal Physical Broadcast Channel
  • FIG. 17 illustrates a flow chart of an example of a method performing radio resource management (RRM) with a Synchronization Signal Physical Broadcast Channel (PBCH) Block (SSB) adaptation, according to some embodiments.
  • RRM radio resource management
  • PBCH Synchronization Signal Physical Broadcast Channel
  • SSB Synchronization Signal Physical Broadcast Channel
  • Memory Medium Any of various types of non-transitory memory devices or storage devices.
  • the term “memory medium” is intended to include an installation medium, e.g., a CD-ROM, floppy disks, or tape device; a computer system memory or random-access memory such as DRAM, DDR RAM, SRAM, EDO RAM, Rambus RAM, etc.; a non-volatile memory such as a Flash, magnetic media, e.g., a hard drive, or optical storage; registers, or other similar types of memory elements, etc.
  • the memory medium may include other types of non-transitory memory as well or combinations thereof.
  • the memory medium may be located in a first computer system in which the programs are executed, or may be located in a second different computer system which connects to the first computer system over a network, such as the Internet. In the latter instance, the second computer system may provide program instructions to the first computer for execution.
  • the term “memory medium” may include two or more memory mediums which may reside in different locations, e.g., in different computer systems that are connected over a network.
  • the memory medium may store program instructions (e.g., embodied as computer programs) that may be executed by one or more processors.
  • Carrier Medium a memory medium as described above, as well as a physical transmission medium, such as a bus, network, and/or other physical transmission medium that conveys signals such as electrical, electromagnetic, or digital signals.
  • a physical transmission medium such as a bus, network, and/or other physical transmission medium that conveys signals such as electrical, electromagnetic, or digital signals.
  • Programmable Hardware Element includes various hardware devices comprising multiple programmable function blocks connected via a programmable interconnect. Examples include FPGAs (Field Programmable Gate Arrays) , PLDs (Programmable Logic Devices) , FPOAs (Field Programmable Object Arrays) , and CPLDs (Complex PLDs) .
  • the programmable function blocks may range from fine grained (combinatorial logic or look up tables) to coarse grained (arithmetic logic units or processor cores) .
  • a programmable hardware element may also be referred to as "reconfigurable logic” .
  • Computer System any of various types of computing or processing systems, including a personal computer system (PC) , mainframe computer system, workstation, network appliance, Internet appliance, personal digital assistant (PDA) , television system, grid computing system, or other device or combinations of devices.
  • PC personal computer system
  • mainframe computer system workstation
  • network appliance Internet appliance
  • PDA personal digital assistant
  • television system grid computing system, or other device or combinations of devices.
  • computer system can be broadly defined to encompass any device (or combination of devices) having at least one processor that executes instructions from a memory medium.
  • UE User Equipment
  • UE Device any of various types of computer systems devices which are mobile or portable and which performs wireless communications.
  • UE devices include mobile telephones or smart phones (e.g., iPhone TM , Android TM -based phones) , portable gaming devices (e.g., Nintendo DS TM , PlayStation Portable TM , Gameboy Advance TM , iPhone TM ) , laptops, wearable devices (e.g., smart watch, smart glasses) , PDAs, portable Internet devices, music players, data storage devices, other handheld devices, unmanned aerial vehicles (UAVs) (e.g., drones) , UAV controllers (UACs) , and so forth.
  • UAVs unmanned aerial vehicles
  • UACs UAV controllers
  • Base Station has the full breadth of its ordinary meaning, and at least includes a wireless communication station installed at a fixed location and used to communicate as part of a wireless telephone system or radio system.
  • Processing Element refers to various elements or combinations of elements that are capable of performing a function in a device, such as a user equipment or a cellular network device.
  • Processing elements may include, for example: processors and associated memory, portions or circuits of individual processor cores, entire processor cores, processor arrays, circuits such as an ASIC (Application Specific Integrated Circuit) , programmable hardware elements such as a field programmable gate array (FPGA) , as well any of various combinations of the above.
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • channel widths may be variable (e.g., depending on device capability, band conditions, etc. ) .
  • LTE may support scalable channel bandwidths from 1.4 MHz to 20MHz.
  • 5G NR can support scalable channel bandwidths from 5 MHz to 100 MHz in Frequency Range 1 (FR1) and up to 400 MHz in FR2.
  • WLAN channels may be 22 MHz wide while Bluetooth channels may be 1 MHz wide.
  • Other protocols and standards may include different definitions of channels.
  • some standards may define and use multiple types of channels, e.g., different channels for uplink or downlink and/or different channels for different uses such as data, control information, etc.
  • band has the full breadth of its ordinary meaning, and at least includes a section of spectrum (e.g., radio frequency spectrum) in which channels are used or set aside for the same purpose.
  • spectrum e.g., radio frequency spectrum
  • Automatically refers to an action or operation performed by a computer system (e.g., software executed by the computer system) or device (e.g., circuitry, programmable hardware elements, ASICs, etc. ) , without user input directly specifying or performing the action or operation.
  • a computer system e.g., software executed by the computer system
  • device e.g., circuitry, programmable hardware elements, ASICs, etc.
  • An automatic procedure may be initiated by input provided by the user, but the subsequent actions that are performed “automatically” are not specified by the user, i.e., are not performed “manually” , where the user specifies each action to perform.
  • a user filling out an electronic form by selecting each field and providing input specifying information is filling out the form manually, even though the computer system will update the form in response to the user actions.
  • the form may be automatically filled out by the computer system where the computer system (e.g., software executing on the computer system) analyzes the fields of the form and fills in the form without any user input specifying the answers to the fields.
  • the user may invoke the automatic filling of the form, but is not involved in the actual filling of the form (e.g., the user is not manually specifying answers to fields but rather they are being automatically completed) .
  • the present specification provides various examples of operations being automatically performed in response to actions the user has taken.
  • Concurrent refers to parallel execution or performance, where tasks, processes, or programs are performed in an at least partially overlapping manner.
  • concurrency may be implemented using “strong” or strict parallelism, where tasks are performed (at least partially) in parallel on respective computational elements, or using “weak parallelism” , where the tasks are performed in an interleaved manner, e.g., by time multiplexing of execution threads.
  • LTM refers to lower layer triggered mobility or Layer 1 /Layer 2 Triggered Mobility in which the UE is configured to perform L1 measurements on a neighbor cell.
  • Various components may be described as “configured to” perform a task or tasks.
  • “configured to” is a broad recitation generally meaning “having structure that” performs the task or tasks during operation. As such, the component can be configured to perform the task even when the component is not currently performing that task (e.g., a set of electrical conductors may be configured to electrically connect a module to another module, even when the two modules are not connected) .
  • “configured to” may be a broad recitation of structure generally meaning “having circuitry that” performs the task or tasks during operation. As such, the component can be configured to perform the task even when the component is not currently on.
  • the circuitry that forms the structure corresponding to “configured to” may include hardware circuits.
  • the example embodiments may be further understood with reference to the following description and the related appended drawings, wherein like elements are provided with the same reference numerals.
  • the example embodiments relate to Radio Resource Management (RRM) , Radio Link Monitoring (RLM) and Beam Failure Detection (BFD) in a Synchronization Signal Physical Broadcast Channel (PBCH) Block (SSB) adaptation including an adaptation of an SSB periodicity and an adaptation of an SSB beam direction.
  • RRM Radio Resource Management
  • RLM Radio Link Monitoring
  • BFD Beam Failure Detection
  • PBCH Synchronization Signal Physical Broadcast Channel
  • SSB Synchronization Signal Physical Broadcast Channel
  • SSB Synchronization Signal Physical Broadcast Channel
  • the example embodiments are described with regard to communication between a user equipment (UE) and a next generation Node B (gNB) or network (NW) .
  • UE user equipment
  • gNB next generation Node B
  • NW network
  • the example embodiments may be utilized with any electronic component that may establish a connection to a network and is configured with the hardware, software, and/or firmware to SSB adaptation. Therefore, the UE, gNB or NW as described herein is used to represent any appropriate type of electronic component.
  • the example embodiments are also described with regard to a fifth generation (5G) New Radio (NR) network that may configure the SSB adaptation.
  • 5G fifth generation
  • NR New Radio
  • reference to a 5G NR network is merely provided for illustrative purposes.
  • the example embodiments may be utilized with any appropriate type of network.
  • FIGS 1A and 1B Communication Systems
  • base station 102A may be a next generation base station, e.g., a 5G New Radio (5G NR) base station, or “gNB” .
  • a gNB may be connected to a legacy evolved packet core (EPC) network and/or to a NR core (NRC) network.
  • EPC legacy evolved packet core
  • NRC NR core
  • a gNB cell may include one or more transition and reception points (TRPs) .
  • TRPs transition and reception points
  • a UE capable of operating according to 5G NR may be connected to one or more TRPs within one or more gNBs.
  • the UE 106 may include a processor that is configured to execute program instructions stored in memory. The UE 106 may perform any of the method embodiments described herein by executing such stored instructions. Alternatively, or in addition, the UE 106 may include a programmable hardware element such as an FPGA (field-programmable gate array) that is configured to perform any of the method embodiments described herein, or any portion of any of the method embodiments described herein.
  • a programmable hardware element such as an FPGA (field-programmable gate array) that is configured to perform any of the method embodiments described herein, or any portion of any of the method embodiments described herein.
  • the UE 106 may include one or more antennas for communicating using one or more wireless communication protocols or technologies.
  • the UE 106 may be configured to communicate using, for example, CDMA2000 (1xRTT /1xEV-DO /HRPD /eHRPD) , LTE/LTE-Advanced, or 5G NR using a single shared radio and/or GSM, LTE, LTE-Advanced, or 5G NR using the single shared radio.
  • the shared radio may couple to a single antenna, or may couple to multiple antennas (e.g., for MIMO) for performing wireless communications.
  • a radio may include any combination of a baseband processor, analog RF signal processing circuitry (e.g., including filters, mixers, oscillators, amplifiers, etc. ) , or digital processing circuitry (e.g., for digital modulation as well as other digital processing) .
  • the radio may implement one or more receive and transmit chains using the aforementioned hardware.
  • the UE 106 may share one or more parts of a receive and/or transmit chain between multiple wireless communication technologies, such as those discussed above.
  • the UE 106 may include separate transmit and/or receive chains (e.g., including separate antennas and other radio components) for each wireless communication protocol with which it is configured to communicate.
  • the UE 106 may include one or more radios which are shared between multiple wireless communication protocols, and one or more radios which are used exclusively by a single wireless communication protocol.
  • the UE 106 might include a shared radio for communicating using either of LTE or 5G NR (or LTE or 1xRTTor LTE or GSM) , and separate radios for communicating using each of Wi-Fi and Bluetooth. Other configurations are also possible.
  • FIG. 2 Block Diagram of a Base Station
  • FIG. 2 illustrates an example block diagram of a base station 102, according to some embodiments. It is noted that the base station of FIG. 2 is merely one example of a possible base station. As shown, the base station 102 may include processor (s) 204 which may execute program instructions for the base station 102. The processor (s) 204 may also be coupled to memory management unit (MMU) 240, which may be configured to receive addresses from the processor (s) 204 and translate those addresses to locations in memory (e.g., memory 260 and read only memory (ROM) 250) or to other circuits or devices.
  • MMU memory management unit
  • the base station 102 may include at least one network port 270.
  • the network port 270 may be configured to couple to a telephone network and provide a plurality of devices, such as UE devices 106, access to the telephone network as described above in Figures 1 and 2.
  • the network port 270 may also or alternatively be configured to couple to a cellular network, e.g., a core network of a cellular service provider.
  • the core network may provide mobility related services and/or other services to a plurality of devices, such as UE devices 106.
  • the network port 270 may couple to a telephone network via the core network, and/or the core network may provide a telephone network (e.g., among other UE devices serviced by the cellular service provider) .
  • the base station 102 may include at least one antenna 234, and possibly multiple antennas.
  • the at least one antenna 234 may be configured to operate as a wireless transceiver and may be further configured to communicate with UE devices 106 via radio 230.
  • the antenna 234 communicates with the radio 230 via communication chain 232.
  • Communication chain 232 may be a receive chain, a transmit chain or both.
  • the radio 230 may be configured to communicate via various wireless communication standards, including, but not limited to, 5G NR, LTE, LTE-A, GSM, UMTS, CDMA2000, Wi-Fi, etc.
  • the base station 102 may be configured to communicate wirelessly using multiple wireless communication standards.
