[go: up one dir, main page]

WO2025225750A1 - Method and system for acquiring leg alignment image using partial x-ray image - Google Patents

Method and system for acquiring leg alignment image using partial x-ray image

Info

Publication number
WO2025225750A1
WO2025225750A1 PCT/KR2024/005435 KR2024005435W WO2025225750A1 WO 2025225750 A1 WO2025225750 A1 WO 2025225750A1 KR 2024005435 W KR2024005435 W KR 2024005435W WO 2025225750 A1 WO2025225750 A1 WO 2025225750A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
reference point
alignment
source image
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/KR2024/005435
Other languages
French (fr)
Korean (ko)
Inventor
이동훈
신인철
홍대기
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Surgical Ai Inc
Original Assignee
Surgical Ai Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Surgical Ai Inc filed Critical Surgical Ai Inc
Priority to PCT/KR2024/005435 priority Critical patent/WO2025225750A1/en
Publication of WO2025225750A1 publication Critical patent/WO2025225750A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration

Definitions

  • the present invention relates to a method and system for obtaining an alignment image of a lower extremity using a partial X-ray image, and more particularly, to a method and system for obtaining an alignment image of a lower extremity using a partial X-ray image, which can determine the degree of alignment of the entire lower extremity by utilizing a partial X-ray image of each joint of the lower extremity obtained in the process of performing a corrective osteotomy, including a high tibial osteotomy, for correcting a lower extremity deformity of the human body.
  • genu varum and genu valgum also known as bow legs, O-legs, and X-legs
  • bow legs, O-legs, and X-legs are not only cosmetically unsightly, but also orthopedically desirable to correct because they can cause or worsen cartilage damage and degenerative arthritis by accumulating relatively excessive load on specific joints.
  • X-ray equipment that can be used outside the operating room before surgery can capture or synthesize images that can determine the alignment of the entire lower extremity, but there is currently no X-ray equipment that can obtain images to determine the alignment of the entire lower extremity during surgery.
  • C-arm X-ray equipment which can be used during surgery, can only capture partial images of the body and cannot capture or synthesize images to determine the entire lower extremity.
  • C-arm X-ray equipment is mainly used to individually capture images of the hip joint, knee joint, and ankle joint, and then appropriately align the individual images.
  • a conventional method for obtaining an image of the alignment of the lower extremities uses individual images of each part of the lower extremities to determine the position where an imaginary line connecting the center point of the hip joint and the midpoint of the ankle joint passes through the knee joint, thereby obtaining an image capable of determining the alignment of the lower extremities.
  • the conventional method of acquiring lower extremity alignment images uses partial images of each part for lower extremity alignment, it is impossible to create alignment images for the entire lower extremity with only C-arm X-ray images.
  • the projection shape which is a unique characteristic of X-rays, is a conical shape, and image distortion occurs due to reflection, refraction, diffraction, and interference phenomena of electromagnetic waves.
  • deformation of the captured image occurs due to the characteristic of some curved surfaces at the edge of the X-ray detector of the X-ray imaging device.
  • the image is viewed in real time during C-arm X-ray imaging, and the captured image is acquired by matching the reference point of each part and the center point of the X-ray generation part as much as possible.
  • this process is difficult and time-consuming, making it difficult to create lower extremity alignment images.
  • the present invention aims to provide a method and system for obtaining a lower extremity alignment image using an X-ray partial image, which can help perform corrective osteotomy, including high tibial osteotomy, by accurately calculating an offset corresponding to the degree of deformation of the human body.
  • the present invention provides a method for obtaining a lower extremity alignment image using an X-ray partial image, the method including the steps of: obtaining a first source image, a second source image, and a third source image, each of which is photographed on a grid forming a single coordinate plane, of a hip joint, a knee joint, and an ankle joint; determining positions of a first reference point, a second reference point, and a third reference point for lower extremity alignment in the first source image, the second source image, and the third source image; and calculating an offset corresponding to a distance between a line connecting the first reference point and the third reference point and the second reference point based on coordinate values of the first reference point and the third reference point on the coordinate plane.
  • a step of modifying an image to correct deformation of a human body part and a grid that appear as image distortion in each of the first source image, the second source image, and the third source image may be further included.
  • the method may further include a step of determining a reference grid line for aligning the first source image, the second source image, and the third source image on the grid.
  • the method may further include a step of extracting a second alignment image centered on a modified reference point, which is obtained by moving the second reference point from the second source image by the offset along a line connecting the first reference point and the third reference point.
  • the method may further include: extracting a first alignment image centered on the first reference point from the first source image, extracting a third alignment image centered on the third reference point from the third source image; and aligning the first alignment image, the second alignment image, and the third alignment image in a row in sequence so that an alignment line, which is a line connecting the first reference point, the modified reference point, and the third reference point, is aligned.
  • the sizes of the first alignment image, the second alignment image, and the third alignment image may be the same.
  • the first reference point may be the center point of the hip joint appearing in the first source image
  • the second reference point may be the midpoint of the knee joint appearing in the second source image
  • the third reference point may be the midpoint of the ankle joint appearing in the third source image.
  • a step of sequentially aligning the first source image, the second source image, and the third source image in a row so that the reference grid lines coincide with each other may be further included.
  • the present invention provides a system for obtaining a lower extremity alignment image using an X-ray partial image, including an image processing unit that determines the positions of a first reference point, a second reference point, and a third reference point for lower extremity alignment in a first source image, a second source image, and a third source image, which respectively capture the hip joint, the knee joint, and the ankle joint of the lower extremity on a grid forming one coordinate plane, and calculates an offset corresponding to the distance between a line connecting the first reference point and the third reference point and the second reference point based on the coordinate values of the first reference point and the third reference point on the coordinate plane.
  • the image processing unit can modify the image to correct deformation of a human body part and a grid that appear as image distortion in each of the first source image, the second source image, and the third source image.
  • the image processing unit can determine a reference grid line for aligning the first to third source images on the grid.
  • the image processing unit can extract a second aligned image centered on a modified reference point in which the second reference point is moved by the offset amount along a line connecting the first reference point and the third reference point in the second source image.
  • the image processing unit may extract a first alignment image centered on the first reference point from the first source image, extract a third alignment image centered on the third reference point from the third source image, and sequentially align the first alignment image, the second alignment image, and the third alignment image so that alignment lines connecting the first reference point, the modified reference point, and the third reference point are aligned.
  • the sizes of the first alignment image, the second alignment image, and the third alignment image are the same, are equal to or smaller than the first source image, the second source image, and the third source image, and can have the same diameter value of the maximum possible length centered on the first reference point, the correction reference point, and the third reference point, respectively.
  • the first reference point may be the center point of the hip joint appearing in the first source image
  • the second reference point may be the midpoint of the knee joint appearing in the second source image
  • the third reference point may be the midpoint of the ankle joint appearing in the third source image.
  • the image processing unit can extract the first reference point, the second reference point, and the third reference point from the first source image, the second source image, and the third source image, respectively, using a pre-learned artificial intelligence network.
  • the image processing unit can sequentially align the first source image, the second source image, and the third source image in a row so that the reference grid lines match.
  • a partial image of the lower extremity is obtained by utilizing a grid representing one coordinate plane, and by appropriately processing the same, an offset corresponding to the degree of deformation of the lower extremity can be accurately calculated to obtain an alignment image of the bent lower extremity. Accordingly, according to the method and system for obtaining lower extremity alignment information using the above-described partial X-ray image, corrective osteotomy, including precise high tibial osteotomy, can be performed, thereby greatly improving the success rate thereof.
  • FIG. 1 is a block diagram illustrating a system for acquiring a lower limb alignment image using an X-ray partial image according to an embodiment of the present invention.
  • FIG. 2 is a drawing illustrating in more detail the image processing unit of a system for obtaining a lower limb alignment image using an X-ray partial image according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for obtaining a lower limb alignment image using an X-ray partial image according to an embodiment of the present invention.
  • Figures 4 to 8 are drawings showing examples of grids and images applied in each step of Figure 3.
  • first or second may be used to describe various components, these terms should be interpreted solely to distinguish one component from another.
  • a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.
  • FIG. 1 is a block diagram illustrating a system for acquiring lower extremity alignment images using X-ray partial images according to an embodiment of the present invention
  • FIG. 2 is a diagram illustrating an image processing unit of the system for acquiring lower extremity alignment images using X-ray partial images according to an embodiment of the present invention in more detail.
  • a method for acquiring lower extremity alignment images using X-ray partial images according to an embodiment of the present invention can be implemented by a system such as that illustrated in FIG. 1 and FIG. 2.
  • a system for obtaining an alignment image of a lower extremity using an X-ray partial image may include an X-ray photographing device (10) that X-rays individual parts of a lower extremity to generate a plurality of source images, and an image processing unit (20) that generates an alignment image of a lower extremity using the plurality of source images generated by the X-ray photographing device.
  • the X-ray photographing device (10) can be applied to various X-ray photographing devices used in the art, and in particular, it can be a C-arm X-ray photographing device that can take X-ray images of the lower extremities of a human body in a lying state, position the entire lower extremities on a grid forming a single coordinate plane, and obtain X-ray images of major joint parts of the lower extremities.
  • the X-ray photographing device (10) can generate a first source image, a second source image, and a third source image, which respectively photograph the hip joint, knee joint, and ankle joint portions of the lower extremity on a grid forming one coordinate plane.
  • the first source image, the second source image, and the third source image generated by the X-ray photographing device (10) are provided to the image processing unit (20), and the image processing unit (20) can generate an alignment image of the lower extremity through image processing on the first source image, the second source image, and the third source image received.
  • the image processing unit (20) is a type of computing system that performs a processing algorithm on input source images to obtain a desired type of alignment image, and may be a computing system that includes a processor that performs a preset algorithm and a storage unit for storing information required in the image processing algorithm and image processing process.
  • the image processing unit (20) may be configured to include a distortion correction unit (21), a reference point extraction unit (22), and an alignment image generation unit (23).
  • the distortion correction unit (21) is an element that receives the first source image, the second source image, and the third source image generated from the X-ray photographing device (10) and corrects the distortion generated in each source image.
  • Each input source image may include distortion, such as deformation of the shape of the photographed human body part and grid lines depending on the setting status of the X-ray photographing device (10).
  • the distortion correction unit (21) may correct distortion of the human body part appearing in each of the first source image, the second source image, and the third source image and the grid used in the present invention, and may modify the image to correctly rearrange each source image that may be tilted.
  • the distortion correction performed by the distortion correction unit (21) may be implemented through various image correction algorithms known in the field of image processing.
  • the reference point extraction unit (22) determines a reference grid line to be referenced in generating an alignment image of the lower limb, and can extract reference points necessary for lower limb alignment from each of the first source image, the second source image, and the third source image.
  • the reference point extraction unit (22) can extract reference points required for alignment from each of the first source image, the second source image, and the third source image, and determine their positions (coordinates) by referring to a grid representing a coordinate plane.
  • the reference point extraction unit (22) can extract a first reference point corresponding to the center point of the hip joint from the first source image, a second reference point corresponding to the midpoint of the knee joint from the second source image, and a third reference point corresponding to the midpoint of the ankle joint from the third source image.
  • the technique of the reference point extraction unit (22) extracting the bone center point or midpoint of the lower extremity joint within the source images can be achieved through an image processing technology for X-ray images and an artificial intelligence network that has performed machine learning using a large amount of learning data in advance. That is, the X-ray image in which the transparent human body structure is overlapped has unclear boundaries and lines, and is composed of black and white series, making it difficult to distinguish the difference in color, so an image filtering technique can be applied, and then the coefficients closest to the point to be extracted can be analyzed and implemented.
  • the reference point extraction unit (22) can be implemented by inputting a large amount of learning data prepared in advance into an artificial intelligence network designed to extract a specific point from an image, performing machine learning, performing verification thereon, and then applying the same.
  • the reference point extraction unit (22) can determine a reference grid line to be used as a reference for generating a lower limb alignment image.
  • the reference grid line may be selected from among the grid lines that commonly appear in each source image among the grids forming the coordinate plane used when taking an X-ray of the lower limb, and preferably, the grid line may be determined as the grid line closest to the reference point of each source image.
  • the reference point extraction unit (22) can determine the coordinate values of the extracted reference points by referring to the grid forming a coordinate plane.
  • the reference point extraction unit (22) can use the reference points to calculate an offset corresponding to the distance between the straight line connecting the first reference point and the third reference point and the second reference point.
  • the specific technique for calculating the offset will be described in more detail in the description of an embodiment of a method for obtaining a lower limb alignment image using an X-ray partial image, which will be described later.
  • the aligned image generation unit (23) can generate an image in which the first to third source images are arranged in a row so that the determined reference grid lines match.
  • the alignment image generation unit (23) can generate a correction reference point, which is a point where a straight line passing through the second reference point is orthogonal to a straight line connecting the first reference point and the third reference point, based on the offset calculated in the reference point extraction unit (22), and can generate an alignment image that displays an alignment line passing through the first reference point, the third reference point, and the correction reference point.
  • the alignment image generation unit (23) can extract a first alignment image centered on a first reference point from a first source image, extract a second source image centered on a modified reference point from a second source image, and extract a third alignment image centered on a third reference point from a third source image.
  • the alignment image generation unit (23) can align the extracted first to third alignment images in a row so that the alignment lines match, thereby obtaining the final alignment image of the lower extremity.
  • the sizes of the first to third alignment images are in a range equal to or smaller than the first to third source images, and can have the same diameter value of the maximum possible length centered on the first reference point, the correction reference point, and the third reference point, respectively.
  • the same, smaller, or smaller range of the sizes of the images does not refer to a comparison of the sizes of the image files, but rather a comparison of the sizes of the displayed image areas.
  • FIG. 3 is a flowchart of a method for obtaining a lower limb alignment image using an X-ray partial image according to an embodiment of the present invention
  • FIGS. 4 to 8 are drawings showing examples of grids and images applied in each step of FIG. 3.
  • a method for obtaining a lower extremity alignment image using an X-ray partial image may start from a step (S11) of arranging the lower extremities of a human body on a grid and obtaining a first source image, a second source image, and a third source image each obtained by individually X-ray-photographing the hip joint, knee joint, and ankle joint, which are major joint parts of the lower extremities.
  • Fig. 4 illustrates an example of a grid in which the lower limbs of a human body are arranged
  • Fig. 5 illustrates an X-ray image of the entire lower limb taken together with the grid
  • Fig. 6 illustrates an example of a source image.
  • a grid forming a coordinate plane as shown in Fig. 4 can be formed on a bed on which a human body is placed in a lying state for X-ray photography of the lower extremities.
  • the C-arm X-ray equipment can move to take X-ray images of each location corresponding to the major joints of the lower extremities.
  • horizontal and vertical lines of the grid can be arranged at regular intervals to form a coordinate plane, and coordinate values can be assigned to each point on the grid.
  • Fig. 5 illustrates an example in which the entire lower limb is photographed on the grid illustrated in Fig. 4. Coordinate values can be assigned to each part of the photographed X-ray image, and accordingly, the distance between each point or the angle formed by a straight line can be derived.
  • the area actually photographed by the C-arm X-ray equipment (10) is the area indicated by R1, R2, and R3 in FIG. 5. That is, the image photographing the area indicated by R1, R2, and R3 in FIG. 5 becomes the source image as shown in FIG. 6.
  • An embodiment of the present invention appropriately processes these individual source images to create an aligned image as if the entire lower limb was photographed.
  • the distortion correction unit (21) can correct the distortion present in the first to third source images (R1-R3) (S12).
  • the distortion correction unit (21) can correct the deformation (distortion) of the human body parts and grids appearing in each of the first to third source images (R1-R3) and modify the image to appropriately rearrange the tilt.
  • the reference point extraction unit (22) can extract reference points (A, B, C) required for alignment from each of the first source image (R1), the second source image (R1), and the third source image (R1) and determine the coordinates thereof by referring to a grid representing a coordinate plane (S13).
  • the reference point extraction unit (22) can extract a first reference point (A) corresponding to the center point of the hip joint from the first source image (R1), a second reference point (C) corresponding to the midpoint of the knee joint from the second source image (R2), and a third reference point (B) corresponding to the midpoint of the ankle joint from the third source image (R3).
  • the technique of extracting the bone center point of the lower extremity joint from the source images by the reference point extraction unit (22) can be achieved through an image processing technology for X-ray images and an artificial intelligence network that has performed machine learning using a large amount of learning data in advance.
  • the reference point extraction unit (22) can determine the coordinate values of the extracted reference points (A, B, C) by referring to a grid forming a coordinate plane.
  • the reference point extraction unit (22) can determine a reference grid line (L*) to be referenced in generating a lower limb alignment image.
  • the reference grid line determined in step (S13) can be selected from among grid lines that appear commonly in each source image among the grids forming the coordinate plane used when taking an X-ray of the lower limb, and preferably, can be determined as a grid line that is closest to the reference point of each source image.
  • the reference point extraction unit (22) can calculate an offset (O) corresponding to the distance between the straight line connecting the first reference point (A) and the third reference point (B) and the second reference point (C) (S14).
  • the offset (O) corresponds to the distance between the midpoint of the knee joint of the lower limb that is aligned straightly, corresponding to the straight line connecting the center point of the hip joint and the midpoint of the ankle joint, and the midpoint of the knee joint of the lower limb that is actually X-rayed, and can be a numerical expression that can determine the degree of deformation of the entire lower limb.
  • step (S14) the offset (O) can be derived in various ways.
  • the offset (O) can be calculated by calculating the distance between the equation of the straight line passing through the reference point (A) and the reference point (B) and the coordinate of the reference point (C) on the coordinate plane with the horizontal axis of the grid as the x-axis and the vertical axis of the grid as the y-axis.
  • the coordinates of the modified reference point (C') which is the point where the line drawn from the reference point (C) to the straight line passing through the reference point (A) and the reference point (B) intersect, can also be calculated.
  • the offset (O) can be calculated using various information such as the derived coordinates, straight lines, and shapes, and the coordinates of the point (C') where the straight line passing through the reference point (C) and the alignment line (L a ) are orthogonal can also be easily obtained.
  • step (S15) the alignment image generation unit (23) can align the first to third source images (R1-R3) according to the direction of the determined reference grid line (L*) so that each source image (R1-R3) is arranged in a row in the lower direction.
  • step (S15) an example of the first to third source images (R1-R3) aligned in a row along the reference grid line (L*) is illustrated in FIG. 7. As shown in FIG. 7, in step (S15), each source image (R1-R3) can be aligned in that order so that the reference grid lines (L*) are aligned in a straight line with each other.
  • the alignment image generation unit (23) can extract a first alignment image (S1) centered on the first reference point (A) from the first source image (R1), as illustrated in FIGS. 7 and 8, and can extract a third alignment image (S3) centered on the third reference point (B) from the third source image (R3).
  • the alignment image generation unit (23) can extract a second alignment image (S2) centered on the modified reference point (C'), which is a point obtained by moving the second reference point (C) on the alignment line by the offset calculated in step (S15).
  • the alignment image generation unit (23) can obtain an alignment image of the lower body by aligning the extracted first to third alignment images in a row along an alignment line (L a ).
  • the alignment line (L a ) can be a straight line passing through the first reference point, the correction reference point, and the third reference point, and a straight line passing through the center of each alignment image.
  • the alignment image generation unit (23) can generate the first to third alignment images (S1-S3) so that their sizes are the same, are the same as or smaller than the source images (R1-R3), and have the same diameter value formed as long as possible centered on the first reference point (A), the correction reference point (C'), and the third reference point (B).
  • the distance between the alignment line (L a ) and the second reference point (C) is visually displayed in the second alignment image (S2), so that the degree of correction required can be easily recognized.
  • the method and system for obtaining a lower extremity alignment image using an X-ray partial image can obtain an alignment image of a bent lower extremity by accurately calculating an offset corresponding to the degree of deformation of the lower extremity by obtaining a partial image of the lower extremity using a grid representing one coordinate plane and appropriately processing the same. Accordingly, the method and system for obtaining a lower extremity alignment image using an X-ray partial image according to various embodiments of the present invention can be of great help in performing corrective osteotomy, including high tibial osteotomy, for correcting lower extremity bending (deformation) of the human body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Disclosed is a method for acquiring a leg alignment image using a partial X-ray image comprising the steps of: acquiring a first source image, a second source image, and a third source image obtained by respectively photographing a hip joint, a knee joint, and an ankle joint on a grid forming a single coordinate plane; determining positions of a first reference point, a second reference point, and a third reference point for aligning the leg in the first source image, the second source image, and the third source image; and calculating an offset corresponding to the distance between an alignment line connecting the first reference point and the third reference point and the second reference point on the basis of coordinate values of the first reference point and the third reference point on the coordinate plane.

