[go: up one dir, main page]

WO2025215724A1 - Productivity calculation device, productivity calculation method, and productivity calculation program - Google Patents

Productivity calculation device, productivity calculation method, and productivity calculation program

Info

Publication number
WO2025215724A1
WO2025215724A1 PCT/JP2024/014352 JP2024014352W WO2025215724A1 WO 2025215724 A1 WO2025215724 A1 WO 2025215724A1 JP 2024014352 W JP2024014352 W JP 2024014352W WO 2025215724 A1 WO2025215724 A1 WO 2025215724A1
Authority
WO
WIPO (PCT)
Prior art keywords
productivity
factors
unit
user
intellectual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2024/014352
Other languages
French (fr)
Japanese (ja)
Inventor
和宏 南
輔祐太 渡邉
隆義 飯田
佑太 深和
新一 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Mitsubishi Electric Corp
Original Assignee
Waseda University
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Mitsubishi Electric Corp filed Critical Waseda University
Priority to PCT/JP2024/014352 priority Critical patent/WO2025215724A1/en
Publication of WO2025215724A1 publication Critical patent/WO2025215724A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations

Definitions

  • This disclosure relates to a productivity calculation device, a productivity calculation method, and a productivity calculation program.
  • Patent Document 1 Research is being conducted to calculate the intellectual productivity of office workers based on subjective evaluations.
  • an individual is required to periodically input a subjective evaluation of his/her intellectual activity, and the influence of the intellectual activity on the individual's intellectual productivity is evaluated.
  • Patent Document 1 evaluates the degree of influence of factors that directly affect intellectual productivity, such as meetings, document creation, and document viewing. However, calculating intellectual productivity also requires consideration of the degree of influence of factors that indirectly affect intellectual productivity, such as an individual's personality, occupation, or indoor environment. The technology in Patent Document 1 is unable to evaluate the degree of influence of factors that indirectly affect intellectual productivity, resulting in low accuracy in calculating intellectual productivity.
  • the purpose of this disclosure is to improve the accuracy of calculating intellectual productivity.
  • the productivity calculation device is a productivity calculation device that calculates the intellectual productivity of a user who performs intellectual activity, an intellectual productivity model stored in a storage unit, comprising a plurality of classifications indicating factors that affect the intellectual activity of the user, intermediate factors included in each of the plurality of classifications, and a plurality of unit factors that contribute to the intermediate factors, and to which a contribution rate when each of the plurality of unit factors contributes to the intermediate factor and a contribution rate when each of the intermediate factors contributes to the intermediate factors of other classifications is assigned, and the plurality of unit factors are aggregated into an intellectual productivity factor that indicates intellectual productivity, which is one of the intermediate factors; a questionnaire collection unit that acquires a score for each of the plurality of unit factors from the user as a questionnaire result; and a calculation unit that inputs a score for each of the plurality of unit factors into the intellectual productivity model and obtains the score for the intellectual productivity factor output from the intellectual productivity model as the intellectual productivity of the user.
  • the productivity calculation device disclosed herein aims to improve the accuracy of intellectual productivity calculations.
  • FIG. 1 is a diagram showing an example of the configuration of a productivity calculation device according to a first embodiment.
  • FIG. 1 is a diagram showing an example of the overall configuration of an intellectual productivity model according to a first embodiment.
  • FIG. 2 is a diagram showing an example of a partial configuration of an intellectual productivity model according to the first embodiment.
  • FIG. 2 is a diagram showing an example of a partial configuration of an intellectual productivity model according to the first embodiment.
  • FIG. 2 is a diagram showing an example of a partial configuration of an intellectual productivity model according to the first embodiment.
  • FIG. 2 is a diagram showing an example of a partial configuration of an intellectual productivity model according to the first embodiment.
  • FIG. 2 is a diagram showing an example of a partial configuration of an intellectual productivity model according to the first embodiment.
  • FIG. 2 is a diagram showing an example of a partial configuration of an intellectual productivity model according to the first embodiment.
  • FIG. 10 is a diagram showing a calculation formula for intellectual productivity using the intellectual productivity model according to the first embodiment.
  • FIG. 3 is a flowchart showing the operation of the productivity calculation device according to the first embodiment.
  • FIG. 10 is a diagram showing a display example of intellectual productivity and contribution rate according to the first embodiment.
  • FIG. 10 is a diagram showing an example of the configuration of a productivity calculation device according to a modification of the first embodiment.
  • FIG. 10 is a diagram showing an example of the configuration of a productivity calculation device according to a second embodiment.
  • FIG. 10 is a diagram showing an example of displaying intellectual productivity and contribution rate according to the second embodiment.
  • FIG. 10 is a flowchart showing the operation of the productivity calculation device according to the second embodiment.
  • FIG. 10 is a diagram showing a calculation formula for intellectual productivity using the intellectual productivity model according to the first embodiment.
  • FIG. 3 is a flowchart showing the operation of the productivity calculation device according to the first embodiment.
  • FIG. 10 is a diagram showing a display example
  • FIG. 10 is a diagram showing an example of the configuration of a productivity calculation device according to a third embodiment.
  • FIG. 11 is a flowchart showing the operation of the productivity calculation device according to the third embodiment.
  • FIG. 10 is a diagram showing an example of the configuration of a productivity calculation device according to a fourth embodiment.
  • FIG. 10 is a flowchart showing the operation of the productivity calculation device according to the fourth embodiment.
  • FIG. 13 is a diagram showing an example of the configuration of a productivity calculation device according to a fifth embodiment.
  • FIG. 13 is a flowchart showing the operation of the productivity calculation device according to the fifth embodiment.
  • FIG. 13 is a diagram showing an example of the configuration of a productivity calculation device according to a sixth embodiment.
  • FIG. 13 is a flowchart showing the operation of the productivity calculation device according to the sixth embodiment.
  • FIG. 20 is a diagram showing an example of a display in which estimation results according to the sixth embodiment are displayed.
  • FIG. 1 is a diagram showing an example of the configuration of a productivity calculation device 100 according to this embodiment.
  • the productivity calculation device 100 is a device that calculates the intellectual productivity of a user who performs intellectual activity.
  • the productivity calculation device 100 is a computer.
  • the productivity calculation device 100 includes a processor 910 as well as other hardware such as a memory 921, an auxiliary storage device 922, an input interface 930, an output interface 940, and a communication device 950.
  • the processor 910 is connected to the other hardware via signal lines and controls the other hardware.
  • the productivity calculation device 100 includes, as functional elements, a questionnaire collection unit 110, a calculation unit 120, and a storage unit 150.
  • the storage unit 150 stores an intellectual productivity model 51 and a contribution rate 52.
  • the functions of the questionnaire collection unit 110 and the calculation unit 120 are realized by software.
  • the storage unit 150 is provided in the memory 921. Note that the storage unit 150 may be provided in the auxiliary storage device 922, or may be provided separately in the memory 921 and the auxiliary storage device 922.
  • the processor 910 is a device that executes a productivity calculation program.
  • the productivity calculation program is a program that realizes the functions of the questionnaire collection unit 110 and the calculation unit 120.
  • the processor 910 is an IC that performs arithmetic processing. Specific examples of the processor 910 are a CPU, a DSP, and a GPU.
  • IC is an abbreviation for Integrated Circuit.
  • CPU is an abbreviation for Central Processing Unit.
  • DSP is an abbreviation for Digital Signal Processor.
  • GPU is an abbreviation for Graphics Processing Unit.
  • the memory 921 is a storage device that temporarily stores data. Specific examples of the memory 921 are SRAM and DRAM. SRAM is an abbreviation for Static Random Access Memory. DRAM is an abbreviation for Dynamic Random Access Memory.
  • the auxiliary storage device 922 is a storage device that stores data. A specific example of the auxiliary storage device 922 is an HDD.
  • the auxiliary storage device 922 may also be a portable storage medium such as an SD (registered trademark) memory card, CF, NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, or a DVD. Note that HDD is an abbreviation for Hard Disk Drive. SD (registered trademark) is an abbreviation for Secure Digital. CF is an abbreviation for CompactFlash (registered trademark). DVD is an abbreviation for Digital Versatile Disk.
  • the input interface 930 is a port that is connected to an input device such as a mouse, keyboard, or touch panel. Specifically, the input interface 930 is a USB terminal. Note that the input interface 930 may also be a port that is connected to a LAN.
  • USB is an abbreviation for Universal Serial Bus.
  • LAN is an abbreviation for Local Area Network.
  • the output interface 940 is a port to which a cable from an output device such as a display is connected.
  • the output interface 940 is a USB terminal or an HDMI (registered trademark) terminal.
  • the display is an LCD.
  • the output interface 940 is also called a display interface.
  • HDMI (registered trademark) is an abbreviation for High Definition Multimedia Interface.
  • LCD is an abbreviation for Liquid Crystal Display.
  • the communication device 950 has a receiver and a transmitter.
  • the communication device 950 is connected to a communication network such as a LAN, the Internet, a telephone line, or Wi-Fi (registered trademark).
  • the communication device 950 is a communication chip or NIC.
  • NIC is an abbreviation for Network Interface Card.
  • the productivity calculation program is executed in the productivity calculation device 100.
  • the productivity calculation program is loaded into and executed by the processor 910.
  • Memory 921 stores not only the productivity calculation program but also the OS.
  • OS is an abbreviation for Operating System.
  • the processor 910 executes the productivity calculation program while running the OS.
  • the productivity calculation program and OS may be stored in an auxiliary storage device 922.
  • the productivity calculation program and OS stored in the auxiliary storage device 922 are loaded into memory 921 and executed by the processor 910. Note that part or all of the productivity calculation program may be incorporated into the OS.
  • the productivity calculation device 100 may be equipped with multiple processors that replace the processor 910. These multiple processors share the execution of the productivity calculation program. Each processor is a device that executes the productivity calculation program in the same way as the processor 910.
  • Data, information, signal values, and variable values used, processed, or output by the productivity calculation program are stored in memory 921, auxiliary storage device 922, or registers or cache memory within processor 910.
  • the "parts" of the questionnaire collection unit 110, the calculation unit 120, and the storage unit 150 may be read as “circuits,”"processes,””procedures,””processes,” or “circuitry.”
  • the productivity calculation program causes a computer to execute a questionnaire collection process, a calculation process, and a storage process.
  • the "processes” of the questionnaire collection process, the calculation process, and the storage process may be read as "program,””programproduct,””computer-readable storage medium storing a program,” or "computer-readable recording medium recording a program.”
  • the productivity calculation method is a method performed by the productivity calculation device 100 executing the productivity calculation program.
  • the productivity calculation program may be provided by being stored in a computer-readable recording medium, or may be provided as a program product.
  • FIG. 2 is a diagram showing an example of the overall configuration of an intellectual productivity model 51 according to this embodiment.
  • FIG. 3 is a diagram showing an example of a partial configuration of the productivity model 51 according to this embodiment.
  • FIG. 4 is a diagram showing an example of a partial configuration of the intellectual productivity model 51 according to this embodiment.
  • FIG. 5 is a diagram showing an example of a partial configuration of an intellectual productivity model 51 according to this embodiment.
  • FIG. 6 is a diagram showing an example of a partial configuration of an intellectual productivity model 51 according to this embodiment.
  • FIG. 7 is a diagram showing an example of a partial configuration of an intellectual productivity model 51 according to this embodiment.
  • the intellectual productivity model 51 shown in FIG. 2 will be described.
  • the intellectual productivity model 51 calculates intellectual productivity from a plurality of unit factors classified into five categories, for example, "intellectual activity,”"innerself,””relaxation,””communication,” and "environment.”
  • the arrow indicates the contribution rate 52 in the intellectual productivity model 51.
  • Specific numerical values of the contribution rate 52 are shown in Figs. 3 to 7.
  • the intellectual productivity model 51 is modeled using a technique such as covariance structure analysis from a statistically significant number of intellectual productivity survey questionnaires.
  • contribution rates are assigned between all factors.
  • the contribution rates shown in Figures 3 to 7 only show contribution rates that are equal to or greater than a predetermined value among the contribution rates between all factors.
  • the intellectual productivity model 51 is ultimately summarized into factors that indicate intellectual productivity. In other words, it can be said that each factor in the intellectual productivity model 51 is assigned a contribution rate to intellectual productivity. The method of calculating the productivity using the productivity model 51 will be described later.
  • the intellectual productivity model 51 includes a plurality of classifications 511 indicating factors that influence the user's intellectual activity, intermediate factors 512 included in each of the plurality of classifications 511, and a plurality of unit factors 513 that contribute to the intermediate factors 512.