  • the base station 102 may include multiple radios, which may enable the base station 102 to communicate according to multiple wireless communication technologies.
  • the base station 102 may include an LTE radio for performing communication according to LTE as well as a 5G NR radio for performing communication according to 5G NR.
  • the base station 102 may be capable of operating as both an LTE base station and a 5G NR base station.
  • the base station 102 may include a multi-mode radio which is capable of performing communications according to any of multiple wireless communication technologies (e.g., 5G NR and Wi-Fi, LTE and Wi-Fi, LTE and UMTS, LTE and CDMA2000, UMTS and GSM, etc. ) .
  • multiple wireless communication technologies e.g., 5G NR and Wi-Fi, LTE and Wi-Fi, LTE and UMTS, LTE and CDMA2000, UMTS and GSM, etc.
  • processor (s) 204 may be comprised of one or more processing elements. In other words, one or more processing elements may be included in processor (s) 204. Thus, processor (s) 204 may include one or more integrated circuits (ICs) that are configured to perform the functions of processor (s) 204. In addition, each integrated circuit may include circuitry (e.g., first circuitry, second circuitry, etc. ) configured to perform the functions of processor (s) 204.
  • circuitry e.g., first circuitry, second circuitry, etc.
  • the base station or gNB 102, and/or processors 204 thereof can be capable of and configured to encode a downlink control information (DCI) or a Medium Access Control-Control Element (MAC-CE) including a Synchronization Signal Physical Broadcast Channel (PBCH) Block (SSB) adaptation for transmission to a user equipment (UE) ; wherein the SSB adaptation includes at least one of an adaptation of an SSB periodicity (ssb-PeriodicityServingCell) and an adaptation of an SSB beam direction (ssb-PositionsInBurst) ; encode, at the gNB, a list of SSB-based radio resource management (RRM) Measurement Timing Configuration (SMTC) and SSBs to measure per frequency received for transmission to the UE; and encode, at the gNB, a configured mapping of a code point from the SSB adaptation to the list of SMTC and SSBs to measure per frequency for transmission to the UE.
  • DCI downlink control information
  • FIG. 3 illustrates an example block diagram of a server 104, according to some embodiments. It is noted that the server of FIG. 3 is merely one example of a possible server. As shown, the server 104 may include processor (s) 344 which may execute program instructions for the server 104. The processor (s) 344 may also be coupled to memory management unit (MMU) 374, which may be configured to receive addresses from the processor (s) 344 and translate those addresses to locations in memory (e.g., memory 364 and read only memory (ROM) 354) or to other circuits or devices.
  • MMU memory management unit
  • the server 104 may be configured to provide a plurality of devices, such as base station 102, and UE devices 106 access to network functions, e.g., as further described herein.
  • the server 104 may include hardware and software components for implementing or supporting implementation of features described herein.
  • the processor 344 of the server 104 may be configured to implement or support implementation of part or all of the methods described herein, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium) .
  • the processor 344 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array) , or as an ASIC (Application Specific Integrated Circuit) , or a combination thereof.
  • the processor 344 of the server 104 in conjunction with one or more of the other components 354, 364, and/or 374 may be configured to implement or support implementation of part or all of the features described herein.
  • FIG. 4 illustrates an example simplified block diagram of a communication device 106, according to some embodiments. It is noted that the block diagram of the communication device of FIG. 4 is only one example of a possible communication device.
  • communication device 106 may be a user equipment (UE) device, a mobile device or mobile station, a wireless device or wireless station, a desktop computer or computing device, a mobile computing device (e.g., a laptop, notebook, or portable computing device) , a tablet, an unmanned aerial vehicle (UAV) , a UAV controller (UAC) and/or a combination of devices, among other devices.
  • the communication device 106 may include a set of components 400 configured to perform core functions.
  • the communication device 106 may include various types of memory (e.g., including NAND flash 410) , an input/output interface such as connector I/F 420 (e.g., for connecting to a computer system; dock; charging station; input devices, such as a microphone, camera, keyboard; output devices, such as speakers; etc. ) , the display 460, which may be integrated with or external to the communication device 106, and cellular communication circuitry 430 such as for 5G NR, LTE, GSM, etc., and short to medium range wireless communication circuitry 429 (e.g., Bluetooth TM and WLAN circuitry) .
  • communication device 106 may include wired communication circuitry (not shown) , such as a network interface card, e.g., for Ethernet.
  • cellular communication circuitry 430 may include dedicated receive chains (including and/or coupled to, e.g., communicatively; directly or indirectly. dedicated processors and/or radios) for multiple RATs (e.g., a first receive chain for LTE and a second receive chain for 5G NR) .
  • cellular communication circuitry 430 may include a single transmit chain that may be switched between radios dedicated to specific RATs.
  • the communication device 106 may also include and/or be configured for use with one or more user interface elements.
  • the user interface elements may include any of various elements, such as display 460 (which may be a touchscreen display) , a keyboard (which may be a discrete keyboard or may be implemented as part of a touchscreen display) , a mouse, a microphone and/or speakers, one or more cameras, one or more buttons, and/or any of various other elements capable of providing information to a user and/or receiving or interpreting user input.
  • the communication device 106 may further include one or more smart cards 445 that include SIM (Subscriber Identity Module) functionality, such as one or more UICC (s) (Universal Integrated Circuit Card (s) ) cards 445.
  • SIM Subscriber Identity Module
  • UICC Universal Integrated Circuit Card
  • SIM entity is intended to include any of various types of SIM implementations or SIM functionality, such as the one or more UICC (s) cards 445, one or more eUICCs, one or more eSIMs, either removable or embedded, etc.
  • the UE 106 may include at least two SIMs. Each SIM may execute one or more SIM applications and/or otherwise implement SIM functionality.
  • each SIM may be a single smart card that may be embedded, e.g., may be soldered onto a circuit board in the UE 106, or each SIM 410 may be implemented as a removable smart card.
  • the SIM (s) may be one or more removable smart cards (such as UICC cards, which are sometimes referred to as “SIM cards” )
  • the SIMs 410 may be one or more embedded cards (such as embedded UICCs (eUICCs) , which are sometimes referred to as “eSIMs” or “eSIM cards” ) .
  • one or more of the SIM (s) may implement embedded SIM (eSIM) functionality; in such an embodiment, a single one of the SIM (s) may execute multiple SIM applications.
  • Each of the SIMs may include components such as a processor and/or a memory; instructions for performing SIM/eSIM functionality may be stored in the memory and executed by the processor.
  • the UE 106 may include a combination of removable smart cards and fixed/non-removable smart cards (such as one or more eUICC cards that implement eSIM functionality) , as desired.
  • the UE 106 may comprise two embedded SIMs, two removable SIMs, or a combination of one embedded SIMs and one removable SIMs.
  • Various other SIM configurations are also contemplated.
  • the UE 106 may include two or more SIMs.
  • the inclusion of two or more SIMs in the UE 106 may allow the UE 106 to support two different telephone numbers and may allow the UE 106 to communicate on corresponding two or more respective networks.
  • a first SIM may support a first RAT such as LTE
  • a second SIM 410 support a second RAT such as 5G NR.
  • Other implementations and RATs are of course possible.
  • the UE 106 may support Dual SIM Dual Active (DSDA) functionality.
  • DSDA Dual SIM Dual Active
  • the DSDA functionality may allow the UE 106 to be simultaneously connected to two networks (and use two different RATs) at the same time, or to simultaneously maintain two connections supported by two different SIMs using the same or different RATs on the same or different networks.
  • the DSDA functionality may also allow the UE 106 to simultaneously receive voice calls or data traffic on either phone number.
  • the voice call may be a packet switched communication.
  • the voice call may be received using voice over LTE (VoLTE) technology and/or voice over NR (VoNR) technology.
  • the UE 106 may support Dual SIM Dual Standby (DSDS) functionality.
  • the DSDS functionality may allow either of the two SIMs in the UE 106 to be on standby waiting for a voice call and/or data connection. In DSDS, when a call/data is established on one SIM, the other SIM is no longer active.
  • DSDx functionality (either DSDA or DSDS functionality) may be implemented with a single SIM (e.g., a eUICC) that executes multiple SIM applications for different carriers and/or RATs.
  • the SOC 400 may include processor (s) 402, which may execute program instructions for the communication device 106 and display circuitry 404, which may perform graphics processing and provide display signals to the display 460.
  • the processor (s) 402 may also be coupled to memory management unit (MMU) 440, which may be configured to receive addresses from the processor (s) 402 and translate those addresses to locations in memory (e.g., memory 406, read only memory (ROM) 450, NAND flash memory 410) and/or to other circuits or devices, such as the display circuitry 404, short to medium range wireless communication circuitry 429, cellular communication circuitry 430, connector I/F 420, and/or display 460.
  • the MMU 440 may be configured to perform memory protection and page table translation or set up. In some embodiments, the MMU 440 may be included as a portion of the processor (s) 402.
  • the communication device 106 may include hardware and software components for implementing the above features for a communication device 106 to communicate a scheduling profile for power savings to a network.
  • the processor 402 of the communication device 106 may be configured to implement part or all of the features described herein, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium) .
  • processor 402 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array) , or as an ASIC (Application Specific Integrated Circuit) .
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the processor 402 of the communication device 106 in conjunction with one or more of the other components 400, 404, 406, 410, 420, 429, 430, 440, 445, 450, 460 may be configured to implement part or all of the features described herein.
  • processor 402 may include one or more processing elements.
  • processor 402 may include one or more integrated circuits (ICs) that are configured to perform the functions of processor 402.
  • each integrated circuit may include circuitry (e.g., first circuitry, second circuitry, etc. ) configured to perform the functions of processor (s) 402.
  • cellular communication circuitry 430 and short to medium range wireless communication circuitry 429 may each include one or more processing elements.
  • one or more processing elements may be included in cellular communication circuitry 430 and, similarly, one or more processing elements may be included in short to medium range wireless communication circuitry 429.
  • cellular communication circuitry 430 may include one or more integrated circuits (ICs) that are configured to perform the functions of cellular communication circuitry 430.
  • each integrated circuit may include circuitry (e.g., first circuitry, second circuitry, etc. ) configured to perform the functions of cellular communication circuitry 430.
  • the short to medium range wireless communication circuitry 429 may include one or more ICs that are configured to perform the functions of short to medium range wireless communication circuitry 429.
  • each integrated circuit may include circuitry (e.g., first circuitry, second circuitry, etc. ) configured to perform the functions of short to medium range wireless communication circuitry 429.
  • the UE 106 and/or the processors 402 thereof can be configured to and/or capable of applying, at the UE, the SSB adaptation and the mapped list of SMTC and SSB to measure per frequency for radio resource management (RRM) .
  • RRM radio resource management
  • FIG. 5 Block Diagram of Cellular Communication Circuitry
  • FIG. 5 illustrates an example simplified block diagram of cellular communication circuitry, according to some embodiments. It is noted that the block diagram of the cellular communication circuitry of FIG. 5 is only one example of a possible cellular communication circuit.
  • cellular communication circuitry 530 which may be cellular communication circuitry 430, may be included in a communication device, such as communication device 106 described above.
  • communication device 106 may be a user equipment (UE) device, a mobile device or mobile station, a wireless device or wireless station, a desktop computer or computing device, a mobile computing device (e.g., a laptop, notebook, or portable computing device) , a tablet and/or a combination of devices, among other devices.
  • UE user equipment
  • the cellular communication circuitry 530 may couple (e.g., communicatively; directly or indirectly) to one or more antennas, such as antennas 435a-b and 436 as shown (in FIG. 4) .
  • cellular communication circuitry 530 may include dedicated receive chains (including and/or coupled to, e.g., communicatively; directly or indirectly. dedicated processors and/or radios) for multiple RATs (e.g., a first receive chain for LTE and a second receive chain for 5G NR) .
  • cellular communication circuitry 530 may include a modem 510 and a modem 520.
  • Modem 510 may be configured for communications according to a first RAT, e.g., such as LTE or LTE-A, and modem 520 may be configured for communications according to a second RAT, e.g., such as 5G NR.
  • a first RAT e.g., such as LTE or LTE-A
  • modem 520 may be configured for communications according to a second RAT, e.g., such as 5G NR.
  • modem 510 may include one or more processors 512 and a memory 516 in communication with processors 512. Modem 510 may be in communication with a radio frequency (RF) front end 530.
  • RF front end 530 may include circuitry for transmitting and receiving radio signals.
  • RF front end 530 may include receive circuitry (RX) 532 and transmit circuitry (TX) 534.