Description

엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법 및 시스템Method and system for obtaining lower extremity alignment images using X-ray partial images

본 발명은 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법 및 시스템에 관한 것으로, 더욱 상세하게는 인체의 하지 변형을 교정하기 위한 근위경골절골술(high tibial osteotomy) 등을 포함한 교정수술(corrective osteotomy)을 실시하는 과정에서 획득되는 하지 각 관절의 부분 엑스레이 영상을 활용하여 하지 전체의 정렬 정도를 판단할 수 있는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법 및 시스템에 관한 것이다.The present invention relates to a method and system for obtaining an alignment image of a lower extremity using a partial X-ray image, and more particularly, to a method and system for obtaining an alignment image of a lower extremity using a partial X-ray image, which can determine the degree of alignment of the entire lower extremity by utilizing a partial X-ray image of each joint of the lower extremity obtained in the process of performing a corrective osteotomy, including a high tibial osteotomy, for correcting a lower extremity deformity of the human body.

일반적으로, 휘어진 다리, O-다리 및 X-다리 등의 명칭으로 알려진 내반슬 및 외반슬은 미용상으로 좋지 못할 뿐만 아니라, 정형외과학적으로도 특정 관절에 상대적으로 과도한 부하가 누적되어 연골 손상 및 퇴행성 관절염을 발생시키거나 악화시킬 수 있으므로 교정하는 것이 바람직하다.In general, genu varum and genu valgum, also known as bow legs, O-legs, and X-legs, are not only cosmetically unsightly, but also orthopedically desirable to correct because they can cause or worsen cartilage damage and degenerative arthritis by accumulating relatively excessive load on specific joints.

