WO2025225383A1 - Plant control assistance device, plant control assistance method, and plant control assistance program - Google Patents
Plant control assistance device, plant control assistance method, and plant control assistance programInfo
- Publication number
- WO2025225383A1 WO2025225383A1 PCT/JP2025/014123 JP2025014123W WO2025225383A1 WO 2025225383 A1 WO2025225383 A1 WO 2025225383A1 JP 2025014123 W JP2025014123 W JP 2025014123W WO 2025225383 A1 WO2025225383 A1 WO 2025225383A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- prediction model
- prediction
- data
- plant
- learning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
Definitions
- the present disclosure relates to a plant control support device, a plant control support method, and a plant control support program.
- Controllers are known for controlling plants that are made up of various devices. In these types of controllers, control is carried out based on process values related to the plant's characteristics. However, if the process value is a parameter that is difficult to measure, or if it is a parameter that can be measured but it is preferable to avoid measuring it for reasons such as cost reduction, the process value may be obtained as a calculated predicted value using a predictive model that simulates the plant's behavior. Such predictive models can be constructed, for example, by machine learning, using the plant's past operating data as learning data. For example, Patent Document 1 describes how by training a predictive model for each operating condition of the plant, it is possible to appropriately predict process values even when operating conditions are switched.
- a prediction model is constructed by performing learning for each driving condition, but the number of data points that can be used as learning data may differ depending on the driving conditions. In this case, it may not be possible to prepare sufficient learning data depending on the driving conditions, which could result in a decrease in the prediction accuracy of the prediction model constructed through learning.
- At least one embodiment of the present disclosure has been made in consideration of the above circumstances, and aims to provide a plant control support device, a plant control support method, and a plant control support program that can achieve good prediction accuracy of process values using a prediction model regardless of the operating conditions of the plant.
- a plant control assistance device includes: 1. A plant control support device for supporting plant control using a plurality of process values of a plant that are predicted using a plurality of prediction models, the device comprising: a first prediction model learning unit configured to learn a plurality of first prediction models as the plurality of prediction models by using learning data that is operation data of the plant; a second prediction model learning unit configured to re-learn a second prediction model using the driving data to which additional data has been added as learning data for a first prediction model having a prediction accuracy less than a reference value among the plurality of first prediction models; a third prediction model learning unit configured to re-learn a third prediction model using, as learning data, similar operating data that is similar to an operating point of the plant among the operating data for the second prediction model whose prediction accuracy is less than the reference value; a prediction model selection unit that selects, as the prediction model, one of the first prediction model, the second prediction model, and the third prediction model that has
- a plant control support method for supporting plant control using a plurality of process values of a plant predicted using a plurality of prediction models, the method comprising: learning a plurality of first prediction models as the plurality of prediction models using learning data that is operation data of the plant; a step of re-learning a second prediction model using the driving data to which additional data has been added as learning data for a first prediction model having a prediction accuracy less than a reference value among the plurality of first prediction models; re-learning a third prediction model using, as learning data, similar operating data that is similar to an operating point of the plant among the operating data of the second prediction model whose prediction accuracy is less than the reference value; selecting, as the prediction model, one of the first prediction model, the second prediction model, and the third prediction model that has the best prediction accuracy; Equipped with.
- a plant control assistance program includes: 1.
- At least one embodiment of the present disclosure provides a plant control support device, a plant control support method, and a plant control support program that can achieve good prediction accuracy of process values using a prediction model regardless of the operating conditions of the plant.
- FIG. 1 is an overall configuration diagram of a plant control system according to an embodiment
- FIG. 2 is a schematic diagram showing a virtual space that defines an operating point of a plant.
- FIG. 2 is an explanatory diagram showing a calculation flow of a predicted value using a prediction model stored in a prediction model storage unit in FIG. 1 .
- FIG. 4 is an explanatory diagram showing a calculation flow of an index used in searching for an operation condition in the operation condition searching unit of FIG. 1 is a flowchart illustrating a plant control support method according to an embodiment.
- Figure 1 is a diagram showing the overall configuration of a plant control system 1 according to one embodiment.
- the plant control assistance device 100 is a device for assisting the control performed by the control device 200, which is a control unit for controlling the plant 10.
- the plant 10 is, for example, a boiler device for generating steam supplied to a steam turbine (not shown) connected to a generator in a thermal power plant, but this is merely an example and is not limiting.
- the control device 200 controls the operating state of the plant 10 by transmitting and receiving various signals to and from the plant 10.
- the control by the control device 200 is performed in accordance with preset operating conditions, and the control device 200 acquires operating parameters from the plant 10 and outputs control signals corresponding to the operating parameters to the plant 10.
- each component device is controlled based on the control signal input from the control device 200.
- the detailed configuration of the control device 200 will be similar to that of a known example, and will not be described here.
- the plant control assistance device 100 includes an external input interface 102, a preprocessing unit 104, an operating data accumulation unit 106, a prediction model learning unit 108, a prediction model storage unit 110, a prediction accuracy determination unit 112, an operating condition search unit 114, a search range setting unit 116, and an external output interface 118.
- the external input interface 102 is an interface configuration for inputting data from the control device 200, which is an external device to the plant control assistance device 100.
- Various data handled by the control device 200 is input to the external input interface 102.
- This data includes data that becomes operating data that is processed by the pre-processing unit 104 and treated as learning data in the machine learning of the prediction model M in the prediction model learning unit 108.
- Data input from the control device 200 is also carried out repeatedly at predetermined time intervals.
- the preprocessing unit 104 is configured to perform preprocessing on data input from the external input interface 102.
- the preprocessing includes at least a process of extracting driving data from the data input to the external input interface 102, which is used as learning data in the machine learning of the prediction model M in the prediction model learning unit 108, but the detailed processing content is not particularly limited.
- the operating data storage unit 106 is a component (e.g., a database) for storing operating data created by the preprocessing unit 104.
- preprocessing is performed in the preprocessing unit 104 to process the operating data, which is then sequentially stored in the operating data storage unit 106.
- the prediction model learning unit 108 is configured to construct a prediction model M by performing machine learning using the driving data stored in the driving data storage unit 106 as learning data. This machine learning constructs the prediction model M by specifying explanatory variables and an objective function from each parameter included in the driving data and learning the correlation between the explanatory variables and the objective variable according to a machine learning algorithm. Examples of machine learning algorithms that can be used include, but are not limited to, linear regression, neural networks, and random forests.
- the prediction model training unit 108 includes a first prediction model training unit 120, a second prediction model training unit 122, and a third prediction model training unit 124.
- the first prediction model learning unit 120 is configured to construct a prediction model (hereinafter referred to as the "first prediction model M1" as appropriate) through machine learning using the driving data accumulated in the driving data accumulation unit 106 as learning data.
- the machine learning by this first prediction model learning unit 120 is performed prior to the machine learning by the second prediction model learning unit 122 and the third prediction model learning unit 124, and is machine learning for constructing a so-called original prediction model M.
- the second prediction model learning unit 122 is configured to construct a prediction model (hereinafter referred to as the "second prediction model M2" as appropriate) by additional driving data relearning.
- the second prediction model M2 can be constructed by relearning using driving data that was used as learning data when the first prediction model M1 was constructed, with additional data added as learning data.
- driving data is sequentially accumulated in the driving data accumulation unit 106, and the additional data is driving data that has been accumulated in the driving data accumulation unit 106 after the first prediction model M1 was learned.
- additional driving data relearning by relearning using driving data with a larger amount of data due to the addition of additional data, it is possible to construct a second prediction model M2 with improved prediction accuracy compared to the first prediction model M1.
- the third prediction model learning unit 124 is configured to construct a prediction model (hereinafter referred to as the "third prediction model M3" as appropriate) by similar operating data relearning.
- the third prediction model M3 can be constructed by performing similar operating data relearning, using as learning data similar operating data that belongs to a predetermined operating region including the operating point of the plant 10 from the operating data stored in the operating data accumulation unit 106.
- FIG 2 is a schematic diagram showing a virtual space V that defines the operating point of the plant 10.
- V is a multidimensional space defined with multiple parameters representing the operating point as spatial axes (for ease of illustration, Figure 2 illustrates an example where the number of dimensions of virtual space V is "3").
- deviation L may also be defined using Mahalanobis distance.
- similar driving data may be defined as data extracted from driving data in ascending order of deviation L until a predetermined percentage or a predetermined number is reached. As mentioned above, if similar driving data is defined as data whose deviation L is within a predetermined value L0, if there is not enough data within that range, sufficient learning data cannot be extracted, and learning of the predictive model M itself may become impossible.
- the prediction model storage unit 110 is configured to store the prediction model M constructed by the prediction model learning unit 108.
- the prediction model learning unit 108 constructs at least one of the first prediction model M1, second prediction model M2, and third prediction model M3 as the prediction model M, and these prediction models M are stored in the prediction model storage unit 110 so that they can be used as needed.
- the prediction accuracy determination unit 112 is configured to determine the prediction accuracy of each prediction model M (first prediction model M1, second prediction model M2, or third prediction model M3) stored in the prediction model storage unit 110.
- the prediction accuracy of the prediction model M is calculated, for example, by aggregating the mean absolute error of predicted values for verification data such as actual measured values, but any known method can be used and is not limited to this method.
- the prediction accuracy determination unit 112 is able to determine whether the prediction accuracy of the prediction model M is below the reference value by comparing the calculated prediction accuracy with a reference value stored in advance in the acceptable accuracy database 126.
- the operating condition search unit 114 is configured to search for operating conditions for the control device 200 using the prediction model M stored in the prediction model storage unit 110.
- the search for operating conditions is performed within the search range set by the search range setting unit 116, by calculating an index corresponding to the performance of the plant 10 based on the predicted value calculated using the prediction model M, and optimizing the index.
- Figure 3 is an explanatory diagram showing the calculation flow of a predicted value P using a prediction model M stored in the prediction model storage unit 110 of Figure 1
- Figure 4 is an explanatory diagram showing the calculation flow of an index used to search for operation conditions in the operation condition search unit 114 of Figure 1.
- prediction model M receives parameters corresponding to explanatory variables and outputs a predicted value P corresponding to the objective variable.
- predicted value P is a process value related to the operating state of the boiler system, and more specifically, the steam temperature and pressure in each part of the boiler system, metal temperature, or NOx concentration emitted from the boiler system.
- Explanatory variables are various operating parameters of the boiler system, and more specifically, the angle of the burner that injects fuel, the opening degrees of various dampers that adjust the air volume, etc.
- Prediction models M are constructed in prediction model learning unit 108 according to the type of objective variable, and multiple prediction models M according to the type of objective variable are stored in prediction model storage unit 110.
- the predicted value P is calculated using the prediction model with the best prediction accuracy among these prediction models.
- the predicted values P for multiple objective variables are calculated using multiple corresponding prediction models M, and each prediction model M is the one with the best prediction accuracy among the prediction models for the corresponding objective variable (at least one of the first prediction model M1, second prediction model M2, or third prediction model M3).
- the index IN e.g., minimum or maximum
- the search for operation conditions in the operation condition search unit 114 is performed within a search range set by the search range setting unit 116.
- This search range is set to a first search range by default, but when the search range restriction process is executed as described below, it is restricted to a second search range that is specified to be narrower than the first search range.
- the operating conditions searched for by the operating condition search unit 114 are output to the control device 200 via the external output interface 118.
- the control device 200 controls the plant 10 in accordance with the operating conditions output in this manner, thereby ensuring optimal control of the plant 10.
- Figure 5 is a flowchart showing the plant control support method according to one embodiment.
- the prediction model learning unit 108 constructs a first prediction model M1 through machine learning using the driving data accumulated in the driving data accumulation unit 106 as learning data (step S101).
- the first prediction model learning unit 120 of the prediction model learning unit 108 constructs a first prediction model M1 as a prediction model M.
- the first prediction model learning unit 120 constructs the first prediction model M1 based on at least one type of machine learning algorithm prepared in advance.
- the first prediction model learning unit 120 has multiple types of machine learning algorithms prepared in advance, and generates multiple prediction model candidates corresponding to the first prediction model M1 using the multiple machine learning algorithms for each dependent variable.