  • receive circuitry 532 may be in communication with downlink (DL) front end 550, which may include circuitry for receiving radio signals via antenna 335a.
  • DL downlink
  • modem 520 may include one or more processors 522 and a memory 526 in communication with processors 522. Modem 520 may be in communication with an RF front end 540.
  • RF front end 540 may include circuitry for transmitting and receiving radio signals.
  • RF front end 540 may include receive circuitry 542 and transmit circuitry 544.
  • receive circuitry 542 may be in communication with DL front end 560, which may include circuitry for receiving radio signals via antenna 335b.
  • a switch 570 may couple transmit circuitry 534 to uplink (UL) front end 572.
  • switch 570 may couple transmit circuitry 544 to UL front end 572.
  • UL front end 572 may include circuitry for transmitting radio signals via antenna 336.
  • switch 570 may be switched to a first state that allows modem 510 to transmit signals according to the first RAT (e.g., via a transmit chain that includes transmit circuitry 534 and UL front end 572) .
  • switch 570 may be switched to a second state that allows modem 520 to transmit signals according to the second RAT (e.g., via a transmit chain that includes transmit circuitry 544 and UL front end 572) .
  • the modem 510 may include hardware and software components for implementing the above features or for time division multiplexing UL data for NSA NR operations, as well as the various other techniques described herein.
  • the processors 512 may be configured to implement part or all of the features described herein, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium) .
  • processor 512 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array) , or as an ASIC (Application Specific Integrated Circuit) .
  • processors 512 may include one or more processing elements.
  • processors 512 may include one or more integrated circuits (ICs) that are configured to perform the functions of processors 512.
  • each integrated circuit may include circuitry (e.g., first circuitry, second circuitry, etc. ) configured to perform the functions of processors 512.
  • the processors 522 may be configured to implement part or all of the features described herein, e.g., by executing program instructions stored on a memory medium (e.g., a non-transitory computer-readable memory medium) .
  • processor 522 may be configured as a programmable hardware element, such as an FPGA (Field Programmable Gate Array) , or as an ASIC (Application Specific Integrated Circuit) .
  • the processor 522 in conjunction with one or more of the other components 540, 542, 544, 550, 570, 572, 335a, 335b, and 336 may be configured to implement part or all of the features described herein.
  • processors 522 may include one or more processing elements.
  • processors 522 may include one or more integrated circuits (ICs) that are configured to perform the functions of processors 522.
  • each integrated circuit may include circuitry (e.g., first circuitry, second circuitry, etc. ) configured to perform the functions of processors 522.
  • FIG. 6 illustrates example components of a device 600 in accordance with some embodiments. It is noted that the device of FIG. 6 is merely one example of a possible system, and that features of this disclosure may be implemented in any of various UEs, as desired.
  • the device 600 may include application circuitry 602, baseband circuitry 604, Radio Frequency (RF) circuitry 606, front-end module (FEM) circuitry 608, one or more antennas 610, and power management circuitry (PMC) 612 coupled together at least as shown.
  • the components of the illustrated device 600 may be included in a UE 106 or a RAN node.
  • the device 600 may include less elements (e.g., a RAN node may not utilize application circuitry 602, and instead include a processor/controller to process IP data received from an EPC) .
  • the device 600 may include additional elements such as, for example, memory/storage, display, camera, sensor, or input/output (I/O) interface.
  • the components described below may be included in more than one device (e.g., said circuitries may be separately included in more than one device for Cloud-RAN (C-RAN) implementations) .
  • C-RAN Cloud-RAN
  • the application circuitry 602 may include one or more application processors.
  • the application circuitry 602 may include circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the processor may include any combination of general-purpose processors and dedicated processors (e.g., graphics processors, application processors, etc. ) .
  • the processors may be coupled with or may include memory/storage and may be configured to execute instructions stored in the memory/storage to enable various applications or operating systems to run on the device 600.
  • processors of application circuitry 602 may process IP data packets received from an EPC.
  • the baseband circuitry 604 may include circuitry such as, but not limited to, one or more single-core or multi-core processors.
  • the baseband circuitry 604 may include one or more baseband processors or control logic to process baseband signals received from a receive signal path of the RF circuitry 606 and to generate baseband signals for a transmit signal path of the RF circuitry 606.
  • Baseband processing circuity 604 may interface with the application circuitry 602 for generation and processing of the baseband signals and for controlling operations of the RF circuitry 606.
  • the baseband circuitry 604 may include a third generation (3G) baseband processor 604A, a fourth generation (4G) baseband processor 604B, a fifth generation (5G) baseband processor 604C, or other baseband processor (s) 604D for other existing generations, generations in development or to be developed in the future (e.g., second generation (2G) , sixth generation (6G) , etc. ) .
  • the baseband circuitry 604 e.g., one or more of baseband processors 604A-D
  • baseband processors 604A-D may be included in modules stored in the memory 604G and executed via a Central Processing Unit (CPU) 604E.
  • the radio control functions may include, but are not limited to, signal modulation/demodulation, encoding/decoding, radio frequency shifting, etc.
  • modulation/demodulation circuitry of the baseband circuitry 604 may include Fast-Fourier Transform (FFT) , precoding, or constellation mapping/demapping functionality.
  • FFT Fast-Fourier Transform
  • encoding/decoding circuitry of the baseband circuitry 604 may include convolution, tail-biting convolution, turbo, Viterbi, or Low Density Parity Check (LDPC) encoder/decoder functionality.
  • LDPC Low Density Parity Check
  • the baseband circuitry 604 may provide for communication compatible with one or more radio technologies.
  • the baseband circuitry 604 may support communication with an evolved universal terrestrial radio access network (EUTRAN) or other wireless metropolitan area networks (WMAN) , a wireless local area network (WLAN) , a wireless personal area network (WPAN) .
  • EUTRAN evolved universal terrestrial radio access network
  • WMAN wireless metropolitan area networks
  • WLAN wireless local area network
  • WPAN wireless personal area network
  • multi-mode baseband circuitry Embodiments in which the baseband circuitry 604 is configured to support radio communications of more than one wireless protocol.
  • RF circuitry 606 may enable communication with wireless networks using modulated electromagnetic radiation through a non-solid medium.
  • the RF circuitry 606 may include switches, filters, amplifiers, etc. to facilitate the communication with the wireless network.
  • RF circuitry 606 may include a receive signal path which may include circuitry to down-convert RF signals received from the FEM circuitry 608 and provide baseband signals to the baseband circuitry 604.
  • RF circuitry 606 may also include a transmit signal path which may include circuitry to up-convert baseband signals provided by the baseband circuitry 604 and provide RF output signals to the FEM circuitry 608 for transmission.
  • the receive signal path of the RF circuitry 606 may include mixer circuitry 606a, amplifier circuitry 606b and filter circuitry 606c.
  • the transmit signal path of the RF circuitry 606 may include filter circuitry 606c and mixer circuitry 606a.
  • RF circuitry 606 may also include synthesizer circuitry 606d for synthesizing a frequency for use by the mixer circuitry 606a of the receive signal path and the transmit signal path.
  • the mixer circuitry 606a of the receive signal path may be configured to down-convert RF signals received from the FEM circuitry 608 based on the synthesized frequency provided by synthesizer circuitry 606d.
  • the amplifier circuitry 606b may be configured to amplify the down-converted signals and the filter circuitry 606c may be a low-pass filter (LPF) or band-pass filter (BPF) configured to remove unwanted signals from the down-converted signals to generate output baseband signals.
  • Output baseband signals may be provided to the baseband circuitry 604 for further processing.
  • the output baseband signals may be zero-frequency baseband signals, although this is not a necessity.
  • mixer circuitry 606a of the receive signal path may comprise passive mixers, although the scope of the embodiments is not limited in this respect.
  • the mixer circuitry 606a of the transmit signal path may be configured to up-convert input baseband signals based on the synthesized frequency provided by the synthesizer circuitry 606d to generate RF output signals for the FEM circuitry 608.
  • the baseband signals may be provided by the baseband circuitry 604 and may be filtered by filter circuitry 606c.
  • the mixer circuitry 606a of the receive signal path and the mixer circuitry 606a of the transmit signal path may include two or more mixers and may be arranged for quadrature downconversion and upconversion, respectively.
  • the mixer circuitry 606a of the receive signal path and the mixer circuitry 606a of the transmit signal path may include two or more mixers and may be arranged for image rejection (e.g., Hartley image rejection) .
  • the mixer circuitry 606a of the receive signal path and the mixer circuitry 606a may be arranged for direct downconversion and direct upconversion, respectively.
  • the mixer circuitry 606a of the receive signal path and the mixer circuitry 606a of the transmit signal path may be configured for super-heterodyne operation.
  • the output baseband signals and the input baseband signals may be analog baseband signals, although the scope of the embodiments is not limited in this respect.
  • the output baseband signals and the input baseband signals may be digital baseband signals.
  • the RF circuitry 606 may include analog-to-digital converter (ADC) and digital-to-analog converter (DAC) circuitry and the baseband circuitry 604 may include a digital baseband interface to communicate with the RF circuitry 606.
  • ADC analog-to-digital converter
  • DAC digital-to-analog converter
  • a separate radio IC circuitry may be provided for processing signals for each spectrum, although the scope of the embodiments is not limited in this respect.
  • the synthesizer circuitry 606d may be a fractional-N synthesizer or a fractional N/N+1 synthesizer, although the scope of the embodiments is not limited in this respect as other types of frequency synthesizers may be suitable.
  • synthesizer circuitry 606d may be a delta-sigma synthesizer, a frequency multiplier, or a synthesizer comprising a phase-locked loop with a frequency divider.
  • the synthesizer circuitry 606d may be configured to synthesize an output frequency for use by the mixer circuitry 606a of the RF circuitry 606 based on a frequency input and a divider control input. In some embodiments, the synthesizer circuitry 606d may be a fractional N/N+1 synthesizer.
  • frequency input may be provided by a voltage controlled oscillator (VCO) , although that is not a necessity.
  • VCO voltage controlled oscillator
  • Divider control input may be provided by either the baseband circuitry 604 or the applications processor 602 depending on the desired output frequency.
  • a divider control input (e.g., N) may be determined from a look-up table based on a channel indicated by the applications processor 602.
  • Synthesizer circuitry 606d of the RF circuitry 606 may include a divider, a delay-locked loop (DLL) , a multiplexer and a phase accumulator.
  • the divider may be a dual modulus divider (DMD) and the phase accumulator may be a digital phase accumulator (DPA) .
  • the DMD may be configured to divide the input signal by either N or N+1 (e.g., based on a carry out) to provide a fractional division ratio.
  • the DLL may include a set of cascaded, tunable, delay elements, a phase detector, a charge pump and a D-type flip-flop.
  • the delay elements may be configured to break a VCO period up into Nd equal packets of phase, where Nd is the number of delay elements in the delay line.
  • Nd is the number of delay elements in the delay line.
  • synthesizer circuitry 606d may be configured to generate a carrier frequency as the output frequency, while in other embodiments, the output frequency may be a multiple of the carrier frequency (e.g., twice the carrier frequency, four times the carrier frequency) and used in conjunction with quadrature generator and divider circuitry to generate multiple signals at the carrier frequency with multiple different phases with respect to each other.
  • the output frequency may be a LO frequency (fLO) .
  • the RF circuitry 606 may include an IQ/polar converter.
  • FEM circuitry 608 may include a receive signal path which may include circuitry configured to operate on RF signals received from one or more antennas 610, amplify the received signals and provide the amplified versions of the received signals to the RF circuitry 606 for further processing.
  • FEM circuitry 608 may also include a transmit signal path which may include circuitry configured to amplify signals for transmission provided by the RF circuitry 606 for transmission by one or more of the one or more antennas 610.
  • the amplification through the transmit or receive signal paths may be done solely in the RF circuitry 606, solely in the FEM 608, or in both the RF circuitry 606 and the FEM 608.
  • the FEM circuitry 608 may include a TX/RX switch to switch between transmit mode and receive mode operation.
  • the FEM circuitry may include a receive signal path and a transmit signal path.
  • the receive signal path of the FEM circuitry may include an LNA to amplify received RF signals and provide the amplified received RF signals as an output (e.g., to the RF circuitry 606) .
  • the transmit signal path of the FEM circuitry 608 may include a power amplifier (PA) to amplify input RF signals (e.g., provided by RF circuitry 606) , and one or more filters to generate RF signals for subsequent transmission (e.g., by one or more of the one or more antennas 610) .