휘어진 다리의 교정을 위하여 근위경골절골술을 포함하여 다양한 교정절골술이 시행되는데 이러한 수술에서 가장 중요한 것은 수술 중 교정된 다리의 정렬을 정확하게 파악할 수 있어야 한다는 것이다.Various corrective osteotomy surgeries, including high tibial osteotomy, are performed to correct bowed legs. The most important thing in these surgeries is to accurately determine the alignment of the corrected legs during the surgery.

수술 전 수술실 외부에서 촬영하는 엑스레이 장비는 하지 전체의 정렬을 판단할 수 있는 영상의 촬영이나 합성이 가능한 것이나, 수술 중에 하지 전체의 정렬을 판단하기 위한 영상을 획득할 수 있는 엑스레이 촬영 장비는 현존하지 않는다.X-ray equipment that can be used outside the operating room before surgery can capture or synthesize images that can determine the alignment of the entire lower extremity, but there is currently no X-ray equipment that can obtain images to determine the alignment of the entire lower extremity during surgery.

수술 중 사용 가능한 엑스레이 촬영장비인 C-암(arm) 엑스레이 촬영 장비는 신체의 부분 촬영만 가능하며 하지 전체를 파악하기 위한 영상 획득 또는 합성 작업이 불가능하다. 현재 수술 중에 하지 전체의 정렬을 파악하기 위하여 C-암 엑스레이촬영 등을 이용하여 하지의 고관절 부분, 무릎관절 부분 및 발목 부분을 개별 촬영하고 각각의 개별 촬영된 영상을 적절하게 정렬하는 방식이 주로 채택되고 있다.C-arm X-ray equipment, which can be used during surgery, can only capture partial images of the body and cannot capture or synthesize images to determine the entire lower extremity. Currently, to determine the alignment of the entire lower extremity during surgery, C-arm X-ray equipment is mainly used to individually capture images of the hip joint, knee joint, and ankle joint, and then appropriately align the individual images.

한국등록특허 제10-1938361호와 같은 종래의 하지 정렬 영상 획득 방법은, 하지 각 부위의 개별 영상을 이용하여 고관절의 중심점과 발목관절의 중간점을 잇는 가상선이 무릎관절에서 지나가는 위치를 파악하여 하지 정렬을 파악할 수 있는 영상을 획득할 수 있게 된다.A conventional method for obtaining an image of the alignment of the lower extremities, such as Korean Patent No. 10-1938361, uses individual images of each part of the lower extremities to determine the position where an imaginary line connecting the center point of the hip joint and the midpoint of the ankle joint passes through the knee joint, thereby obtaining an image capable of determining the alignment of the lower extremities.

그러나, 종래의 하지 정렬 영상 획득 방법은 하지 정렬을 위한 각 부위의 부분 영상이 사용되기에, C-암 엑스레이촬영 영상만으로는 전체 하지에 대한 정렬 영상 생성이 불가능하고, 엑스레이의 고유 특성인 투사형태가 원추방사형이고, 전자기파의 반사, 굴절, 회절, 간섭 현상에 의해 영상 왜곡이 발생되며, 엑스레이 촬영 장치의 엑스레이 감지부의 가장자리 부분에 일부 굴곡면이 있는 특성에 의해서도 촬영 영상의 변형이 발생한다. 이런 영상 왜곡의 문제를 해결하기 위해 C-암 엑스레이 촬영을 하는 동안 실시간으로 영상을 보고 각 부위의 기준점과 엑스레이 발생부의 중심점을 최대한 일치시켜 촬영한 영상을 획득하는데, 이런 과정이 어렵고 시간 소요가 많기 때문에 하지 정렬 영상의 생성에 어려움이 있다.However, since the conventional method of acquiring lower extremity alignment images uses partial images of each part for lower extremity alignment, it is impossible to create alignment images for the entire lower extremity with only C-arm X-ray images. In addition, the projection shape, which is a unique characteristic of X-rays, is a conical shape, and image distortion occurs due to reflection, refraction, diffraction, and interference phenomena of electromagnetic waves. In addition, deformation of the captured image occurs due to the characteristic of some curved surfaces at the edge of the X-ray detector of the X-ray imaging device. In order to solve this problem of image distortion, the image is viewed in real time during C-arm X-ray imaging, and the captured image is acquired by matching the reference point of each part and the center point of the X-ray generation part as much as possible. However, this process is difficult and time-consuming, making it difficult to create lower extremity alignment images.

상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The matters described as background technology above are only intended to enhance understanding of the background of the present invention, and should not be taken as an admission that they correspond to prior art already known to those skilled in the art.

이에 본 발명은, 인체의 변형 정도에 해당하는 오프셋을 정확히 계산하여 근위경골절골술(high tibial osteotomy) 등을 포함한 교정수술(corrective osteotomy)을 실시하는데 도움을 줄 수 있는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법 및 시스템을 제공하는 것을 해결하고자 하는 기술적 과제로 한다.Accordingly, the present invention aims to provide a method and system for obtaining a lower extremity alignment image using an X-ray partial image, which can help perform corrective osteotomy, including high tibial osteotomy, by accurately calculating an offset corresponding to the degree of deformation of the human body.

본 발명이 해결하고자 하는 과제는 이상에서 기술한 내용으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 해결 과제 및 장점들은 이하의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명이 속하는 기술 분야의 통상의 기술자라면 본 발명의 해결 과제 및 장점들이 청구범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The problems to be solved by the present invention are not limited to those described above. Other problems and advantages of the present invention not mentioned above can be understood through the following description and will be more clearly understood through the embodiments of the present invention. Furthermore, those skilled in the art will readily appreciate that the problems and advantages of the present invention can be realized by the means and combinations thereof set forth in the claims.

상기 기술적 과제를 해결하기 위한 수단으로서 본 발명은, 하나의 좌표면을 형성하는 그리드 상에서 고관절, 무릎관절 및 발목관절 부분을 각각 촬영한 제1 소스영상, 제2 소스영상 및 제3 소스영상을 획득하는 단계; 상기 제1 소스영상, 제2 소스영상 및 제3 소스영상에서 하지 정렬을 위한 제1 기준점, 제2 기준점 및 제3 기준점의 위치를 결정하는 단계; 및 상기 제1 기준점과 상기 제3 기준점의 상기 좌표면 상에서의 좌표값을 기반으로, 상기 제1 기준점과 상기 제3 기준점을 잇는 선과 상기 제2 기준점 사이의 거리에 해당하는 오프셋을 연산하는 단계를 포함하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법을 제공한다.As a means for solving the above technical problem, the present invention provides a method for obtaining a lower extremity alignment image using an X-ray partial image, the method including the steps of: obtaining a first source image, a second source image, and a third source image, each of which is photographed on a grid forming a single coordinate plane, of a hip joint, a knee joint, and an ankle joint; determining positions of a first reference point, a second reference point, and a third reference point for lower extremity alignment in the first source image, the second source image, and the third source image; and calculating an offset corresponding to a distance between a line connecting the first reference point and the third reference point and the second reference point based on coordinate values of the first reference point and the third reference point on the coordinate plane.

본 발명의 실시예에서, 상기 제1 소스영상, 제2 소스영상 및 제3 소스영상 각각에 영상 왜곡으로 나타나는 인체부위 및 그리드의 변형을 보정하도록 영상을 수정하는 단계를 더 포함할 수 있다.In an embodiment of the present invention, a step of modifying an image to correct deformation of a human body part and a grid that appear as image distortion in each of the first source image, the second source image, and the third source image may be further included.

본 발명의 실시예에서, 상기 그리드 상에서 상기 제1 소스영상, 제2 소스영상 및 제3 소스영상을 정렬하기 위한 기준 그리드선을 결정하는 단계를 더 포함할 수 있다.In an embodiment of the present invention, the method may further include a step of determining a reference grid line for aligning the first source image, the second source image, and the third source image on the grid.

본 발명의 실시예에서, 상기 제2 소스영상에서 상기 제2 기준점을 상기 제1 기준점과 상기 제3 기준점을 잇는 선 상으로 상기 오프셋 만큼 이동시킨 수정 기준점을 중심으로 하는 제2 정렬영상을 추출하는 단계를 더 포함할 수 있다.In an embodiment of the present invention, the method may further include a step of extracting a second alignment image centered on a modified reference point, which is obtained by moving the second reference point from the second source image by the offset along a line connecting the first reference point and the third reference point.

본 발명의 실시예에서, 상기 제1 소스영상에서 상기 제1 기준점을 중심으로 하는 제1 정렬영상을 추출하며, 상기 제3 소스영상에서 상기 제3 기준점을 중심으로 하는 제3 정렬영상을 추출하는 단계; 및 상기 제1 정렬영상, 제2 정렬영상 및 제3 정렬영상을 상기 제1 기준점과 상기 수정 기준점과 상기 제3 기준점을 잇는 선인 정렬선이 일치하도록 순서대로 일렬로 정렬하는 단계를 더 포함할 수 있다.In an embodiment of the present invention, the method may further include: extracting a first alignment image centered on the first reference point from the first source image, extracting a third alignment image centered on the third reference point from the third source image; and aligning the first alignment image, the second alignment image, and the third alignment image in a row in sequence so that an alignment line, which is a line connecting the first reference point, the modified reference point, and the third reference point, is aligned.

본 발명의 실시예에서, 상기 제1 정렬영상, 상기 제2 정렬영상 및 상기 제3 정렬영상의 사이즈는 상호 동일할 수 있다.In an embodiment of the present invention, the sizes of the first alignment image, the second alignment image, and the third alignment image may be the same.

본 발명의 실시예에서, 상기 제1 기준점은 상기 제1 소스영상에 나타나는 고관절의 중심점이고, 상기 제2 기준점은 상기 제2 소스영상에 나타나는 무릎관절의 중간점이며, 상기 제3 기준점은 상기 제3 소스영상에 나타나는 발목관절의 중간점일 수 있다.In an embodiment of the present invention, the first reference point may be the center point of the hip joint appearing in the first source image, the second reference point may be the midpoint of the knee joint appearing in the second source image, and the third reference point may be the midpoint of the ankle joint appearing in the third source image.

본 발명의 실시예에서, 상기 제1 소스영상, 제2 소스영상 및 제3 소스영상을 상기 기준 그리드선이 서로 일치하도록 순서대로 일렬로 정렬하는 단계를 더 포함할 수 있다.In an embodiment of the present invention, a step of sequentially aligning the first source image, the second source image, and the third source image in a row so that the reference grid lines coincide with each other may be further included.

상기 기술적 과제를 해결하기 위한 다른 수단으로서 본 발명은, 하나의 좌표면을 형성하는 그리드 상에서 하지의 고관절, 무릎관절 및 발목관절 부분을 각각 촬영한 제1 소스영상, 제2 소스영상 및 제3 소스영상에서 하지 정렬을 위한 제1 기준점, 제2 기준점 및 제3 기준점의 위치를 결정하고, 상기 제1 기준점과 상기 제3 기준점의 상기 좌표면 상에서의 좌표값을 기반으로, 상기 제1 기준점과 상기 제3 기준점을 잇는 선과 상기 제2 기준점 사이의 거리에 해당하는 오프셋을 연산하는 영상 처리부를 포함하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 시스템을 제공한다.As another means for solving the above technical problem, the present invention provides a system for obtaining a lower extremity alignment image using an X-ray partial image, including an image processing unit that determines the positions of a first reference point, a second reference point, and a third reference point for lower extremity alignment in a first source image, a second source image, and a third source image, which respectively capture the hip joint, the knee joint, and the ankle joint of the lower extremity on a grid forming one coordinate plane, and calculates an offset corresponding to the distance between a line connecting the first reference point and the third reference point and the second reference point based on the coordinate values of the first reference point and the third reference point on the coordinate plane.