- the first prediction model learning unit 120 then calculates the prediction accuracy of the multiple prediction model candidates corresponding to these first prediction models M1, and adopts the one with the best prediction accuracy as the first prediction model M1 for that dependent variable.
- the first prediction model M1 adopted in this way is stored in the prediction model storage unit 110.
- the first prediction model M1 stored in the prediction model storage unit 110 can be accessed as needed by the operation condition search unit 114.
- the learning of the first prediction model M1 in step S101 may be performed every predetermined period T1.
- machine learning may be performed every predetermined period T1 using the driving data accumulated in the driving data accumulation unit 106 as learning data, thereby updating the first prediction model M1 based on the latest driving data.
- the prediction accuracy determination unit 112 determines whether the prediction accuracy of the first prediction model M1 constructed in step S101 is less than a preset reference value (step S102).
- the first prediction model M1 stored in the prediction model storage unit 110 is accessed every predetermined period T2 to calculate the prediction accuracy of the first prediction model M1 and compare this prediction accuracy with the reference value.
- This predetermined period T2 may be different from the aforementioned predetermined period T1, and in particular may be shorter than the predetermined period T1.
- step S102 YES
- the prediction model learning unit 108 performs additional driving data relearning using the second prediction model learning unit 122 to learn the second prediction model M2 (step S103).
- the second prediction model M2 is constructed by relearning using the driving data used as learning data when constructing the first prediction model M1 in step S101, with additional data added as learning data. Therefore, if the prediction accuracy of the first prediction model M1 is less than the reference value, the additional driving data relearning can be performed using driving data with a larger amount of data due to the addition of the additional data, thereby constructing a second prediction model M2 with improved prediction accuracy compared to the first prediction model M1.
- the construction of the second prediction model M2 in the second prediction model training unit 122 may be performed using at least one type of machine learning algorithm, as in the above-described first prediction model training unit 120.
- the second prediction model training unit 122 is provided with multiple types of machine learning algorithms, and multiple prediction model candidates corresponding to the second prediction model M2 are generated for each dependent variable using the multiple machine learning algorithms.
- the second prediction model training unit 122 then calculates the prediction accuracy of the multiple prediction model candidates corresponding to the second prediction model M2, and adopts the one with the best prediction accuracy as the second prediction model M2 for that dependent variable.
- the constructed second prediction model M2 is stored in the prediction model storage unit 110 instead of or in addition to the above-described first prediction model M1.
- the second prediction model M2 stored in the prediction model storage unit 110 can be accessed as needed by the operation condition search unit 114.
- the prediction accuracy determination unit 112 determines whether the prediction accuracy of the second prediction model M2 constructed in step S103 is less than a preset reference value (step S104). In step S104, following the procedure in step S102 described above, the prediction accuracy of the second prediction model M2 is calculated and compared with the reference value.
- the reference value used as the judgment criterion in step S104 may be the same as the reference value used as the judgment criterion in step S102, or may be different.
- the plant control assistance device 100 includes a display unit 130 and a selection unit 132, allowing the operator to selectively perform either step S105 or S106.
- the display unit 130 is a display device such as a display that displays various information necessary for the operator.
- the information displayed on the display unit 130 can broadly include information used when the operator selects either step S105 or S106, and may include, for example, the prediction accuracy calculated in the process of making the judgment in the prediction accuracy judgment unit 112.
- the selection unit 132 is configured to allow the operator, referring to the information displayed on the display unit 130, to select step S105 or S106, and may be an input device such as a keyboard, mouse, or touch panel.
- the operator can refer to the information displayed on the display unit 130 and operate the selection unit 132 based on their own judgment, thereby selecting whether to perform step S105 or S106 when the prediction accuracy of the second prediction model M2 is below the reference value.
- the third prediction model learning unit 124 constructs a third prediction model M3 using the similar driving data as learning data.
- driving data at driving points with similar driving conditions is used as learning data to perform relearning, thereby obtaining a third prediction model M3 with improved prediction accuracy.
- the construction of the third prediction model M3 in the third prediction model training unit 124 may be performed using at least one type of machine learning algorithm, similar to the construction of the first prediction model M1 in the first prediction model training unit 120 and the construction of the second prediction model M2 in the second prediction model training unit 122 described above.
- the third prediction model training unit 124 is provided with multiple types of machine learning algorithms in advance, and multiple prediction model candidates corresponding to the third prediction model M3 are generated using the multiple machine learning algorithms for each dependent variable.
- the third prediction model training unit 124 then calculates the prediction accuracy of the multiple prediction model candidates corresponding to these multiple third prediction models M3, and adopts the one with the best prediction accuracy as the third prediction model M3 for that dependent variable.
- the constructed third prediction model M3 is stored in the prediction model storage unit 110 instead of or in addition to the second prediction model M2 described above.
- the third prediction model M3 stored in the prediction model storage unit 110 can be accessed as needed by the operation condition search unit 114.
- the search range restriction process when searching for operating conditions in step S110, described below, is restricted to a specified range, thereby improving the feasibility of optimizing driving using a predictive model. For example, if the search range is restricted to a range in which the prediction accuracy of prediction model M is equal to or greater than a threshold, prediction accuracy can be substantially improved. Furthermore, if the search range is restricted to a range that does not significantly impair the driving state, driving can be optimized using prediction model M while maintaining safe driving.
- the prediction model with the best prediction accuracy is selected from the first prediction model M1, the second prediction model M2, or the third prediction model M3 (step S107).
- multiple prediction models are prepared depending on the type of dependent variable, and for each of these, at least one of the first prediction model M1, the second prediction model M2, or the third prediction model M3 is constructed in the above-mentioned step.
- the prediction model with the best prediction accuracy is adopted from the first prediction model M1, the second prediction model M2, or the third prediction model M3.
- step S108 operating conditions are searched for using each prediction model M selected in step S107 (step S108), and the searched operating conditions are output to the control device 200 via the external output interface 118 (step S109).
- step S108 as described above with reference to FIG. 4, an index IN is calculated based on each predicted value P using each prediction model M selected in step S107, and operating conditions are searched for to optimize the index IN.
- step S106 search range restriction processing was performed in step S106, the search range for operation conditions in step S108 will be limited to the specified range.
- a plant control assistance device includes: 1. A plant control support device for supporting plant control using a plurality of process values of a plant that are predicted using a plurality of prediction models, the device comprising: a first prediction model learning unit configured to learn a plurality of first prediction models as the plurality of prediction models by using learning data that is operation data of the plant; a second prediction model learning unit configured to re-learn a second prediction model using the driving data to which additional data has been added as learning data for a first prediction model having a prediction accuracy less than a reference value among the plurality of first prediction models; a third prediction model learning unit configured to re-learn a third prediction model using, as learning data, similar operating data that is similar to an operating point of the plant among the operating data for the second prediction model whose prediction accuracy is less than the reference value; a prediction model selection unit that selects, as the prediction model, one of the first prediction model, the second prediction model, and the third prediction model that has the highest prediction accuracy; Equipped with.
- multiple first prediction models are constructed using operating data as learning data, each corresponding to a plurality of process values to be predicted.
- additional operating data relearning is performed using the operating data to which additional data has been added as learning data, thereby constructing a second prediction model with improved prediction accuracy.
- similar operating data relearning is performed using similar operating data similar to the operating point of the plant from the operating data, thereby improving the prediction accuracy of a third prediction model with improved prediction accuracy.
- the plant control device selects the first, second, or third prediction model with the best prediction accuracy as the prediction model for predicting each of the plurality of process values. This enables accurate prediction of each process value, thereby suitably improving the controllability of the plant control device.
- At least one of the first prediction model learning unit, the second prediction model learning unit, or the third prediction model learning unit generates multiple prediction model candidates for each of the multiple prediction models using multiple types of machine learning algorithms, and selects the one with the best prediction accuracy from the multiple prediction model candidates as the first prediction model, the second prediction model, or the third prediction model.
- At least one of the first prediction model learning unit, the second prediction model learning unit, and the third prediction model learning unit generates multiple prediction model candidates using multiple types of machine learning algorithms. Then, by selecting the prediction model with the best prediction accuracy from among these multiple prediction model candidates, it becomes possible to build a prediction model with excellent prediction accuracy.
- the similar driving data is constructed by extracting a predetermined ratio or number of data that have a small deviation from the driving point from the driving data and the additional data.
- the similar driving data used as learning data in similar driving data relearning is constructed by extracting a predetermined percentage or number of data that have a small deviation from the driving point from the driving data and additional data.
- the additional data is data collected from the plant since the first prediction model was last trained.
- the learning data used in the additional operating data relearning includes additional data collected from the plant between the previous learning and the relearning, in addition to the operating data used during the previous learning of the prediction model. This makes it possible to suitably improve the prediction accuracy of the prediction model by relearning using learning data that contains a larger amount of data than during the previous learning.
- an index calculation unit for calculating an index related to performance of the plant based on the plurality of process values predicted using the plurality of prediction models; an operating condition search unit for searching for operating conditions of the plant based on the index; a control unit for controlling the plant based on the operating conditions;
- the plant is a boiler unit.
- process values related to the characteristics of the boiler equipment can be suitably predicted using a prediction model with good prediction accuracy.
- a plant control support method includes: 1. A plant control support method for supporting plant control using a plurality of process values of a plant predicted using a plurality of prediction models, the method comprising: learning a plurality of first prediction models as the plurality of prediction models using learning data that is operation data of the plant; a step of re-learning a second prediction model using the driving data to which additional data has been added as learning data for a first prediction model having a prediction accuracy less than a reference value among the plurality of first prediction models; re-learning a third prediction model using, as learning data, similar operating data that is similar to an operating point of the plant among the operating data of the second prediction model whose prediction accuracy is less than the reference value; selecting, as the prediction model, one of the first prediction model, the second prediction model, and the third prediction model that has the best prediction accuracy; Equipped with.
- multiple first prediction models are constructed using operating data as learning data, each corresponding to a plurality of process values to be predicted.
- additional operating data relearning is performed using the operating data to which additional data has been added as learning data, thereby constructing a second prediction model with improved prediction accuracy.
- similar operating data relearning is performed using similar operating data from the operating data that is similar to the operating point of the plant as learning data, thereby improving the prediction accuracy of a third prediction model with improved prediction accuracy.
- the plant control device selects the first, second, or third prediction model with the best prediction accuracy as the prediction model for predicting each of the plurality of process values. This enables each process value to be predicted with high accuracy, thereby suitably improving the controllability of the plant control device.
- a plant control assistance program includes: 1. A plant control support program for supporting plant control using a plurality of process values of a plant predicted using a plurality of prediction models, the program comprising: To the computer device, learning a plurality of first prediction models as the plurality of prediction models using learning data that is operation data of the plant; a step of re-learning a second prediction model using the driving data to which additional data has been added as learning data for a first prediction model having a prediction accuracy less than a reference value among the plurality of first prediction models; re-learning a third prediction model using, as learning data, similar operating data that is similar to an operating point of the plant among the operating data of the second prediction model whose prediction accuracy is less than the reference value; selecting, as the prediction model, one of the first prediction model, the second prediction model, and the third prediction model that has the best prediction accuracy; is possible.
- multiple first prediction models are constructed using operating data as learning data, each corresponding to a plurality of process values to be predicted.
- additional operating data relearning is performed using the operating data to which additional data has been added as learning data, thereby constructing a second prediction model with improved prediction accuracy.
- similar operating data relearning is performed using similar operating data similar to the operating point of the plant from the operating data, thereby improving the prediction accuracy of a third prediction model with improved prediction accuracy.
- the plant control device selects the first, second, or third prediction model with the best prediction accuracy as the prediction model for predicting each of the plurality of process values. This enables each process value to be predicted with high accuracy, thereby suitably improving the controllability of the plant control device.