  • PA power amplifier
  • the PMC 612 may manage power provided to the baseband circuitry 604.
  • the PMC 612 may control power-source selection, voltage scaling, battery charging, or DC-to-DC conversion.
  • the PMC 612 may often be included when the device 600 is capable of being powered by a battery, for example, when the device is included in a UE.
  • the PMC 612 may increase the power conversion efficiency while providing desirable implementation size and heat dissipation characteristics.
  • FIG. 6 shows the PMC 612 coupled only with the baseband circuitry 604, in other embodiments the PMC 612 may be additionally or alternatively coupled with, and perform similar power management operations for, other components such as, but not limited to, application circuitry 602, RF circuitry 606, or FEM 608.
  • the PMC 612 may control, or otherwise be part of, various power saving mechanisms of the device 600. For example, if the device 600 is in a radio resource control_Connected (RRC_Connected) state, where it is still connected to the RAN node as it expects to receive traffic shortly, then it may enter a state known as Discontinuous Reception Mode (DRX) after a period of inactivity. During this state, the device 600 may power down for brief intervals of time and thus save power.
  • RRC_Connected radio resource control_Connected
  • DRX Discontinuous Reception Mode
  • the device 600 may transition off to an RRC_Idle state, where it disconnects from the network and does not perform operations such as channel quality feedback, handover, etc.
  • the device 600 goes into a very low power state and it performs paging where again it periodically wakes up to listen to the network and then powers down again.
  • the device 600 may not receive data in this state, in order to receive data, it will transition back to RRC_Connected state.
  • An additional power saving mode may allow a device to be unavailable to the network for periods longer than a paging interval (ranging from seconds to a few hours) . During this time, the device is totally unreachable to the network and may power down completely. Any data sent during this time incurs a large delay and it is assumed the delay is acceptable.
  • Processors of the application circuitry 602 and processors of the baseband circuitry 604 may be used to execute elements of one or more instances of a protocol stack.
  • processors of the baseband circuitry 604 alone or in combination, may be used execute Layer 3, Layer 2, or Layer 1 functionality, while processors of the application circuitry 604 may utilize data (e.g., packet data) received from these layers and further execute Layer 4 functionality (e.g., transmission communication protocol (TCP) and user datagram protocol (UDP) layers) .
  • Layer 3 may comprise a radio resource control (RRC) layer, described in further detail below.
  • RRC radio resource control
  • Layer 2 may comprise a medium access control (MAC) layer, a radio link control (RLC) layer, and a packet data convergence protocol (PDCP) layer, described in further detail below.
  • Layer 1 may comprise a physical (PHY) layer of a UE/RAN node, described in further detail below.
  • the baseband circuitry 604 can be used to encode a message for transmission between a UE and a gNB, or decode a message received between a UE and a gNB.
  • the baseband circuitry 604 at the UE 106 can be configured to decode a downlink control information (DCI) or a Medium Access Control-Control Element (MAC-CE) including a Synchronization Signal Physical Broadcast Channel (PBCH) Block (SSB) adaptation; wherein the SSB adaptation includes at least one of an adaptation of an SSB periodicity (ssb-PeriodicityServingCell) and an adaptation of an SSB beam direction (ssb-PositionsInBurst) ; decode a list of SSB-based radio resource management (RRM) Measurement Timing Configuration (SMTC) and SSBs to measure per frequency received; and decode a configured mapping of a code point from the SSB adaptation to the list of SMTC and SSBs to measure per frequency.
  • DCI downlink control information
  • MAC-CE Medium Access Control-Control Element
  • PBCH Synchronization Signal Physical Broadcast Channel
  • SSB adaptation includes at least one of an adaptation of an
  • FIG. 7 Block Diagram of an Interface of Baseband Circuitry
  • FIG. 7 illustrates example interfaces of baseband circuitry in accordance with some embodiments. It is noted that the baseband circuitry of FIG. 7 is merely one example of a possible circuitry, and that features of this disclosure may be implemented in any of various systems, as desired.
  • the baseband circuitry 604 of FIG. 6 may comprise processors 604A-604E and a memory 604G utilized by said processors.
  • Each of the processors 604A-604E may include a memory interface, 704A-704E, respectively, to send/receive data to/from the memory 604G.
  • the baseband circuitry 604 may further include one or more interfaces to communicatively couple to other circuitries/devices, such as a memory interface 712 (e.g., an interface to send/receive data to/from memory external to the baseband circuitry 604) , an application circuitry interface 714 (e.g., an interface to send/receive data to/from the application circuitry 602 of FIG. 6) , an RF circuitry interface 716 (e.g., an interface to send/receive data to/from RF circuitry 606 of FIG.
  • a memory interface 712 e.g., an interface to send/receive data to/from memory external to the baseband circuitry 604
  • an application circuitry interface 714 e.g., an interface to send/receive data to/from the application circuitry 602 of FIG.
  • an RF circuitry interface 716 e.g., an interface to send/receive data to/from RF circuitry 606 of FIG.
  • a wireless hardware connectivity interface 718 e.g., an interface to send/receive data to/from Near Field Communication (NFC) components, components (e.g., Low Energy) , components, and other communication components
  • NFC Near Field Communication
  • components e.g., Low Energy
  • components e.g., Low Energy
  • components e.g., Low Energy
  • components e.g., Low Energy
  • components e.g., Low Energy
  • a power management interface 720 e.g., an interface to send/receive power or control signals to/from the PMC 612.
  • FIG. 8 Control Plane Protocol Stack
  • FIG. 8 is an illustration of a control plane protocol stack in accordance with some embodiments.
  • a control plane 800 is shown as a communications protocol stack between the UE 106a (or alternatively, the UE 106b) , the RAN node 611 (or alternatively, the RAN node 612) , and the mobility management entity (MME) 621.
  • MME mobility management entity
  • the PHY layer 801 may transmit or receive information used by the MAC layer 802 over one or more air interfaces.
  • the PHY layer 801 may further perform link adaptation or adaptive modulation and coding (AMC) , power control, cell search (e.g., for initial synchronization and handover purposes) , and other measurements used by higher layers, such as the RRC layer 805.
  • AMC link adaptation or adaptive modulation and coding
  • the PHY layer 801 may still further perform error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, modulation/demodulation of physical channels, interleaving, rate matching, mapping onto physical channels, and Multiple Input Multiple Output (MIMO) antenna processing.
  • FEC forward error correction
  • MIMO Multiple Input Multiple Output
  • the MAC layer 802 may perform mapping between logical channels and transport channels, multiplexing of MAC service data units (SDUs) from one or more logical channels onto transport blocks (TB) to be delivered to PHY via transport channels, de-multiplexing MAC SDUs to one or more logical channels from transport blocks (TB) delivered from the PHY via transport channels, multiplexing MAC SDUs onto TBs, scheduling information reporting, error correction through hybrid automatic repeat request (HARQ) , and logical channel prioritization.
  • SDUs MAC service data units
  • TB transport blocks
  • HARQ hybrid automatic repeat request
  • the RLC layer 803 may operate in a plurality of modes of operation, including: Transparent Mode (TM) , Unacknowledged Mode (UM) , and Acknowledged Mode (AM) .
  • the RLC layer 803 may execute transfer of upper layer protocol data units (PDUs) , error correction through automatic repeat request (ARQ) for AM data transfers, and concatenation, segmentation and reassembly of RLC SDUs for UM and AM data transfers.
  • PDUs protocol data units
  • ARQ automatic repeat request
  • the RLC layer 803 may also execute re-segmentation of RLC data PDUs for AM data transfers, reorder RLC data PDUs for UM and AM data transfers, detect duplicate data for UM and AM data transfers, discard RLC SDUs for UM and AM data transfers, detect protocol errors for AM data transfers, and perform RLC re-establishment.
  • the PDCP layer 804 may execute header compression and decompression of IP data, maintain PDCP Sequence Numbers (SNs) , perform in-sequence delivery of upper layer PDUs at re-establishment of lower layers, eliminate duplicates of lower layer SDUs at re-establishment of lower layers for radio bearers mapped on RLC AM, cipher and decipher control plane data, perform integrity protection and integrity verification of control plane data, control timer-based discard of data, and perform security operations (e.g., ciphering, deciphering, integrity protection, integrity verification, etc. ) .
  • security operations e.g., ciphering, deciphering, integrity protection, integrity verification, etc.
  • the main services and functions of the RRC layer 805 may include broadcast of system information (e.g., included in Master Information Blocks (MIBs) or System Information Blocks (SIBs) related to the non-access stratum (NAS) ) , broadcast of system information related to the access stratum (AS) , paging, establishment, maintenance and release of an RRC connection between the UE and E-UTRAN (e.g., RRC connection paging, RRC connection establishment, RRC connection modification, and RRC connection release) , establishment, configuration, maintenance and release of point to point Radio Bearers, security functions including key management, inter radio access technology (RAT) mobility, and measurement configuration for UE measurement reporting.
  • SIBs may comprise one or more information elements (IEs) , which may each comprise individual data fields or data structures.
  • the UE 601 and the RAN node 611 may utilize a Uu interface (e.g., an LTE-Uu interface) to exchange control plane data via a protocol stack comprising the PHY layer 801, the MAC layer 802, the RLC layer 803, the PDCP layer 804, and the RRC layer 805.
  • a Uu interface e.g., an LTE-Uu interface
  • the non-access stratum (NAS) protocols 806 form the highest stratum of the control plane between the UE 601 and the MME 621.
  • the NAS protocols 806 support the mobility of the UE 601 and the session management procedures to establish and maintain IP connectivity between the UE 601 and the P-GW 623.
  • the S1 Application Protocol (S1-AP) layer 815 may support the functions of the S1 interface and comprise Elementary Procedures (EPs) .
  • An EP is a unit of interaction between the RAN node 1010 and the CN 1020.
  • the S1-AP layer services may comprise two groups: UE-associated services and non UE-associated services. These services perform functions including, but not limited to: E-UTRAN Radio Access Bearer (E-RAB) management, UE capability indication, mobility, NAS signaling transport, RAN Information Management (RIM) , and configuration transfer.
  • E-RAB E-UTRAN Radio Access Bearer
  • RIM RAN Information Management
  • the Stream Control Transmission Protocol (SCTP) layer (alternatively referred to as the SCTP/IP layer) 814 may ensure reliable delivery of signaling messages between the RAN node 611 and the MME 621 based, in part, on the IP protocol, supported by the IP layer 813.
  • the L2 layer 812 and the L1 layer 811 may refer to communication links (e.g., wired or wireless) used by the RAN node and the MME to exchange information.
  • the RAN node 611 and the MME 621 may utilize an S1-MME interface to exchange control plane data via a protocol stack comprising the L1 layer 811, the L2 layer 812, the IP layer 813, the SCTP layer 814, and the S1-AP layer 815.
  • FIG. 9 User Plane Protocol Stack
  • FIG. 9 is an illustration of an example of a user plane protocol stack in accordance with some embodiments.
  • a user plane 900 is shown as a communications protocol stack between the UE 106A (or alternatively, the UE 106B or 106N) , the RAN node 611 (or alternatively, the RAN node 612) , the S-GW 622, and the P-GW 623.
  • the user plane 900 may utilize at least some of the same protocol layers as the control plane 800.
  • the General Packet Radio Service (GPRS) Tunneling Protocol for the user plane (GTP-U) layer 904 may be used for carrying user data within the GPRS core network and between the radio access network and the core network.
  • the user data transported can be packets in any of IPv4, IPv6, or PPP formats, for example.
  • the UDP and IP security (UDP/IP) layer 903 may provide checksums for data integrity, port numbers for addressing different functions at the source and destination, and encryption and authentication on the selected data flows.
  • the RAN node 611 and the S-GW 622 may utilize an S1-U interface to exchange user plane data via a protocol stack comprising the L1 layer 811, the L2 layer 812, the UDP/IP layer 903, and the GTP-U layer 904.
  • the S-GW 622 and the P-GW 623 may utilize an S5/S8a interface to exchange user plane data via a protocol stack comprising the L1 layer 811, the L2 layer 812, the UDP/IP layer 903, and the GTP-U layer 904.
  • NAS protocols support the mobility of the UE 106 and the session management procedures to establish and maintain IP 913 connectivity between the UE 106 and the P-GW 623.
  • the UPF 1002 may act as an anchor point for intra-RAT and inter-RAT mobility, an external packet data unit (PDU) session point of interconnect to DN 1003, and a branching point to support mufti-homed PDU session.
  • PDU session is a logical connection between the UE and the DN.