본 발명의 실시예에서, 상기 영상 처리부는, 상기 제1 소스영상, 제2 소스영상 및 제3 소스영상 각각에 영상 왜곡으로 나타나는 인체부위 및 그리드의 변형을 보정하도록 영상을 수정할 수 있다.In an embodiment of the present invention, the image processing unit can modify the image to correct deformation of a human body part and a grid that appear as image distortion in each of the first source image, the second source image, and the third source image.

본 발명의 실시예에서, 상기 영상 처리부는, 상기 그리드 상에서 상기 제1 내지 제3 소스영상을 정렬하기 위한 기준 그리드선을 결정할 수 있다.In an embodiment of the present invention, the image processing unit can determine a reference grid line for aligning the first to third source images on the grid.

본 발명의 실시예에서, 상기 영상 처리부는, 상기 제2 소스영상에서 상기 제2 기준점을 상기 오프셋 만큼 상기 제1 기준점과 상기 제3 기준점을 잇는 선 상으로 이동시킨 수정 기준점을 중심으로 하는 제2 정렬영상을 추출할 수 있다.In an embodiment of the present invention, the image processing unit can extract a second aligned image centered on a modified reference point in which the second reference point is moved by the offset amount along a line connecting the first reference point and the third reference point in the second source image.

본 발명의 실시예에서, 상기 영상 처리부는, 상기 제1 소스영상에서 상기 제1 기준점을 중심으로 하는 제1 정렬영상을 추출하며, 상기 제3 소스영상에서 상기 제3 기준점을 중심으로 하는 제3 정렬영상을 추출하며, 상기 제1 기준점, 상기 수정 기준점 및 상기 제3 기준점을 잇는 정렬선이 일치하도록 순서대로 상기 제1 정렬영상, 제2 정렬영상 및 제3 정렬영상을 일렬로 정렬할 수 있다.In an embodiment of the present invention, the image processing unit may extract a first alignment image centered on the first reference point from the first source image, extract a third alignment image centered on the third reference point from the third source image, and sequentially align the first alignment image, the second alignment image, and the third alignment image so that alignment lines connecting the first reference point, the modified reference point, and the third reference point are aligned.

본 발명의 실시예에서, 상기 제1 정렬영상, 상기 제2 정렬영상 및 상기 제3 정렬영상의 사이즈는 동일하고, 상기 제1 소스영상, 상기 제2 소스영상 및 제3 소스영상보다 같거나 작으며, 각각 제1 기준점, 수정 기준점 및 제3 기준점을 중심으로 가능한 최대 길이의 동일한 지름값을 가질 수 있다.In an embodiment of the present invention, the sizes of the first alignment image, the second alignment image, and the third alignment image are the same, are equal to or smaller than the first source image, the second source image, and the third source image, and can have the same diameter value of the maximum possible length centered on the first reference point, the correction reference point, and the third reference point, respectively.

본 발명의 실시예에서, 상기 제1 기준점은 상기 제1 소스영상에 나타나는 고관절의 중심점이고, 상기 제2 기준점은 상기 제2 소스영상에 나타나는 무릎관절의 중간점이며, 상기 제3 기준점은 상기 제3 소스영상에 나타나는 발목관절의 중간점일 수 있다.In an embodiment of the present invention, the first reference point may be the center point of the hip joint appearing in the first source image, the second reference point may be the midpoint of the knee joint appearing in the second source image, and the third reference point may be the midpoint of the ankle joint appearing in the third source image.

본 발명의 실시예에서, 상기 영상 처리부는, 사전 학습된 인공 지능 네트워크를 이용하여 상기 제1 소스영상, 제2 소스영상 및 제3 소스영상에서 상기 제1 기준점, 제2 기준점 및 제3 기준점을 각각 추출할 수 있다.In an embodiment of the present invention, the image processing unit can extract the first reference point, the second reference point, and the third reference point from the first source image, the second source image, and the third source image, respectively, using a pre-learned artificial intelligence network.

본 발명의 실시예에서, 상기 영상 처리부는, 상기 제1 소스영상, 제2 소스영상 및 제3 소스영상을 상기 기준 그리드선이 일치하도록 순서대로 일렬로 정렬할 수 있다.In an embodiment of the present invention, the image processing unit can sequentially align the first source image, the second source image, and the third source image in a row so that the reference grid lines match.

상기 엑스레이 부분 영상을 이용한 하지 정렬 정보 획득 방법 및 시스템에 따르면, 하나의 좌표면을 나타내는 그리드를 활용하여 하지의 부분영상을 획득하고 이를 적절하게 처리함으로써 하지의 변형 정도에 해당하는 오프셋을 정확히 계산하여 휘어진 하지의 정렬 영상을 획득할 수 있다. 이에 따라,상기 엑스레이 부분 영상을 이용한 하지 정렬 정보 획득 방법 및 시스템에 따르면, 정밀한 근위경골절골술(high tibial osteotomy) 등을 포함한 교정수술(corrective osteotomy)의 실시가 가능하여 그 성공율을 크게 향상시킬 수 있다.According to the method and system for obtaining lower extremity alignment information using the above-described partial X-ray image, a partial image of the lower extremity is obtained by utilizing a grid representing one coordinate plane, and by appropriately processing the same, an offset corresponding to the degree of deformation of the lower extremity can be accurately calculated to obtain an alignment image of the bent lower extremity. Accordingly, according to the method and system for obtaining lower extremity alignment information using the above-described partial X-ray image, corrective osteotomy, including precise high tibial osteotomy, can be performed, thereby greatly improving the success rate thereof.

본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects that can be obtained from the present invention are not limited to the effects mentioned above, and other effects not mentioned can be clearly understood by a person having ordinary skill in the art to which the present invention belongs from the description below.

본 명세서에서 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 용이하게 이해시키는 역할을 하는 것이므로, 본 발명은 다음의 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.The following drawings attached to this specification illustrate preferred embodiments of the present invention, and together with the detailed description of the invention described below, serve to facilitate a better understanding of the technical idea of the present invention. Therefore, the present invention should not be interpreted as being limited to the matters described in the following drawings.

도 1은 본 발명의 실시예에 따른 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 시스템을 도시한 블록 구성도이다.FIG. 1 is a block diagram illustrating a system for acquiring a lower limb alignment image using an X-ray partial image according to an embodiment of the present invention.

도 2는 본 발명의 실시예에 따른 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 시스템의 영상 처리부를 더욱 상세하게 도시한 도면이다.FIG. 2 is a drawing illustrating in more detail the image processing unit of a system for obtaining a lower limb alignment image using an X-ray partial image according to an embodiment of the present invention.

도 3은 본 발명의 실시예에 따른 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법의 흐름도이다.FIG. 3 is a flowchart of a method for obtaining a lower limb alignment image using an X-ray partial image according to an embodiment of the present invention.

도 4 내지 도 8은 도 3의 각 단계에서 적용되는 그리드 및 영상의 예를 도시한 도면이다.Figures 4 to 8 are drawings showing examples of grids and images applied in each step of Figure 3.

이하, 첨부된 도면을 참조하여 본 발명의 다양한 실시예에 따른 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법 및 시스템을 상세하게 설명한다.Hereinafter, a method and system for obtaining a lower limb alignment image using an X-ray partial image according to various embodiments of the present invention will be described in detail with reference to the attached drawings.

이하에서 설명되는 실시예들에 대한 특정한 구조적 또는 기능적 설명들은 단지 예시를 위한 목적으로 개시된 것으로서, 다양한 형태로 변경되어 실시될 수 있다. 따라서, 실시예들은 특정한 개시형태로 한정되는 것이 아니며, 본 명세서의 범위는 기술적 사상에 포함되는 변경, 균등물, 또는 대체물을 포함한다.The specific structural or functional descriptions of the embodiments described below are disclosed for illustrative purposes only and may be modified and implemented in various forms. Accordingly, the embodiments are not limited to the specific disclosed form, and the scope of this specification includes modifications, equivalents, or alternatives that fall within the technical scope.

제1 또는 제2 등의 용어를 다양한 구성요소들을 설명하는데 사용될 수 있지만, 이런 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 해석되어야 한다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로도 명명될 수 있다.Although terms such as "first" or "second" may be used to describe various components, these terms should be interpreted solely to distinguish one component from another. For example, a first component may be referred to as a second component, and similarly, a second component may also be referred to as a first component.

어떤 구성요소가 다른 구성요소에 "연결되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.When it is said that a component is "connected" to another component, it should be understood that it may be directly connected or connected to that other component, but there may also be other components in between.

단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설명된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함으로 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, the terms "comprises" or "has" should be understood to indicate the presence of a described feature, number, step, operation, component, part, or combination thereof, but not to exclude the possibility of the presence or addition of one or more other features, numbers, steps, operations, components, parts, or combinations thereof.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 해당 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person of ordinary skill in the art. Terms defined in commonly used dictionaries should be interpreted to have a meaning consistent with their meaning in the context of the relevant technology, and will not be interpreted in an idealized or overly formal sense unless explicitly defined herein.

먼저, 본 발명의 실시예에 따른 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법을 구현하기 위한 시스템에 대해 설명하기로 한다.First, a system for implementing a method for obtaining a lower limb alignment image using an X-ray partial image according to an embodiment of the present invention will be described.

도 1은 본 발명의 실시예에 따른 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 시스템을 도시한 블록 구성도이고, 도 2는 본 발명의 실시예에 따른 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 시스템의 영상 처리부를 더욱 상세하게 도시한 도면이다. 본 발명의 실시예에 따른 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법은 도 1 및 도 2에 도시된 것과 같은 시스템에 의해 구현될 수 있다.FIG. 1 is a block diagram illustrating a system for acquiring lower extremity alignment images using X-ray partial images according to an embodiment of the present invention, and FIG. 2 is a diagram illustrating an image processing unit of the system for acquiring lower extremity alignment images using X-ray partial images according to an embodiment of the present invention in more detail. A method for acquiring lower extremity alignment images using X-ray partial images according to an embodiment of the present invention can be implemented by a system such as that illustrated in FIG. 1 and FIG. 2.

도 1을 참조하면, 본 발명의 실시예에 따른 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 시스템은, 하지의 개별 부분을 엑스레이 촬영하여 복수의 소스영상을 생성하는 엑스레이 촬영 장치(10)와, 엑스레이 촬영 장치에서 생성된 복수의 소스영상을 이용하여 하지의 정렬 영상을 생성하는 영상 처리부(20)를 포함할 수 있다.Referring to FIG. 1, a system for obtaining an alignment image of a lower extremity using an X-ray partial image according to an embodiment of the present invention may include an X-ray photographing device (10) that X-rays individual parts of a lower extremity to generate a plurality of source images, and an image processing unit (20) that generates an alignment image of a lower extremity using the plurality of source images generated by the X-ray photographing device.