- Plant control system 10 Plant 100 Plant control support device 102 External input interface 104 Preprocessing unit 106 Operation data accumulation unit 108 Prediction model learning unit 110 Prediction model storage unit 112 Prediction accuracy determination unit 114 Operation condition search unit 116 Search range setting unit 118 External output interface 120 First prediction model learning unit 122 Second prediction model learning unit 124 Third prediction model learning unit 130 Display unit 132 Selection unit 200 Control device M Prediction model M1 First prediction model M2 Second prediction model M3 Third prediction model V Virtual space
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Feedback Control In General (AREA)
Abstract
Description
本開示は、プラント制御支援装置、プラント制御支援方法、及び、プラント制御支援プログラムに関する。
本願は、2024年4月24日に日本国特許庁に出願された特願2024-070327号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a plant control support device, a plant control support method, and a plant control support program.
This application claims priority based on Japanese Patent Application No. 2024-070327, filed with the Japan Patent Office on April 24, 2024, the contents of which are incorporated herein by reference.
様々な機器を含んで構成されるプラントを制御するための制御装置が知られている。この種の制御装置では、プラントの特性に関するプロセス値に基づいて制御が実施されるが、プロセス値が実測困難なパラメータである場合や、実測可能であったとしても例えばコスト削減等の理由によって実測を避けることが好ましいパラメータである場合には、プラントの挙動を模擬した予測モデルを用いて演算的な予測値としてプロセス値を得ることがある。このような予測モデルは、例えば、プラントの過去の運転データを学習データとする機械学習によって構築することができる。例えば特許文献1では、プラントの運転条件ごとに予測モデルを学習しておくことで、運転条件の切替時においてもプロセス値の予測を適切に行えるとしている。 Controllers are known for controlling plants that are made up of various devices. In these types of controllers, control is carried out based on process values related to the plant's characteristics. However, if the process value is a parameter that is difficult to measure, or if it is a parameter that can be measured but it is preferable to avoid measuring it for reasons such as cost reduction, the process value may be obtained as a calculated predicted value using a predictive model that simulates the plant's behavior. Such predictive models can be constructed, for example, by machine learning, using the plant's past operating data as learning data. For example, Patent Document 1 describes how by training a predictive model for each operating condition of the plant, it is possible to appropriately predict process values even when operating conditions are switched.
上記特許文献1では、運転条件ごとに学習を行うことで予測モデルの構築が行われるが、運転条件によっては学習データとして用いることができるデータ点数が異なることがある。この場合、運転条件によっては十分な学習データを用意することができず、学習によって構築される予測モデルの予測精度が低下してしまうおそれがある。 In the above-mentioned Patent Document 1, a prediction model is constructed by performing learning for each driving condition, but the number of data points that can be used as learning data may differ depending on the driving conditions. In this case, it may not be possible to prepare sufficient learning data depending on the driving conditions, which could result in a decrease in the prediction accuracy of the prediction model constructed through learning.
本開示の少なくとも一実施形態は上述の事情に鑑みなされたものであり、プラントの運転条件に関わらず、予測モデルによるプロセス値の予測精度を良好に実現可能なプラント制御支援装置、プラント制御支援方法、及び、プラント制御支援プログラムを提供することを目的とする。 At least one embodiment of the present disclosure has been made in consideration of the above circumstances, and aims to provide a plant control support device, a plant control support method, and a plant control support program that can achieve good prediction accuracy of process values using a prediction model regardless of the operating conditions of the plant.
本開示の少なくとも一実施形態に係るプラント制御支援装置は、上記課題を解決するために、
複数の予測モデルを用いてそれぞれ予測されたプラントの複数のプロセス値を用いたプラント制御を支援するためのプラント制御支援装置であって、
前記プラントの運転データである学習データを用いて、前記複数の予測モデルとして、複数の第1予測モデルを学習するための第1予測モデル学習部と、
前記複数の第1予測モデルのうち予測精度が基準値未満である前記第1予測モデルについて、追加データが追加された前記運転データを前記学習データとして第2予測モデルを再学習するための第2予測モデル学習部と、
前記予測精度が前記基準値未満である前記第2予測モデルについて、前記運転データのうち、前記プラントの運転点と類似した類似運転データを前記学習データとして第3予測モデルを再学習するための第3予測モデル学習部と、
前記第1予測モデル、前記第2予測モデル、又は、前記第3予測モデルのうち予測精度が最良なものを前記予測モデルとして選択する予測モデル選択部と、
を備える。
In order to solve the above problems, a plant control assistance device according to at least one embodiment of the present disclosure includes:
1. A plant control support device for supporting plant control using a plurality of process values of a plant that are predicted using a plurality of prediction models, the device comprising:
a first prediction model learning unit configured to learn a plurality of first prediction models as the plurality of prediction models by using learning data that is operation data of the plant;
a second prediction model learning unit configured to re-learn a second prediction model using the driving data to which additional data has been added as learning data for a first prediction model having a prediction accuracy less than a reference value among the plurality of first prediction models;
a third prediction model learning unit configured to re-learn a third prediction model using, as learning data, similar operating data that is similar to an operating point of the plant among the operating data for the second prediction model whose prediction accuracy is less than the reference value;
a prediction model selection unit that selects, as the prediction model, one of the first prediction model, the second prediction model, and the third prediction model that has the highest prediction accuracy;
Equipped with.
本開示の少なくとも一実施形態に係るプラント制御支援方法は、上記課題を解決するために、
複数の予測モデルを用いてそれぞれ予測されたプラントの複数のプロセス値を用いたプラント制御を支援するためのプラント制御支援方法であって、
前記プラントの運転データである学習データを用いて、前記複数の予測モデルとして、複数の第1予測モデルを学習する工程と、
前記複数の第1予測モデルのうち予測精度が基準値未満である前記第1予測モデルについて、追加データが追加された前記運転データを前記学習データとして第2予測モデルを再学習する工程と、
前記予測精度が前記基準値未満である前記第2予測モデルについて、前記運転データのうち、前記プラントの運転点と類似した類似運転データを前記学習データとして第3予測モデルを再学習する工程と、
前記第1予測モデル、前記第2予測モデル、又は、前記第3予測モデルのうち予測精度が最良なものを前記予測モデルとして選択する工程と、
を備える。
In order to solve the above problem, a plant control support method according to at least one embodiment of the present disclosure includes:
1. A plant control support method for supporting plant control using a plurality of process values of a plant predicted using a plurality of prediction models, the method comprising:
learning a plurality of first prediction models as the plurality of prediction models using learning data that is operation data of the plant;
a step of re-learning a second prediction model using the driving data to which additional data has been added as learning data for a first prediction model having a prediction accuracy less than a reference value among the plurality of first prediction models;
re-learning a third prediction model using, as learning data, similar operating data that is similar to an operating point of the plant among the operating data of the second prediction model whose prediction accuracy is less than the reference value;
selecting, as the prediction model, one of the first prediction model, the second prediction model, and the third prediction model that has the best prediction accuracy;
Equipped with.
本開示の少なくとも一実施形態に係るプラント制御支援プログラムは、上記課題を解決するために、
複数の予測モデルを用いてそれぞれ予測されたプラントの複数のプロセス値を用いたプラント制御を支援するためのプラント制御支援プログラムであって、
コンピュータ装置に、
前記プラントの運転データである学習データを用いて、前記複数の予測モデルとして、複数の第1予測モデルを学習する工程と、
前記複数の第1予測モデルのうち予測精度が基準値未満である前記第1予測モデルについて、追加データが追加された前記運転データを前記学習データとして第2予測モデルを再学習する工程と、
前記予測精度が前記基準値未満である前記第2予測モデルについて、前記運転データのうち、前記プラントの運転点と類似した類似運転データを前記学習データとして第3予測モデルを再学習する工程と、
前記第1予測モデル、前記第2予測モデル、又は、前記第3予測モデルのうち予測精度が最良なものを前記予測モデルとして選択する工程と、
を実行可能である。
In order to solve the above problem, a plant control assistance program according to at least one embodiment of the present disclosure includes:
1. A plant control support program for supporting plant control using a plurality of process values of a plant predicted using a plurality of prediction models, the program comprising:
To the computer device,
learning a plurality of first prediction models as the plurality of prediction models using learning data that is operation data of the plant;
a step of re-learning a second prediction model using the driving data to which additional data has been added as learning data for a first prediction model having a prediction accuracy less than a reference value among the plurality of first prediction models;
re-learning a third prediction model using, as learning data, similar operating data that is similar to an operating point of the plant among the operating data of the second prediction model whose prediction accuracy is less than the reference value;
selecting, as the prediction model, one of the first prediction model, the second prediction model, and the third prediction model that has the best prediction accuracy;
is possible.
本開示の少なくとも一実施形態によれば、プラントの運転条件に関わらず、予測モデルによるプロセス値の予測精度を良好に実現可能なプラント制御支援装置、プラント制御支援方法、及び、プラント制御支援プログラムを提供できる。 At least one embodiment of the present disclosure provides a plant control support device, a plant control support method, and a plant control support program that can achieve good prediction accuracy of process values using a prediction model regardless of the operating conditions of the plant.
以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Several embodiments of the present disclosure will be described below with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present disclosure and are merely illustrative examples.
まず本開示の少なくとも一実施形態に係るプラント制御支援装置100を含むプラント制御システム1の全体構成について説明する。図1は一実施形態に係るプラント制御システム1の全体構成図である。 First, we will explain the overall configuration of a plant control system 1 that includes a plant control assistance device 100 according to at least one embodiment of the present disclosure. Figure 1 is a diagram showing the overall configuration of a plant control system 1 according to one embodiment.
プラント制御支援装置100は、プラント10を制御するためのコントロールユニットである制御装置200によって実施される制御を支援するための装置である。プラント10は例えば火力発電プラントにおいて発電機に連結された蒸気タービン(不図示)に対して供給される蒸気を生成するためのボイラ装置であるが、これは一例に過ぎず限定されない。 The plant control assistance device 100 is a device for assisting the control performed by the control device 200, which is a control unit for controlling the plant 10. The plant 10 is, for example, a boiler device for generating steam supplied to a steam turbine (not shown) connected to a generator in a thermal power plant, but this is merely an example and is not limiting.
制御装置200は、プラント10との間で各種信号を送受信することにより、プラント10の運転状態を制御する。制御装置200による制御は、予め設定された操作条件に従って実施され、プラント10から運転パラメータを取得するとともに、当該運転パラメータに対応する制御信号をプラント10に対して出力する。プラント10では、制御装置200から入力される制御信号に基づいて各構成機器の制御が行われる。
尚、制御装置200の詳細な構成については公知の例に倣うこととし、ここでは割愛する。
The control device 200 controls the operating state of the plant 10 by transmitting and receiving various signals to and from the plant 10. The control by the control device 200 is performed in accordance with preset operating conditions, and the control device 200 acquires operating parameters from the plant 10 and outputs control signals corresponding to the operating parameters to the plant 10. In the plant 10, each component device is controlled based on the control signal input from the control device 200.
The detailed configuration of the control device 200 will be similar to that of a known example, and will not be described here.
プラント制御支援装置100は、外部入力インターフェース102と、前処理部104と、運転データ蓄積部106と、予測モデル学習部108と、予測モデル格納部110と、予測精度判定部112と、操作条件探索部114と、探索範囲設定部116と、外部出力インターフェース118とを備える。 The plant control assistance device 100 includes an external input interface 102, a preprocessing unit 104, an operating data accumulation unit 106, a prediction model learning unit 108, a prediction model storage unit 110, a prediction accuracy determination unit 112, an operating condition search unit 114, a search range setting unit 116, and an external output interface 118.
外部入力インターフェース102は、プラント制御支援装置100にとって外部装置である制御装置200からのデータを入力するためのインターフェース構成である。外部入力インターフェース102には、制御装置200で取り扱われる各種データが入力される。このデータには、前処理部104によって加工されることにより予測モデル学習部108において予測モデルMの機械学習において学習データとして取り扱われる運転データとなるデータが含まれる。また制御装置200からのデータ入力は、所定の時間間隔で繰り返し実施される。 The external input interface 102 is an interface configuration for inputting data from the control device 200, which is an external device to the plant control assistance device 100. Various data handled by the control device 200 is input to the external input interface 102. This data includes data that becomes operating data that is processed by the pre-processing unit 104 and treated as learning data in the machine learning of the prediction model M in the prediction model learning unit 108. Data input from the control device 200 is also carried out repeatedly at predetermined time intervals.