  • each or all of the intermediate factors and unit factors may be simply referred to as factors.
  • a user completes a questionnaire aimed at investigating intellectual productivity and assigns a score to each of a plurality of unit factors 513. For example, the question in this intellectual productivity survey questionnaire is set to one or more questions for each of the factors indicated by the plurality of unit factors 513 in the intellectual productivity model 51.
  • Intellectual productivity is calculated by multiplying the individual's response value to each factor by the contribution rate using the intellectual productivity model 51.
  • the productivity model 51 receives as input the scores of each of a plurality of unit factors 513 acquired from the user, and outputs the productivity of the user.
  • the multiple unit factors 513 are factors that influence an individual's intellectual activity.
  • the multiple unit factors 513 are divided into multiple categories 511. In Figure 2, the multiple unit factors 513 are shown in square frames.
  • the unit factors in Figure 2 are just an example, and unit factors can be added or deleted as desired.
  • the multiple categories 511 are specifically five categories: environment, inner self, relaxation, communication, and intellectual activity.
  • each of the multiple unit factors 513 is classified into one of these five categories.
  • the categories in Figure 2 are an example, and categories can be added or deleted as desired.
  • Intermediate factors 512 are higher-level factors than the unit factors 513 contained in each classification. Intermediate factors 512 are higher-level factors that combine multiple unit factors 513 contained in each classification. In Figure 2, intermediate factors 512 are indicated by oval frames. The intermediate factors in Figure 2 are just an example, and intermediate factors can be added or deleted as desired.
  • the category “Relaxation” includes multiple unit factors: “Rest,” “Entertainment,” “Drinks/Snacks,” “Relaxation,” and “Refreshment.”
  • the intermediate factor that is a higher-level factor for the unit factors “Rest,” “Entertainment,” and “Drinks/Snacks” is “Refreshment.”
  • the intermediate factor that is a higher-level factor for "Relaxation” and “Refreshment” is "Relaxation.”
  • the productivity model 51 is assigned a contribution rate when each of a plurality of unit factors 513 contributes to an intermediate factor 512.
  • the productivity model 51 is also assigned a contribution rate when the intermediate factor 512 contributes to an intermediate factor 512 of another class 511.
  • the productivity model 51 is also assigned a contribution rate when the intermediate factor 512 contributes to an intermediate factor 512 of the same class 511.
  • 3 to 7 show specific examples of the contribution rate 52 in the intellectual productivity model 51.
  • intellectual productivity model 51 the contribution rate when intermediate factors 512 contribute to intermediate factors 512 of other categories 511 is assigned, making it possible to calculate intellectual productivity that precisely reflects the degree of influence of indirect factors on a user's intellectual activity.
  • intellectual productivity model 51 is assigned the contribution rate when intermediate factors 512 contribute to intermediate factors 512 of the same category 511, it is possible to calculate intellectual productivity that precisely reflects the degree of influence of indirect factors on a user's intellectual activity.
  • intellectual productivity model 51 multiple unit factors 513 are aggregated into an intellectual productivity factor that indicates intellectual productivity, which is one of the intermediate factors.
  • the category "intellectual activity" includes the intermediate factor “intellectual productivity.”
  • This intermediate factor "intellectual productivity” is also called the intellectual productivity factor.
  • the intermediate factor "intellectual productivity” indicates the user's intellectual productivity score that is finally calculated based on the scores of all unit factors included in intellectual productivity model 51.
  • FIG. 8 is a diagram showing a calculation formula for productivity using the productivity model 51 according to this embodiment.
  • Intellectual productivity is calculated using the formula in Equation 1.
  • the equation 1 is as follows: P: Calculated value of intellectual productivity ⁇ : Contribution rate of intellectual activity A: Response value of intellectual activity questionnaire ⁇ : Contribution rate of inner self I: Response value of inner self questionnaire ⁇ : Contribution rate of relaxation R: Response value of relaxation questionnaire ⁇ : Contribution rate of communication C: Response value of communication questionnaire ⁇ : Contribution rate of environment E: Response value of environment questionnaire
  • A, I, R, C, and E are calculated using the formula 2.
  • Equation 2 is as follows: A: Contribution rate of each item of intellectual activity v: Response value of questionnaire result for each item of intellectual activity b: Contribution rate of each item of inner life w: Response value of questionnaire result for each item of inner life c: Contribution rate of each item of relaxation x: Response value of questionnaire result for each item of relaxation d: Contribution rate of each item of communication y: Response value of questionnaire result for each item of communication e: Contribution rate of each item of environment z: Response value of questionnaire result for each item of environment
  • v, w, x, y, and z are calculated using the formula 3.
  • Equation 3 is as follows: f, g, h, i, j: Survey contribution rate of the following items q, r, s, t, u: Survey result response values of the following items
  • a classification indicating the attributes of a user is included in the plurality of classifications 511. Furthermore, a plurality of unit factors 513 that contribute to an intermediate factor 512 included in the classification 511 indicating the attributes of a user are unit factors indicating the attributes of a user.
  • the classification indicating the user's attributes includes at least one of the classification "inner self” indicating the user's inner self, the classification “communication” indicating the user's communication ability, and the classification "intellectual activity” indicating the user's intellectual activity ability. 2 includes three categories indicating user attributes: “inner self,""communication,” and “intellectual activity.”
  • the unit factors included in these categories are unit factors that indicate individual attributes such as the user's personality, occupation, preferences, way of thinking, or behavior.
  • a classification indicating the user's environment is included in the plurality of classifications 511. Furthermore, a plurality of unit factors 513 that contribute to an intermediate factor 512 included in the classification 511 indicating the user's environment are unit factors that indicate the environment of the user's intellectual activity.
  • the classification indicating the user's environment includes at least one of a classification "environment” indicating the working environment for the user's intellectual activity and a classification "relaxation” indicating the environment in which the user relaxes. 2 includes the categories "environment” and "relaxation” as categories that indicate the user's environment.
  • the unit factors included in these categories are unit factors that indicate the environment in which the user works, such as the user's work environment or relaxation environment.
  • the operation procedure of the productivity calculation device 100 corresponds to a productivity calculation method. Furthermore, a program that realizes the productivity calculation process, which is the operation of the productivity calculation device 100, corresponds to a productivity calculation program.
  • FIG. 9 is a flow diagram showing the operation of the productivity calculation device 100 according to this embodiment.
  • step S101 the questionnaire collection unit 110 acquires a score for each of a plurality of unit factors from the user as a questionnaire result.
  • This questionnaire is an intellectual productivity survey questionnaire aimed at investigating the intellectual productivity of users.
  • the user assigns a score to each of the plurality of unit factors.
  • the questionnaire includes one or more questions for each factor indicated by the plurality of unit factors in the intellectual productivity model 51.
  • the questionnaire collection unit 110 outputs the individual response values to the calculation unit 120 .
  • step S102 the calculation unit 120 inputs the scores for each of the multiple unit factors into the productivity model 51. Then, the calculation unit 120 acquires the scores for the productivity factors output from the productivity model 51 as the user's productivity 61.
  • the contribution rate 52 stored in the storage unit 150 is used as the contribution rate assigned to the productivity model 51.
  • the productivity model 51 may be assigned a contribution rate in advance.
  • the calculation unit 120 transmits the answer value to the productivity model that reflects the contribution rate stored in the contribution rate storage unit, and returns the calculation result from the model to the productivity calculation unit.
  • the calculation unit 120 obtains the score of the intellectual productivity factor, which is the intermediate factor "intellectual productivity" output from the intellectual productivity model 51, as the user's intellectual productivity 61. At this time, the calculation unit 120 calculates the user's intellectual productivity 61 and a contribution degree 62 indicating the degree of contribution of each of the multiple categories 511 to the intellectual productivity 61.
  • the contribution 62 of each of the multiple categories is obtained in the process of calculating the intellectual productivity 61, as explained with reference to FIG.
  • the calculation unit 120 inputs the scores for each of the plurality of unit factors into the productivity model 51, and obtains the productivity 61 and the contribution 62 of each of the plurality of categories.
  • step S103 the calculation unit 120 displays the intellectual productivity 61 and the contribution 62 of each of the multiple categories via the output interface 940.
  • FIG. 10 is a diagram showing an example of displaying intellectual productivity 61 and contribution rate 62 according to this embodiment.
  • FIG. 10 shows an example in which the intellectual productivity of the user "User: 0001" is displayed as “85 points,” the contribution of the category “inner self” is displayed as “42 points,” and the contribution of the category “relaxation” is displayed as "34 points.”
  • the functions of the questionnaire collection unit 110 and the calculation unit 120 are realized by software.
  • the functions of the questionnaire collection unit 110 and the calculation unit 120 may be realized by hardware.
  • the productivity calculation device 100 includes an electronic circuit 909 instead of the processor 910 .
  • FIG. 11 is a diagram showing an example of the configuration of a productivity calculation device 100 according to a modified example of this embodiment.
  • the electronic circuit 909 is a dedicated electronic circuit that realizes the functions of the questionnaire collection unit 110 and the calculation unit 120. Specifically, the electronic circuit 909 is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA, an ASIC, or an FPGA.
  • GA is an abbreviation for Gate Array.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • FPGA is an abbreviation for Field-Programmable Gate Array.
  • the functions of the questionnaire collection unit 110 and the calculation unit 120 may be realized by a single electronic circuit, or may be distributed across multiple electronic circuits.
  • some of the functions of the survey collection unit 110 and the calculation unit 120 may be realized by electronic circuits, with the remaining functions being realized by software. Also, some or all of the functions of the survey collection unit 110 and the calculation unit 120 may be realized by firmware.
  • Each of the processor and electronic circuitry is also called processing circuitry.
  • the functions of the survey collection unit 110 and calculation unit 120 are realized by processing circuitry.
  • the productivity calculation device 100 has the effect of estimating the intellectual productivity of a worker taking into account indirect factors, and making it possible to determine the factors that influenced intellectual productivity and the extent to which they influenced it. Furthermore, the productivity calculation device 100 according to this embodiment can determine the extent to which each factor influenced intellectual productivity based on the contribution of each factor to the higher-level factor. The contribution can be calculated by multiplying the contribution rate by the individual's response value.
  • the intellectual productivity model is assigned a contribution rate when an intermediate factor contributes to an intermediate factor of another category. Furthermore, in the intellectual productivity model, the contribution rate when an intermediate factor contributes to an intermediate factor of the same category is assigned. This makes it possible to calculate intellectual productivity that precisely reflects the degree of influence of indirect factors on the user's intellectual activity.
  • Embodiment 2 differences from and additions to the first embodiment will be mainly described.
  • components having the same functions as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • FIG. 12 is a diagram showing an example of the configuration of a productivity calculation device 100 according to this embodiment.
  • the productivity calculation device 100 according to this embodiment includes a threshold value determination unit 130 and a contribution degree comparison unit 140 in addition to the components shown in FIG. 1 described in the first embodiment.
  • the other configurations are the same as those in the first embodiment.
  • the calculation unit 120 calculates, for each of a plurality of users, the user's intellectual productivity 61 and the contribution 62 of each of a plurality of categories to the intellectual productivity.
  • the threshold value determination unit 130 determines the threshold values 53 for intellectual productivity and contribution level based on the intellectual productivity 61 and contribution level 62 of each of a plurality of users.
  • the contribution comparison unit 140 extracts, for each of the multiple users, items that are higher than the threshold 53 and items that are lower than the threshold 53.
  • the contribution comparison unit 140 displays, for each of the multiple users, the intellectual productivity 61 and the contribution 62. At this time, the contribution comparison unit 140 visualizes and displays the items that are higher than the threshold 53 and items that are lower than the threshold 53 for the intellectual productivity 61 and the contribution 62.
  • FIG. 13 is a diagram showing an example of displaying intellectual productivity 61 and contribution rate 62 according to this embodiment.
  • the intellectual productivity 61 and the contribution of each category 62 for each of multiple users A, B, ..., X are displayed. Scores higher than the threshold 53 are shown in bold. Scores lower than the threshold 53 are underlined.