엑스레이 촬영 장치(10)는 당 기술분야에 사용되고 있는 다양한 엑스레이 촬영 장치가 적용될 수 있으며, 특히 누워 있는 상태의 인체의 하지를 엑스레이 촬영하되 하지 전체를 하나의 좌표면을 형성하는 그리드 상에 위치시키고 하지의 주요 관절 부분에 대한 엑스레이 영상을 획득할 수 있는 C-arm 엑스레이 촬영 장치일 수 있다.The X-ray photographing device (10) can be applied to various X-ray photographing devices used in the art, and in particular, it can be a C-arm X-ray photographing device that can take X-ray images of the lower extremities of a human body in a lying state, position the entire lower extremities on a grid forming a single coordinate plane, and obtain X-ray images of major joint parts of the lower extremities.

더욱 구체적으로, 엑스레이 촬영 장치(10)는 하나의 좌표면을 형성하는 그리드 상에서 하지의 고관절, 무릎관절 및 발목관절 부분을 각각 촬영한 제1 소스영상, 제2 소스영상 및 제3 소스영상을 생성할 수 있다.More specifically, the X-ray photographing device (10) can generate a first source image, a second source image, and a third source image, which respectively photograph the hip joint, knee joint, and ankle joint portions of the lower extremity on a grid forming one coordinate plane.

엑스레이 촬영 장치(10)에 의해 생성된 제1 소스영상, 제2 소스영상 및 제3 소스영상은 영상 처리부(20)에 제공되고, 영상 처리부(20)는 입력 받은 제1 소스영상, 제2 소스영상 및 제3 소스영상에 대한 영상 처리를 통해 하지의 정렬 영상을 생성할 수 있다.The first source image, the second source image, and the third source image generated by the X-ray photographing device (10) are provided to the image processing unit (20), and the image processing unit (20) can generate an alignment image of the lower extremity through image processing on the first source image, the second source image, and the third source image received.

영상 처리부(20)는, 입력 받은 소스영상들에 대한 처리 알고리즘을 수행하여 원하는 형태의 하지 정렬 영상을 획득하는 일종의 컴퓨팅 시스템으로, 사전 설정된 알고리즘을 수행하는 프로세서와 영상 처리 알고리즘 및 영상 처리 과정에서 필요한 정보를 저장하기 위한 저장부를 포함하는 컴퓨팅 시스템일 수 있다.The image processing unit (20) is a type of computing system that performs a processing algorithm on input source images to obtain a desired type of alignment image, and may be a computing system that includes a processor that performs a preset algorithm and a storage unit for storing information required in the image processing algorithm and image processing process.

도 2를 참조하면, 영상 처리부(20)는, 왜곡 보정부(21), 기준점 추출부(22), 정렬영상 생성부(23)를 포함하여 구성될 수 있다.Referring to FIG. 2, the image processing unit (20) may be configured to include a distortion correction unit (21), a reference point extraction unit (22), and an alignment image generation unit (23).

왜곡 보정부(21)는 엑스레이 촬영 장치(10)에서 생성된 제1 소스영상, 제2 소스영상 및 제3 소스영상을 입력 받고, 각각의 소스영상에 내 발생한 왜곡을 보정하는 요소이다. The distortion correction unit (21) is an element that receives the first source image, the second source image, and the third source image generated from the X-ray photographing device (10) and corrects the distortion generated in each source image.

입력 받는 각각의 소스영상은 엑스레이 촬영 장치(10)의 설정 상태에 따라 촬영된 인체 부위 및 그리드선의 형태가 변형되는 등 왜곡을 포함할 수 있다. 왜곡 보정부(21)는 제1 소스영상, 제2 소스영상 및 제3 소스영상 각각에 나타나는 인체 부위와 본 발명에서 사용하는 그리드의 왜곡을 보정하고, 기울어져 있을 수 있는 각각의 소스영상을 바르게 재배치하도록 영상을 수정할 수 있다. 왜곡 보정부(21)에 의해 수행되는 왜곡 보정은 영상 처리 분야에 공지된 다양한 영상 보정 알고리즘을 통해 구현될 수 있다.Each input source image may include distortion, such as deformation of the shape of the photographed human body part and grid lines depending on the setting status of the X-ray photographing device (10). The distortion correction unit (21) may correct distortion of the human body part appearing in each of the first source image, the second source image, and the third source image and the grid used in the present invention, and may modify the image to correctly rearrange each source image that may be tilted. The distortion correction performed by the distortion correction unit (21) may be implemented through various image correction algorithms known in the field of image processing.

기준점 추출부(22)는 하지의 정렬영상을 생성하는데 참조되는 기준 그리드선을 결정하고, 제1 소스영상, 제2 소스영상 및 제3 소스영상 각각에서 하지 정렬에 필요한 기준점을 추출할 수 있다.The reference point extraction unit (22) determines a reference grid line to be referenced in generating an alignment image of the lower limb, and can extract reference points necessary for lower limb alignment from each of the first source image, the second source image, and the third source image.

또한, 기준점 추출부(22)는 제1 소스영상, 제2 소스영상 및 제3 소스영상 각각에서 하지 정렬에 필요한 기준점을 추출하고 좌표면을 나타내는 그리드를 참조하여 그 위치(좌표)를 결정할 수 있다.In addition, the reference point extraction unit (22) can extract reference points required for alignment from each of the first source image, the second source image, and the third source image, and determine their positions (coordinates) by referring to a grid representing a coordinate plane.

예를 들어, 기준점 추출부(22)는 제1 소스영상에서 고관절의 중심점에 해당하는 제1 기준점을 추출할 수 있고, 제2 소스영상에서 무릎관절의 중간 지점에 해당하는 제2 기준점을 추출할 수 있으며, 제3 소스영상에서 발목관절의 중간 지점에 해당하는 제3 기준점을 추출할 수 있다. For example, the reference point extraction unit (22) can extract a first reference point corresponding to the center point of the hip joint from the first source image, a second reference point corresponding to the midpoint of the knee joint from the second source image, and a third reference point corresponding to the midpoint of the ankle joint from the third source image.

기준점 추출부(22)가 소스 영상들 내에서 하지 관절의 뼈 중심점 또는 중간점을 추출하는 기법은, 엑스레이 영상에 대한 영상처리 기술 및 사전에 많은 학습 데이터를 이용한 기계 학습을 수행한 인공 지능 네트워크를 통해 이뤄질 수 있다. 즉, 투시된 인체 구조가 중첩되어 보여지는 엑스레이 영상은 경계면과 선이 불명확하고, 흑백계열로 구성되어 색상의 차이를 구분하기가 어려워 영상 필터링 기법을 적용하고, 이후 추출하고자 하는 지점에 가장 근접한 계수들을 분석하여 구현할 수 있다, 또한, 영상에서 특정 지점을 추출하도록 마련된 인공 지능 네트워크에 사전 마련된 다량의 학습 데이터를 입력하여 기계 학습시키고 그에 대한 검증을 수행한 이후 이를 적용하여 기준점 추출부(22)를 구현할 수 있다.The technique of the reference point extraction unit (22) extracting the bone center point or midpoint of the lower extremity joint within the source images can be achieved through an image processing technology for X-ray images and an artificial intelligence network that has performed machine learning using a large amount of learning data in advance. That is, the X-ray image in which the transparent human body structure is overlapped has unclear boundaries and lines, and is composed of black and white series, making it difficult to distinguish the difference in color, so an image filtering technique can be applied, and then the coefficients closest to the point to be extracted can be analyzed and implemented. In addition, the reference point extraction unit (22) can be implemented by inputting a large amount of learning data prepared in advance into an artificial intelligence network designed to extract a specific point from an image, performing machine learning, performing verification thereon, and then applying the same.

또한, 기준점 추출부(22)는 하지 정렬영상을 생성하는데 참조되는 기준 그리드선을 결정할 수 있다. 기준 그리드선은 하지에 대한 엑스레이 촬영시 사용된 좌표면을 형성하는 그리드 중 각 소스 영상에서 공통으로 나타나는 그리드선 중 하나가 선택될 수 있으며, 바람직하게는 각 소스영상들의 기준점에 가장 가까운 그리드 선으로 결정될 수 있다.In addition, the reference point extraction unit (22) can determine a reference grid line to be used as a reference for generating a lower limb alignment image. The reference grid line may be selected from among the grid lines that commonly appear in each source image among the grids forming the coordinate plane used when taking an X-ray of the lower limb, and preferably, the grid line may be determined as the grid line closest to the reference point of each source image.

또한, 기준점 추출부(22)는 추출된 기준점들에 대해 좌표면을 형성하는 그리드를 참조하여 그 좌표값을 결정할 수 있다. 기준점 추출부(22)는 이 기준점을 이용하여 제1 기준점과 제3 기준점을 잇는 직선과 제2 기준점 사이의 거리에 해당하는 오프셋을 연산할 수 있다. 오프셋을 연산하는 구체적인 기법에 대해서는 후술하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법의 실시예에 대한 설명에서 더욱 상세하게 설명하기로 한다.In addition, the reference point extraction unit (22) can determine the coordinate values of the extracted reference points by referring to the grid forming a coordinate plane. The reference point extraction unit (22) can use the reference points to calculate an offset corresponding to the distance between the straight line connecting the first reference point and the third reference point and the second reference point. The specific technique for calculating the offset will be described in more detail in the description of an embodiment of a method for obtaining a lower limb alignment image using an X-ray partial image, which will be described later.

정렬영상 생성부(23)는 결정된 기준 그리드선이 일치하도록 일렬로 제1 내지 제3 소스영상을 배열한 영상을 생성할 수 있다.The aligned image generation unit (23) can generate an image in which the first to third source images are arranged in a row so that the determined reference grid lines match.

또한, 정렬영상 생성부(23)는, 기준점 추출부(22)에서 연산된 오프셋을 기반으로 제2 기준점을 지나는 직선이 제1 기준점과 제3 기준점을 잇는 직선과 직교하는 점인 수정 기준점을 생성하고, 제1 기준점, 제3 기준점 및 수정 기준점을 지나는 정렬선을 표시한 정렬 영상을 생성할 수 있다.In addition, the alignment image generation unit (23) can generate a correction reference point, which is a point where a straight line passing through the second reference point is orthogonal to a straight line connecting the first reference point and the third reference point, based on the offset calculated in the reference point extraction unit (22), and can generate an alignment image that displays an alignment line passing through the first reference point, the third reference point, and the correction reference point.

정렬영상 생성부(23)는, 제1 소스영상에서 제1 기준점을 중심으로 하는 제1 정렬영상을 추출하고, 제2 소스영상에서 수정 기준점을 중심으로 하는 제2 소스영상을 추출하며, 제3 소스영상에서 제3 기준점을 중심으로 하는 제3 정렬영상을 추출할 수 있다.The alignment image generation unit (23) can extract a first alignment image centered on a first reference point from a first source image, extract a second source image centered on a modified reference point from a second source image, and extract a third alignment image centered on a third reference point from a third source image.

이어, 정렬영상 생성부(23)는 추출된 제1 내지 제3 정렬영상을 정렬선이 일치하도록 일렬로 정렬하여 하지의 최종적인 정렬 영상을 획득할 수 있다. 이 때, 제1 내지 제3 정렬영상의 크기는 제1 내지 제3 소스영상보다 같거나 작은 범위이며, 각각 제1 기준점, 수정 기준점 및 제3 기준점을 중심으로 가능한 최대 길이의 동일한 지름값을 가질 수 있다. 여기서, 영상의 크기가 같다, 작다 혹은 작은 범위라는 것은, 영상 파일의 크기를 비교한 것이 아니라 표시되는 영상 영역의 크기를 비교한 것이다.Next, the alignment image generation unit (23) can align the extracted first to third alignment images in a row so that the alignment lines match, thereby obtaining the final alignment image of the lower extremity. At this time, the sizes of the first to third alignment images are in a range equal to or smaller than the first to third source images, and can have the same diameter value of the maximum possible length centered on the first reference point, the correction reference point, and the third reference point, respectively. Here, the same, smaller, or smaller range of the sizes of the images does not refer to a comparison of the sizes of the image files, but rather a comparison of the sizes of the displayed image areas.