前処理部104は、外部入力インターフェース102から入力されたデータに対して前処理を実施するための構成である。前処理では、外部入力インターフェース102に入力されたデータから、予測モデル学習部108において予測モデルMの機械学習で学習データとして用いられる運転データを抽出する処理が少なくとも含まれるが、その詳細な処理内容は特に限定されない。 The preprocessing unit 104 is configured to perform preprocessing on data input from the external input interface 102. The preprocessing includes at least a process of extracting driving data from the data input to the external input interface 102, which is used as learning data in the machine learning of the prediction model M in the prediction model learning unit 108, but the detailed processing content is not particularly limited.
運転データ蓄積部106は、前処理部104によって作成された運転データを蓄積するための構成(例えばデータベース)である。プラント制御支援装置100では、制御装置200から外部入力インターフェース102にデータが入力される毎に、前処理部104で前処理が実施されることにより運転データが加工され、運転データ蓄積部106に逐次蓄積される。 The operating data storage unit 106 is a component (e.g., a database) for storing operating data created by the preprocessing unit 104. In the plant control assistance device 100, each time data is input from the control device 200 to the external input interface 102, preprocessing is performed in the preprocessing unit 104 to process the operating data, which is then sequentially stored in the operating data storage unit 106.
予測モデル学習部108は、運転データ蓄積部106に蓄積された運転データを学習データとして機械学習を実施することにより、予測モデルMを構築するための構成である。この機械学習は、運転データに含まれる各パラメータから説明変数と目的関数とを指定し、説明変数と目的変数との相関を機械学習アルゴリズムに従って学習することにより、予測モデルMの構築が行われる。機械学習アルゴリズムとしては、線形回帰、ニューラルネットワーク又はランダムフォレスト等を採用可能であるが限定されない。 The prediction model learning unit 108 is configured to construct a prediction model M by performing machine learning using the driving data stored in the driving data storage unit 106 as learning data. This machine learning constructs the prediction model M by specifying explanatory variables and an objective function from each parameter included in the driving data and learning the correlation between the explanatory variables and the objective variable according to a machine learning algorithm. Examples of machine learning algorithms that can be used include, but are not limited to, linear regression, neural networks, and random forests.
予測モデル学習部108は、第1予測モデル学習部120、第2予測モデル学習部122、及び、第3予測モデル学習部124を含む。 The prediction model training unit 108 includes a first prediction model training unit 120, a second prediction model training unit 122, and a third prediction model training unit 124.
第1予測モデル学習部120は、運転データ蓄積部106に蓄積された運転データを学習データとする機械学習によって、予測モデル(以下、適宜「第1予測モデルM1」と称する)を構築するための構成である。この第1予測モデル学習部120による機械学習は、第2予測モデル学習部122及び第3予測モデル学習部124による機械学習より先に行われる、いわゆるオリジナルな予測モデルMを構築するための機械学習である。 The first prediction model learning unit 120 is configured to construct a prediction model (hereinafter referred to as the "first prediction model M1" as appropriate) through machine learning using the driving data accumulated in the driving data accumulation unit 106 as learning data. The machine learning by this first prediction model learning unit 120 is performed prior to the machine learning by the second prediction model learning unit 122 and the third prediction model learning unit 124, and is machine learning for constructing a so-called original prediction model M.
第2予測モデル学習部122は、追加運転データ再学習によって予測モデル(以下、適宜「第2予測モデルM2」と称する)を構築するための構成である。追加運転データ再学習では、第1予測モデルM1の構築時に学習データとして用いられた運転データに対して、追加データが追加されたものを学習データとする再学習によって、第2予測モデルM2が構築可能である。前述したように、運転データ蓄積部106には運転データが逐次蓄積されており、追加データは、第1予測モデルM1の学習時の後に運転データ蓄積部106に蓄積された運転データである。追加運転データ再学習では、このように追加データが追加されることによりデータ量が多くなった運転データで再学習を行うことにより、第1予測モデルM1に比べて予測精度が向上した第2予測モデルM2を構築できる。 The second prediction model learning unit 122 is configured to construct a prediction model (hereinafter referred to as the "second prediction model M2" as appropriate) by additional driving data relearning. In additional driving data relearning, the second prediction model M2 can be constructed by relearning using driving data that was used as learning data when the first prediction model M1 was constructed, with additional data added as learning data. As described above, driving data is sequentially accumulated in the driving data accumulation unit 106, and the additional data is driving data that has been accumulated in the driving data accumulation unit 106 after the first prediction model M1 was learned. In additional driving data relearning, by relearning using driving data with a larger amount of data due to the addition of additional data, it is possible to construct a second prediction model M2 with improved prediction accuracy compared to the first prediction model M1.
第3予測モデル学習部124は、類似運転データ再学習によって予測モデル(以下、適宜「第3予測モデルM3」と称する)を構築するための構成である。類似運転データ再学習では、運転データ蓄積部106に格納されている運転データのうちプラント10の運転点を含む所定の運転領域に属する類似運転データを学習データとした類似運転データ再学習を実施することにより、第3予測モデルM3が構築可能である。 The third prediction model learning unit 124 is configured to construct a prediction model (hereinafter referred to as the "third prediction model M3" as appropriate) by similar operating data relearning. In similar operating data relearning, the third prediction model M3 can be constructed by performing similar operating data relearning, using as learning data similar operating data that belongs to a predetermined operating region including the operating point of the plant 10 from the operating data stored in the operating data accumulation unit 106.
ここで図2を参照して、第3予測モデル学習部124で学習データとして取り扱われる類似運転データについて具体的に説明する。図2はプラント10の運転点を規定する仮想空間Vを示す模式図である。図2では、運転点を表す複数のパラメータを空間軸として規定される多次元空間である仮想空間Vにおいて、プラントの現在の運転点が示されている(図2では、図示がわかりやすいように、仮想空間Vの次元数が「3」である場合を例示している)。 Now, referring to Figure 2, we will explain in detail the similar operating data that is treated as learning data by the third prediction model learning unit 124. Figure 2 is a schematic diagram showing a virtual space V that defines the operating point of the plant 10. In Figure 2, the current operating point of the plant is shown in virtual space V, which is a multidimensional space defined with multiple parameters representing the operating point as spatial axes (for ease of illustration, Figure 2 illustrates an example where the number of dimensions of virtual space V is "3").
図2では、3つの空間軸x、y、zで規定される仮想空間Vにおいてプラントの現在の運転点に対応する座標Aを(x1、y1、z1)、仮想空間の任意の点Bの座標を(x2、y2、z2)とすると、両者の乖離度Lは次式で表される。
L={(x1-x2)2+(y1-y2)2+(z1-z2)2}0.5
類似運転データは、例えば、運転データのうちこのように表される乖離度Lが所定値L0以内である類似運転範囲に含まれるデータとして定義される(図2では、類似運転範囲が破線で示される球体内であることが模式的に示されている)。これにより、類似運転データ再学習では、運転状態が類似する運転点における運転データを学習データとして再学習を行うことにより、予測モデルMの予測精度を好適に向上できる。
In FIG. 2, when coordinate A corresponding to the current operating point of the plant in a virtual space V defined by three spatial axes x, y, and z is (x1, y1, z1), and coordinates of an arbitrary point B in the virtual space are (x2, y2, z2), the degree of deviation L between the two is expressed by the following equation:
L={(x1-x2) 2 + (y1-y2) 2 + (z1-z2) 2 } 0.5
The similar driving data is defined as, for example, data included in a similar driving range in which the deviation L expressed in this way is within a predetermined value L0 (in FIG. 2 , the similar driving range is schematically shown as being within a sphere indicated by a dashed line). Thus, in the similar driving data relearning, driving data at operating points with similar driving conditions is used as learning data for relearning, thereby suitably improving the prediction accuracy of the prediction model M.
尚、ここでは乖離度Lをユークリッド距離を用いて定義した場合を例示したが、乖離度Lは、マハラノビス距離を用いて定義されてもよい。また、類似運転データは、運転データの中から乖離度Lが小さい順に所定の割合、又は、所定の個数に達するまで抽出したデータとして定義されてもよい。前述のように、類似運転データを乖離度Lが所定値L0以内であるデータとして定義した場合、当該範囲に十分なデータ数が存在していない場合には、十分な学習データを抽出することができず、予測モデルMの学習自体が不能になるおそれがある。それに対して、この態様では、運転類似データを、所定の割合又は所定の個数に達するまで抽出したデータとして定義することで、乖離度Lの小さい運転データが少ない場合においても、学習に必要なデータの不足を防止し、類似運転データ再学習の実行が可能となる(これは、所定値L0を可変値とし、運転データの中から乖離度Lが小さい運転データを所定の数、又は、所定の割合で抽出されるように決定することと同義である)。 Note that while the example here illustrates a case in which deviation L is defined using Euclidean distance, deviation L may also be defined using Mahalanobis distance. Furthermore, similar driving data may be defined as data extracted from driving data in ascending order of deviation L until a predetermined percentage or a predetermined number is reached. As mentioned above, if similar driving data is defined as data whose deviation L is within a predetermined value L0, if there is not enough data within that range, sufficient learning data cannot be extracted, and learning of the predictive model M itself may become impossible. In contrast, in this aspect, by defining similar driving data as data extracted until a predetermined percentage or a predetermined number is reached, it is possible to prevent a shortage of data necessary for learning even when there is little driving data with a small deviation L, and to perform similar driving data relearning. (This is equivalent to setting the predetermined value L0 to a variable value and determining that a predetermined number or a predetermined percentage of driving data with a small deviation L is extracted from the driving data.)
図1に戻って、予測モデル格納部110は、予測モデル学習部108において構築された予測モデルMを格納するための構成である。予測モデル学習部108では、予測モデルMとして、第1予測モデルM1、第2予測モデルM2又は第3予測モデルM3の少なくとも1つが構築され、これらの予測モデルMは予測モデル格納部110に格納されることで、適宜利用可能な状態となる。 Returning to Figure 1, the prediction model storage unit 110 is configured to store the prediction model M constructed by the prediction model learning unit 108. The prediction model learning unit 108 constructs at least one of the first prediction model M1, second prediction model M2, and third prediction model M3 as the prediction model M, and these prediction models M are stored in the prediction model storage unit 110 so that they can be used as needed.
予測精度判定部112は、予測モデル格納部110に格納された各予測モデルM(第1予測モデルM1、第2予測モデルM2、又は、第3予測モデルM3)の予測精度を判定するための構成である。予測モデルMの予測精度の算出手法は、例えば実測値等の検証用のデータに対する予測値の平均絶対誤差を集計する等により行われるが、公知の各手法を採用可能であり限定されない。予測精度判定部112では、算出した予測精度を、予め許容精度データベース126に記憶された基準値と比較することにより、予測モデルMの予測精度が基準値未満であるか否かを判定可能になっている。 The prediction accuracy determination unit 112 is configured to determine the prediction accuracy of each prediction model M (first prediction model M1, second prediction model M2, or third prediction model M3) stored in the prediction model storage unit 110. The prediction accuracy of the prediction model M is calculated, for example, by aggregating the mean absolute error of predicted values for verification data such as actual measured values, but any known method can be used and is not limited to this method. The prediction accuracy determination unit 112 is able to determine whether the prediction accuracy of the prediction model M is below the reference value by comparing the calculated prediction accuracy with a reference value stored in advance in the acceptable accuracy database 126.
操作条件探索部114は、予測モデル格納部110に格納された予測モデルMを用いて、制御装置200の操作条件を探索するための構成である。操作条件の探索は、予測モデルMを用いて算出される予測値に基づいてプラント10の性能に対応する指数を算出し、当該指数が最良となるように、探索範囲設定部116で設定された探索範囲内で行われる。 The operating condition search unit 114 is configured to search for operating conditions for the control device 200 using the prediction model M stored in the prediction model storage unit 110. The search for operating conditions is performed within the search range set by the search range setting unit 116, by calculating an index corresponding to the performance of the plant 10 based on the predicted value calculated using the prediction model M, and optimizing the index.