  • FIG. 14 is a flowchart showing the operation of the productivity calculation device 100 according to this embodiment.
  • the questionnaire collection unit 110 acquires the scores for each of the plurality of unit factors from each of the plurality of users as the questionnaire results, and outputs the response values of each of the plurality of users to the calculation unit 120.
  • the process of step S201 is the same as step S101.
  • step S102 the calculation unit 120 inputs the response value for each of the multiple users into the productivity model 51. Then, the calculation unit 120 acquires the productivity 61 output from the productivity model 51 for each of the multiple users. The calculation unit 120 also acquires the contribution degree 62 for each of the multiple categories for each of the multiple users.
  • step S202 The process of step S202 is the same as step S102.
  • the threshold determination unit 130 determines the thresholds 53 for intellectual productivity and contribution level for each of the multiple users based on the intellectual productivity 61 and contribution level 62.
  • the thresholds 53 are values that serve as a reference for comparing intellectual productivity and contribution level.
  • the threshold value determining unit 130 determines the threshold value 53 from the average of the contribution degree 62 in each category for each of the multiple users.
  • step S204 the contribution comparison unit 140 compares the intellectual productivity 61 and the contribution 62 for each of the multiple users with the respective thresholds 53.
  • the contribution comparison unit 140 extracts items that are higher than the threshold 53 and items that are lower than the threshold 53.
  • step S205 the contribution comparison unit 140 displays the intellectual productivity 61 and the contribution 62 for each of the multiple users.
  • the contribution comparison unit 140 visualizes and displays the intellectual productivity 61 and the contribution 62 by dividing items higher than the threshold 53 and items lower than the threshold 53.
  • scores above the threshold 53 are shown in bold, and scores below the threshold 53 are underlined.
  • intellectual productivity 61 and contribution 62 are displayed for each individual, and a comparison is made with a threshold value 53. Comparisons can also be made by group, such as by department. Also, comparisons can be made over time, such as with the past.
  • the productivity calculation device 100 can identify factors that relatively lower or increase the intellectual productivity of an individual or a group. Therefore, it is possible to estimate what factors, including indirect factors, relatively contribute to intellectual productivity in comparison with other people or other groups.
  • Embodiment 3 In this embodiment, differences from and additions to the first embodiment will be mainly described. In this embodiment, components having the same functions as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • FIG. 15 is a diagram showing an example of the configuration of a productivity calculation device 100 according to this embodiment.
  • the productivity calculation device 100 according to this embodiment includes an attribute determination unit 160 in addition to the components shown in FIG. 1 described in the first embodiment.
  • the other configurations are the same as those in the first embodiment.
  • the storage unit 150 stores a plurality of productivity models 51 in which contribution rates 52 corresponding to the attributes of users are set. Specifically, a plurality of contribution rates 52 corresponding to the attributes of the user are stored in the storage unit 150. For example, contribution rates 52 corresponding to each of a plurality of types of attributes of the user, such as personality, occupation, gender, or preferences, are stored in the storage unit 150. Specifically, contribution rates 52 such as information processing type, knowledge processing type, comprehensive processing type, relaxation type, and creative type are stored. It should be noted that a plurality of intellectual productivity models 51 may be stored, each of which is assigned a contribution rate 52, such as information processing type, knowledge processing type, comprehensive processing type, relaxed life, and creative type.
  • a contribution rate of 52 is a more appropriate value for calculating intellectual productivity depending on the user's attributes, such as information processing type, knowledge processing type, comprehensive processing type, relaxed lifestyle, and creative type.
  • FIG. 16 is a flowchart showing the operation of the productivity calculation device 100 according to this embodiment.
  • the process in step S101 is the same as in the first embodiment.
  • the attribute determination unit 160 determines the attributes of the user based on information indicating the attributes of the user included in the questionnaire results. Specifically, the attribute determination unit 160 reads the personal attributes entered in the questionnaire and determines the user's attributes.
  • the user's attributes include information such as personality, occupation, gender, and preferences.
  • an index such as the Big Five is used.
  • the Big Five is a personality analysis theory that derives personality from a combination of five factors. For example, the Big Five is an index that determines a person's personality and strengths and weaknesses based on the degree and balance of factors including "emotional instability,”"extroversion,””openness,” and “agreeableness.” Other indices may also be used to determine the attributes of a user.
  • the calculation unit 120 receives the user's attributes from the attribute determination unit 160. Based on the user's attributes, the calculation unit 120 selects, from among the multiple productivity models 51, an intellectual productivity model 51 in which a contribution rate 52 corresponding to the user's attributes is set. Specifically, the calculation unit 120 selects a contribution rate corresponding to the user's attributes from among the multiple contribution rates 52 and reflects it in the intellectual productivity model 51 . Then, the calculation unit 120 calculates the intellectual productivity and the contribution of each category from the intellectual productivity model that reflects the contribution rate based on the attributes. The method of calculating the user's intellectual productivity 61 and the contribution degree 62 of each category is the same as in the first embodiment.
  • step S103 is the same as in embodiment 1.
  • Embodiment 4 differences from and additions to the first embodiment will be mainly described.
  • components having the same functions as those in the first embodiment are given the same reference numerals, and the description thereof will be omitted.
  • FIG. 17 is a diagram showing an example of the configuration of a productivity calculation device 100 according to this embodiment.
  • the productivity calculation device 100 according to this embodiment includes an objective data collection unit 170 and a result estimation unit 180 in addition to the components shown in FIG. 1 described in the first embodiment.
  • the other configurations are the same as those in the first embodiment.
  • the objective data collection section 170 collects objective data, which is objective data on the user.
  • the result estimation unit 180 estimates at least a part of the survey results based on the objective data.
  • FIG. 18 is a flowchart showing the operation of the productivity calculation device 100 according to this embodiment.
  • the process in step S101 is the same as in the first embodiment.
  • the objective data collection unit 170 collects objective data, which is objective data about the user. Physical information such as heart rate, brain waves, and pulse waves is collected using a wearable device, etc. Information such as temperature, brightness, and air quality is also collected from an environmental sensor.
  • the result estimation unit 180 estimates at least a portion of the survey results based on the objective data. Some of the survey responses are estimated from the collected data. For example, for a user, it may be determined from the objective data that the user feels comfortable in an environment with a specific illuminance range, and the survey responses may be estimated.
  • steps S102 and S103 are the same as those in the first embodiment. 18, questionnaire results are collected in step S101, and objective data is collected in step S401.
  • the processing of steps S101 and S401 may be performed in any order, or may be performed in parallel.
  • the productivity calculation device 100 of this embodiment by estimating some of the survey results from objective data, it is possible to reduce the number of survey questions to be asked to individuals. Furthermore, according to the productivity calculation device 100 of this embodiment, it is possible to estimate intellectual productivity and influencing factors based on objective data in addition to subjective data. This allows the calculation results of intellectual productivity to not depend solely on subjective data, and the calculation accuracy can be further improved.
  • Embodiment 5 differences from and additions to the first embodiment will be mainly described.
  • components having the same functions as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.
  • FIG. 19 is a diagram showing an example of the configuration of a productivity calculation device 100 according to this embodiment. 1 described in the first embodiment, the productivity calculation device 100 according to the present embodiment includes a target value determination unit 191 and a parameter setting unit 192. Furthermore, the storage unit 150 stores the target value 54. The other configurations are the same as those in the first embodiment.
  • the target value determination unit 191 acquires the survey results for the unit factors corresponding to the user's environment from among the plurality of unit factors, and then determines the target value 54 for the equipment in the user's environment based on the survey results for the unit factors corresponding to the user's environment.
  • the parameter setting unit 192 sets parameters of the equipment in the user's environment in accordance with the target values 54 .
  • FIG. 20 is a flowchart showing the operation of the productivity calculation device 100 according to this embodiment.
  • the processes from step S101 to step S103 are the same as those in the first embodiment.
  • the target value determination unit 191 determines the target value 54 of the equipment in the user's environment based on the results of a questionnaire regarding the unit factors corresponding to the user's environment. Specifically, the target value determination unit 191 checks the results of a questionnaire related to the working environment in the productivity model 51 and determines the target value 54 for improving the working environment. At this time, the target value determination unit 191 may determine the target value 54 by reflecting an index other than productivity, such as happiness level or indoor environment satisfaction. For example, if the results of a survey on thermal environment satisfaction are low, a target temperature for the room is determined to provide an appropriate thermal environment. To calculate the appropriate target temperature, a thermal comfort model such as PMV is utilized. PMV stands for Predicted Mean Vote. In PMV, a PMV close to 0 is generally considered comfortable.
  • the parameter setting unit 192 sets the parameters of the equipment in the user's environment according to the target values 54.
  • the equipment parameters are parameters for the operation of each equipment system.
  • the parameter setting unit 192 transmits the parameters to the equipment and controls the equipment. Alternatively, the parameters may be notified to the user, who may then control the equipment as appropriate.
  • Embodiment 6 differences from the second and fourth embodiments and additional features to the second and fourth embodiments will be mainly described.
  • components having the same functions as those in the second and fourth embodiments are given the same reference numerals, and the description thereof will be omitted.
  • FIG. 21 is a diagram showing an example of the configuration of a productivity calculation device 100 according to this embodiment.
  • the productivity calculation device 100 according to this embodiment includes an objective data collection unit 170 and a work environment estimation unit 171 in addition to the components shown in FIG. 12 described in the second embodiment. Other configurations are the same as those in the second embodiment.
  • the objective data collection unit 170 is the same as that in the fourth embodiment.
  • the objective data collection section 170 collects objective data, which is objective data on the user.
  • the work environment estimation unit 171 estimates a work environment suitable for a user based on objective data.
  • FIG. 22 is a flowchart showing the operation of the productivity calculation device 100 according to this embodiment.
  • the processes from step S201 to step S205 are the same as those in the second embodiment.
  • step S601 the objective data collection unit 170 collects objective data, which is objective data about the user.
  • the objective data collection process is the same as step S401 in embodiment 4. Physical information, etc. is collected using a wearable device, and temperature information or information about the number of people present in the room, etc. is collected from an environmental sensor.
  • the work environment estimation unit 171 estimates a work environment suitable for the user based on the objective data.
  • the work environment estimation unit 171 compares the items with high and low contributions for the individual selected by the contribution comparison process with the objective data, and estimates a work environment suitable for the individual. For example, for a user who contributes highly to communication, it is estimated that a work environment where many people closely related to the user's work are present is suitable, based on the attributes of the questionnaire and the number of people present collected by the objective data collection unit.
  • the factors used as the basis for estimation include all elements included in the intellectual productivity model, such as the physical environment (temperature, humidity, light, etc.), as well as working hours and the number of co-workers.
  • FIG. 23 is a diagram showing an example of a display in which the estimation results according to this embodiment are described.
  • the work environment estimation unit 171 refers to objective data related to communication between user A and estimates a work environment suitable for user A.
  • the estimation result is displayed as "The optimal work environment is room A, because there are many people in the room and active communication occurs.”
  • each unit of the productivity calculation device has been described as an independent functional block.
  • the configuration of the productivity calculation device does not have to be the same as that of the above-described embodiments.
  • the functional blocks of the productivity calculation device may have any configuration as long as they can realize the functions described in the above-described embodiments.
  • the productivity calculation device may not be a single device, but may be a system composed of multiple devices.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