전술한 것과 같은 시스템에 의해 구현되는 본 발명의 실시예에 따른 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법을 상세하게 설명하기로 한다.A method for obtaining a lower limb alignment image using an X-ray partial image according to an embodiment of the present invention implemented by a system as described above will be described in detail.

도 3은 본 발명의 실시예에 따른 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법의 흐름도이고, 도 4 내지 도 8은 도 3의 각 단계에서 적용되는 그리드 및 영상의예를 도시한 도면이다.FIG. 3 is a flowchart of a method for obtaining a lower limb alignment image using an X-ray partial image according to an embodiment of the present invention, and FIGS. 4 to 8 are drawings showing examples of grids and images applied in each step of FIG. 3.

본 발명의 실시예에 따른 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법은, 그리드 상에 인체의 하지를 배치하고 하지의 주요 관절 부분에 해당하는 고관절, 무릎관절 및 발목관절 부분을 각각 개별적으로 엑스레이 촬영한 제1 소스영상, 제2 소스영상 및 제3 소스영상을 획득하는 단계(S11)로부터 시작될 수 있다.A method for obtaining a lower extremity alignment image using an X-ray partial image according to an embodiment of the present invention may start from a step (S11) of arranging the lower extremities of a human body on a grid and obtaining a first source image, a second source image, and a third source image each obtained by individually X-ray-photographing the hip joint, knee joint, and ankle joint, which are major joint parts of the lower extremities.

도 4는 인체의 하지가 배치되는 그리드의 일례를 도시한 것이며, 도 5는 그리드와 함께 촬영된 하지 전체의 엑스레이 영상을 도시한 것이며, 도 6은 소스영상의 예를 도시한 것이다.Fig. 4 illustrates an example of a grid in which the lower limbs of a human body are arranged, Fig. 5 illustrates an X-ray image of the entire lower limb taken together with the grid, and Fig. 6 illustrates an example of a source image.

하지의 엑스레이 촬영을 위해 인체가 누운 상태로 배치되는 베드 상에는 도 4에 도시된 것과 같은 좌표면을 형성하는 그리드가 형성될 수 있으며, 이러한 그리드 상에 누운 상태의 인체가 배치되면 C-arm 엑스레이 장비가 이동하면서 하지의 주요 관절에 해당하는 위치를 각각 엑스레이 촬영할 수 있다.A grid forming a coordinate plane as shown in Fig. 4 can be formed on a bed on which a human body is placed in a lying state for X-ray photography of the lower extremities. When a human body is placed in a lying state on this grid, the C-arm X-ray equipment can move to take X-ray images of each location corresponding to the major joints of the lower extremities.

도 4에 도시된 것과 같이 그리드의 가로선 및 세로선이 일정 간격으로 배치되어 좌표면을 형성할 수 있으며, 그리드 상의 각 점에 대해서는 좌표값이 부여될 수 있다.As shown in Fig. 4, horizontal and vertical lines of the grid can be arranged at regular intervals to form a coordinate plane, and coordinate values can be assigned to each point on the grid.

도 5는 도 4에 도시된 그리드 상에서 하지 전체가 촬영된 경우의 예를 도시한 것으로, 촬영된 엑스레이 영상의 각 부분에 대해서 좌표값이 부여될 수 있으며, 그에 따라 각 점간 거리나 직선이 이루는 각도 등이 도출될 수 있다.Fig. 5 illustrates an example in which the entire lower limb is photographed on the grid illustrated in Fig. 4. Coordinate values can be assigned to each part of the photographed X-ray image, and accordingly, the distance between each point or the angle formed by a straight line can be derived.

한편, 실제 C-arm 엑스레이 장비(10)에 의해 촬영되는 부분은 도 5의 R1, R2, R3로 표시된 영역이 된다. 즉, 도 5에서 R1, R2, R3로 표시된 영역을 촬영한 영상이 도 6에 도시된 것과 같은 소스 영상이 된다. 본 발명의 실시예는 이러한 개별 소스영상을 적절하게 처리하여 하지 전체를 촬영한 것과 같이 정렬된 영상을 생성하는 것이다.Meanwhile, the area actually photographed by the C-arm X-ray equipment (10) is the area indicated by R1, R2, and R3 in FIG. 5. That is, the image photographing the area indicated by R1, R2, and R3 in FIG. 5 becomes the source image as shown in FIG. 6. An embodiment of the present invention appropriately processes these individual source images to create an aligned image as if the entire lower limb was photographed.

엑스레이 촬영 장비(10)에 의해 제1 소스영상(R1), 제2 소스영상(R2) 및 제3 소스영상(R3)이 획득된 후(S11) 영상 처리부(20)로 전달되면, 왜곡 보정부(21)가 제1 내지 제3 소스영상(R1-R3)에 존재하는 왜곡을 보정할 수 있다(S12). After the first source image (R1), the second source image (R2), and the third source image (R3) are acquired (S11) by the X-ray imaging equipment (10) and transmitted to the image processing unit (20), the distortion correction unit (21) can correct the distortion present in the first to third source images (R1-R3) (S12).

단계(S12)에서, 왜곡 보정부(21)는 제1 내지 제3 소스영상(R1-R3) 각각에 나타나는 인체 부위와 그리드의 변형(왜곡)을 보정하고 기울어짐을 적절히 재배치하도록 영상을 수정할 수 있다. In step (S12), the distortion correction unit (21) can correct the deformation (distortion) of the human body parts and grids appearing in each of the first to third source images (R1-R3) and modify the image to appropriately rearrange the tilt.

이어, 단계(S13)에서, 기준점 추출부(22)는 제1 소스영상(R1), 제2 소스영상(R1) 및 제3 소스영상(R1) 각각에서 하지 정렬에 필요한 기준점(A, B, C)을 추출하고 좌표면을 나타내는 그리드를 참조하여 그 좌표를 결정할 수 있다(S13).Next, in step (S13), the reference point extraction unit (22) can extract reference points (A, B, C) required for alignment from each of the first source image (R1), the second source image (R1), and the third source image (R1) and determine the coordinates thereof by referring to a grid representing a coordinate plane (S13).

단계(S13)에서, 기준점 추출부(22)는 제1 소스영상(R1)에서 고관절의 중심점에 해당하는 제1 기준점(A)을 추출할 수 있고, 제2 소스영상(R2)에서 무릎관절의 중간점에 해당하는 제2 기준점(C)을 추출할 수 있으며, 제3 소스영상(R3)에서 발목관절의 중간점에 해당하는 제3 기준점(B)을 추출할 수 있다.In step (S13), the reference point extraction unit (22) can extract a first reference point (A) corresponding to the center point of the hip joint from the first source image (R1), a second reference point (C) corresponding to the midpoint of the knee joint from the second source image (R2), and a third reference point (B) corresponding to the midpoint of the ankle joint from the third source image (R3).

전술한 바와 같이, 기준점 추출부(22)가 소스 영상들 내에서 하지 관절의 뼈 중심점을 추출하는 기법은, 엑스레이 영상에 대한 영상처리 기술 및 사전에 많은 학습 데이터를 이용한 기계 학습을 수행한 인공 지능 네트워크를 통해 이뤄질 수 있다. As described above, the technique of extracting the bone center point of the lower extremity joint from the source images by the reference point extraction unit (22) can be achieved through an image processing technology for X-ray images and an artificial intelligence network that has performed machine learning using a large amount of learning data in advance.

또한, 단계(S13)에서, 기준점 추출부(22)는 추출된 기준점들(A, B, C)에 대해 좌표면을 형성하는 그리드를 참조하여 그 좌표값을 결정할 수 있다.Additionally, in step (S13), the reference point extraction unit (22) can determine the coordinate values of the extracted reference points (A, B, C) by referring to a grid forming a coordinate plane.

또한, 단계(S13)에서, 기준점 추출부(22)는 하지 정렬 영상을 생성하는데 참조되는 기준 그리드선(L*)을 결정할 수 있다. 단계(S13)에서 결정되는 기준 그리드선은 하지에 대한 엑스레이 촬영시 사용된 좌표면을 형성하는 그리드 중 각 소스 영상에서 공통으로 나타나는 그리드선 중 하나가 선택될 수 있으며, 바람직하게는 각 소스영상들의 기준점에 가장 가까운 그리드 선으로 결정될 수 있다.In addition, in step (S13), the reference point extraction unit (22) can determine a reference grid line (L*) to be referenced in generating a lower limb alignment image. The reference grid line determined in step (S13) can be selected from among grid lines that appear commonly in each source image among the grids forming the coordinate plane used when taking an X-ray of the lower limb, and preferably, can be determined as a grid line that is closest to the reference point of each source image.

이어, 기준점 추출부(22)는, 제1 기준점(A)과 제3 기준점(B)을 잇는 직선과 제2 기준점(C) 사이의 거리에 해당하는 오프셋(O)을 연산할 수 있다(S14). 여기서, 오프셋(O)은 고관절의 중심점과 발목관절의 중간점을 잇는 직선에 해당하는 곧게 정렬된 하지의 무릎관절 중간점과 실제 엑스레이 촬영된 하지의 무릎관절 중간 지점 사이의 거리에 해당하는 것으로, 하지 전체의 변형 정도를 판단할 수 있는 수치적 표현이 될 수 있다.Next, the reference point extraction unit (22) can calculate an offset (O) corresponding to the distance between the straight line connecting the first reference point (A) and the third reference point (B) and the second reference point (C) (S14). Here, the offset (O) corresponds to the distance between the midpoint of the knee joint of the lower limb that is aligned straightly, corresponding to the straight line connecting the center point of the hip joint and the midpoint of the ankle joint, and the midpoint of the knee joint of the lower limb that is actually X-rayed, and can be a numerical expression that can determine the degree of deformation of the entire lower limb.

단계(S14)에서 오프셋(O)은 다양한 방식으로 도출될 수 있다.In step (S14), the offset (O) can be derived in various ways.

예를 들어, 그리드에 의한 좌표 상에서 기준점(A, B, C)의 좌표를 알 수 있으므로, 그리드의 가로축을 x축으로 하고 그리드의 세로축을 y축으로 하는 좌표 평면에서 기준점(A)와 기준점(B)를 지나는 직선의 방정식과 기준점(C)의 좌표 사이의 거리를 연산하여 오프셋(O)을 연산할 수 있다. 또한, 기준점(C)에서 기준점(A)와 기준점(B)를 지나는 직선에 내린 교선이 교차하는 점인 수정 기준점(C')의 좌표도 연산할 수 있다.For example, since the coordinates of the reference points (A, B, C) are known on the coordinate plane by the grid, the offset (O) can be calculated by calculating the distance between the equation of the straight line passing through the reference point (A) and the reference point (B) and the coordinate of the reference point (C) on the coordinate plane with the horizontal axis of the grid as the x-axis and the vertical axis of the grid as the y-axis. In addition, the coordinates of the modified reference point (C'), which is the point where the line drawn from the reference point (C) to the straight line passing through the reference point (A) and the reference point (B) intersect, can also be calculated.