ここで図3は図1の予測モデル格納部110に格納された予測モデルMを用いた予測値Pの算出フローを示す説明図であり、図4は図1の操作条件探索部114において操作条件の探索に用いられる指標の算出フローを示す説明図である。 Here, Figure 3 is an explanatory diagram showing the calculation flow of a predicted value P using a prediction model M stored in the prediction model storage unit 110 of Figure 1, and Figure 4 is an explanatory diagram showing the calculation flow of an index used to search for operation conditions in the operation condition search unit 114 of Figure 1.
図3に示すように、予測モデルMは説明変数に対応するパラメータが入力されることにより、目的変数に対応する予測値Pを出力する。予測値Pは、例えばプラント10がボイラ装置である場合には、ボイラ装置の運転状態に関するプロセス値であり、より具体的にはボイラ装置の各部における蒸気の温度や圧力、メタル温度、或いは、ボイラ装置から排出されるNOx濃度等である。説明変数は、ボイラ装置の各種運転パラメータであり、より具体的には燃料を噴射するバーナの角度や、風量を調整する各種ダンパ開度等である。予測モデルMは、予測モデル学習部108において、このような目的変数の種類に応じてそれぞれ構築され、予測モデル格納部110には、目的変数の種類に応じた複数の予測モデルMが格納される。 As shown in FIG. 3, prediction model M receives parameters corresponding to explanatory variables and outputs a predicted value P corresponding to the objective variable. For example, if plant 10 is a boiler system, predicted value P is a process value related to the operating state of the boiler system, and more specifically, the steam temperature and pressure in each part of the boiler system, metal temperature, or NOx concentration emitted from the boiler system. Explanatory variables are various operating parameters of the boiler system, and more specifically, the angle of the burner that injects fuel, the opening degrees of various dampers that adjust the air volume, etc. Prediction models M are constructed in prediction model learning unit 108 according to the type of objective variable, and multiple prediction models M according to the type of objective variable are stored in prediction model storage unit 110.
尚、ある目的変数に対応する予測モデルMについて、第1予測モデルM1に加えて、第2予測モデルM2又は第3予測モデルM3が格納されている場合には、これらの予測モデルのうち最良の予測精度を有するものを用いて予測値Pの算出が行われる。つまり、複数の目的変数の予測値Pはそれぞれ対応する複数の予測モデルMを用いて算出されるが、各予測モデルMは対応する目的変数に関する予測モデルのうち(第1予測モデルM1、第2予測モデルM2又は第3予測モデルM3の少なくとも1つのうち)予測精度が最良のものが採用される。 Furthermore, if a second prediction model M2 or a third prediction model M3 is stored in addition to a first prediction model M1 for a prediction model M corresponding to a certain objective variable, the predicted value P is calculated using the prediction model with the best prediction accuracy among these prediction models. In other words, the predicted values P for multiple objective variables are calculated using multiple corresponding prediction models M, and each prediction model M is the one with the best prediction accuracy among the prediction models for the corresponding objective variable (at least one of the first prediction model M1, second prediction model M2, or third prediction model M3).
操作条件探索部114は、予測モデル格納部110に格納された複数の予測モデルMに対して、予め設定された操作条件に対応する入力パラメータ(初期値)を入力することで、それぞれの予測値P(以下、これらを区別する際には、適宜「予測値P1、P2、・・・」と称する)を求める。これらの予測値Pは所定の変換式を用いて予測値Pを評価するための指標INに換算される。具体的には図4に示すように、操作条件探索部114は、各予測値P1、P2、・・・をそれぞれ対応するスコアSC1、SC2、・・・に換算し、これらの合計値として指標IN(=SC1+SC2+・・・)を算出する。そして操作条件探索部114は、当該指標INが最良(例えば最小又は最大)になるように操作条件を探索する(すなわち、操作条件の変更と指標INの算出を繰り返し実行することにより、指標INが最良となる操作条件を特定する)。 The operation condition search unit 114 inputs input parameters (initial values) corresponding to preset operation conditions into multiple prediction models M stored in the prediction model storage unit 110, and finds each predicted value P (hereinafter, when distinguishing between them, they will be referred to as "predicted values P1, P2, ..." as appropriate). These predicted values P are converted into an index IN for evaluating the predicted values P using a predetermined conversion formula. Specifically, as shown in FIG. 4, the operation condition search unit 114 converts each predicted value P1, P2, ... into a corresponding score SC1, SC2, ... and calculates the index IN (= SC1 + SC2 + ...) as the sum of these scores. The operation condition search unit 114 then searches for operation conditions that will optimize the index IN (e.g., minimum or maximum) (i.e., by repeatedly changing the operation conditions and calculating the index IN, the operation conditions that optimize the index IN are identified).
尚、操作条件探索部114における操作条件の探索は、探索範囲設定部116によって設定される探索範囲内で行われる。この探索範囲は、デフォルト状態では第一の探索範囲が設定されているが、後述するように探索範囲制限処理が実行された場合には、第一の探索範囲よりも探索範囲が狭くなるよう指定された第二の探索範囲に制限される。操作条件の探索範囲を、予測モデルMの予測精度が良好な範囲や、運転状態を著しく損なわない範囲に制限することにより、実質的に予測精度を向上することや運転の信頼性を向上することができる。 The search for operation conditions in the operation condition search unit 114 is performed within a search range set by the search range setting unit 116. This search range is set to a first search range by default, but when the search range restriction process is executed as described below, it is restricted to a second search range that is specified to be narrower than the first search range. By restricting the search range for operation conditions to a range where the prediction model M has good prediction accuracy or a range that does not significantly impair the driving state, it is possible to substantially improve prediction accuracy and improve driving reliability.
操作条件探索部114で探索された操作条件は、外部出力インターフェース118を介して制御装置200に出力される。制御装置200は、このように出力された操作条件に従ってプラント10を制御することにより、プラント10は好適に制御される。 The operating conditions searched for by the operating condition search unit 114 are output to the control device 200 via the external output interface 118. The control device 200 controls the plant 10 in accordance with the operating conditions output in this manner, thereby ensuring optimal control of the plant 10.
続いて上記構成を有するプラント制御支援装置100を用いて実施されるプラント制御支援方法について説明する。図5は一実施形態に係るプラント制御支援方法を示すフローチャートである。 Next, we will explain the plant control support method implemented using the plant control support device 100 having the above configuration. Figure 5 is a flowchart showing the plant control support method according to one embodiment.
まず運転データ蓄積部106に運転データが収集される(ステップS100)。ステップS100では、稼働中のプラント10を制御する制御装置200から外部入力インターフェース102を介してプラント制御支援装置100に入力され、当該データは、前処理部104によって前処理が実施されることにより運転データとして加工される。加工された運転データは、逐次運転データ蓄積部106に蓄積されることにより収集される。このような運転データの蓄積は、前述したように逐次行われており、以下の説明では、運転データ蓄積部106には予測モデルM(第1予測モデルM1)を学習するために十分な運転データが蓄積されているとする。 First, operating data is collected in the operating data storage unit 106 (step S100). In step S100, operating data is input from the control device 200 that controls the operating plant 10 to the plant control assistance device 100 via the external input interface 102, and the data is processed into operating data by preprocessing performed by the preprocessing unit 104. The processed operating data is collected by being sequentially stored in the operating data storage unit 106. Such storage of operating data is performed sequentially as described above, and in the following explanation, it is assumed that sufficient operating data has been stored in the operating data storage unit 106 to train the prediction model M (first prediction model M1).
続いて予測モデル学習部108は、運転データ蓄積部106に蓄積された運転データを学習データとする機械学習により第1予測モデルM1を構築する(ステップS101)。ステップS101では、予測モデル学習部108のうち第1予測モデル学習部120によって、予測モデルMとして第1予測モデルM1が構築される。第1予測モデル学習部120では、予め用意された少なくとも1つの種類の機械学習アルゴリズムに基づいて第1予測モデルM1の構築が行われる。本実施形態では特に、第1予測モデル学習部120では、複数種類の機械学習アルゴリズムが予め用意されており、目的変数ごとに複数の機械学習アルゴリズムによって第1予測モデルM1に対応する複数の予測モデル候補が生成される。そして第1予測モデル学習部120では、これらの第1予測モデルM1に対応する複数の予測モデル候補について予測精度を算出し、予測精度が最良なものを、その目的変数についての第1予測モデルM1として採用する。このように採用された第1予測モデルM1は、予測モデル格納部110に格納される。予測モデル格納部110に格納された第1予測モデルM1は、操作条件探索部114によって適宜アクセス可能である。 Next, the prediction model learning unit 108 constructs a first prediction model M1 through machine learning using the driving data accumulated in the driving data accumulation unit 106 as learning data (step S101). In step S101, the first prediction model learning unit 120 of the prediction model learning unit 108 constructs a first prediction model M1 as a prediction model M. The first prediction model learning unit 120 constructs the first prediction model M1 based on at least one type of machine learning algorithm prepared in advance. In this embodiment in particular, the first prediction model learning unit 120 has multiple types of machine learning algorithms prepared in advance, and generates multiple prediction model candidates corresponding to the first prediction model M1 using the multiple machine learning algorithms for each dependent variable. The first prediction model learning unit 120 then calculates the prediction accuracy of the multiple prediction model candidates corresponding to these first prediction models M1, and adopts the one with the best prediction accuracy as the first prediction model M1 for that dependent variable. The first prediction model M1 adopted in this way is stored in the prediction model storage unit 110. The first prediction model M1 stored in the prediction model storage unit 110 can be accessed as needed by the operation condition search unit 114.
尚、ステップS101における第1予測モデルM1の学習は、所定期間T1ごとに実施されてもよい。すなわち、所定期間T1毎に運転データ蓄積部106に蓄積された運転データを学習データとして機械学習を行うことで、最新の運転データに基づいて第1予測モデルM1を更新してもよい。 Note that the learning of the first prediction model M1 in step S101 may be performed every predetermined period T1. In other words, machine learning may be performed every predetermined period T1 using the driving data accumulated in the driving data accumulation unit 106 as learning data, thereby updating the first prediction model M1 based on the latest driving data.
続いて予測精度判定部112は、ステップS101で構築された第1予測モデルM1の予測精度が予め設定された基準値未満であるか否かが判定される(ステップS102)。ステップS102では、所定期間T2毎に予測モデル格納部110に格納された第1予測モデルM1にアクセスすることにより、第1予測モデルM1の予測精度を算出し、当該予測精度を基準値と比較する。この所定期間T2は、前述の所定期間T1と異なってもよく、特に所定期間T1より短くともよい。 Next, the prediction accuracy determination unit 112 determines whether the prediction accuracy of the first prediction model M1 constructed in step S101 is less than a preset reference value (step S102). In step S102, the first prediction model M1 stored in the prediction model storage unit 110 is accessed every predetermined period T2 to calculate the prediction accuracy of the first prediction model M1 and compare this prediction accuracy with the reference value. This predetermined period T2 may be different from the aforementioned predetermined period T1, and in particular may be shorter than the predetermined period T1.
続いて予測精度が基準値未満である場合(ステップS102:YES)、予測モデル学習部108は、第2予測モデル学習部122によって追加運転データ再学習を実施することにより、第2予測モデルM2を学習する(ステップS103)。追加運転データ再学習では、ステップS101で第1予測モデルM1の構築時に学習データとして用いられた運転データに対して、追加データが追加されたものを学習データとする再学習によって、第2予測モデルM2が構築される。そのため第1予測モデルM1の予測精度が基準値未満である場合には、追加運転データ再学習によって、追加データが追加されることによりデータ量が多くなった運転データで再学習を行うことで、第1予測モデルM1に比べて予測精度が向上した第2予測モデルM2を構築できる。 Next, if the prediction accuracy is less than the reference value (step S102: YES), the prediction model learning unit 108 performs additional driving data relearning using the second prediction model learning unit 122 to learn the second prediction model M2 (step S103). In the additional driving data relearning, the second prediction model M2 is constructed by relearning using the driving data used as learning data when constructing the first prediction model M1 in step S101, with additional data added as learning data. Therefore, if the prediction accuracy of the first prediction model M1 is less than the reference value, the additional driving data relearning can be performed using driving data with a larger amount of data due to the addition of the additional data, thereby constructing a second prediction model M2 with improved prediction accuracy compared to the first prediction model M1.