In the present invention, an intellectual productivity model (51) comprises a plurality of classifications, an intermediate factor included in each classification of the plurality of classifications, and a plurality of unit factors which contribute to the intermediate factor. The intellectual productivity model (51) is provided with a contribution rate for when each of the plurality of unit factors contributes to the intermediate factor, and a contribution rate for when an intermediate factor contributes to an intermediate factor of another classification. In the intellectual productivity model (51), the plurality of unit factors are aggregated into an intellectual productivity factor that is one of the intermediate factors. A questionnaire collection unit (110) acquires a score for each of the plurality of unit factors from a user, as questionnaire results. A calculation unit (120) inputs the score for each of the plurality of unit factors into the intellectual productivity model (51), and acquires the intellectual productivity of the user.

Description

生産性算出装置、生産性算出方法、および生産性算出プログラムProductivity calculation device, productivity calculation method, and productivity calculation program

 本開示は、生産性算出装置、生産性算出方法、および生産性算出プログラムに関する。 This disclosure relates to a productivity calculation device, a productivity calculation method, and a productivity calculation program.

 主観評価を基に、オフィスワーカーの知的生産性を算出する研究が行われている。
 特許文献1では、個人の知的活動について定期的に主観評価を入力させ、知的活動がもたらす個人の知的生産性への影響を評価している。
Research is being conducted to calculate the intellectual productivity of office workers based on subjective evaluations.
In Patent Document 1, an individual is required to periodically input a subjective evaluation of his/her intellectual activity, and the influence of the intellectual activity on the individual's intellectual productivity is evaluated.

特開2011-175479号公報JP 2011-175479 A

 特許文献1の技術は、会議、資料作成、および資料閲覧といった、知的生産性に直接的に影響する要因の影響度を評価する技術である。一方、知的生産性の算出には、個人の性格、職種、あるいは室内環境といった、知的生産性に間接的に影響する要因の影響度も考慮する必要がある。特許文献1の技術では、知的生産性に間接的に影響する要因の影響度を評価することができず、知的生産性の算出の精度が低いという課題がある。 The technology in Patent Document 1 evaluates the degree of influence of factors that directly affect intellectual productivity, such as meetings, document creation, and document viewing. However, calculating intellectual productivity also requires consideration of the degree of influence of factors that indirectly affect intellectual productivity, such as an individual's personality, occupation, or indoor environment. The technology in Patent Document 1 is unable to evaluate the degree of influence of factors that indirectly affect intellectual productivity, resulting in low accuracy in calculating intellectual productivity.

 本開示は、知的生産性の算出精度を向上させることを目的とする。 The purpose of this disclosure is to improve the accuracy of calculating intellectual productivity.

 本開示に係る生産性算出装置は、知的活動を行う利用者における知的生産性を算出する生産性算出装置において、
 記憶部に記憶され、前記利用者の知的活動に影響を与える要因を示す複数の分類と、前記複数の分類の各分類に含まれる中間因子と、前記中間因子に寄与する複数の単位因子とを備え、前記複数の単位因子の各々が前記中間因子に寄与する際の寄与率と、前記中間因子が他の分類の中間因子に寄与する際の寄与率とが付与されており、前記複数の単位因子が前記中間因子の一つである知的生産性を示す知的生産性因子に集約される知的生産性モデルと、
 前記利用者から前記複数の単位因子の各々に対する点数をアンケート結果として取得するアンケート収集部と、
 前記複数の単位因子の各々に対する点数を前記知的生産性モデルに入力し、前記知的生産性モデルから出力される前記知的生産性因子の点数を前記利用者の知的生産性として取得する算出部とを備える。
The productivity calculation device according to the present disclosure is a productivity calculation device that calculates the intellectual productivity of a user who performs intellectual activity,
an intellectual productivity model stored in a storage unit, comprising a plurality of classifications indicating factors that affect the intellectual activity of the user, intermediate factors included in each of the plurality of classifications, and a plurality of unit factors that contribute to the intermediate factors, and to which a contribution rate when each of the plurality of unit factors contributes to the intermediate factor and a contribution rate when each of the intermediate factors contributes to the intermediate factors of other classifications is assigned, and the plurality of unit factors are aggregated into an intellectual productivity factor that indicates intellectual productivity, which is one of the intermediate factors;
a questionnaire collection unit that acquires a score for each of the plurality of unit factors from the user as a questionnaire result;
and a calculation unit that inputs a score for each of the plurality of unit factors into the intellectual productivity model and obtains the score for the intellectual productivity factor output from the intellectual productivity model as the intellectual productivity of the user.

 本開示に係る生産性算出装置では、知的生産性の算出精度を向上させることを目的とする。 The productivity calculation device disclosed herein aims to improve the accuracy of intellectual productivity calculations.

実施の形態1に係る生産性算出装置の構成例を示す図。FIG. 1 is a diagram showing an example of the configuration of a productivity calculation device according to a first embodiment. 実施の形態1に係る知的生産性モデルの全体構成例を示す図。FIG. 1 is a diagram showing an example of the overall configuration of an intellectual productivity model according to a first embodiment. 実施の形態1に係る知的生産性モデルの部分構成例を示す図。FIG. 2 is a diagram showing an example of a partial configuration of an intellectual productivity model according to the first embodiment. 実施の形態1に係る知的生産性モデルの部分構成例を示す図。FIG. 2 is a diagram showing an example of a partial configuration of an intellectual productivity model according to the first embodiment. 実施の形態1に係る知的生産性モデルの部分構成例を示す図。FIG. 2 is a diagram showing an example of a partial configuration of an intellectual productivity model according to the first embodiment. 実施の形態1に係る知的生産性モデルの部分構成例を示す図。FIG. 2 is a diagram showing an example of a partial configuration of an intellectual productivity model according to the first embodiment. 実施の形態1に係る知的生産性モデルの部分構成例を示す図。FIG. 2 is a diagram showing an example of a partial configuration of an intellectual productivity model according to the first embodiment. 実施の形態1に係る知的生産性モデルを用いた知的生産性の計算式を示す図。FIG. 10 is a diagram showing a calculation formula for intellectual productivity using the intellectual productivity model according to the first embodiment. 実施の形態1に係る生産性算出装置の動作を示すフロー図。FIG. 3 is a flowchart showing the operation of the productivity calculation device according to the first embodiment. 実施の形態1に係る知的生産性と寄与度との表示例を示す図。FIG. 10 is a diagram showing a display example of intellectual productivity and contribution rate according to the first embodiment. 実施の形態1の変形例に係る生産性算出装置の構成例を示す図。FIG. 10 is a diagram showing an example of the configuration of a productivity calculation device according to a modification of the first embodiment. 実施の形態2に係る生産性算出装置の構成例を示す図。FIG. 10 is a diagram showing an example of the configuration of a productivity calculation device according to a second embodiment. 実施の形態2に係る知的生産性と寄与度との表示例を示す図。FIG. 10 is a diagram showing an example of displaying intellectual productivity and contribution rate according to the second embodiment. 実施の形態2に係る生産性算出装置の動作を示すフロー図。FIG. 10 is a flowchart showing the operation of the productivity calculation device according to the second embodiment. 実施の形態3に係る生産性算出装置の構成例を示す図。FIG. 10 is a diagram showing an example of the configuration of a productivity calculation device according to a third embodiment. 実施の形態3に係る生産性算出装置の動作を示すフロー図。FIG. 11 is a flowchart showing the operation of the productivity calculation device according to the third embodiment. 実施の形態4に係る生産性算出装置の構成例を示す図。FIG. 10 is a diagram showing an example of the configuration of a productivity calculation device according to a fourth embodiment. 実施の形態4に係る生産性算出装置の動作を示すフロー図。FIG. 10 is a flowchart showing the operation of the productivity calculation device according to the fourth embodiment. 実施の形態5に係る生産性算出装置の構成例を示す図。FIG. 13 is a diagram showing an example of the configuration of a productivity calculation device according to a fifth embodiment. 実施の形態5に係る生産性算出装置の動作を示すフロー図。FIG. 13 is a flowchart showing the operation of the productivity calculation device according to the fifth embodiment. 実施の形態6に係る生産性算出装置の構成例を示す図。FIG. 13 is a diagram showing an example of the configuration of a productivity calculation device according to a sixth embodiment. 実施の形態6に係る生産性算出装置の動作を示すフロー図。FIG. 13 is a flowchart showing the operation of the productivity calculation device according to the sixth embodiment. 実施の形態6に係る推定結果が記載された表示例を示す図。FIG. 20 is a diagram showing an example of a display in which estimation results according to the sixth embodiment are displayed.

 以下、本実施の形態について、図を用いて説明する。各図中、同一または相当する部分には、同一符号を付している。実施の形態の説明において、同一または相当する部分については、説明を適宜省略または簡略化する。図中の矢印はデータの流れまたは処理の流れを主に示している。また、以下の図では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、実施の形態の説明において、上、下、左、右、前、後、表、裏といった向きあるいは位置が示されている場合がある。これらの表記は、説明の便宜上の記載であり、装置、器具、あるいは部品等の配置、方向および向きを限定するものではない。 The present embodiment will now be described with reference to the drawings. In each drawing, identical or corresponding parts are designated by the same reference numerals. In the description of the embodiment, the description of identical or corresponding parts will be omitted or simplified as appropriate. Arrows in the drawings primarily indicate the flow of data or the flow of processing. Furthermore, the sized relationships between components in the drawings below may differ from the actual relationships. Furthermore, in the description of the embodiment, directions or positions such as up, down, left, right, front, rear, front and back may be indicated. These notations are used for convenience of explanation and do not limit the placement, direction or orientation of devices, instruments, parts, etc.

 実施の形態1.
***構成の説明***
 図1は、本実施の形態に係る生産性算出装置100の構成例を示す図である。
 生産性算出装置100は、知的活動を行う利用者における知的生産性を算出する装置である。
 生産性算出装置100は、コンピュータである。生産性算出装置100は、プロセッサ910を備えるとともに、メモリ921、補助記憶装置922、入力インタフェース930、出力インタフェース940、および通信装置950といった他のハードウェアを備える。プロセッサ910は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
Embodiment 1.
***Configuration Description***
FIG. 1 is a diagram showing an example of the configuration of a productivity calculation device 100 according to this embodiment.
The productivity calculation device 100 is a device that calculates the intellectual productivity of a user who performs intellectual activity.
The productivity calculation device 100 is a computer. The productivity calculation device 100 includes a processor 910 as well as other hardware such as a memory 921, an auxiliary storage device 922, an input interface 930, an output interface 940, and a communication device 950. The processor 910 is connected to the other hardware via signal lines and controls the other hardware.