뿐만 아니라, 기준점(A, B, C)에 의해 형성된 삼각형의 각 변의 길이(기준점 사이의 거리), 기준점(A, B, C)에 의해 형성된 삼각형의 각 내각의 크기 등도 쉽게 도출이 가능하므로, 도출된 좌표, 직선, 도형 등 다양한 정보를 이용하여 오프셋(O)이 연산 가능하고 기준점(C)를 지나는 직선과 정렬선(La)이 직교하는 점(C')의 좌표도 쉽게 구할 수 있다.In addition, since the length of each side of the triangle formed by the reference points (A, B, C) (the distance between the reference points) and the size of each interior angle of the triangle formed by the reference points (A, B, C) can be easily derived, the offset (O) can be calculated using various information such as the derived coordinates, straight lines, and shapes, and the coordinates of the point (C') where the straight line passing through the reference point (C) and the alignment line (L a ) are orthogonal can also be easily obtained.

이어, 단계(S15)에서, 정렬영상 생성부(23)는 결정된 기준 그리드선(L*)의 방향에 따라 제1 내지 제3 소스영상(R1-R3)을 정렬하여 각 소스영상(R1-R3)이 하지 방향으로 일렬 배치되게 할 수 있다. 단계(S15)에서, 기준 그리드선(L*)을 따라 일렬로 정렬된 제1 내지 제3 소스영상(R1-R3)의 예가 도 7에 도시된다. 도 7에 나타난 것과 같이, 단계(S15)에서 각 소스영상들(R1-R3)은 기준 그리드선(L*)이 서로 일직선으로 일치하도록 배치되게 하여 그 순서대로 정렬될 수 있다.Next, in step (S15), the alignment image generation unit (23) can align the first to third source images (R1-R3) according to the direction of the determined reference grid line (L*) so that each source image (R1-R3) is arranged in a row in the lower direction. In step (S15), an example of the first to third source images (R1-R3) aligned in a row along the reference grid line (L*) is illustrated in FIG. 7. As shown in FIG. 7, in step (S15), each source image (R1-R3) can be aligned in that order so that the reference grid lines (L*) are aligned in a straight line with each other.

이어, 단계(S16)에서, 정렬영상 생성부(23)는 도 7 및 도 8에 도시된 바와 같이, 제1 소스영상(R1)에서 제1 기준점(A)을 중심으로 하는 제1 정렬영상(S1)을 추출하고, 제3 소스영상(R3)에서 제3 기준점(B)을 중심으로 하는 제3 정렬영상(S3)을 추출할 수 있다. 또한, 정렬영상 생성부(23)는 단계(S15)에서 연산한 오프셋 만큼 제2 기준점(C)을 정렬선 상으로 이동시킨 점인 수정 기준점(C')을 중심으로 하는 제2 정렬영상(S2)을 추출할 수 있다.Next, in step (S16), the alignment image generation unit (23) can extract a first alignment image (S1) centered on the first reference point (A) from the first source image (R1), as illustrated in FIGS. 7 and 8, and can extract a third alignment image (S3) centered on the third reference point (B) from the third source image (R3). In addition, the alignment image generation unit (23) can extract a second alignment image (S2) centered on the modified reference point (C'), which is a point obtained by moving the second reference point (C) on the alignment line by the offset calculated in step (S15).

단계(S16)에서, 정렬영상 생성부(23)는 추출된 제1 내지 제3 정렬영상을 정렬선(La)을 따라 일렬로 정렬하여 하지의 정렬 영상을 획득할 수 있다. 여기서 정렬선(La)은 제1 기준점, 수정 기준점 및 제3 기준점을 지나는 직선으로 각 정렬영상의 중심을 지나는 직선이 될 수 있다. In step (S16), the alignment image generation unit (23) can obtain an alignment image of the lower body by aligning the extracted first to third alignment images in a row along an alignment line (L a ). Here, the alignment line (L a ) can be a straight line passing through the first reference point, the correction reference point, and the third reference point, and a straight line passing through the center of each alignment image.

단계(S16)에서, 정렬영상 생성부(23)는, 제1 내지 제3 정렬영상(S1-S3)의 그 크기가 서로 동일하게 생성할 수 있고, 소스영상(R1-R3)보다 같거나 작으며, 제1 기준점(A), 수정 기준점(C') 및 제3 기준점(B)을 중심으로 하는 최대한 길게 형성된 동일한 지름값을 가질 수 있다. 제1 내지 제3 정렬영상(S1-S3) 내에 정렬선(La), 기준점 및 수정 기준점을 표시하여 제2 정렬영상(S2) 내에 정렬선(La)과 제2 기준점(C) 사이의 거리를 시각적으로 표시하여 교정이 필요한 정도를 쉽게 인식하게 할 수 있다.In step (S16), the alignment image generation unit (23) can generate the first to third alignment images (S1-S3) so that their sizes are the same, are the same as or smaller than the source images (R1-R3), and have the same diameter value formed as long as possible centered on the first reference point (A), the correction reference point (C'), and the third reference point (B). By displaying an alignment line (L a ), a reference point, and a correction reference point in the first to third alignment images (S1-S3), the distance between the alignment line (L a ) and the second reference point (C) is visually displayed in the second alignment image (S2), so that the degree of correction required can be easily recognized.

이상에서 설명한 바와 같이, 본 발명의 여러 실시예에 따른 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법 및 시스템은, 하나의 좌표면을 나타내는 그리드를 활용하여 하지의 부분영상을 획득하고 이를 적절하게 처리함으로써 하지의 변형 정도에 해당하는 오프셋을 정확히 계산하여 휘어진 하지의 정렬 영상을 획득할 수 있다. 이에 따라 본 발명의 여러 실시예에 따른 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법 및 시스템은 인체의 하지 휘어짐(변형)을 교정하기 위한 근위경골절골술(high tibial osteotomy) 등을 포함한 교정수술(corrective osteotomy)을 실시하는 데 큰 도움을 줄 수 있다.As described above, the method and system for obtaining a lower extremity alignment image using an X-ray partial image according to various embodiments of the present invention can obtain an alignment image of a bent lower extremity by accurately calculating an offset corresponding to the degree of deformation of the lower extremity by obtaining a partial image of the lower extremity using a grid representing one coordinate plane and appropriately processing the same. Accordingly, the method and system for obtaining a lower extremity alignment image using an X-ray partial image according to various embodiments of the present invention can be of great help in performing corrective osteotomy, including high tibial osteotomy, for correcting lower extremity bending (deformation) of the human body.

Claims (17)