尚、第2予測モデル学習部122における第2予測モデルM2の構築は、前述の第1予測モデル学習部120と同様に、少なくとも1つの種類の機械学習アルゴリズムを用いて行われてもよい。本実施形態では特に、第2予測モデル学習部122では、複数種類の機械学習アルゴリズムが予め用意されており、目的変数ごとに複数の機械学習アルゴリズムによって第2予測モデルM2に対応する複数の予測モデル候補が生成される。そして第2予測モデル学習部122では、これらの第2予測モデルM2に対応する複数の予測モデル候補について予測精度を算出し、予測精度が最良なものを、その目的変数についての第2予測モデルM2として採用する。構築された第2予測モデルM2は、前述の第1予測モデルM1に代えて、又は、加えて、予測モデル格納部110に格納される。予測モデル格納部110に格納された第2予測モデルM2は、操作条件探索部114によって適宜アクセス可能である。 Note that the construction of the second prediction model M2 in the second prediction model training unit 122 may be performed using at least one type of machine learning algorithm, as in the above-described first prediction model training unit 120. In this embodiment, in particular, the second prediction model training unit 122 is provided with multiple types of machine learning algorithms, and multiple prediction model candidates corresponding to the second prediction model M2 are generated for each dependent variable using the multiple machine learning algorithms. The second prediction model training unit 122 then calculates the prediction accuracy of the multiple prediction model candidates corresponding to the second prediction model M2, and adopts the one with the best prediction accuracy as the second prediction model M2 for that dependent variable. The constructed second prediction model M2 is stored in the prediction model storage unit 110 instead of or in addition to the above-described first prediction model M1. The second prediction model M2 stored in the prediction model storage unit 110 can be accessed as needed by the operation condition search unit 114.
続いて予測精度判定部112は、ステップS103で構築された第2予測モデルM2の予測精度が予め設定された基準値未満であるか否かが判定される(ステップS104)。ステップS104では、前述のステップS102に倣って、第2予測モデルM2の予測精度を算出し、当該予測精度を基準値と比較する。 The prediction accuracy determination unit 112 then determines whether the prediction accuracy of the second prediction model M2 constructed in step S103 is less than a preset reference value (step S104). In step S104, following the procedure in step S102 described above, the prediction accuracy of the second prediction model M2 is calculated and compared with the reference value.
尚、ステップS104で判定基準とされる基準値は、ステップS102で判定基準とされる基準値と同じであってもよいし、異なっていてもよい。 Note that the reference value used as the judgment criterion in step S104 may be the same as the reference value used as the judgment criterion in step S102, or may be different.
続いて予測精度が基準値未満である場合(ステップS104:YES)、予測モデル学習部108は、第3予測モデル学習部124によって類似運転データ再学習を実施する(ステップS105)、又は、探索範囲設定部116によって探索範囲制限処理を実施する(ステップS106)。図1に示すように、一実施形態に係るプラント制御支援装置100は、表示部130、及び、選択部132を備えることにより、オペレータの操作によって、ステップS105又はS106のいずれか一方を選択的に実施可能になっている。 Next, if the prediction accuracy is less than the reference value (step S104: YES), the prediction model learning unit 108 performs similar operating data relearning using the third prediction model learning unit 124 (step S105), or performs search range restriction processing using the search range setting unit 116 (step S106). As shown in FIG. 1, the plant control assistance device 100 according to one embodiment includes a display unit 130 and a selection unit 132, allowing the operator to selectively perform either step S105 or S106.
表示部130は、オペレータに対して必要な各種情報を表示するためのディスプレイ等の表示装置である。表示部130に表示される情報は、オペレータがステップS105又はS106のいずれ一方を選択する際に利用される情報を広く含むことができ、例えば、予測精度判定部112における判定を実施する過程で算出された予測精度が含まれてもよい。 The display unit 130 is a display device such as a display that displays various information necessary for the operator. The information displayed on the display unit 130 can broadly include information used when the operator selects either step S105 or S106, and may include, for example, the prediction accuracy calculated in the process of making the judgment in the prediction accuracy judgment unit 112.
選択部132は、表示部130に表示された情報を参照したオペレータがステップS105又はS106を選択するための構成であり、キーボード、マウス或いはタッチパネル等の入力装置であってもよい。オペレータは表示部130に表示された情報を参照し、自身の判断に基づいて選択部132を操作することにより、第2予測モデルM2の予測精度が基準値未満である場合にステップS105又はS106のどちらを実施するか選択することができる。 The selection unit 132 is configured to allow the operator, referring to the information displayed on the display unit 130, to select step S105 or S106, and may be an input device such as a keyboard, mouse, or touch panel. The operator can refer to the information displayed on the display unit 130 and operate the selection unit 132 based on their own judgment, thereby selecting whether to perform step S105 or S106 when the prediction accuracy of the second prediction model M2 is below the reference value.
尚、探索範囲制限処理は、一般的に、類似運転データ再学習より演算時間が短くなる傾向がある。そのため、選択部132による選択基準としては、例えば、予測精度が良好な質のよい予測モデルMを必要とする場合にはステップS105を選択し、一方で、演算時間を短くすることを優先する場合にはステップS106を選択することができる。 In general, the search range limiting process tends to require shorter calculation times than similar driving data relearning. Therefore, the selection criteria used by the selector 132 can be, for example, to select step S105 when a high-quality prediction model M with good prediction accuracy is required, or to select step S106 when shorter calculation times are a priority.
ステップS105において類似運転データ再学習が実施される場合、第3予測モデル学習部124によって、類似運転データを学習データとして第3予測モデルM3の構築が行われる。類似運転データ再学習では、運転状態が類似する運転点における運転データを学習データとして再学習を行うことにより、予測精度が向上された第3予測モデルM3を得ることができる。 If similar driving data relearning is performed in step S105, the third prediction model learning unit 124 constructs a third prediction model M3 using the similar driving data as learning data. In similar driving data relearning, driving data at driving points with similar driving conditions is used as learning data to perform relearning, thereby obtaining a third prediction model M3 with improved prediction accuracy.
尚、第3予測モデル学習部124における第3予測モデルM3の構築は、前述の第1予測モデル学習部120における第1予測モデルM1の構築、及び、第2予測モデル学習部122における第2予測モデルM2の構築と同様に、少なくとも1つの種類の機械学習アルゴリズムを用いて行われてもよい。本実施形態では特に、第3予測モデル学習部124では、複数種類の機械学習アルゴリズムが予め用意されており、目的変数ごとに複数の機械学習アルゴリズムによって第3予測モデルM3に対応する複数の予測モデル候補が生成される。そして第3予測モデル学習部124では、これらの複数の第3予測モデルM3に対応する複数の予測モデル候補について予測精度を算出し、予測精度が最良なものを、その目的変数についての第3予測モデルM3として採用する。構築された第3予測モデルM3は、前述の第2予測モデルM2に代えて、又は、加えて、予測モデル格納部110に格納される。予測モデル格納部110に格納された第3予測モデルM3は、操作条件探索部114によって適宜アクセス可能である。 Note that the construction of the third prediction model M3 in the third prediction model training unit 124 may be performed using at least one type of machine learning algorithm, similar to the construction of the first prediction model M1 in the first prediction model training unit 120 and the construction of the second prediction model M2 in the second prediction model training unit 122 described above. In this embodiment, particularly, the third prediction model training unit 124 is provided with multiple types of machine learning algorithms in advance, and multiple prediction model candidates corresponding to the third prediction model M3 are generated using the multiple machine learning algorithms for each dependent variable. The third prediction model training unit 124 then calculates the prediction accuracy of the multiple prediction model candidates corresponding to these multiple third prediction models M3, and adopts the one with the best prediction accuracy as the third prediction model M3 for that dependent variable. The constructed third prediction model M3 is stored in the prediction model storage unit 110 instead of or in addition to the second prediction model M2 described above. The third prediction model M3 stored in the prediction model storage unit 110 can be accessed as needed by the operation condition search unit 114.
一方、ステップS106において探索範囲制限処理が実施される場合、後述のステップS110で操作条件を探索する際の探索範囲が指定された範囲に制限されることにより、予測モデルを用いた運転最適化の実行性を高めることができる。例えば、予測モデルMのうち予測精度が閾値以上となる範囲に探索範囲を制限した場合、実質的に予測精度を向上することができる。また、運転状態を著しく損なわない範囲に探索範囲を制限した場合、安全運転を維持したまま予測モデルMを用いた運転の最適化を行うことができる。 On the other hand, when the search range restriction process is performed in step S106, the search range when searching for operating conditions in step S110, described below, is restricted to a specified range, thereby improving the feasibility of optimizing driving using a predictive model. For example, if the search range is restricted to a range in which the prediction accuracy of prediction model M is equal to or greater than a threshold, prediction accuracy can be substantially improved. Furthermore, if the search range is restricted to a range that does not significantly impair the driving state, driving can be optimized using prediction model M while maintaining safe driving.
続いて複数の予測モデルMの各々について、第1予測モデルM1、第2予測モデルM2又は第3予測モデルM3のうち予測精度が最良な予測モデルが選択される(ステップS107)。前述したように予測モデルは、目的変数の種類に応じて複数用意され、その各々について前述のステップにおいて第1予測モデルM1、第2予測モデルM2又は第3予測モデルM3の少なくとも1つが構築される。ステップS107では、各予測モデルMとして、第1予測モデルM1、第2予測モデルM2又は第3予測モデルM3のうち予測精度が最良なものが採用される。 Next, for each of the multiple prediction models M, the prediction model with the best prediction accuracy is selected from the first prediction model M1, the second prediction model M2, or the third prediction model M3 (step S107). As mentioned above, multiple prediction models are prepared depending on the type of dependent variable, and for each of these, at least one of the first prediction model M1, the second prediction model M2, or the third prediction model M3 is constructed in the above-mentioned step. In step S107, the prediction model with the best prediction accuracy is adopted from the first prediction model M1, the second prediction model M2, or the third prediction model M3.
続いてステップS107で選択された各予測モデルMを用いて操作条件が探索され(ステップS108)、探索された操作条件が外部出力インターフェース118を介して制御装置200に出力される(ステップS109)。ステップS108では、図4を参照して前述したように、ステップS107で選択された各予測モデルMを用いて各予測値Pに基づいて指標INを算出し、当該指標INが最良になるように操作条件が探索される。 Next, operating conditions are searched for using each prediction model M selected in step S107 (step S108), and the searched operating conditions are output to the control device 200 via the external output interface 118 (step S109). In step S108, as described above with reference to FIG. 4, an index IN is calculated based on each predicted value P using each prediction model M selected in step S107, and operating conditions are searched for to optimize the index IN.
尚、ステップS108における操作条件の探索範囲は、ステップS106において探索範囲制限処理が実施された場合には、指定された範囲に制限される。 Note that if search range restriction processing was performed in step S106, the search range for operation conditions in step S108 will be limited to the specified range.
その他、本開示の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態を適宜組み合わせてもよい。 Furthermore, within the scope of the spirit of this disclosure, the components in the above-described embodiments may be replaced with well-known components, and the above-described embodiments may be combined as appropriate.
上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments can be understood, for example, as follows:
(1)一態様に係るプラント制御支援装置は、
複数の予測モデルを用いてそれぞれ予測されたプラントの複数のプロセス値を用いたプラント制御を支援するためのプラント制御支援装置であって、
前記プラントの運転データである学習データを用いて、前記複数の予測モデルとして、複数の第1予測モデルを学習するための第1予測モデル学習部と、
前記複数の第1予測モデルのうち予測精度が基準値未満である前記第1予測モデルについて、追加データが追加された前記運転データを前記学習データとして第2予測モデルを再学習するための第2予測モデル学習部と、
前記予測精度が前記基準値未満である前記第2予測モデルについて、前記運転データのうち、前記プラントの運転点と類似した類似運転データを前記学習データとして第3予測モデルを再学習するための第3予測モデル学習部と、
前記第1予測モデル、前記第2予測モデル、又は、前記第3予測モデルのうち予測精度が最良なものを前記予測モデルとして選択する予測モデル選択部と、
を備える。
(1) A plant control assistance device according to one aspect includes:
1. A plant control support device for supporting plant control using a plurality of process values of a plant that are predicted using a plurality of prediction models, the device comprising:
a first prediction model learning unit configured to learn a plurality of first prediction models as the plurality of prediction models by using learning data that is operation data of the plant;
a second prediction model learning unit configured to re-learn a second prediction model using the driving data to which additional data has been added as learning data for a first prediction model having a prediction accuracy less than a reference value among the plurality of first prediction models;
a third prediction model learning unit configured to re-learn a third prediction model using, as learning data, similar operating data that is similar to an operating point of the plant among the operating data for the second prediction model whose prediction accuracy is less than the reference value;
a prediction model selection unit that selects, as the prediction model, one of the first prediction model, the second prediction model, and the third prediction model that has the highest prediction accuracy;
Equipped with.