 生産性算出装置100は、機能要素として、アンケート収集部110と算出部120と記憶部150とを備える。記憶部150には、知的生産性モデル51と寄与率52が記憶される。 The productivity calculation device 100 includes, as functional elements, a questionnaire collection unit 110, a calculation unit 120, and a storage unit 150. The storage unit 150 stores an intellectual productivity model 51 and a contribution rate 52.

 アンケート収集部110と算出部120の機能は、ソフトウェアにより実現される。記憶部150は、メモリ921に備えられる。なお、記憶部150は、補助記憶装置922に備えられていてもよいし、メモリ921と補助記憶装置922に分散して備えられていてもよい。 The functions of the questionnaire collection unit 110 and the calculation unit 120 are realized by software. The storage unit 150 is provided in the memory 921. Note that the storage unit 150 may be provided in the auxiliary storage device 922, or may be provided separately in the memory 921 and the auxiliary storage device 922.

 プロセッサ910は、生産性算出プログラムを実行する装置である。生産性算出プログラムは、アンケート収集部110と算出部120の機能を実現するプログラムである。
 プロセッサ910は、演算処理を行うICである。プロセッサ910の具体例は、CPU、DSP、GPUである。ICは、Integrated Circuitの略語である。CPUは、Central Processing Unitの略語である。DSPは、Digital Signal Processorの略語である。GPUは、Graphics Processing Unitの略語である。
The processor 910 is a device that executes a productivity calculation program. The productivity calculation program is a program that realizes the functions of the questionnaire collection unit 110 and the calculation unit 120.
The processor 910 is an IC that performs arithmetic processing. Specific examples of the processor 910 are a CPU, a DSP, and a GPU. IC is an abbreviation for Integrated Circuit. CPU is an abbreviation for Central Processing Unit. DSP is an abbreviation for Digital Signal Processor. GPU is an abbreviation for Graphics Processing Unit.

 メモリ921は、データを一時的に記憶する記憶装置である。メモリ921の具体例は、SRAM、あるいはDRAMである。SRAMは、Static Random Access Memoryの略語である。DRAMは、Dynamic Random Access Memoryの略語である。
 補助記憶装置922は、データを保管する記憶装置である。補助記憶装置922の具体例は、HDDである。また、補助記憶装置922は、SD(登録商標)メモリカード、CF、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVDといった可搬の記憶媒体であってもよい。なお、HDDは、Hard Disk Driveの略語である。SD(登録商標)は、Secure Digitalの略語である。CFは、CompactFlash(登録商標)の略語である。DVDは、Digital Versatile Diskの略語である。
The memory 921 is a storage device that temporarily stores data. Specific examples of the memory 921 are SRAM and DRAM. SRAM is an abbreviation for Static Random Access Memory. DRAM is an abbreviation for Dynamic Random Access Memory.
The auxiliary storage device 922 is a storage device that stores data. A specific example of the auxiliary storage device 922 is an HDD. The auxiliary storage device 922 may also be a portable storage medium such as an SD (registered trademark) memory card, CF, NAND flash, a flexible disk, an optical disk, a compact disk, a Blu-ray (registered trademark) disk, or a DVD. Note that HDD is an abbreviation for Hard Disk Drive. SD (registered trademark) is an abbreviation for Secure Digital. CF is an abbreviation for CompactFlash (registered trademark). DVD is an abbreviation for Digital Versatile Disk.

 入力インタフェース930は、マウス、キーボード、あるいはタッチパネルといった入力装置と接続されるポートである。入力インタフェース930は、具体的には、USB端子である。なお、入力インタフェース930は、LANと接続されるポートであってもよい。USBは、Universal Serial Busの略語である。LANは、Local Area Networkの略語である。 The input interface 930 is a port that is connected to an input device such as a mouse, keyboard, or touch panel. Specifically, the input interface 930 is a USB terminal. Note that the input interface 930 may also be a port that is connected to a LAN. USB is an abbreviation for Universal Serial Bus. LAN is an abbreviation for Local Area Network.

 出力インタフェース940は、ディスプレイといった出力機器のケーブルが接続されるポートである。出力インタフェース940は、具体的には、USB端子またはHDMI(登録商標)端子である。ディスプレイは、具体的には、LCDである。出力インタフェース940は、表示器インタフェースともいう。HDMI(登録商標)は、High Definition Multimedia Interfaceの略語である。LCDは、Liquid Crystal Displayの略語である。 The output interface 940 is a port to which a cable from an output device such as a display is connected. Specifically, the output interface 940 is a USB terminal or an HDMI (registered trademark) terminal. Specifically, the display is an LCD. The output interface 940 is also called a display interface. HDMI (registered trademark) is an abbreviation for High Definition Multimedia Interface. LCD is an abbreviation for Liquid Crystal Display.

 通信装置950は、レシーバとトランスミッタを有する。通信装置950は、LAN、インターネット、電話回線、あるいはWi-Fi(登録商標)といった通信網に接続している。通信装置950は、具体的には、通信チップまたはNICである。NICは、Network Interface Cardの略語である。 The communication device 950 has a receiver and a transmitter. The communication device 950 is connected to a communication network such as a LAN, the Internet, a telephone line, or Wi-Fi (registered trademark). Specifically, the communication device 950 is a communication chip or NIC. NIC is an abbreviation for Network Interface Card.

 生産性算出プログラムは、生産性算出装置100において実行される。生産性算出プログラムは、プロセッサ910に読み込まれ、プロセッサ910によって実行される。メモリ921には、生産性算出プログラムだけでなく、OSも記憶されている。OSは、Operating Systemの略語である。プロセッサ910は、OSを実行しながら、生産性算出プログラムを実行する。生産性算出プログラムおよびOSは、補助記憶装置922に記憶されていてもよい。補助記憶装置922に記憶されている生産性算出プログラムおよびOSは、メモリ921にロードされ、プロセッサ910によって実行される。なお、生産性算出プログラムの一部または全部がOSに組み込まれていてもよい。 The productivity calculation program is executed in the productivity calculation device 100. The productivity calculation program is loaded into and executed by the processor 910. Memory 921 stores not only the productivity calculation program but also the OS. OS is an abbreviation for Operating System. The processor 910 executes the productivity calculation program while running the OS. The productivity calculation program and OS may be stored in an auxiliary storage device 922. The productivity calculation program and OS stored in the auxiliary storage device 922 are loaded into memory 921 and executed by the processor 910. Note that part or all of the productivity calculation program may be incorporated into the OS.

 生産性算出装置100は、プロセッサ910を代替する複数のプロセッサを備えていてもよい。これら複数のプロセッサは、生産性算出プログラムの実行を分担する。それぞれのプロセッサは、プロセッサ910と同じように、生産性算出プログラムを実行する装置である。 The productivity calculation device 100 may be equipped with multiple processors that replace the processor 910. These multiple processors share the execution of the productivity calculation program. Each processor is a device that executes the productivity calculation program in the same way as the processor 910.

 生産性算出プログラムにより利用、処理または出力されるデータ、情報、信号値および変数値は、メモリ921、補助記憶装置922、または、プロセッサ910内のレジスタあるいはキャッシュメモリに記憶される。 Data, information, signal values, and variable values used, processed, or output by the productivity calculation program are stored in memory 921, auxiliary storage device 922, or registers or cache memory within processor 910.

 アンケート収集部110と算出部120と記憶部150の各部の「部」を「回路」、「工程」、「手順」、「処理」、あるいは「サーキットリー」に読み替えてもよい。生産性算出プログラムは、アンケート収集処理と算出処理と記憶処理を、コンピュータに実行させる。アンケート収集処理と算出処理と記憶処理の「処理」を「プログラム」、「プログラムプロダクト」、「プログラムを記憶したコンピュータ読取可能な記憶媒体」、または「プログラムを記録したコンピュータ読取可能な記録媒体」に読み替えてもよい。また、生産性算出方法は、生産性算出装置100が生産性算出プログラムを実行することにより行われる方法である。
 生産性算出プログラムは、コンピュータ読取可能な記録媒体に格納されて提供されてもよい。また、生産性算出プログラムは、プログラムプロダクトとして提供されてもよい。
The "parts" of the questionnaire collection unit 110, the calculation unit 120, and the storage unit 150 may be read as "circuits,""processes,""procedures,""processes," or "circuitry." The productivity calculation program causes a computer to execute a questionnaire collection process, a calculation process, and a storage process. The "processes" of the questionnaire collection process, the calculation process, and the storage process may be read as "program,""programproduct,""computer-readable storage medium storing a program," or "computer-readable recording medium recording a program." The productivity calculation method is a method performed by the productivity calculation device 100 executing the productivity calculation program.
The productivity calculation program may be provided by being stored in a computer-readable recording medium, or may be provided as a program product.

***知的生産性モデル51について***
 図2は、本実施の形態に係る知的生産性モデル51の全体構成例を示す図である。
 図3は、本実施の形態に係る知的生産性モデル51の部分構成例を示す図である。
 図4は、本実施の形態に係る知的生産性モデル51の部分構成例を示す図である。
 図5は、本実施の形態に係る知的生産性モデル51の部分構成例を示す図である。
 図6は、本実施の形態に係る知的生産性モデル51の部分構成例を示す図である。
 図7は、本実施の形態に係る知的生産性モデル51の部分構成例を示す図である。
***About Intellectual Productivity Model 51***
FIG. 2 is a diagram showing an example of the overall configuration of an intellectual productivity model 51 according to this embodiment.
FIG. 3 is a diagram showing an example of a partial configuration of the productivity model 51 according to this embodiment.
FIG. 4 is a diagram showing an example of a partial configuration of the intellectual productivity model 51 according to this embodiment.
FIG. 5 is a diagram showing an example of a partial configuration of an intellectual productivity model 51 according to this embodiment.
FIG. 6 is a diagram showing an example of a partial configuration of an intellectual productivity model 51 according to this embodiment.
FIG. 7 is a diagram showing an example of a partial configuration of an intellectual productivity model 51 according to this embodiment.

 図2に示す知的生産性モデル51について説明する。
 知的生産性モデル51は、例えば、「知的活動」、「内面」、「リラックス」、「コミュニケーション」、および「環境」の5つに分類される複数の単位因子から知的生産性を算出する。図2において、矢印は知的生産性モデル51における寄与率52を示している。寄与率52の具体的な数値は図3から図7に示す。
The intellectual productivity model 51 shown in FIG. 2 will be described.
The intellectual productivity model 51 calculates intellectual productivity from a plurality of unit factors classified into five categories, for example, "intellectual activity,""innerself,""relaxation,""communication," and "environment." In Fig. 2, the arrow indicates the contribution rate 52 in the intellectual productivity model 51. Specific numerical values of the contribution rate 52 are shown in Figs. 3 to 7.

 知的生産性モデル51は、統計的に有意な数の知的生産性調査アンケートから、共分散構造分析といった手法によりモデル化される。知的生産性モデル51は、全ての因子間に寄与率が与えられている。図3から図7に示す寄与率は、全ての因子間における寄与率のうち所定の数値以上の寄与率のみが示されている。知的生産性モデル51は、最終的には知的生産性を示す因子に集約されている。すなわち、知的生産性モデル51の各因子には知的生産性への寄与率が与えられているともいえる。
 知的生産性モデル51による知的生産性の算出方法については後述する。
The intellectual productivity model 51 is modeled using a technique such as covariance structure analysis from a statistically significant number of intellectual productivity survey questionnaires. In the intellectual productivity model 51, contribution rates are assigned between all factors. The contribution rates shown in Figures 3 to 7 only show contribution rates that are equal to or greater than a predetermined value among the contribution rates between all factors. The intellectual productivity model 51 is ultimately summarized into factors that indicate intellectual productivity. In other words, it can be said that each factor in the intellectual productivity model 51 is assigned a contribution rate to intellectual productivity.
The method of calculating the productivity using the productivity model 51 will be described later.