  • the UPF 1002 may also perform packet routing and forwarding, perform packet inspection, enforce the user plane part of policy rules, lawfully intercept packets (user plane (UP) collection) , perform traffic usage reporting, perform quality of service (QoS) handling for a user plane (e.g., packet filtering, gating, UL/DL rate enforcement) , perform Uplink Traffic verification (e.g., Service Data Flows (SDF) to QoS flow mapping) , transport level packet marking in the uplink and downlink, and perform downlink packet buffering and downlink data notification triggering.
  • UPF 1002 may include an uplink classifier to support routing traffic flows to a data network.
  • the DN 1003 may represent various network operator services, Internet access, or third party services. DN 1003 may include, or be similar to, application server 430 discussed previously.
  • the UPF 1002 may interact with the SMF 1024 via an N4 reference point between the SMF 1021 and the UPF 1002.
  • the UE 1001 may need to register with the AMF 1021 in order to receive network services.
  • Registration Management is used to register or deregister the UE 1001 with the network (e.g., AMF 1021) , and establish a UE context in the network (e.g., AMF 1021) .
  • the UF 1001 may operate in an RM-REGISTERED state or an RM-DEREGISTERED state. In the RM-DEREGISTERED state, the UE 1001 is not registered with the network, and the UE context in AMF 1021 holds no valid location or routing information for the UE 1001 so the UE 1001 is not reachable by the AMF 1021.
  • CM Connection Management
  • the signaling connection is used to enable NAS signaling exchange between the UE 1001 and the CN 1020, and comprises both the signaling connection between the UE and the AN (e.g., RRC connection or UE-N3IWF connection for non-3GPP access) and the N2 connection for the UE 1001 between the AN (e.g., AN 1010) and the AMF 1021.
  • the UE 1001 may operate in one of two CM states, CM-IDLE mode or CM-CONNECTED mode.
  • Establishment of an N2 connection between the (R) AN 1010 and the AMF 1021 may cause the UE 1001 to transition from CM-IDLE mode to CM-CONNECTED mode, and the UE 1001 may transition from the CM-CONNECTED mode to the CM-IDLE mode when N2 signaling between the (R) AN 1010 and the AMF 1021 is released.
  • the SMF 1024 may be responsible for session management (SM) session establishment, modify and release, including tunnel maintain between UPF and AN node) ; UE IP address allocation and management (including optional authorization) ; selection and control of UP function; configuring traffic steering at UPF to route traffic to proper destination; termination of interfaces toward policy control functions; controlling part of policy enforcement and QoS; lawful intercept (for SM events and interface to LI system) ; termination of SM parts of NAS messages; downlink data notification; initiating AN specific SM information, sent via AMF over N2 to AN; and determining SSC mode of a session.
  • SM session management
  • SM may refer to management of a PDU session
  • a PDU session or “session” may refer to a PDU connectivity service that provides or enables the exchange of PDUs between a UE 1001 and a data network (DN) 1003 identified by a Data Network Name (DNN) .
  • PDU sessions may be established upon UE 1001 request, modified upon UE 1001 and CN 1020 request, and released upon UE 1001 and CN 1020 request using NAS SM signaling exchanged over the N1 reference point between the UE 1001 and the SMF 1024.
  • the CN 1020 may trigger a specific application in the UE 1001.
  • the UE 1001 may pass the trigger message (or relevant parts/information of the trigger message) to one or more identified applications in the UE 1001.
  • the identified application (s) in the UE 1001 may establish a PDU session to a specific data network name (DNN) .
  • the SMF 1024 may check whether the UE 1001 requests are compliant with user subscription information associated with the UE 1001. In this regard, the SMF 1024 may retrieve and/or request to receive update notifications on SMF 1024 level subscription data from the UDM 1027.
  • the NEF 1023 may provide means for securely exposing the services and capabilities provided by 3GPP network functions for third party, internal exposure/re-exposure, Application Functions (e.g., AF 1028) , edge computing or fog computing systems, etc.
  • the NEF 1023 may authenticate, authorize, and/or throttle the AFS.
  • NEF 1023 may also translate information exchanged with the AF 1028 and information exchanged with internal network functions. For example, the NEF 1023 may translate between an AF-Service-Identifier and an internal SCC information.
  • NEF 1023 may also receive information from other network functions (NFs) based on exposed capabilities of other network functions. This information may be stored at the NEF 1023 as structured data, or at a data storage NF using standardized interfaces. The stored information can then be re-exposed by the NEF 1023 to other NFs and AFs, and/or used for other purposes such as analytics. Additionally, the NEF 1023 may exhibit an Nnef service-based interface.
  • NFs network
  • the NRF 1025 may support service discovery functions, receive NF discovery requests from NF instances, and provide the information of the discovered NF instances to the NF instances. NRF 1025 also maintains information of available NF instances and their supported services. As used herein, the terms “instantiate, " “instantiation, “ and the like may refer to the creation of an instance, and an “instance” may refer to a concrete occurrence of an object, which may occur, for example, during execution of program code. Additionally, the NRF 1025 may exhibit the Nnrf service based interface.
  • the PCF 1026 may provide policy rules to control plane function (s) to enforce them, and may also support unified policy framework to govern network behavior,
  • the PCF 1026 may also implement a front end (FE) to access subscription information relevant for policy decisions in a UDR of the UDM 1027.
  • the PCF 1026 may communicate with the AMF 1021 via an N15 reference point between the PCF 1026 and the AMF 1021, which may include a PCF 1026 in a visited network and the AMF 1021 in case of roaming scenarios.
  • the PCF 1026 may communicate with the AF 1028 via an NS reference point between the PCF 1026 and the AF 1028; and with the SMF 1024 via an N7 reference point between the PCF 1026 and the SMF 1024,
  • the system 1000 and/or CN 1020 may also include an N24 reference point between the PCF 1026 (in the home network) and a PCF 1026 in a visited network, Additionally, the PCF 1026 may exhibit an Npcf service-based interface.
  • the UDM 1027 may handle subscription-related information to support the network entities' handling of communication sessions, and may store subscription data of UE 1001. For example, subscription data may be communicated between the UDM 1027 and the AMF 1021 via an NS reference point between the UDM 1027 and the AMF.
  • the UDM 1027 may include two parts, an application FE and a UDR (the FE and UDR are not shown by FIG. 10) .
  • the UDR may store subscription data and policy data for the UDM 1027 and the PCF 1026, and/or structured data for exposure and application data (including PFDs for application detection, application request information for multiple UEs 1001) for the NEF 1023.
  • the Nadr service-based interface may be exhibited by the UDR 221 to allow the UDM 1027, PCF 1026, and NEF 1023 to access a particular set of the stored data, as well as to read, update (e.g., add, modify) , delete, and subscribe to notification of relevant data changes in the UDR.
  • the UDM may include a UDM-FE, which is in charge of processing credentials, location management, subscription management and so on. Several different front ends may serve the same user in different transactions.
  • the UDM-FE accesses subscription information stored in the UDR and performs authentication credential processing, user identification handling, access authorization, registration/mobility management, and subscription management.
  • the UDR may interact with the SMF 1024 via an Nl0 reference point between the UDM 1027 and the SMF 1024.
  • UDM 1027 may also support SMS management, wherein an SMS-FE implements the similar application logic as discussed previously. Additionally, the UDM 1027 may exhibit the Nudm service based interface.
  • the AF 1028 may provide application influence on traffic routing, provide access to the NCE, and interact with the policy framework for policy control.
  • the NCE may be a mechanism that allows the CN 1020 and AF 1028 to provide information to each other via NEF 1023, which may be used for edge computing implementations.
  • the network operator and third party services may be hosted close to the UE 1001 access point of attachment to achieve an efficient service delivery through the reduced end-to-end latency and load on the transport network.
  • the 5GC may select a UPF 1002 close to the UE 1001 and execute traffic steering from the UPF 502 to ON 1003 via the N6 interface. This may be based on the UE subscription data, UE location, and information provided by the AF 1028.
  • the AF 1028 may influence UPF (re) selection and traffic routing. Based on operator deployment, when AF 1028 is considered to be a trusted entity, the network operator may permit AF 1028 to interact directly with relevant NFs. Additionally, the AF 1028 may exhibit an Naf service-based interface.
  • the NSSF 1029 may interact with the AMF 1021 via an N22 reference point between AMF 1021 and NSSF 1029; and may communicate with another NSSF 1029 in a visited network via an N31 reference point (not shown by FIG. 10) . Additionally, the NSSF 1029 may exhibit an Nnssf service-based interface.
  • the CN 1020 may include a short message service function (SMSF) , which may be responsible for SMS subscription checking and verification, and relaying SM messages to/from the UE 1001 to/from other entities, such as an SMS-GMSC/IWMSC/SMS-router.
  • SMS may also interact with AMF 1021 and UDM 1027 for a notification procedure that the UE 1001 is available for SMS transfer (e.g., set a UE not reachable flag, and notifying UDM 1027 when UE 1001 is available for SMS) .
  • SMS short message service function
  • the CN 1020 may also include other elements that are not shown by FIG. 10, such as a Data Storage system/architecture, a 5G-EIR, a Security Edge Protection Proxy (SEPP) , and the like.
  • the Data Storage system may include a Structured Data Storage Network Function (SDSF) , air Unstructured Data Storage Function (UDSF) , and/or the like.
  • SDSF Structured Data Storage Network Function
  • UDSF air Unstructured Data Storage Function
  • Any network function (NF) may store and retrieve unstructured data into/from the UDSF (e.g., UE contexts) , via N18 reference point between any NF and the UDSF (not shown by FIG.
  • Individual NFs may share a UDSF for storing their respective unstructured data or individual NFs may each have their own UDSF located at or near the individual NFs. Addition-ally, the UDSF may exhibit an Nudsf service-based interface (not shown by FIG. 10) .
  • the 5G-EIR may be an NF that checks the status of permanent equipment identifier (PEI) for determining whether particular equipment/entities are blacklisted from the network; and the SEPP may be a non-transparent proxy that performs topology hiding, message filtering, and policing on inter-PLMN control plane interfaces.
  • PEI permanent equipment identifier
  • SEPP may be a non-transparent proxy that performs topology hiding, message filtering, and policing on inter-PLMN control plane interfaces.
  • the CN 1020 may include an Nx interface, which is an inter-CN interface between a mobility management entity (MME) and the AMF 1021 in order to enable interworking between CN 1020 and a CN in a 4G system.
  • Nx interface is an inter-CN interface between a mobility management entity (MME) and the AMF 1021 in order to enable interworking between CN 1020 and a CN in a 4G system.
  • Other example interfaces/reference points may include an N5G-EIR service-based interface exhibited by a 5G-EIR, an N27 reference point between the NRF in the visited network and the NRF in the home network; and an N31 reference point between the NSSF in the visited network and the NSSF in the home network.
  • FIGS. 11 and 12 SSB Adaptations
  • adaptation mechanisms for further study include adaptation of SSB burst periodicity, and adaptation based on two SSB configurations where up to two configurations can be active.
  • the adaptation may be based on skipping/transmitting some SSB bursts non-uniformly with single SSB configuration. Adapting the transmitted number of SSBs may be within a SSB burst.
  • the study may include cell Discontinuous Transmission (DTX) for SSB adaptation.
  • DTX Cell Discontinuous Transmission
  • the study may include whether to support new SSB burst periodicity value (s) .
  • the study may include whether to support new SSB burst (s) (i.e. how SSB transmission is made within a burst) , including new compact SSB burst (s) , and adapting the position of SSBs within a SSB burst. It was also agreed to study SSB adaptation in all radio resource control (RRC) states, primary cells (PCell) and secondary cell (SCell) .
  • RRC radio resource control
  • SIB1 System Information Block Type 1
  • the SSB adaptation approach may include two approaches, including 1) adaptation of SSB periodicity (i.e. ssb-PeriodicityServingCell information element (IE) ) , and 2) adaptation of beam direction (i.e. ssb-PositionsInBurst IE) indicated in the SIB1.
  • IE ssb-PeriodicityServingCell information element
  • beam direction i.e. ssb-PositionsInBurst IE
  • An example of ASN. 1 code used for the network to configure the System Information Block Type 1 (SIB1) includes:
  • FIG. 11 illustrates an example of an adaptation of SSB periodicity 1100 (e.g. ssb-PeriodicityServingCell) in the time domain, according to some embodiments.
  • the periodicity of the SSB can adapt from shorter 1110 to longer 1120.