上記(1)の態様によれば、運転データを学習データとして、予測対象である複数のプロセス値にそれぞれ対応する複数の第1予測モデルが構築される。これらの第1予測モデルのうち予測精度が基準値未満である第1予測モデルについては、追加運転データ再学習によって、追加データが追加された運転データを学習データとした再学習が実施されることにより、予測精度が向上された第2予測モデルが構築される。第2予測モデルの予測精度が依然として基準値未満である場合、類似運転データ再学習によって、運転データのうちプラントの運転点と類似した類似運転データを学習データとした再学習が実施されることにより、予測精度が向上された第3予測モデルの予測精度が向上される。プラント制御装置では、複数のプロセス値をそれぞれ予測するための各予測モデルとして、これらの第1予測モデル、第2予測モデル又は第3予測モデルのうち予測精度が最良なものが選択される。これにより、各プロセス値を精度よく予測でき、プラント制御装置の制御性を好適に向上できる。 According to aspect (1) above, multiple first prediction models are constructed using operating data as learning data, each corresponding to a plurality of process values to be predicted. For those first prediction models whose prediction accuracy is below a reference value, additional operating data relearning is performed using the operating data to which additional data has been added as learning data, thereby constructing a second prediction model with improved prediction accuracy. If the prediction accuracy of the second prediction model is still below the reference value, similar operating data relearning is performed using similar operating data similar to the operating point of the plant from the operating data, thereby improving the prediction accuracy of a third prediction model with improved prediction accuracy. The plant control device selects the first, second, or third prediction model with the best prediction accuracy as the prediction model for predicting each of the plurality of process values. This enables accurate prediction of each process value, thereby suitably improving the controllability of the plant control device.
(2)他の態様では、上記(1)の態様において、
前記第1予測モデル学習部、前記第2予測モデル学習部、又は、前記第3予測モデル学習部のうち少なくとも一つは、前記複数の予測モデルの各々について、複数種類の機械学習アルゴリズムを用いて複数の予測モデル候補をそれぞれ生成し、前記複数の予測モデル候補のうち予測精度が最良なものを前記第1予測モデル、前記第2予測モデル、又は、前記第3予測モデルとして選択する。
(2) In another aspect, in the above aspect (1),
At least one of the first prediction model learning unit, the second prediction model learning unit, or the third prediction model learning unit generates multiple prediction model candidates for each of the multiple prediction models using multiple types of machine learning algorithms, and selects the one with the best prediction accuracy from the multiple prediction model candidates as the first prediction model, the second prediction model, or the third prediction model.
上記(2)の態様によれば、第1予測モデル学習部、第2予測モデル学習部、又は、第3予測モデル学習部のうち少なくとも一つでは、複数種類の機械学習アルゴリズムを用いて複数の予測モデル候補を生成する。そして、これら複数の予測モデル候補のうち予測精度が最良なものを予測モデルとして選択することで、予測精度に優れた予測モデルの構築が可能となる。 According to aspect (2) above, at least one of the first prediction model learning unit, the second prediction model learning unit, and the third prediction model learning unit generates multiple prediction model candidates using multiple types of machine learning algorithms. Then, by selecting the prediction model with the best prediction accuracy from among these multiple prediction model candidates, it becomes possible to build a prediction model with excellent prediction accuracy.
(3)他の態様では、上記(1)又は(2)の態様において、
前記類似運転データは、前記運転データ及び前記追加データから、前記運転点からの乖離度が小さいデータを所定の割合又は数だけ抽出して構成される。
(3) In another aspect, in the above aspect (1) or (2),
The similar driving data is constructed by extracting a predetermined ratio or number of data that have a small deviation from the driving point from the driving data and the additional data.
上記(3)の態様によれば、類似運転データ再学習において学習データとして用いられる類似運転データは、運転データ及び追加データから、運転点からの乖離度が小さいデータを所定の割合又は数だけ抽出して構成される。これにより、類似運転データ再学習では、このような類似運転データを用いた再学習を行うことにより、予測モデルの予測精度を好適に向上させることができる。 According to aspect (3) above, the similar driving data used as learning data in similar driving data relearning is constructed by extracting a predetermined percentage or number of data that have a small deviation from the driving point from the driving data and additional data. As a result, in similar driving data relearning, by performing relearning using such similar driving data, the prediction accuracy of the prediction model can be suitably improved.
(4)他の態様では、上記(1)から(3)のいずれか一態様において、
前記追加データは、前記第1予測モデルの前回学習時から前記プラントから収集されたデータである。
(4) In another aspect, in any one of the above (1) to (3),
The additional data is data collected from the plant since the first prediction model was last trained.
上記(4)の態様によれば、追加運転データ再学習で用いられる学習データには、予測モデルの前回学習時における運転データに対して、前回学習時から再学習時までにプラントから収集された追加データが含まれる。これにより、前回学習時よりデータ数の多い学習データを用いた再学習によって、予測モデルの予測精度を好適に向上できる。 According to aspect (4) above, the learning data used in the additional operating data relearning includes additional data collected from the plant between the previous learning and the relearning, in addition to the operating data used during the previous learning of the prediction model. This makes it possible to suitably improve the prediction accuracy of the prediction model by relearning using learning data that contains a larger amount of data than during the previous learning.
(5)他の態様では、上記(1)から(4)のいずれか一態様において、
前記複数の予測モデルを用いて予測された前記複数のプロセス値に基づいて、前記プラントの性能に関する指標を算出するための指標算出部と、
前記指標に基づいて、前記プラントの操作条件を探索するための操作条件探索部と、
前記操作条件に基づいて前記プラントを制御するための制御部と、
を更に備える。
(5) In another aspect, in any one of the above (1) to (4),
an index calculation unit for calculating an index related to performance of the plant based on the plurality of process values predicted using the plurality of prediction models;
an operating condition search unit for searching for operating conditions of the plant based on the index;
a control unit for controlling the plant based on the operating conditions;
Further provided with:
上記(5)の態様によれば、上述のように予測精度が向上された予測モデルを用いて得られるプロセス値の予測値を用いることにより、プラントの操作条件を好適に探索してプラントを制御できる。 According to aspect (5) above, by using the predicted values of the process values obtained using the prediction model with improved prediction accuracy as described above, it is possible to optimally search for plant operating conditions and control the plant.
(6)他の態様では、上記(1)から(5)のいずれか一態様において、
前記プラントはボイラ装置である。
(6) In another aspect, in any one of the above (1) to (5),
The plant is a boiler unit.
上記(6)の態様によれば、ボイラ装置の特性に関するプロセス値を、良好な予測精度を有する予測モデルを用いて好適に予測できる。 According to the above aspect (6), process values related to the characteristics of the boiler equipment can be suitably predicted using a prediction model with good prediction accuracy.
(7)一態様に係るプラント制御支援方法は、
複数の予測モデルを用いてそれぞれ予測されたプラントの複数のプロセス値を用いたプラント制御を支援するためのプラント制御支援方法であって、
前記プラントの運転データである学習データを用いて、前記複数の予測モデルとして、複数の第1予測モデルを学習する工程と、
前記複数の第1予測モデルのうち予測精度が基準値未満である前記第1予測モデルについて、追加データが追加された前記運転データを前記学習データとして第2予測モデルを再学習する工程と、
前記予測精度が前記基準値未満である前記第2予測モデルについて、前記運転データのうち、前記プラントの運転点と類似した類似運転データを前記学習データとして第3予測モデルを再学習する工程と、
前記第1予測モデル、前記第2予測モデル、又は、前記第3予測モデルのうち予測精度が最良なものを前記予測モデルとして選択する工程と、
を備える。
(7) A plant control support method according to one aspect includes:
1. A plant control support method for supporting plant control using a plurality of process values of a plant predicted using a plurality of prediction models, the method comprising:
learning a plurality of first prediction models as the plurality of prediction models using learning data that is operation data of the plant;
a step of re-learning a second prediction model using the driving data to which additional data has been added as learning data for a first prediction model having a prediction accuracy less than a reference value among the plurality of first prediction models;
re-learning a third prediction model using, as learning data, similar operating data that is similar to an operating point of the plant among the operating data of the second prediction model whose prediction accuracy is less than the reference value;
selecting, as the prediction model, one of the first prediction model, the second prediction model, and the third prediction model that has the best prediction accuracy;
Equipped with.
上記(7)の態様によれば、運転データを学習データとして、予測対象である複数のプロセス値にそれぞれ対応する複数の第1予測モデルが構築される。これらの第1予測モデルのうち予測精度が基準値未満である第1予測モデルについては、追加運転データ再学習によって、追加データが追加された運転データを学習データとした再学習が実施されることにより、予測精度が向上された第2予測モデルが構築される。第2予測モデルの予測精度が依然として基準値未満である場合、類似運転データ再学習によって、運転データのうちプラントの運転点と類似した類似運転データを学習データとした再学習が実施されることにより、予測精度が向上された第3予測モデルの予測精度が向上される。プラント制御装置では、複数のプロセス値をそれぞれ予測するための各予測モデルとして、これらの第1予測モデル、第2予測モデル又は第3予測モデルのうち予測精度が最良なものが選択される。これにより、各プロセス値を精度よく予測でき、プラント制御装置の制御性を好適に向上できる。 According to aspect (7) above, multiple first prediction models are constructed using operating data as learning data, each corresponding to a plurality of process values to be predicted. For those first prediction models whose prediction accuracy is below a reference value, additional operating data relearning is performed using the operating data to which additional data has been added as learning data, thereby constructing a second prediction model with improved prediction accuracy. If the prediction accuracy of the second prediction model is still below the reference value, similar operating data relearning is performed using similar operating data from the operating data that is similar to the operating point of the plant as learning data, thereby improving the prediction accuracy of a third prediction model with improved prediction accuracy. The plant control device selects the first, second, or third prediction model with the best prediction accuracy as the prediction model for predicting each of the plurality of process values. This enables each process value to be predicted with high accuracy, thereby suitably improving the controllability of the plant control device.
(8)一態様に係るプラント制御支援プログラムは、
複数の予測モデルを用いてそれぞれ予測されたプラントの複数のプロセス値を用いたプラント制御を支援するためのプラント制御支援プログラムであって、
コンピュータ装置に、
前記プラントの運転データである学習データを用いて、前記複数の予測モデルとして、複数の第1予測モデルを学習する工程と、
前記複数の第1予測モデルのうち予測精度が基準値未満である前記第1予測モデルについて、追加データが追加された前記運転データを前記学習データとして第2予測モデルを再学習する工程と、
前記予測精度が前記基準値未満である前記第2予測モデルについて、前記運転データのうち、前記プラントの運転点と類似した類似運転データを前記学習データとして第3予測モデルを再学習する工程と、
前記第1予測モデル、前記第2予測モデル、又は、前記第3予測モデルのうち予測精度が最良なものを前記予測モデルとして選択する工程と、
を実行可能である。
(8) A plant control assistance program according to one aspect includes:
1. A plant control support program for supporting plant control using a plurality of process values of a plant predicted using a plurality of prediction models, the program comprising:
To the computer device,
learning a plurality of first prediction models as the plurality of prediction models using learning data that is operation data of the plant;
a step of re-learning a second prediction model using the driving data to which additional data has been added as learning data for a first prediction model having a prediction accuracy less than a reference value among the plurality of first prediction models;
re-learning a third prediction model using, as learning data, similar operating data that is similar to an operating point of the plant among the operating data of the second prediction model whose prediction accuracy is less than the reference value;
selecting, as the prediction model, one of the first prediction model, the second prediction model, and the third prediction model that has the best prediction accuracy;
is possible.