하나의 좌표면을 형성하는 그리드 상에서 고관절, 무릎관절 및 발목관절 부분을 각각 촬영한 제1 소스영상, 제2 소스영상 및 제3 소스영상을 획득하는 단계;A step of acquiring a first source image, a second source image, and a third source image, each of which captures the hip joint, knee joint, and ankle joint portions on a grid forming one coordinate plane; 상기 제1 소스영상, 제2 소스영상 및 제3 소스영상에서 하지 정렬을 위한 제1 기준점, 제2 기준점 및 제3 기준점의 위치를 결정하는 단계; 및A step of determining the positions of a first reference point, a second reference point, and a third reference point for alignment in the first source image, the second source image, and the third source image; and 상기 제1 기준점과 상기 제3 기준점의 상기 좌표면 상에서의 좌표값을 기반으로, 상기 제1 기준점과 상기 제3 기준점을 잇는 선과 상기 제2 기준점 사이의 거리에 해당하는 오프셋을 연산하는 단계;A step of calculating an offset corresponding to the distance between a line connecting the first reference point and the third reference point and the second reference point based on the coordinate values of the first reference point and the third reference point on the coordinate plane; 를 포함하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법.A method for obtaining an alignment image of the lower extremities using an X-ray partial image including . 청구항 1에 있어서,In claim 1, 제1 소스영상, 제2 소스영상 및 제3 소스영상 각각에 영상 왜곡으로 나타나는 인체부위 및 그리드의 변형을 보정하도록 영상을 수정하는 단계를 더 포함하는 것을 특징으로 하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법.A method for obtaining a lower extremity alignment image using an X-ray partial image, characterized in that it further includes a step of modifying the image to correct deformation of a human body part and a grid that appear as image distortion in each of a first source image, a second source image, and a third source image. 청구항 1에 있어서,In claim 1, 상기 그리드 상에서 상기 제1 소스영상, 제2 소스영상 및 제3 소스영상을 정렬하기 위한 기준 그리드선을 결정하는 단계를 더 포함하는 것을 특징으로 하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법.A method for obtaining a lower limb alignment image using an X-ray partial image, characterized in that it further includes a step of determining a reference grid line for aligning the first source image, the second source image, and the third source image on the grid. 청구항 1에 있어서,In claim 1, 상기 제2 소스영상에서 상기 제2 기준점을 상기 제1 기준점과 상기 제3 기준점을 잇는 선 상으로 상기 오프셋 만큼 이동시킨 수정 기준점을 중심으로 하는 제2 정렬영상을 추출하는 단계를 더 포함하는 것을 특징으로 하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법.A method for obtaining a lower extremity alignment image using an X-ray partial image, characterized in that it further includes a step of extracting a second alignment image centered on a modified reference point in which the second reference point is moved by the offset along a line connecting the first reference point and the third reference point in the second source image. 청구항 4에 있어서,In claim 4, 상기 제1 소스영상에서 상기 제1 기준점을 중심으로 하는 제1 정렬영상을 추출하며, 상기 제3 소스영상에서 상기 제3 기준점을 중심으로 하는 제3 정렬영상을 추출하는 단계; 및 상기 제1 정렬영상, 제2 정렬영상 및 제3 정렬영상을 상기 제1 기준점과 상기 수정 기준점과 상기 제3 기준점을 잇는 선인 정렬선이 일치하도록 순서대로 일렬로 정렬하는 단계를 더 포함하는 것을 특징으로 하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법.A method for obtaining a lower extremity alignment image using an X-ray partial image, characterized in that it further comprises a step of extracting a first alignment image centered on the first reference point from the first source image, and extracting a third alignment image centered on the third reference point from the third source image; and a step of sequentially aligning the first alignment image, the second alignment image, and the third alignment image in a row so that an alignment line, which is a line connecting the first reference point, the modified reference point, and the third reference point, is aligned. 청구항 5에 있어서,In claim 5, 상기 제1 정렬영상, 상기 제2 정렬영상 및 상기 제3 정렬영상의 사이즈는 상호 동일한 것을 특징으로 하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법.A method for obtaining a lower extremity alignment image using an X-ray partial image, characterized in that the sizes of the first alignment image, the second alignment image, and the third alignment image are identical to each other. 청구항 1에 있어서,In claim 1, 상기 제1 기준점은 상기 제1 소스영상에 나타나는 고관절의 중심점이고, 상기 제2 기준점은 상기 제2 소스영상에 나타나는 무릎관절의 중간점이며, 상기 제3 기준점은 상기 제3 소스영상에 나타나는 발목관절의 중간점인 것을 특징으로 하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법.A method for obtaining a lower extremity alignment image using an X-ray partial image, characterized in that the first reference point is the center point of the hip joint appearing in the first source image, the second reference point is the midpoint of the knee joint appearing in the second source image, and the third reference point is the midpoint of the ankle joint appearing in the third source image. 청구항 2에 있어서,In claim 2, 상기 제1 소스영상, 제2 소스영상 및 제3 소스영상을 상기 기준 그리드선이 서로 일치하도록 순서대로 일렬로 정렬하는 단계를 더 포함하는 것을 특징으로 하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 방법.A method for obtaining a lower limb alignment image using an X-ray partial image, characterized in that it further includes a step of sequentially aligning the first source image, the second source image, and the third source image so that the reference grid lines match each other. 하나의 좌표면을 형성하는 그리드 상에서 하지의 고관절, 무릎관절 및 발목관절 부분을 각각 촬영한 제1 소스영상, 제2 소스영상 및 제3 소스영상에서 하지 정렬을 위한 제1 기준점, 제2 기준점 및 제3 기준점의 위치를 결정하고, 상기 제1 기준점과 상기 제3 기준점의 상기 좌표면 상에서의 좌표값을 기반으로, 상기 제1 기준점과 상기 제3 기준점을 잇는 선과 상기 제2 기준점 사이의 거리에 해당하는 오프셋을 연산하는 영상 처리부;An image processing unit that determines the positions of a first reference point, a second reference point, and a third reference point for lower extremity alignment in a first source image, a second source image, and a third source image, which respectively capture the hip joint, knee joint, and ankle joint parts of a lower extremity on a grid forming a single coordinate plane, and calculates an offset corresponding to the distance between a line connecting the first reference point and the third reference point and the second reference point based on the coordinate values of the first reference point and the third reference point on the coordinate plane; 를 포함하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 시스템.A system for acquiring lower limb alignment images using X-ray partial images including . 청구항 9에 있어서, 상기 영상 처리부는,In claim 9, the image processing unit, 상기 제1 소스영상, 제2 소스영상 및 제3 소스영상 각각에 영상 왜곡으로 나타나는 인체부위 및 그리드의 변형을 보정하도록 영상을 수정하는 것을 특징으로 하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 시스템. A system for acquiring lower extremity alignment images using X-ray partial images, characterized in that the image is modified to correct deformation of human body parts and grids that appear as image distortion in each of the first source image, the second source image, and the third source image. 청구항 9에 있어서, 상기 영상 처리부는,In claim 9, the image processing unit, 상기 그리드 상에서 상기 제1 내지 제3 소스영상을 정렬하기 위한 기준 그리드선을 결정하는 것을 특징으로 하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 시스템.A system for acquiring an alignment image using an X-ray partial image, characterized in that it determines a reference grid line for aligning the first to third source images on the grid. 청구항 9에 있어서, 상기 영상 처리부는,In claim 9, the image processing unit, 상기 제2 소스영상에서 상기 제2 기준점을 상기 오프셋 만큼 상기 제1 기준점과 상기 제3 기준점을 잇는 선 상으로 이동시킨 수정 기준점을 중심으로 하는 제2 정렬영상을 추출하는 것을 특징으로 하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 시스템.A system for obtaining a lower extremity alignment image using an X-ray partial image, characterized in that a second alignment image is extracted centered on a modified reference point in which the second reference point is moved by the offset amount along a line connecting the first reference point and the third reference point in the second source image. 청구항 12에 있어서, 상기 영상 처리부는,In claim 12, the image processing unit, 상기 제1 소스영상에서 상기 제1 기준점을 중심으로 하는 제1 정렬영상을 추출하며, 상기 제3 소스영상에서 상기 제3 기준점을 중심으로 하는 제3 정렬영상을 추출하며, 상기 제1 기준점, 상기 수정 기준점 및 상기 제3 기준점을 잇는 정렬선이 일치하도록 순서대로 상기 제1 정렬영상, 제2 정렬영상 및 제3 정렬영상을 일렬로 정렬하는 것을 특징으로 하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 시스템.A system for obtaining lower extremity alignment images using X-ray partial images, characterized in that a first alignment image centered on the first reference point is extracted from the first source image, a third alignment image centered on the third reference point is extracted from the third source image, and the first alignment image, the second alignment image, and the third alignment image are sequentially aligned so that alignment lines connecting the first reference point, the modified reference point, and the third reference point are aligned. 청구항 13에 있어서,In claim 13, 상기 제1 정렬영상, 상기 제2 정렬영상 및 상기 제3 정렬영상의 사이즈는 동일하고, 상기 제1 소스영상, 상기 제2 소스영상 및 제3 소스영상보다 같거나 작으며, 각각 제1 기준점, 수정 기준점 및 제3 기준점을 중심으로 가능한 최대 길이의 동일한 지름값을 갖는 것을 특징으로 하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 시스템.A system for acquiring lower extremity alignment images using X-ray partial images, characterized in that the sizes of the first alignment image, the second alignment image, and the third alignment image are the same, are equal to or smaller than the first source image, the second source image, and the third source image, and have the same diameter value of the maximum possible length centered on the first reference point, the correction reference point, and the third reference point, respectively. 청구항 9에 있어서,In claim 9, 상기 제1 기준점은 상기 제1 소스영상에 나타나는 고관절의 중심점이고, 상기 제2 기준점은 상기 제2 소스영상에 나타나는 무릎관절의 중간점이며, 상기 제3 기준점은 상기 제3 소스영상에 나타나는 발목관절의 중간점인 것을 특징으로 하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 시스템.A system for acquiring a lower extremity alignment image using an X-ray partial image, characterized in that the first reference point is the center point of the hip joint appearing in the first source image, the second reference point is the midpoint of the knee joint appearing in the second source image, and the third reference point is the midpoint of the ankle joint appearing in the third source image. 청구항 9에 있어서, 상기 영상 처리부는,In claim 9, the image processing unit, 사전 학습된 인공 지능 네트워크를 이용하여 상기 제1 소스영상, 제2 소스영상 및 제3 소스영상에서 상기 제1 기준점, 제2 기준점 및 제3 기준점을 각각 추출하는 것을 특징으로 하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 시스템.A system for obtaining a lower limb alignment image using an X-ray partial image, characterized in that the first reference point, the second reference point, and the third reference point are extracted from the first source image, the second source image, and the third source image, respectively, using a pre-learned artificial intelligence network. 청구항 11에 있어서, 상기 영상 처리부는,In claim 11, the image processing unit, 상기 제1 소스영상, 제2 소스영상 및 제3 소스영상을 상기 기준 그리드선이 일치하도록 순서대로 일렬로 정렬하는 것을 특징으로 하는 엑스레이 부분 영상을 이용한 하지 정렬 영상 획득 시스템.A system for acquiring lower limb alignment images using X-ray partial images, characterized in that the first source image, the second source image, and the third source image are sequentially aligned so that the reference grid line matches.
PCT/KR2024/005435 2024-04-22 2024-04-22 Method and system for acquiring leg alignment image using partial x-ray image Pending WO2025225750A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2024/005435 WO2025225750A1 (en) 2024-04-22 2024-04-22 Method and system for acquiring leg alignment image using partial x-ray image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2024/005435 WO2025225750A1 (en) 2024-04-22 2024-04-22 Method and system for acquiring leg alignment image using partial x-ray image

Publications (1)

Publication Number Publication Date
WO2025225750A1 true WO2025225750A1 (en) 2025-10-30

Family

ID=97490583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2024/005435 Pending WO2025225750A1 (en) 2024-04-22 2024-04-22 Method and system for acquiring leg alignment image using partial x-ray image

Country Status (1)

Country Link
WO (1) WO2025225750A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120042538A (en) * 2010-10-25 2012-05-03 아이쓰리시스템 주식회사 Data correction system of x-ray device
WO2014053936A1 (en) * 2012-10-05 2014-04-10 Koninklijke Philips N.V. Spotlight x-ray mapping
KR20190046922A (en) * 2016-08-30 2019-05-07 마코 서지컬 코포레이션 Pelvic registration system and method during surgery
KR20210083884A (en) * 2019-12-27 2021-07-07 한국광기술원 Apparatus and Method for Photographing and Correcting Wide Angle Images
KR20220114715A (en) * 2021-02-09 2022-08-17 한양대학교 에리카산학협력단 X-ray Images Analysis System And Method
KR102663960B1 (en) * 2022-12-29 2024-05-10 주식회사 써지컬에이아이 Method and system for acquiring leg alignment information using partial x-ray image

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120042538A (en) * 2010-10-25 2012-05-03 아이쓰리시스템 주식회사 Data correction system of x-ray device
WO2014053936A1 (en) * 2012-10-05 2014-04-10 Koninklijke Philips N.V. Spotlight x-ray mapping
KR20190046922A (en) * 2016-08-30 2019-05-07 마코 서지컬 코포레이션 Pelvic registration system and method during surgery
KR20210083884A (en) * 2019-12-27 2021-07-07 한국광기술원 Apparatus and Method for Photographing and Correcting Wide Angle Images
KR20220114715A (en) * 2021-02-09 2022-08-17 한양대학교 에리카산학협력단 X-ray Images Analysis System And Method
KR102663960B1 (en) * 2022-12-29 2024-05-10 주식회사 써지컬에이아이 Method and system for acquiring leg alignment information using partial x-ray image

Similar Documents

Publication Publication Date Title
WO2016195401A1 (en) 3d glasses system for surgical operation using augmented reality
WO2018056544A1 (en) Augmented reality system for dental surgery and implementation method therefor
WO2017192020A1 (en) Dental three-dimensional data processing device and method thereof
WO2019088462A1 (en) System and method for generating blood pressure estimation model, and blood pressure estimation system and method
WO2013062348A1 (en) Registration method of surgical operation images
WO2020204424A2 (en) Shape reconstruction device using ultrasonic probe, and shape reconstruction method
WO2020149544A1 (en) Method and apparatus for generating virtual internal fixture on basis of image reduction
KR102663960B1 (en) Method and system for acquiring leg alignment information using partial x-ray image
WO2019132427A1 (en) Laser target projection apparatus and control method thereof, and laser surgery induction system comprising laser target projection apparatus
CN110956633A (en) Rapid CT scanning method and system based on virtual stereotactic image
WO2020184876A1 (en) Method for establishing implant surgery plan by using artificial intelligence and medical image processing device therefor
WO2014077613A1 (en) Robot for repositioning procedure, and method for controlling operation thereof
WO2020209496A1 (en) Dental object detection method, and image matching method and device using dental object
WO2017191878A1 (en) Teeth movement tracking device and method thereof
WO2013162218A1 (en) Radiation scanning system
WO2022191575A1 (en) Simulation device and method based on face image matching
CA2233708A1 (en) Method for measuring camera and lens properties for camera tracking
WO2025225750A1 (en) Method and system for acquiring leg alignment image using partial x-ray image
WO2016148350A1 (en) Device and method for reconstructing medical image
WO2020235784A1 (en) Nerve detection method and device
WO2021215800A1 (en) Surgical skill training system and machine learning-based surgical guide system using three-dimensional imaging
WO2022154523A1 (en) Method and device for matching three-dimensional oral scan data via deep-learning based 3d feature detection
WO2025053337A1 (en) 2d image-based automatic surgery planning method and system
WO2022034955A1 (en) Apparatus for detecting corneal ulcer on basis of image processing, and method therefor
WO2022149664A1 (en) Medical image analysis method and device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24937225

Country of ref document: EP

Kind code of ref document: A1