  • FIG. 12 illustrates an example of an adaptation of SSB beam direction 1200 (e.g. ssb-PositionsInBurst) (simplified to 4 bit/beam) in the time domain, according to some embodiments.
  • the beam direction of the SSB can adapt from a first SSB burst 1210 with four SSBs to a second SSB burst 1220 with two SSBs.
  • a third SSB burst may not be transmitted by the network.
  • the 3GPP specification has introduced an SSB-based Radio Resource Management (RRM) Measurement Timing Configuration (SMTC) window and an SSB_ToMeasure information element (IE) that the UE can use for measurements.
  • RRM Radio Resource Management
  • SMTC Measurement Timing Configuration
  • IE SSB_ToMeasure information element
  • the SMTC is a periodical window and the SSB_ToMeasure IE is a bitmap to indicate which beam (s) the UE needs to measure.
  • the UE only performs RRM towards SSB (s) indicated by the SSB_ToMeasure IE within the SMTC window.
  • the SMTC and the SSB_ToMeasure IE are applied to the UE in all Radio Resource Control (RRC) states, i.e. the IDLE/INACTIVE and CONNECTED states.
  • RRC Radio Resource Control
  • the SMTC and the SSB_ToMeasure IE can be configured in a System Information Block Type 2 (SIB2) for intra-frequency measurement.
  • SIB2 System Information Block Type 2
  • An example of ASN. 1 code used for the network to configure the System Information Block Type 2 (SIB2) includes: intraFreqCellReselectionInfo SEQUENCE ⁇ smtc SSB-MTC OPTIONAL, --Need S ssb-ToMeasure SSBToMeasure OPTIONAL, --Need S
  • the SMTC and the SSB_ToMeasure IE can be configured in a System Information Block Type 4 (SIB4) for inter-frequency measurement.
  • SIB4 System Information Block Type 4
  • the SMTC and the SSB_ToMeasure IE can be configured in MeasObjectNR.
  • FIGS. 13 and 14 Radio Link Monitoring (RLM)
  • FIG. 13 illustrates an example of a determination 1300 of Out-of-Sync and In-Sync for SSB based monitoring in the time domain, according to some embodiments.
  • FIG. 14 illustrates an example of a determination 1400 of Out-of-Sync and In-Sync for SSB based monitoring in the time domain, according to some embodiments.
  • the 3GPP Release 18 provides a specification, as provided in technical specification TS38.331, in which a radio link failure (RLF) is declared upon Radio Link Monitoring (RLM) failure.
  • RLF radio link failure
  • RLM Radio Link Monitoring
  • the UE starts the timer T310 upon receiving N310 consecutive out-of-sync (OOS) indications from a lower layer and stops the timer upon receiving N311 consecutive in-sync (IS) indications from the lower layer before expiry of the T310 timer. Determination of the OOS indications and the IS indications is illustrated in FIGS. 13 and 14.
  • the block error rate (BLER) of a hypothetical physical downlink control channel (PDCCH) transmission is used as the metric.
  • the OOS indication is generated and sent to a higher layer when the radio link quality is worse than a threshold Qout for all resources in the set of resources for radio link monitoring.
  • the IS indication is generated and sent to a higher layer.
  • Evaluation time may also vary depending on whether Discontinuous Reception (DRX) is configured or not, as well as the Frequency Range. If radio link failure (RLF) is declared, the UE initiates an RRC connection re-establishment procedure.
  • FIG. 15 Beam failure detection (BFD)
  • FIG. 15 illustrates example tables of evaluation periods, according to some embodiments.
  • Beam failure detection is a combined Layer 1/Layer 2 (L1/L2) procedure.
  • L1 provides indications of beam failure instances (BFIs) to send to the Medium Access Control (MAC) layer. If the BLER of the hypothetical PDCCH is worse than the threshold Qout for all resources in the set of resources configured for BFD (i.e. q0) , L1 triggers a BFI and sends it to the MAC.
  • BFI beam failure instances
  • MAC Medium Access Control
  • q0 Medium Access Control
  • Both the SSB and a Channel State Information Reference Signal (CSI-RS) can be configured in q0. Its maximum number is per frequency range.
  • CSI-RS Channel State Information Reference Signal
  • the UE shall monitor the configured SSB resources using the evaluation period in table 8.5.2.2-1 (FR1) and 8.5.2.2-2 (FR2) , as shown in FIG. 15 depending on DRX mode and DRX cycle length.
  • the UE shall monitor the configured CSI-RS resources using the evaluation period in table 8.5.3.2-1 for frequency range 1 (FR1) and 8.5.3.2-2 for frequency range 2 (FR2) depending on DRX mode and DRX cycle length.
  • the MAC layer starts a timer as soon as it receives a BFI and it keeps incrementing the counter by 1 for every BFI.
  • BFR Beam Failure Recovery
  • CBD Candidate Beam Detection
  • the UE is provided with a set of resources (q1) for the recovery procedure in the BeamFailureRecoveryConfig IE.
  • the PHY layer sends the corresponding resource index to the MAC layer.
  • the UE shall monitor the configured SSB resources using the evaluation period in table 8.5.5.2-1 (FR1) and 8.5.5.2-2 (FR2) , as shown in FIG. 15, depending on a discontinuous reception (DRX) mode and a DRX cycle length.
  • the UE shall monitor the configured CSI-RS resources using the evaluation period in table 8.5.6.2-1 (FR1) and 8.5.6.2-2 (FR2) , as shown in FIG. 15, depending on the DRX mode and the DRX cycle length.
  • the UE For secondary cell (Scel) BFR, the UE transmits a BFR Medium Access Control-Control Element (MAC-CE) transmission scheme. It can be transmitted via any available uplink grant. If no uplink grant is available and if a Beam Failure Recovery-Scheduling Request (BFR-SR) is configured, the BFR-SR will be triggered. If no uplink grant is available and if the BFR-SR is not configured or the BFR-SR transmission fails, a Random Access Channel (RACH) procedure will be triggered.
  • BFR-SR Beam Failure Recovery-Scheduling Request
  • RACH Random Access Channel
  • SSB based RRM measurement timing configuration may change after either adaptation of SSB periodicity or SSB burst. It may be possible to introduce Downlink Control Information (DCI) or Medium Access Control-Control Element (MAC-CE) based SSB adaptation.
  • DCI Downlink Control Information
  • MAC-CE Medium Access Control-Control Element
  • the SMTC is only (re) configured via RRC (Layer 3 communication) which cannot adapt to the DCI or MAC-CE based SSB adaptation since the DCI or MAC-CE may be communicated more frequently than the L3 RRC communication. This is applicable to primary cell (PCell) , secondary cell (SCell) , and IDLE/INACTIVE states of the UEs.
  • PCell primary cell
  • SCell secondary cell
  • IDLE/INACTIVE states of the UEs IDLE/INACTIVE states of the UEs.
  • RLM Radio Link Monitoring
  • RLM-RS Radio Link Monitoring-Reference Signals
  • the RLM-RS is (re) configured via RRC which cannot adapt to the DCI or the MAC-CE based SSB adaptation. This is applicable to only PCell and PSCell.
  • BFD-RS Beam Failure Detection-Scheduling Request
  • the BFD-RS is (re) configured via RRC which cannot adapt to the DCI or the MAC-CE based SSB adaptation. This is applicable to only PCell, primary secondary cell (PSCell) , and SCell.
  • the DCI and the MAC-CE are introduced to notify the UE of the SSB adaptation.
  • Either the DCI or the MAC-CE may be introduced for SSB adaptation.
  • the DCI may be introduced on SSB adaptation for the IDLE/INACTIVE state of the UE.
  • the MAC-CE may be introduced on SSB adaptation for the CONNECTED state of the UE.
  • the solutions proposed here can be applicable to both DCI and MAC-CE based signaling. Configured mapping from a code point of the DCI or the MAC-CE to the candidate configurations of the SSB adaptation may be available.
  • RRM Radio Resource Management
  • the network can implicitly indicate an RRM adaptation. From the NW side, there may be an impact on the TS 38.331.
  • the NW can introduce a list of candidate ⁇ SMTC+SSB_ToMeasure ⁇ per frequency in System Information Block 2 (SIB2) for a serving cell RRM in the IDLE/INACTIVE state, and System Information Block Type 4 (SIB4) for neighbor cell RRM in the IDLE/INACTIVE state.
  • SIB4 System Information Block Type 4
  • the NW can introduce a list of candidate ⁇ SMTC+SSB_ToMeasure ⁇ per frequency in MeasObjectNR of the RRC for both serving cell and neighbor cell RRM in the CONNECTED state.
  • An example of ASN. 1 code used for the network to configure the for serving cell RRM in IDLE/INACTIVE includes:
  • the NW can introduce a configured mapping from code point of the DCI or the MAC-CE for SSB adaptation to ⁇ index in above list, frequency ⁇ .
  • One code point of the DCI or the MAC-CE can be mapped to a default SMTC/SSB_ToMeasure, which allows fallback.
  • the NW can introduce a new timer to control fallback to default ⁇ SMTC, SSB_ToMeasure ⁇ configuration.
  • the UE can apply the SSB adaptation, and can simultaneously apply the mapped SMTC and the SSB_ToMeasure IE in the mapped frequency for RRM after the application latency of the DCI or the MAC-CE.
  • the UE also starts the timer upon reception of the DCI or the MAC-CE of the SSB adaptation. This may be captured in future releases, such as Release 19, of 3GPP TS 38.321 if using MAC-CE signaling and 3GPP TS 38.213 if using DCI signaling.
  • the timer expires, the UE can fall back to the default ⁇ SMTC, SSB_ToMeasure ⁇ configuration.
  • an apparatus of a user equipment (UE) 106 can comprise one or more processors 402 and/or 604, coupled to a memory 406, 604G, configured to decode, at the UE 106, a downlink control information (DCI) or a Medium Access Control-Control Element (MAC-CE) including a Synchronization Signal Physical Broadcast Channel (PBCH) Block (SSB) adaptation.
  • the SSB adaptation can include at least one of an adaptation of an SSB periodicity (ssb-PeriodicityServingCell) and an adaptation of an SSB beam direction (ssb-PositionsInBurst) .
  • the processors 604 can decode, at the UE 106, a list of SSB-based radio resource management (RRM) Measurement Timing Configuration (SMTC) and SSBs to measure per frequency received.
  • RRM radio resource management
  • the processors 604 can decode, at the UE 106, a configured mapping of a code point from the SSB adaptation to the list of SMTC and SSBs to measure per frequency.
  • the processors 402 can apply, at the UE 106, the SSB adaptation and the mapped list of SMTC and SSB to measure per frequency for radio resource management (RRM) .
  • RRM radio resource management
  • the mapped list of SMTC and SSB to measure can be in one or more of a System Information Block type 2 (SIB2) , a System Information Block type 4 (SIB4) , or a measObjectNR information element (IE) in a radio resource control (RRC) IE.
  • SIB2 System Information Block type 2
  • SIB4 System Information Block type 4
  • IE measObjectNR information element
  • the mapped list of SMTC and SSB to measure can comprise a 3GPP Release 19 information element (smtc_adatpt_r19) with an adapted SMTC for an RRM in at least one of an IDLE, INACTIVE and CONNECTED state.
  • smtc_adatpt_r19 3GPP Release 19 information element
  • the mapped list of SMTC and SSB to measure can comprise a 3GPP Release 19 information element (ssb-ToMeasure_adatpt_r19) with an adapted SSBs to measure for an RRM in at least one of an IDLE, INACTIVE and CONNECTED state.
  • ssb-ToMeasure_adatpt_r19 3GPP Release 19 information element
  • the processors 402 can be further configured to start, at the UE 106, a timer upon reception of the DCI or MAC-CE.
  • the processors 402 can be further configured to apply, at the UE 106, a default SMTC and SSBs to measure configuration at an expiration of the timer.
  • the UE 106 can receive from a network 100, an implicit indication of an RRM adaptation.
  • an apparatus of a next generation Node B (gNB) 102 can comprise one or more processors 204, coupled to a memory 260, configured to encode, at the gNB 102, a downlink control information (DCI) or a Medium Access Control-Control Element (MAC-CE) including a Synchronization Signal Physical Broadcast Channel (PBCH) Block (SSB) adaptation for transmission to a user equipment (UE) 106.
  • the SSB adaptation can include at least one of an adaptation of an SSB periodicity (ssb-PeriodicityServingCell) and an adaptation of an SSB beam direction (ssb-PositionsInBurst) .