 知的生産性モデル51は、利用者の知的活動に影響を与える要因を示す複数の分類511と、複数の分類511の各分類に含まれる中間因子512と、中間因子512に寄与する複数の単位因子513とを備える。
 以下の説明において、中間因子および単位因子の各々、あるいはすべてを単に因子と称する場合がある。
 利用者は、知的生産性の調査を目的とするアンケートにより複数の単位因子513の各々に対して点数をつける。例えば、この知的生産性調査アンケートの設問は、知的生産性モデル51のうち複数の単位因子513で示した因子につき1問以上設定されている。知的生産性モデル51を用いて各因子への個人の回答値に寄与率を乗算することにより、知的生産性が算出される。
 知的生産性モデル51は、利用者から取得した複数の単位因子513の各々の点数を入力とし、利用者の知的生産性を出力とする。
The intellectual productivity model 51 includes a plurality of classifications 511 indicating factors that influence the user's intellectual activity, intermediate factors 512 included in each of the plurality of classifications 511, and a plurality of unit factors 513 that contribute to the intermediate factors 512.
In the following description, each or all of the intermediate factors and unit factors may be simply referred to as factors.
A user completes a questionnaire aimed at investigating intellectual productivity and assigns a score to each of a plurality of unit factors 513. For example, the question in this intellectual productivity survey questionnaire is set to one or more questions for each of the factors indicated by the plurality of unit factors 513 in the intellectual productivity model 51. Intellectual productivity is calculated by multiplying the individual's response value to each factor by the contribution rate using the intellectual productivity model 51.
The productivity model 51 receives as input the scores of each of a plurality of unit factors 513 acquired from the user, and outputs the productivity of the user.

 複数の単位因子513は、個人の知的活動に影響を与える要因である。複数の単位因子513は、複数の分類511に分けられる。図2では、複数の単位因子513は四角の枠で示されている。図2の単位因子は一例であり、単位因子の追加あるいは削除は任意である。 The multiple unit factors 513 are factors that influence an individual's intellectual activity. The multiple unit factors 513 are divided into multiple categories 511. In Figure 2, the multiple unit factors 513 are shown in square frames. The unit factors in Figure 2 are just an example, and unit factors can be added or deleted as desired.

 複数の分類511は、具体的には、環境、内面、リラックス、コミュニケーション、および知的活動の5つの分類である。図2では、複数の単位因子513の各々は、この5つの分類のいずれかに分類される。図2の分類は一例であり、分類の追加あるいは削除は任意である。 The multiple categories 511 are specifically five categories: environment, inner self, relaxation, communication, and intellectual activity. In Figure 2, each of the multiple unit factors 513 is classified into one of these five categories. The categories in Figure 2 are an example, and categories can be added or deleted as desired.

 中間因子512は、各分類に含まれる単位因子513の上位の因子である。中間因子512は、各分類に含まれる複数の単位因子513をまとめた上位の因子である。図2では、中間因子512は楕円の枠で示されている。図2の中間因子は一例であり、中間因子の追加あるいは削除は任意である。 Intermediate factors 512 are higher-level factors than the unit factors 513 contained in each classification. Intermediate factors 512 are higher-level factors that combine multiple unit factors 513 contained in each classification. In Figure 2, intermediate factors 512 are indicated by oval frames. The intermediate factors in Figure 2 are just an example, and intermediate factors can be added or deleted as desired.

 例えば、分類「リラックス」には、複数の単位因子「休憩」、「娯楽」、「飲料・おやつ」、「リラックス」、および「リフレッシュ」が分類されている。単位因子「休憩」、「娯楽」、および「飲料・おやつ」の上位因子である中間因子は「気分転換」である。また、「リラックス」、および「リフレッシュ」の上位因子である中間因子は「リラックス」である。 For example, the category "Relaxation" includes multiple unit factors: "Rest," "Entertainment," "Drinks/Snacks," "Relaxation," and "Refreshment." The intermediate factor that is a higher-level factor for the unit factors "Rest," "Entertainment," and "Drinks/Snacks" is "Refreshment." Furthermore, the intermediate factor that is a higher-level factor for "Relaxation" and "Refreshment" is "Relaxation."

 知的生産性モデル51には、複数の単位因子513の各々が中間因子512に寄与する際の寄与率が付与されている。また、知的生産性モデル51には、中間因子512が他の分類511の中間因子512に寄与する際の寄与率が付与されている。また、知的生産性モデル51には、中間因子512が同じ分類511の中間因子512に寄与する際の寄与率が付与されている。
 図3から図7において、知的生産性モデル51における寄与率52の具体例を示している。
The productivity model 51 is assigned a contribution rate when each of a plurality of unit factors 513 contributes to an intermediate factor 512. The productivity model 51 is also assigned a contribution rate when the intermediate factor 512 contributes to an intermediate factor 512 of another class 511. The productivity model 51 is also assigned a contribution rate when the intermediate factor 512 contributes to an intermediate factor 512 of the same class 511.
3 to 7 show specific examples of the contribution rate 52 in the intellectual productivity model 51. FIG.

 知的生産性モデル51では、中間因子512が他の分類511の中間因子512に寄与する際の寄与率が付与されているため、利用者における知的活動への間接的な要因の影響度をきめ細やかに反映した知的生産性を算出することができる。また、知的生産性モデル51には、中間因子512が同じ分類511の中間因子512に寄与する際の寄与率が付与されていることからも、利用者における知的活動への間接的な要因の影響度をきめ細やかに反映した知的生産性を算出することができる。 In intellectual productivity model 51, the contribution rate when intermediate factors 512 contribute to intermediate factors 512 of other categories 511 is assigned, making it possible to calculate intellectual productivity that precisely reflects the degree of influence of indirect factors on a user's intellectual activity. In addition, because intellectual productivity model 51 is assigned the contribution rate when intermediate factors 512 contribute to intermediate factors 512 of the same category 511, it is possible to calculate intellectual productivity that precisely reflects the degree of influence of indirect factors on a user's intellectual activity.

 知的生産性モデル51では、複数の単位因子513が中間因子の一つである知的生産性を示す知的生産性因子に集約される。図2に示すように、分類「知的活動」には、中間因子「知的生産性」が含まれる。この中間因子「知的生産性」を知的生産性因子ともいう。中間因子「知的生産性」は、知的生産性モデル51に含まれるすべての単位因子の点数に基づいて最終的に算出される利用者の知的生産性の点数を示している。 In intellectual productivity model 51, multiple unit factors 513 are aggregated into an intellectual productivity factor that indicates intellectual productivity, which is one of the intermediate factors. As shown in Figure 2, the category "intellectual activity" includes the intermediate factor "intellectual productivity." This intermediate factor "intellectual productivity" is also called the intellectual productivity factor. The intermediate factor "intellectual productivity" indicates the user's intellectual productivity score that is finally calculated based on the scores of all unit factors included in intellectual productivity model 51.

 図8は、本実施の形態に係る知的生産性モデル51を用いた知的生産性の計算式を示す図である。
 知的生産性は数1の計算式で算出される。
FIG. 8 is a diagram showing a calculation formula for productivity using the productivity model 51 according to this embodiment.
Intellectual productivity is calculated using the formula in Equation 1.

 数1については以下の通りである。
P:知的生産性の計算値
α:知的活動の寄与率
A:知的活動のアンケート結果回答値
β:内面の寄与率
I:内面のアンケート結果回答値
γ:リラックスの寄与率
R:リラックスのアンケート結果回答値
σ:コミュニケーションの寄与率
C:コミュニケーションのアンケート結果回答値
Δ:環境の寄与率
E:環境のアンケート結果回答値
The equation 1 is as follows:
P: Calculated value of intellectual productivity α: Contribution rate of intellectual activity A: Response value of intellectual activity questionnaire β: Contribution rate of inner self I: Response value of inner self questionnaire γ: Contribution rate of relaxation R: Response value of relaxation questionnaire σ: Contribution rate of communication C: Response value of communication questionnaire Δ: Contribution rate of environment E: Response value of environment questionnaire

 また、A,I,R,C,Eについては数2の計算式で算出される。
Furthermore, A, I, R, C, and E are calculated using the formula 2.

 数2については以下の通りである。
A:知的活動の各項目の寄与率
v:知的活動の各項目のアンケート結果回答値
b:内面の各項目の寄与率
w:内面の各項目のアンケート結果回答値
c:リラックスの各項目の寄与率
x:リラックスの各項目のアンケート結果回答値
d:コミュニケーションの各項目の寄与率
y:コミュニケーションの各項目のアンケート結果回答値
e:環境の各項目の寄与率
z:環境の各項目のアンケート結果回答値
Equation 2 is as follows:
A: Contribution rate of each item of intellectual activity v: Response value of questionnaire result for each item of intellectual activity b: Contribution rate of each item of inner life w: Response value of questionnaire result for each item of inner life c: Contribution rate of each item of relaxation x: Response value of questionnaire result for each item of relaxation d: Contribution rate of each item of communication y: Response value of questionnaire result for each item of communication e: Contribution rate of each item of environment z: Response value of questionnaire result for each item of environment

 また、v,w,x,y,zについては数3の計算式で算出される。
Furthermore, v, w, x, y, and z are calculated using the formula 3.

 数3については以下の通りである。
f,g,h,i,j:以下項目のアンケート寄与率
q,r,s,t,u:以下項目のアンケート結果回答値
Equation 3 is as follows:
f, g, h, i, j: Survey contribution rate of the following items q, r, s, t, u: Survey result response values of the following items

 知的生産性モデル51において、複数の分類511には、利用者の属性を示す分類が含まれる。また、利用者の属性を示す分類511に含まれる中間因子512に寄与する複数の単位因子513は、利用者の属性を示す単位因子である。
 利用者の属性を示す分類は、利用者の内面を示す分類「内面」と、利用者のコミュニケーション力を示す分類「コミュニケーション」と、利用者の知的活動力を示す分類「知的活動」の少なくとも1つが含まれる。
 図2の知的生産性モデル51には、利用者の属性を示す分類として、分類「内面」、分類「コミュニケーション」、および分類「知的活動」が含まれている。これらの分類に含まれる単位因子が、利用者の性格、職種、好み、考え方、あるいは行動といった個人に特有の属性を示す単位因子である。
In the intellectual productivity model 51, a classification indicating the attributes of a user is included in the plurality of classifications 511. Furthermore, a plurality of unit factors 513 that contribute to an intermediate factor 512 included in the classification 511 indicating the attributes of a user are unit factors indicating the attributes of a user.
The classification indicating the user's attributes includes at least one of the classification "inner self" indicating the user's inner self, the classification "communication" indicating the user's communication ability, and the classification "intellectual activity" indicating the user's intellectual activity ability.
2 includes three categories indicating user attributes: "inner self,""communication," and "intellectual activity." The unit factors included in these categories are unit factors that indicate individual attributes such as the user's personality, occupation, preferences, way of thinking, or behavior.