上記(8)の態様によれば、運転データを学習データとして、予測対象である複数のプロセス値にそれぞれ対応する複数の第1予測モデルが構築される。これらの第1予測モデルのうち予測精度が基準値未満である第1予測モデルについては、追加運転データ再学習によって、追加データが追加された運転データを学習データとした再学習が実施されることにより、予測精度が向上された第2予測モデルが構築される。第2予測モデルの予測精度が依然として基準値未満である場合、類似運転データ再学習によって、運転データのうちプラントの運転点と類似した類似運転データを学習データとした再学習が実施されることにより、予測精度が向上された第3予測モデルの予測精度が向上される。プラント制御装置では、複数のプロセス値をそれぞれ予測するための各予測モデルとして、これらの第1予測モデル、第2予測モデル又は第3予測モデルのうち予測精度が最良なものが選択される。これにより、各プロセス値を精度よく予測でき、プラント制御装置の制御性を好適に向上できる。 According to aspect (8) above, multiple first prediction models are constructed using operating data as learning data, each corresponding to a plurality of process values to be predicted. For those first prediction models whose prediction accuracy is below a reference value, additional operating data relearning is performed using the operating data to which additional data has been added as learning data, thereby constructing a second prediction model with improved prediction accuracy. If the prediction accuracy of the second prediction model is still below the reference value, similar operating data relearning is performed using similar operating data similar to the operating point of the plant from the operating data, thereby improving the prediction accuracy of a third prediction model with improved prediction accuracy. The plant control device selects the first, second, or third prediction model with the best prediction accuracy as the prediction model for predicting each of the plurality of process values. This enables each process value to be predicted with high accuracy, thereby suitably improving the controllability of the plant control device.
1 プラント制御システム
10 プラント
100 プラント制御支援装置
102 外部入力インターフェース
104 前処理部
106 運転データ蓄積部
108 予測モデル学習部
110 予測モデル格納部
112 予測精度判定部
114 操作条件探索部
116 探索範囲設定部
118 外部出力インターフェース
120 第1予測モデル学習部
122 第2予測モデル学習部
124 第3予測モデル学習部
130 表示部
132 選択部
200 制御装置
M 予測モデル
M1 第1予測モデル
M2 第2予測モデル
M3 第3予測モデル
V 仮想空間
REFERENCE SIGNS LIST 1 Plant control system 10 Plant 100 Plant control support device 102 External input interface 104 Preprocessing unit 106 Operation data accumulation unit 108 Prediction model learning unit 110 Prediction model storage unit 112 Prediction accuracy determination unit 114 Operation condition search unit 116 Search range setting unit 118 External output interface 120 First prediction model learning unit 122 Second prediction model learning unit 124 Third prediction model learning unit 130 Display unit 132 Selection unit 200 Control device M Prediction model M1 First prediction model M2 Second prediction model M3 Third prediction model V Virtual space
Claims (8)
前記プラントの運転データである学習データを用いて、前記複数の予測モデルとして、複数の第1予測モデルを学習するための第1予測モデル学習部と、
前記複数の第1予測モデルのうち予測精度が基準値未満である前記第1予測モデルについて、追加データが追加された前記運転データを前記学習データとして第2予測モデルを再学習するための第2予測モデル学習部と、
前記予測精度が前記基準値未満である前記第2予測モデルについて、前記運転データのうち、前記プラントの運転点と類似した類似運転データを前記学習データとして第3予測モデルを再学習するための第3予測モデル学習部と、
前記第1予測モデル、前記第2予測モデル、又は、前記第3予測モデルのうち予測精度が最良なものを前記予測モデルとして選択する予測モデル選択部と、
を備える、プラント制御支援装置。 1. A plant control support device for supporting plant control using a plurality of process values of a plant that are predicted using a plurality of prediction models, the device comprising:
a first prediction model learning unit configured to learn a plurality of first prediction models as the plurality of prediction models by using learning data that is operation data of the plant;
a second prediction model learning unit configured to re-learn a second prediction model using the driving data to which additional data has been added as learning data for a first prediction model having a prediction accuracy less than a reference value among the plurality of first prediction models;
a third prediction model learning unit configured to re-learn a third prediction model using, as learning data, similar operating data that is similar to an operating point of the plant among the operating data for the second prediction model whose prediction accuracy is less than the reference value;
a prediction model selection unit that selects, as the prediction model, one of the first prediction model, the second prediction model, and the third prediction model that has the highest prediction accuracy;
A plant control support device comprising:
前記指標に基づいて、前記プラントの操作条件を探索するための操作条件探索部と、
前記操作条件に基づいて前記プラントを制御するための制御部と、
を更に備える、請求項1又は2に記載のプラント制御支援装置。 an index calculation unit for calculating an index related to performance of the plant based on the plurality of process values predicted using the plurality of prediction models;
an operating condition search unit for searching for operating conditions of the plant based on the index;
a control unit for controlling the plant based on the operating conditions;
The plant control assistance device according to claim 1 or 2, further comprising:
前記プラントの運転データである学習データを用いて、前記複数の予測モデルとして、複数の第1予測モデルを学習する工程と、
前記複数の第1予測モデルのうち予測精度が基準値未満である前記第1予測モデルについて、追加データが追加された前記運転データを前記学習データとして第2予測モデルを再学習する工程と、
前記予測精度が前記基準値未満である前記第2予測モデルについて、前記運転データのうち、前記プラントの運転点と類似した類似運転データを前記学習データとして第3予測モデルを再学習する工程と、
前記第1予測モデル、前記第2予測モデル、又は、前記第3予測モデルのうち予測精度が最良なものを前記予測モデルとして選択する工程と、
を備える、プラント制御支援方法。 1. A plant control support method for supporting plant control using a plurality of process values of a plant predicted using a plurality of prediction models, the method comprising:
learning a plurality of first prediction models as the plurality of prediction models using learning data that is operation data of the plant;
a step of re-learning a second prediction model using the driving data to which additional data has been added as learning data for a first prediction model having a prediction accuracy less than a reference value among the plurality of first prediction models;
re-learning a third prediction model using, as learning data, similar operating data that is similar to an operating point of the plant among the operating data of the second prediction model whose prediction accuracy is less than the reference value;
selecting, as the prediction model, one of the first prediction model, the second prediction model, and the third prediction model that has the best prediction accuracy;
A plant control support method comprising:
コンピュータ装置に、
前記プラントの運転データである学習データを用いて、前記複数の予測モデルとして、複数の第1予測モデルを学習する工程と、
前記複数の第1予測モデルのうち予測精度が基準値未満である前記第1予測モデルについて、追加データが追加された前記運転データを前記学習データとして第2予測モデルを再学習する工程と、
前記予測精度が前記基準値未満である前記第2予測モデルについて、前記運転データのうち、前記プラントの運転点と類似した類似運転データを前記学習データとして第3予測モデルを再学習する工程と、
前記第1予測モデル、前記第2予測モデル、又は、前記第3予測モデルのうち予測精度が最良なものを前記予測モデルとして選択する工程と、
を実行可能な、プラント制御支援プログラム。 1. A plant control support program for supporting plant control using a plurality of process values of a plant predicted using a plurality of prediction models, the program comprising:
To the computer device,
learning a plurality of first prediction models as the plurality of prediction models using learning data that is operation data of the plant;
a step of re-learning a second prediction model using the driving data to which additional data has been added as learning data for a first prediction model having a prediction accuracy less than a reference value among the plurality of first prediction models;
re-learning a third prediction model using, as learning data, similar operating data that is similar to an operating point of the plant among the operating data of the second prediction model whose prediction accuracy is less than the reference value;
selecting, as the prediction model, one of the first prediction model, the second prediction model, and the third prediction model that has the best prediction accuracy;
A plant control support program that can execute the above.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2024-070327 | 2024-04-24 | ||
| JP2024070327A JP2025166362A (en) | 2024-04-24 | 2024-04-24 | Plant control support device, plant control support method, and plant control support program |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025225383A1 true WO2025225383A1 (en) | 2025-10-30 |
Family
ID=97489982
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2025/014123 Pending WO2025225383A1 (en) | 2024-04-24 | 2025-04-09 | Plant control assistance device, plant control assistance method, and plant control assistance program |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP2025166362A (en) |
| WO (1) | WO2025225383A1 (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019208773A1 (en) * | 2018-04-27 | 2019-10-31 | 三菱日立パワーシステムズ株式会社 | Operation assistance device for plant, operation assistance method for plant, learning model creation method for plant, operation assistance program for plant, recording medium on which operation assistance program for plant is recorded, learning model creation program for plant, and recording medium on which learning model creation program for plant is recorded |
| JP2022157180A (en) * | 2021-03-31 | 2022-10-14 | 三菱重工業株式会社 | Apparatus, remote monitoring system, apparatus control method, and remote monitoring system control method |
-
2024
- 2024-04-24 JP JP2024070327A patent/JP2025166362A/en active Pending
-
2025
- 2025-04-09 WO PCT/JP2025/014123 patent/WO2025225383A1/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019208773A1 (en) * | 2018-04-27 | 2019-10-31 | 三菱日立パワーシステムズ株式会社 | Operation assistance device for plant, operation assistance method for plant, learning model creation method for plant, operation assistance program for plant, recording medium on which operation assistance program for plant is recorded, learning model creation program for plant, and recording medium on which learning model creation program for plant is recorded |
| JP2022157180A (en) * | 2021-03-31 | 2022-10-14 | 三菱重工業株式会社 | Apparatus, remote monitoring system, apparatus control method, and remote monitoring system control method |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2025166362A (en) | 2025-11-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9043254B2 (en) | Method for computer-aided closed-loop and/or open-loop control of a technical system | |
| US8554706B2 (en) | Power plant control device which uses a model, a learning signal, a correction signal, and a manipulation signal | |
| KR102291800B1 (en) | Apparatus and method for deriving boiler combustion model | |
| JP5503563B2 (en) | Plant control device and thermal power plant control device | |
| Chen | Economic design of variable sampling interval T2 control charts—a hybrid Markov Chain approach with genetic algorithms | |
| JP2007241624A (en) | Plant control apparatus and control method, thermal power plant and control method therefor | |
| JP2010146068A (en) | Control device for plant, and control device of thermal power generation plant | |
| JP5277064B2 (en) | Plant control device, thermal power plant control device, and thermal power plant | |
| JP7196935B2 (en) | Arithmetic device, action determination method, and control program | |
| JP5378288B2 (en) | Plant control device and thermal power plant control device | |
| WO2025225383A1 (en) | Plant control assistance device, plant control assistance method, and plant control assistance program | |
| JP4857228B2 (en) | Plant operation optimization device | |
| CN116644665A (en) | A method and device for predicting vapor pressure based on HHO-ELM | |
| WO2025225382A1 (en) | Plant control support device, plant control support method, and plant control support program | |
| JP6952018B2 (en) | Control device and control method | |
| JP2013137774A (en) | Method for predicting state of process and system for predicting state of process | |
| JP7396478B2 (en) | Model training program, model training method, and information processing device | |
| CN119005091B (en) | Intelligent design system and design method for analog integrated circuit | |
| CN116861256B (en) | A method, system, equipment and medium for predicting furnace temperature in solid waste incineration process | |
| CN119276074A (en) | Automatic turning method and system thereof | |
| JP5469226B2 (en) | Control unit maintenance tools | |
| JP7384311B1 (en) | Driving support device, driving support method and program | |
| JP4578125B2 (en) | Optimization method and system for fuzzy inference model | |
| US12481255B2 (en) | Control system, control method, and control program for determining operation data by repeatedly calculating control target data indicating a predicted value of a control target in a plant | |
| Feng | Multi-objective optimization algorithm for multimedia english teaching (MOAMET) based on computer network traffic prediction model |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 25794040 Country of ref document: EP Kind code of ref document: A1 |