  • the processors 204 can encode, at the gNB 102, a list of SSB-based radio resource management (RRM) Measurement Timing Configuration (SMTC) and SSBs to measure per frequency received for transmission to the UE 106.
  • RRM radio resource management
  • the processors 204 can encode, at the gNB 102, a configured mapping of a code point from the SSB adaptation to the list of SMTC and SSBs to measure per frequency for transmission to the UE 106.
  • the SMTC and the SSBs to measure can be in: a System Information Block type 2 (SIB2) for at least one of a serving cell and a neighbor cell RRM in an IDLE or INACTIVE state; a System Information Block type 4 (SIB4) for at least one of a serving cell and a neighbor cell RRM in an IDLE or INACTIVE state; or a MeasObjectNR information element (IE) of a radio resource control (RRC) for at least one of a serving cell and a neighbor cell (RRM) in a CONNECTED state.
  • SIB2 System Information Block type 2
  • SIB4 System Information Block type 4
  • IE MeasObjectNR information element
  • RRC radio resource control
  • the mapped list of SMTC and SSB to measure can comprise a 3GPP Release 19 information element (smtc_adatpt_r19) with an adapted SMTC for an RRM in at least one of an IDLE, INACTIVE and CONNECTED state.
  • smtc_adatpt_r19 3GPP Release 19 information element
  • the network 100 can implicitly indicate an RRM adaptation.
  • FIG. 16 Method of Performing RRM with an SSB Adaptation at the UE
  • FIG. 16 illustrates a flow chart of an example of a method performing radio resource management (RRM) with a Synchronization Signal Physical Broadcast Channel (PBCH) Block (SSB) adaptation, according to some embodiments.
  • RRM radio resource management
  • PBCH Synchronization Signal Physical Broadcast Channel
  • SSB Synchronization Signal Physical Broadcast Channel
  • the method shown in FIG. 16 may be used in conjunction with any of the systems, methods, or devices illustrated in the Figures, among other devices.
  • some of the method elements shown may be performed concurrently, in a different order than shown, or may be omitted. Additional method elements may also be performed as desired.
  • the method 1600 can comprise decoding 1610, at a user equipment (UE) , a downlink control information (DCI) or a Medium Access Control-Control Element (MAC-CE) including a Synchronization Signal Physical Broadcast Channel (PBCH) Block (SSB) adaptation.
  • the SSB adaptation can include at least one of an adaptation of an SSB periodicity and an adaptation of an SSB beam direction.
  • the method 1600 can comprise decoding 1620, at the UE, a list of SSB-based radio resource management (RRM) Measurement Timing Configuration (SMTC) and SSBs to measure per frequency received.
  • RRM radio resource management
  • SMTC Measurement Timing Configuration
  • the method 1600 can comprise decoding 1630, at the UE, a configured mapping of a code point from the SSB adaptation to the list of SMTC and SSBs to measure per frequency.
  • the method 1600 can comprise applying 1640, at the UE, the SSB adaptation and the mapped list of SMTC and SSB to measure per frequency for radio resource management (RRM) .
  • RRM radio resource management
  • FIG. 17 illustrates a flow chart of an example of a method performing radio resource management (RRM) with a Synchronization Signal Physical Broadcast Channel (PBCH) Block (SSB) adaptation, according to some embodiments.
  • RRM radio resource management
  • PBCH Synchronization Signal Physical Broadcast Channel
  • SSB Synchronization Signal Physical Broadcast Channel
  • the method shown in FIG. 17 may be used in conjunction with any of the systems, methods, or devices illustrated in the Figures, among other devices.
  • some of the method elements shown may be performed concurrently, in a different order than shown, or may be omitted. Additional method elements may also be performed as desired.
  • the method 1700 can comprise encoding 1710, at a next generation Node B (gNB) , a downlink control information (DCI) or a Medium Access Control-Control Element (MAC-CE) including a Synchronization Signal Physical Broadcast Channel (PBCH) Block (SSB) adaptation for transmission to a user equipment (UE) .
  • the SSB adaptation can include at least one of an adaptation of an SSB periodicity and an adaptation of an SSB beam direction.
  • the method 1700 can comprise encoding 1720, at the gNB, a list of SSB-based radio resource management (RRM) Measurement Timing Configuration (SMTC) and SSBs to measure per frequency received for transmission to the UE.
  • RRM radio resource management
  • SMTC Measurement Timing Configuration
  • the method 1700 can comprise encoding 1730, at the gNB, a configured mapping of a code point from the SSB adaptation to the list of SMTC and SSBs to measure per frequency for transmission to the
  • the NW can explicitly indicate an RRM adaptation. From the NW side, the same 3GPP TS 38.331 changes may be applied. One difference can be that one separate DCI or MAC-CE, separate from the SSB adaptation, can be introduced for adaptation of ⁇ SMTC, SSB_ToMeasure ⁇ only. This can decouple the SSB adaptation from its RRM, and allow more flexibility from the NW. Similar to the DCI or the MAC-CE for SSB adaptation, the new DCI or the new MAC-CE can indicate a code point to the index of a configured ⁇ SMTC, SSB_ToMeasure and frequency ⁇ . With separate signaling, one SSB configuration can be configured to different SMTCs and/or SSB_ToMeasure IEs.
  • the UE 106 can receive from a network 1020, an explicit indication of an RRM adaptation.
  • the processors 604 of the UE 106 can be configured to decode, at the UE 106, a separate DCI or MAC-CE, separate from the SSB adaptation, for adaptation of the SMTC and the SSBs to measure only.
  • the processors 402 can apply, at the UE 106, the mapped SMTC and SSBs to measure in a mapped frequency for the RRM.
  • the processors 604, 204 of the gNB 102 can be configured to encode a separate DCI or MAC-CE, separate from the SSB adaptation, for adaptation of the SMTC and the SSBs to measure only to decouple the SSB adaptation from the RRM.
  • the processors 204 of the gNB 102 can be configured to introduce a list of candidate RLM configurations in a RadioLinkMonitoringConfig field with one candidate RLM configuration including at least one or more of a Radio Link Monitoring Reference Signal (RLM-RS) , a configured consecutive out-of-sync (OOS) indication, a number of continuous out-of-sync (OOS) indications (N310) , a number of consecutive in-sync (IS) indications (N311) , and the timer (T310) .
  • RLM-RS Radio Link Monitoring Reference Signal
  • OOS consecutive out-of-sync
  • N310 number of continuous out-of-sync
  • IS consecutive in-sync
  • T310 timer
  • a new UE behavior can be specified to derive an RRM configuration based on the adapted SSB.
  • the UE can apply the same frequency.
  • the UE can change a periodicity value of the SMTC in a concerned frequency with the new periodicity T.
  • the UE can determine whether any beam before adaptation is turned off after adaptation, and can change the corresponding bit in the SSB_ToMeasure IE to 0.
  • the UE can determine whether any beam before adaptation is turned on after adaptation, and can change the corresponding bit in the SSB_ToMeasure IE to 1.
  • the processors 402 of the UE 106 can be further configured to adapt, at the UE 106, the SSB to a new periodicity T and a new bitmap of SSB positions (ssb-PositionsInBurst) .
  • the processors 402 can apply, at the UE 106, a same frequency.
  • the processors 402 can change, at the UE 106, a periodicity value of the SMTC in a concerned frequency with the new periodicity T.
  • the processors 402 can determine, at the UE 106, whether a beam before adaptation is turned off after adaptation, and change a corresponding bit in the SSBs to measure to 0.
  • the processors 402 can determine, at the UE 106, whether any beam before adaptation is turned on after adaptation, and change the corresponding bit in the SSBs to measure to 1.
  • the processors 204 of the gNB 102 can be configured to encode a common set of Radio Link Monitoring Reference Signal (RLM-RS) for all possible adapted SSB bitmaps.
  • RLM-RS Radio Link Monitoring Reference Signal
  • an activated Transmission Configuration Indicator (TCI) -State for the Physical Downlink Control Channel (PDCCH) can be relied upon.
  • TCI Transmission Configuration Indicator
  • the UE can autonomously ignore the configured Radio Link Monitoring Reference Signal (RLM-RS) and apply the activated TCI-State for the PDCCH.
  • RLM-RS Radio Link Monitoring Reference Signal
  • the UE can apply the configured RLM-RS.
  • the processors 402 of the UE 106 can be configured to autonomously ignore a configured Radio Link Monitoring Reference Signal (RLM-RS) and apply an activated Transmission Configuration Indicator (TCI) -State for a physical downlink control channel (PDCCH) when an SSB beam bitmap (ssb-PositionsInBurst) is adopted by the gNB.
  • RLM-RS Radio Link Monitoring Reference Signal
  • TCI Transmission Configuration Indicator
  • ssb-PositionsInBurst SSB beam bitmap
  • the processors 402 of the UE 106 can be configured to apply a configured Radio Link Monitoring Reference Signal (RLM-RS) when an SSB beam bitmap (ssb-PositionsInBurst) is indicated to fallback to a default configuration by the gNB.
  • RLM-RS Radio Link Monitoring Reference Signal
  • an adaptation between multiple candidate RLM-RS configurations can be performed upon reception of the DCI or the MAC-CE for SSB adaptation.
  • the NW 1020 can introduce a list of candidate RLM configurations in a RadioLinkMonitoringConfig field.
  • One candidate RLM configuration can include at least one or more of the RLM-RS, the number of continuous out-of-sync (OOS) indications (N310) , the number of consecutive in-sync (IS) indications (N311) , and the timer (T310) .
  • the RLM-RS can be a set of the SSB or the CSI-RS, or a mixed set of the SSB and the CSI-RS.
  • the NW 1020 can introduce a configured mapping from a code point of the DCI or the MAC-CE for the SSB adaptation to an index of candidate RLM configurations. Similar to the RRM solution discussed herein, the DCI or the MAC-CE of the SSB adaptation can be reused as an implicit indication; or a separate DCI or MAC-CE of the RLM adaptation can be introduced as an implicit indication.
  • the UE 106 can apply the mapped RLM configuration for the RLM after the application latency of the DCI or the MAC-CE.
  • the UE can fallback to a default RLM configuration.
  • the processors 402 of the UE 106 can be configured to apply a mapped Radio Link Monitoring (RLM) configuration for an RLM after an application latency of the DCI or the MAC-CE.
  • RLM Radio Link Monitoring
  • the processors 402 of the UE 106 can be configured to fallback to a default RLM configuration when the timer expires.
  • the processors 204 of the gNB 102 can be configured to introduce a list of candidate RLM configurations in a RadioLinkMonitoringConfig field with one candidate RLM configuration including at least one or more of a Radio Link Monitoring Reference Signal (RLM-RS) , a configured consecutive out-of-sync (OOS) indication, a number of continuous out-of-sync (OOS) indications (N310) , a number of consecutive in-sync (IS) indications (N311) , and the timer (T310) .
  • RLM-RS Radio Link Monitoring Reference Signal
  • OOS consecutive out-of-sync
  • N310 number of continuous out-of-sync
  • IS consecutive in-sync
  • T310 timer
  • the NW can configure a common set of the RLM-RS for all possible adapted SSBs bitmap. This can have no impact to UE behavior.
  • the processors 604, 204 of the gNB 102 can be configured to encode a common set of Radio Link Monitoring Reference Signal (RLM-RS) for all possible adapted SSB bitmaps.
  • RLM-RS Radio Link Monitoring Reference Signal
  • a new UE behavior can derive the RLM configuration on the adapted SSB.
  • the UE can determine whether any RLM-RS before adaptation is turned off after adaptation; and the UE can remove this RLM-RS from the configuration of RLM, stop measurements towards on this RLM-RS for OOS and/or IS purposes, and discard the samples measured in this RLM-RS for OOS and/or IS purpose.
  • the UE can determine whether any beam before adaptation is turned on after adaptation; and the UE can add this RLM-RS in the configuration of the RLM, and start measurements towards on this RLM-RS for OOS and/or IS purposes.
  • the processors 402 can determine, at the UE 106, whether any beam before adaptation is turned on after adaptation.
  • the processors 402 can add the RLM-RS in the configuration of RLM.
  • the processors 402 can start measurements towards on the RLM-RS for an OOS purpose or an IS purpose.
  • BFD Beam Failure Detection
  • CBD Candidate Beam Detection
  • an activated TCI-State for the PDCCH may be relied upon.
  • the UE can autonomously ignore the configured BFD-RS (q0) and the CBD-RS (q1) , and apply the activated TCI-State for the PDCCH.
  • the UE can apply the configured BFD-RS and the configured CBD-RS.