 知的生産性モデル51において、複数の分類511には、利用者の環境を示す分類が含まれる。また、利用者の環境を示す分類511に含まれる中間因子512に寄与する複数の単位因子513は利用者における知的活動の環境を示す単位因子である。
 利用者の環境を示す分類は、利用者の知的活動の作業環境を示す分類「環境」と利用者がリラックスする環境を示す分類「リラックス」との少なくとも1つが含まれる。
 図2の知的生産性モデル51には、利用者の環境を示す分類として、分類「環境」、および分類「リラックス」が含まれている。これらの分類に含まれる単位因子が、利用者の作業環境あるいはリラックス環境といった作業をする際の環境を示す単位因子である。
In the intellectual productivity model 51, a classification indicating the user's environment is included in the plurality of classifications 511. Furthermore, a plurality of unit factors 513 that contribute to an intermediate factor 512 included in the classification 511 indicating the user's environment are unit factors that indicate the environment of the user's intellectual activity.
The classification indicating the user's environment includes at least one of a classification "environment" indicating the working environment for the user's intellectual activity and a classification "relaxation" indicating the environment in which the user relaxes.
2 includes the categories "environment" and "relaxation" as categories that indicate the user's environment. The unit factors included in these categories are unit factors that indicate the environment in which the user works, such as the user's work environment or relaxation environment.

***動作の説明***
 次に、本実施の形態に係る生産性算出装置100の動作について説明する。生産性算出装置100の動作手順は、生産性算出方法に相当する。また、生産性算出装置100の動作である生産性算出処理を実現するプログラムは、生産性算出プログラムに相当する。
***Explanation of Operation***
Next, an operation of the productivity calculation device 100 according to the present embodiment will be described. The operation procedure of the productivity calculation device 100 corresponds to a productivity calculation method. Furthermore, a program that realizes the productivity calculation process, which is the operation of the productivity calculation device 100, corresponds to a productivity calculation program.

 図9は、本実施の形態に係る生産性算出装置100の動作を示すフロー図である。 FIG. 9 is a flow diagram showing the operation of the productivity calculation device 100 according to this embodiment.

 ステップS101において、アンケート収集部110は、利用者から複数の単位因子の各々に対する点数をアンケート結果として取得する。このアンケートは、利用者における知的生産性に関する調査を目的とする知的生産性調査アンケートである。利用者は、複数の単位因子の各々に対して点数をつける。アンケートの設問は、例えば、知的生産性モデル51のうちの複数の単位因子で示した因子につき1問以上設定されている。
 アンケート収集部110は、個人の回答値を算出部120に出力する。
In step S101, the questionnaire collection unit 110 acquires a score for each of a plurality of unit factors from the user as a questionnaire result. This questionnaire is an intellectual productivity survey questionnaire aimed at investigating the intellectual productivity of users. The user assigns a score to each of the plurality of unit factors. For example, the questionnaire includes one or more questions for each factor indicated by the plurality of unit factors in the intellectual productivity model 51.
The questionnaire collection unit 110 outputs the individual response values to the calculation unit 120 .

 ステップS102において、算出部120は、複数の単位因子の各々に対する点数を知的生産性モデル51に入力する。そして、算出部120は、知的生産性モデル51から出力される知的生産性因子の点数を利用者の知的生産性61として取得する。
 ここでは、知的生産性モデル51に付与されている寄与率として、記憶部150に記憶されている寄与率52を用いるものとする。あるいは、知的生産性モデル51に予め寄与率が付与されていても構わない。
 算出部120は、寄与率記憶部の寄与率を反映させた知的生産性モデルに回答値を送信する。モデルによる計算結果を知的生産性算出部に返す。
In step S102, the calculation unit 120 inputs the scores for each of the multiple unit factors into the productivity model 51. Then, the calculation unit 120 acquires the scores for the productivity factors output from the productivity model 51 as the user's productivity 61.
Here, the contribution rate 52 stored in the storage unit 150 is used as the contribution rate assigned to the productivity model 51. Alternatively, the productivity model 51 may be assigned a contribution rate in advance.
The calculation unit 120 transmits the answer value to the productivity model that reflects the contribution rate stored in the contribution rate storage unit, and returns the calculation result from the model to the productivity calculation unit.

 算出部120は、知的生産性モデル51から出力される中間因子「知的生産性」である知的生産性因子の点数を利用者の知的生産性61として取得する。このとき、算出部120は、利用者の知的生産性61と、知的生産性61に対する複数の分類511の各々の寄与の度合いを示す寄与度62とを算出する。 The calculation unit 120 obtains the score of the intellectual productivity factor, which is the intermediate factor "intellectual productivity" output from the intellectual productivity model 51, as the user's intellectual productivity 61. At this time, the calculation unit 120 calculates the user's intellectual productivity 61 and a contribution degree 62 indicating the degree of contribution of each of the multiple categories 511 to the intellectual productivity 61.

 複数の分類の各々の寄与度62は、図8で説明したように、知的生産性61の算出過程において得られる。
 算出部120は、複数の単位因子の各々に対する点数を知的生産性モデル51に入力し、知的生産性61と複数の分類の各々の寄与度62とを取得する。
The contribution 62 of each of the multiple categories is obtained in the process of calculating the intellectual productivity 61, as explained with reference to FIG.
The calculation unit 120 inputs the scores for each of the plurality of unit factors into the productivity model 51, and obtains the productivity 61 and the contribution 62 of each of the plurality of categories.

 ステップS103において、算出部120は、出力インタフェース940を介して、知的生産性61と複数の分類の各々の寄与度62とを表示する。 In step S103, the calculation unit 120 displays the intellectual productivity 61 and the contribution 62 of each of the multiple categories via the output interface 940.

 図10は、本実施の形態に係る知的生産性61と寄与度62との表示例を示す図である。
 図10では、利用者「ユーザ:0001」について、知的生産性「85点」、分類「内面」の寄与度「42点」、分類「リラックス」の寄与度「34点」と表示されている例を示している。
FIG. 10 is a diagram showing an example of displaying intellectual productivity 61 and contribution rate 62 according to this embodiment.
FIG. 10 shows an example in which the intellectual productivity of the user "User: 0001" is displayed as "85 points," the contribution of the category "inner self" is displayed as "42 points," and the contribution of the category "relaxation" is displayed as "34 points."

 ***他の構成***
 本実施の形態では、アンケート収集部110と算出部120の機能がソフトウェアで実現される。変形例として、アンケート収集部110と算出部120の機能がハードウェアで実現されてもよい。
 具体的には、生産性算出装置100は、プロセッサ910に替えて電子回路909を備える。
***Other configurations***
In this embodiment, the functions of the questionnaire collection unit 110 and the calculation unit 120 are realized by software. As a modification, the functions of the questionnaire collection unit 110 and the calculation unit 120 may be realized by hardware.
Specifically, the productivity calculation device 100 includes an electronic circuit 909 instead of the processor 910 .

 図11は、本実施の形態の変形例に係る生産性算出装置100の構成例を示す図である。
 電子回路909は、アンケート収集部110と算出部120の機能を実現する専用の電子回路である。電子回路909は、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA、ASIC、または、FPGAである。GAは、Gate Arrayの略語である。ASICは、Application Specific Integrated Circuitの略語である。FPGAは、Field-Programmable Gate Arrayの略語である。
FIG. 11 is a diagram showing an example of the configuration of a productivity calculation device 100 according to a modified example of this embodiment.
The electronic circuit 909 is a dedicated electronic circuit that realizes the functions of the questionnaire collection unit 110 and the calculation unit 120. Specifically, the electronic circuit 909 is a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA, an ASIC, or an FPGA. GA is an abbreviation for Gate Array. ASIC is an abbreviation for Application Specific Integrated Circuit. FPGA is an abbreviation for Field-Programmable Gate Array.

 アンケート収集部110と算出部120の機能は、1つの電子回路で実現されてもよいし、複数の電子回路に分散して実現されてもよい。 The functions of the questionnaire collection unit 110 and the calculation unit 120 may be realized by a single electronic circuit, or may be distributed across multiple electronic circuits.

 別の変形例として、アンケート収集部110と算出部120の一部の機能が電子回路で実現され、残りの機能がソフトウェアで実現されてもよい。また、アンケート収集部110と算出部120の一部またはすべての機能がファームウェアで実現されてもよい。 As another variation, some of the functions of the survey collection unit 110 and the calculation unit 120 may be realized by electronic circuits, with the remaining functions being realized by software. Also, some or all of the functions of the survey collection unit 110 and the calculation unit 120 may be realized by firmware.

 プロセッサと電子回路の各々は、プロセッシングサーキットリとも呼ばれる。つまり、アンケート収集部110と算出部120の機能は、プロセッシングサーキットリにより実現される。 Each of the processor and electronic circuitry is also called processing circuitry. In other words, the functions of the survey collection unit 110 and calculation unit 120 are realized by processing circuitry.

***本実施の形態の効果の説明***
 以上のように、本実施の形態に係る生産性算出装置100では、間接的要因を踏まえた作業者の知的生産性を推定し、知的生産性に影響した要因とその程度が分かるようになるという効果がある。また、本実施の形態に係る生産性算出装置100では、各因子における、上位因子に対する寄与度から、どの要因がどの程度知的生産性に影響したか判定することができる。寄与度は寄与率×個人の回答値から算出できる。
***Description of the Effects of This Embodiment***
As described above, the productivity calculation device 100 according to this embodiment has the effect of estimating the intellectual productivity of a worker taking into account indirect factors, and making it possible to determine the factors that influenced intellectual productivity and the extent to which they influenced it. Furthermore, the productivity calculation device 100 according to this embodiment can determine the extent to which each factor influenced intellectual productivity based on the contribution of each factor to the higher-level factor. The contribution can be calculated by multiplying the contribution rate by the individual's response value.

 本実施の形態に係る生産性算出装置100では、知的生産性モデルにおいて、中間因子が他の分類の中間因子に寄与する際の寄与率が付与されている。また、知的生産性モデルにおいて、中間因子が同じ分類の中間因子に寄与する際の寄与率が付与されている。このため、利用者における知的活動への間接的な要因の影響度をきめ細やかに反映した知的生産性を算出することができる。 In the productivity calculation device 100 according to this embodiment, the intellectual productivity model is assigned a contribution rate when an intermediate factor contributes to an intermediate factor of another category. Furthermore, in the intellectual productivity model, the contribution rate when an intermediate factor contributes to an intermediate factor of the same category is assigned. This makes it possible to calculate intellectual productivity that precisely reflects the degree of influence of indirect factors on the user's intellectual activity.

 実施の形態2.
 本実施の形態では、主に、実施の形態1と異なる点および実施の形態1に追加する点について説明する。
 本実施の形態において、実施の形態1と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
Embodiment 2.
In this embodiment, differences from and additions to the first embodiment will be mainly described.
In this embodiment, components having the same functions as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.

***構成の説明***
 図12は、本実施の形態に係る生産性算出装置100の構成例を示す図である。
 本実施の形態に係る生産性算出装置100は、実施の形態1で説明した図1の構成要素に加えて、閾値決定部130と寄与度比較部140を備える。
 その他の構成については、実施の形態1と同様である。
***Configuration Description***
FIG. 12 is a diagram showing an example of the configuration of a productivity calculation device 100 according to this embodiment.
The productivity calculation device 100 according to this embodiment includes a threshold value determination unit 130 and a contribution degree comparison unit 140 in addition to the components shown in FIG. 1 described in the first embodiment.
The other configurations are the same as those in the first embodiment.

 本実施の形態では、算出部120は、複数の利用者の各々について、利用者の知的生産性61と知的生産性における複数の分類の各々の寄与度62とを算出する。
 閾値決定部130は、複数の利用者の各々における、知的生産性61と寄与度62とに基づいて、知的生産性と寄与度の閾値53を決定する。
 寄与度比較部140は、複数の利用者の各々について、閾値53より高い項目と閾値53より低い項目とを抽出する。寄与度比較部140は、複数の利用者の各々について、知的生産性61と寄与度62を表示する。このとき、寄与度比較部140は、知的生産性61と寄与度62とについて、閾値53より高い項目と閾値53より低い項目とを可視化して表示する。
In this embodiment, the calculation unit 120 calculates, for each of a plurality of users, the user's intellectual productivity 61 and the contribution 62 of each of a plurality of categories to the intellectual productivity.
The threshold value determination unit 130 determines the threshold values 53 for intellectual productivity and contribution level based on the intellectual productivity 61 and contribution level 62 of each of a plurality of users.
The contribution comparison unit 140 extracts, for each of the multiple users, items that are higher than the threshold 53 and items that are lower than the threshold 53. The contribution comparison unit 140 displays, for each of the multiple users, the intellectual productivity 61 and the contribution 62. At this time, the contribution comparison unit 140 visualizes and displays the items that are higher than the threshold 53 and items that are lower than the threshold 53 for the intellectual productivity 61 and the contribution 62.