  • the processors 402 of the UE 106 can be configured to autonomously ignore a configured Beam Failure Detection Reference Signal (BFD-RS) or a candidate beam detection reference signal (CBD-RS) and apply an activated Transmission Configuration Indicator (TCI) -State for a physical downlink control channel (PDCCH) when an SSB beam bitmap (ssb-PositionsInBurst) is adopted by the gNB.
  • BFD-RS Beam Failure Detection Reference Signal
  • CBD-RS candidate beam detection reference signal
  • TCI Transmission Configuration Indicator
  • the processors 402 of the UE 106 can be configured to apply a configured Beam Failure Detection Reference Signal (BFD-RS) or a candidate beam detection reference signal (CBD-RS) when an SSB beam bitmap (ssb-PositionsInBurst) is indicated to fallback to a default configuration by the gNB.
  • BFD-RS Beam Failure Detection Reference Signal
  • CBD-RS candidate beam detection reference signal
  • adaptation can be performed between multiple candidate BFD-RS and CBD-RS configurations upon reception of the DCI or the MAC-CE for SSB adaptation.
  • the NW can introduce a list of candidate BFD configurations in RadioLinkMonitoringConfig and a list of CBD configurations in BeamFailureRecoveryRSConfig.
  • One candidate BFD configuration can include at least one or more of the BFD-RS, the beamFailureInstanceMaxCount IE and the beamFailureDetectionTimer IE.
  • One candidate CBD configuration can include at least one or more of the CBD-RS and the rsrp-ThresholdBFR IE.
  • the BFD-RS and the CBD-RS can be a set of the SSB or the CSI-RS, or a mixed set of the SSB and CSI-RS.
  • the NW can introduce a configured mapping from a code point of the DCI or the MAC-CE for the SSB adaptation to an index of candidate BFD and CBD configurations. Similar to the RRM solutions discussed herein, the DCI or the MAC-CE of the SSB adaptation can be reused as an implicit indication, or a separate DCI or MAC-CE of the BFD and the CBD adaptation can be introduced as an implicit indication.
  • the UE can apply the mapped BFD and CBD configuration after application of latency of the DCI or the MAC-CE.
  • the UE can fallback to a default BFD and CBD configuration.
  • the processors 204 of the gNB 102 can be configured to introduce a list of candidate beam failure detection (BFD) configurations in a RadioLinkMonitoringConfig field with one candidate BFD configuration including at least one or more of a beam failure detection reference signal (BFD-RS) , a beamFailureInstanceMaxCount information element (IE) and a beamFailureDetectionTimer IE, and one candidate BFD configuration including at least one or more of a candidate beam detection reference signal (CBD-RS) and a rsrp-ThresholdBFR IE.
  • BFD-RS beam failure detection reference signal
  • IE beamFailureInstanceMaxCount information element
  • CBD-RS candidate beam detection reference signal
  • rsrp-ThresholdBFR IE rsrp-ThresholdBFR
  • the processors 204 of the gNB 102 can be configured to introduce a configured mapping from a code point of the DCI or the MAC-CE for SSB adaptation to an index of a candidate beam failure detection (BFD) configuration or a candidate beam detection (CBD) configuration.
  • BFD candidate beam failure detection
  • CBD candidate beam detection
  • the NW can configure a common set of BFD-RS and CBD-RS for all possible adapted SSBs bitmap. This has no impact to UE behavior.
  • the processors 204 of the gNB 102 can be configured to encode a common set of beam failure detection reference signal (BFD-RS) or candidate beam detection reference signal (CBD-RS) for all possible adapted SSB bitmaps.
  • BFD-RS beam failure detection reference signal
  • CBD-RS candidate beam detection reference signal
  • a new UE behavior can be specified to derive the BFD and CBD configuration based on the adapted SSB.
  • the UE can determine whether any BFD-RS or CBD-RS before adaptation is turned off after adaptation; and the UE can remove this BFD-RS or CBD-RS from the configuration of the BFD or CBD, stop measurements towards on this BFD-RS or CBD-RS for a BFD or CBD purpose, and discard the samples measured in this BFD-RS or CBD-RS for a BFD or CBD purpose.
  • the UE can determine whether any beam before adaptation is turned on after adaptation; and the UE can determine add this BFD-RS or CBD-RS in the configuration of the BFD or CBD, start measurements towards this BFD-RS or CBD-RS for a BFD or CBD purpose.
  • the processors 402 of the UE 106 can be further configured to adapt, at the UE 106, the SSB to a new bitmap (ssb-PositionsInBurst) .
  • the processors 402 can determine, at the UE 106, whether any Beam Failure Detection Reference Signal (BFD-RS) or a candidate beam detection reference signal (CBD-RS) before adaptation is turned off after adaptation.
  • BFD-RS Beam Failure Detection Reference Signal
  • CBD-RS candidate beam detection reference signal
  • the processors 402 can remove the BFD-RS or CBD-RS from the configuration of the BFD or CBD.
  • the processors 402 can stop measurements towards on the BFD-RS or CBD-RS for a BFD purpose or a CBD purpose.
  • the processors 402 can discard samples measured in the BFD-RS or CBD-RS for the BFD purpose or the CBD purpose.
  • the processors 402 can be configured to determine, at the UE 106, whether any beam before adaptation is turned on after adaptation.
  • the processors 402 can add the BFD-RS or CBD-RS in the configuration of the BFD or CBD.
  • the processors 402 can start measurements towards on the BFD-RS or CBD-RS for a BFD purpose or a CBD purpose.
  • Embodiments of the present disclosure may be realized in any of various forms. For example, some embodiments may be realized as a computer-implemented method, a computer readable memory medium, or a computer system. Other embodiments may be realized using one or more custom-designed hardware devices such as ASICs. Still other embodiments may be realized using one or more programmable hardware elements such as FPGAs.
  • a non-transitory computer-readable memory medium may be configured so that it stores program instructions and/or data, where the program instructions, if executed by a computer system, cause the computer system to perform a method, e.g., any of the method embodiments described herein, or, any combination of the method embodiments described herein, or, any subset of any of the method embodiments described herein, or, any combination of such subsets.
  • a device e.g., a UE 106 may be configured to include a processor (or a set of processors) and a memory medium, where the memory medium stores program instructions, where the processor is configured to read and execute the program instructions from the memory medium, where the program instructions are executable to implement any of the various method embodiments described herein (or, any combination of the method embodiments described herein, or, any subset of any of the method embodiments described herein, or, any combination of such subsets) .
  • the device may be realized in any of various forms.
  • Any of the methods described herein for operating a user equipment may be the basis of a corresponding method for operating a base station, by interpreting each message/signal X received by the UE in the downlink as message/signal X transmitted by the base station, and each message/signal Y transmitted in the uplink by the UE as a message/signal Y received by the base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

L'invention concerne un appareil d'un équipement utilisateur (UE) comprenant un ou plusieurs processeurs, couplés à une mémoire, pour décoder des informations de commande de liaison descendante (DCI) ou un élément de commande de commande d'accès au support (MAC-CE) comprenant une adaptation de bloc de canal de diffusion physique (PBCH) de signal de synchronisation (SSB). L'adaptation de SSB comprend une adaptation d'une périodicité SSB et/ou une adaptation d'une direction de faisceau SSB. Les processeurs décodent une liste de configuration de temporisation de mesure (SMTC) de gestion de ressources radio (RRM) basée sur SSB et de SSB pour une mesure par fréquence reçue. Les processeurs décodent un mappage configuré d'un point de code à partir de l'adaptation de SSB à la liste de SMTC et de SSB pour une mesure par fréquence. Les processeurs appliquent l'adaptation de SSB et la liste mappée de SMTC et SSB pour une mesure par fréquence pour une gestion de ressources radio (RRM).
PCT/CN2024/091787 2024-05-08 2024-05-08 Rrm, rlm et bfd dans une adaptation de ssb Pending WO2025231663A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2024/091787 WO2025231663A1 (fr) 2024-05-08 2024-05-08 Rrm, rlm et bfd dans une adaptation de ssb

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2024/091787 WO2025231663A1 (fr) 2024-05-08 2024-05-08 Rrm, rlm et bfd dans une adaptation de ssb

Publications (1)

Publication Number Publication Date
WO2025231663A1 true WO2025231663A1 (fr) 2025-11-13

Family

ID=97674208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2024/091787 Pending WO2025231663A1 (fr) 2024-05-08 2024-05-08 Rrm, rlm et bfd dans une adaptation de ssb

Country Status (1)

Country Link
WO (1) WO2025231663A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114765797A (zh) * 2021-01-11 2022-07-19 英特尔公司 用于小区测量的方法和装置
WO2023025955A1 (fr) * 2021-08-27 2023-03-02 Telefonaktiebolaget Lm Ericsson (Publ) Adaptation de périodicité de bloc de signal de synchronisation
WO2023130445A1 (fr) * 2022-01-10 2023-07-13 Qualcomm Incorporated Motif de faisceau ssb irrégulier pour économie d'énergie de réseau
WO2023130296A1 (fr) * 2022-01-06 2023-07-13 Qualcomm Incorporated Récupération de couverture pour un canal physique de diffusion poinçonné

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114765797A (zh) * 2021-01-11 2022-07-19 英特尔公司 用于小区测量的方法和装置
WO2023025955A1 (fr) * 2021-08-27 2023-03-02 Telefonaktiebolaget Lm Ericsson (Publ) Adaptation de périodicité de bloc de signal de synchronisation
WO2023130296A1 (fr) * 2022-01-06 2023-07-13 Qualcomm Incorporated Récupération de couverture pour un canal physique de diffusion poinçonné
WO2023130445A1 (fr) * 2022-01-10 2023-07-13 Qualcomm Incorporated Motif de faisceau ssb irrégulier pour économie d'énergie de réseau

Similar Documents

Publication Publication Date Title
US20190394834A1 (en) Measurement gap sharing
CN113261327A (zh) 5g网络的随机接入信道(rach)优化和自动邻区关系创建
US11812414B2 (en) Interruption and delay for V2X sidelink carrier aggregation
US11115947B2 (en) Vehicle to everything synchronization reference selection and reselection
WO2020069075A1 (fr) Systèmes, procédés et dispositifs pour un faisceau par défaut pusch en fonctionnement à panneaux multiples
CN113906784A (zh) 高速场景中的用户设备(ue)测量能力
EP4029307B1 (fr) Double réception discontinue (drx) dans l'agrégation de porteuses (ca) de la plage de fréquence 1 (fr1) et de la plage de fréquence 2 (fr2)
CN114175814A (zh) 避免在具有多种订阅的设备中的寻呼冲突
CN110582121A (zh) 用于ue请求ue策略初始配给或更新的解决方案
CN111165031B (zh) 在载波聚合或双连接下针对缩短的传输时间间隔的定时提前调节延迟
WO2020041125A1 (fr) Systèmes et procédés d'indication d'une capacité d'ue en lien avec des exigences de retard d'identification de cellule
WO2025231663A1 (fr) Rrm, rlm et bfd dans une adaptation de ssb
WO2025160752A1 (fr) Améliorations de la couverture pour pusch avec format dci 0_3
WO2025199805A1 (fr) Mesure lte inter-rat sans intervalle de mesure
WO2025091354A1 (fr) Partage d'opportunités de mesure entre la couche 1 et la couche 3
WO2025091347A1 (fr) Sélection de cellule voisine pour mesure l1
WO2025231713A1 (fr) Amélioration de l'activation d'une cellule secondaire (scell) à l'aide d'un rapport de mesure précoce (emr)
WO2025208436A1 (fr) Optimisation d'utilisation de chercheur pour mesure ca/cc
WO2025199856A1 (fr) Configuration et procédés d'ue pour mettre en œuvre une mobilité déclenchée par l1/l2 (ltm) inter-cu
WO2025179534A1 (fr) Améliorations d'ai/ml centrées sur l'ue pour ltm
WO2025231660A1 (fr) Minimisation des tests mobiles (mdt) pour collecte de données d'entraînement d'intelligence artificielle (ai)
WO2025171543A1 (fr) Améliorations apportées à un retard de commutation d'indicateur de configuration de transmission (tci) unifié avec deux avances temporelles (ta) dans la gamme de fréquences 2 (fr2)
WO2025179521A1 (fr) Procédé de réordonnancement adaptatif pour voix
WO2025231755A1 (fr) Amélioration de restriction de planification pour commutation de satellite douce sans changement de pci
US20250365589A1 (en) Near Real Time Wireless Network Outage Detection