 図13は、本実施の形態に係る知的生産性61と寄与度62との表示例を示す図である。
 複数の利用者A,B,・・・,Xの各々における、知的生産性61と各分類の寄与度62とが表示されている。閾値53より高い点数は太字で示されている。閾値53より低い点数は下線付きで示されている。
FIG. 13 is a diagram showing an example of displaying intellectual productivity 61 and contribution rate 62 according to this embodiment.
The intellectual productivity 61 and the contribution of each category 62 for each of multiple users A, B, ..., X are displayed. Scores higher than the threshold 53 are shown in bold. Scores lower than the threshold 53 are underlined.

***動作の説明***
 図14は、本実施の形態に係る生産性算出装置100の動作を示すフロー図である。
 ステップS201において、アンケート収集部110は、複数の利用者の各々から複数の単位因子の各々に対する点数をアンケート結果として取得する。そして、アンケート収集部110は、複数の利用者の各々の回答値を算出部120に出力する。
 ステップS201の処理についてはステップS101と同様である。
***Explanation of Operation***
FIG. 14 is a flowchart showing the operation of the productivity calculation device 100 according to this embodiment.
In step S201, the questionnaire collection unit 110 acquires the scores for each of the plurality of unit factors from each of the plurality of users as the questionnaire results, and outputs the response values of each of the plurality of users to the calculation unit 120.
The process of step S201 is the same as step S101.

 ステップS102において、算出部120は、複数の利用者の各々について、回答値を知的生産性モデル51に入力する。そして、算出部120は、複数の利用者の各々について、知的生産性モデル51から出力される知的生産性61を取得する。また、算出部120は、複数の利用者の各々における、複数の分類ごとの寄与度62についても取得する。
 ステップS202の処理についてはステップS102と同様である。
In step S102, the calculation unit 120 inputs the response value for each of the multiple users into the productivity model 51. Then, the calculation unit 120 acquires the productivity 61 output from the productivity model 51 for each of the multiple users. The calculation unit 120 also acquires the contribution degree 62 for each of the multiple categories for each of the multiple users.
The process of step S202 is the same as step S102.

 ステップS203において、閾値決定部130は、複数の利用者の各々における、知的生産性61と寄与度62に基づいて、知的生産性と寄与度の閾値53を決定する。閾値53は、知的生産性と寄与度の各々の比較の基準となる値である。
 例えば、閾値決定部130は、複数の利用者の各々の各分類における寄与度62の平均から閾値53を決定する。
In step S203, the threshold determination unit 130 determines the thresholds 53 for intellectual productivity and contribution level for each of the multiple users based on the intellectual productivity 61 and contribution level 62. The thresholds 53 are values that serve as a reference for comparing intellectual productivity and contribution level.
For example, the threshold value determining unit 130 determines the threshold value 53 from the average of the contribution degree 62 in each category for each of the multiple users.

 ステップS204において、寄与度比較部140は、複数の利用者の各々について、知的生産性61と寄与度62の各々と、それぞれの閾値53とを比較する。寄与度比較部140は、閾値53より高い項目と閾値53より低い項目とを抽出する。
 ステップS205において、寄与度比較部140は、複数の利用者の各々について、知的生産性61と寄与度62を表示する。このとき、寄与度比較部140は、知的生産性61と寄与度62とを、閾値53より高い項目と閾値53より低い項目とを可視化して表示する。
 図13では、閾値53より高い点数は太字で示されており、閾値53より低い点数は下線付きで示されている。
 図13では個人ごとに知的生産性61と寄与度62を表示し、閾値53との比較が行われている。その他、部署といったグループごとの比較が可能である。また、過去との比較といった時系列での比較が可能である。
In step S204, the contribution comparison unit 140 compares the intellectual productivity 61 and the contribution 62 for each of the multiple users with the respective thresholds 53. The contribution comparison unit 140 extracts items that are higher than the threshold 53 and items that are lower than the threshold 53.
In step S205, the contribution comparison unit 140 displays the intellectual productivity 61 and the contribution 62 for each of the multiple users. At this time, the contribution comparison unit 140 visualizes and displays the intellectual productivity 61 and the contribution 62 by dividing items higher than the threshold 53 and items lower than the threshold 53.
In FIG. 13, scores above the threshold 53 are shown in bold, and scores below the threshold 53 are underlined.
In Fig. 13, intellectual productivity 61 and contribution 62 are displayed for each individual, and a comparison is made with a threshold value 53. Comparisons can also be made by group, such as by department. Also, comparisons can be made over time, such as with the past.

***本実施の形態の効果の説明***
 本実施の形態に係る生産性算出装置100によれば、個人あるいはグループにおいて、相対的に知的生産性を低くしている、あるいは高くしている要因を特定することができる。よって、他人あるいは他グループと比較して、間接的要因を含めたどのような要因が相対的に知的生産性に寄与しているのか推定することができる。
***Description of the Effects of This Embodiment***
The productivity calculation device 100 according to this embodiment can identify factors that relatively lower or increase the intellectual productivity of an individual or a group. Therefore, it is possible to estimate what factors, including indirect factors, relatively contribute to intellectual productivity in comparison with other people or other groups.

 実施の形態3.
 本実施の形態では、主に、実施の形態1と異なる点および実施の形態1に追加する点について説明する。
 本実施の形態において、実施の形態1と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
Embodiment 3.
In this embodiment, differences from and additions to the first embodiment will be mainly described.
In this embodiment, components having the same functions as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.

***構成の説明***
 図15は、本実施の形態に係る生産性算出装置100の構成例を示す図である。
 本実施の形態に係る生産性算出装置100は、実施の形態1で説明した図1の構成要素に加えて、属性判定部160を備える。
 その他の構成については、実施の形態1と同様である。
***Configuration Description***
FIG. 15 is a diagram showing an example of the configuration of a productivity calculation device 100 according to this embodiment.
The productivity calculation device 100 according to this embodiment includes an attribute determination unit 160 in addition to the components shown in FIG. 1 described in the first embodiment.
The other configurations are the same as those in the first embodiment.

 本実施の形態では、個人の属性ごとに異なる寄与率を反映させた知的生産性モデル51により、知的生産性を算出する態様について説明する。 In this embodiment, we will explain how intellectual productivity is calculated using an intellectual productivity model 51 that reflects different contribution rates for each individual's attributes.

 本実施の形態では、記憶部150には、利用者の属性に対応する寄与率52が設定された複数の知的生産性モデル51が記憶されている。
 具体的には、記憶部150には、利用者の属性に対応する寄与率52が複数記憶されている。例えば、利用者の複数種類の性格、職種、性別、あるいは好みといった属性の各々に対応する寄与率52が記憶部150に記憶されている。具体的には、情報処理タイプ、知識処理タイプ、総合処理タイプ、リラックスライプ、および創造タイプといった寄与率52が記憶されている。
 なお、情報処理タイプ、知識処理タイプ、総合処理タイプ、リラックスライプ、および創造タイプといった寄与率52が付与された知的生産性モデル51が複数記憶されていてもよい。
In this embodiment, the storage unit 150 stores a plurality of productivity models 51 in which contribution rates 52 corresponding to the attributes of users are set.
Specifically, a plurality of contribution rates 52 corresponding to the attributes of the user are stored in the storage unit 150. For example, contribution rates 52 corresponding to each of a plurality of types of attributes of the user, such as personality, occupation, gender, or preferences, are stored in the storage unit 150. Specifically, contribution rates 52 such as information processing type, knowledge processing type, comprehensive processing type, relaxation type, and creative type are stored.
It should be noted that a plurality of intellectual productivity models 51 may be stored, each of which is assigned a contribution rate 52, such as information processing type, knowledge processing type, comprehensive processing type, relaxed life, and creative type.

 寄与率52は、情報処理タイプ、知識処理タイプ、総合処理タイプ、リラックスライプ、および創造タイプといった利用者の属性に応じて、知的生産性を算出するためにより適切な数値となっている。 A contribution rate of 52 is a more appropriate value for calculating intellectual productivity depending on the user's attributes, such as information processing type, knowledge processing type, comprehensive processing type, relaxed lifestyle, and creative type.

***動作の説明***
 図16は、本実施の形態に係る生産性算出装置100の動作を示すフロー図である。
 ステップS101の処理は実施の形態1と同様である。
***Explanation of Operation***
FIG. 16 is a flowchart showing the operation of the productivity calculation device 100 according to this embodiment.
The process in step S101 is the same as in the first embodiment.

 ステップS301において、属性判定部160は、アンケート結果に含まれる利用者の属性を示す情報に基づいて、利用者の属性を判定する。
 具体的には、属性判定部160は、アンケートに記載された個人属性を読み取り、利用者の属性を判定する。利用者の属性とは、性格、職種、性別、あるいは好みといった情報である。利用者の属性の判定には、例えばビッグファイブといった指標を用いる。ビッグファイブとは、例えば5つの因子の組み合わせから性格を導き出す性格分析理論である。例えば「情緒不安定性」、「外向性」、「開放性」、および「調和性」を含む因子の度合いおよびバランスによって、その人の性格および得手・不得手を判断する指標である。
 なお、その他の指標を利用者の属性の判定に用いてもよい。
In step S301, the attribute determination unit 160 determines the attributes of the user based on information indicating the attributes of the user included in the questionnaire results.
Specifically, the attribute determination unit 160 reads the personal attributes entered in the questionnaire and determines the user's attributes. The user's attributes include information such as personality, occupation, gender, and preferences. To determine the user's attributes, an index such as the Big Five is used. The Big Five is a personality analysis theory that derives personality from a combination of five factors. For example, the Big Five is an index that determines a person's personality and strengths and weaknesses based on the degree and balance of factors including "emotional instability,""extroversion,""openness," and "agreeableness."
Other indices may also be used to determine the attributes of a user.

 ステップS302において、算出部120は、利用者の属性を属性判定部160から受け取る。算出部120は、利用者の属性に基づいて、複数の知的生産性モデル51から利用者の属性に対応する寄与率52が設定された知的生産性モデル51を選定する。
 具体的には、算出部120は、複数ある寄与率52から、利用者の属性に対応する寄与率を選定し、知的生産性モデル51に反映する。
 そして、算出部120は、属性に基づいた寄与率を反映させた知的生産性モデルから知的生産性および各分類の寄与度を算出する。
 利用者の知的生産性61および各分類の寄与度62の算出方法については実施の形態1と同様である。
In step S302, the calculation unit 120 receives the user's attributes from the attribute determination unit 160. Based on the user's attributes, the calculation unit 120 selects, from among the multiple productivity models 51, an intellectual productivity model 51 in which a contribution rate 52 corresponding to the user's attributes is set.
Specifically, the calculation unit 120 selects a contribution rate corresponding to the user's attributes from among the multiple contribution rates 52 and reflects it in the intellectual productivity model 51 .
Then, the calculation unit 120 calculates the intellectual productivity and the contribution of each category from the intellectual productivity model that reflects the contribution rate based on the attributes.
The method of calculating the user's intellectual productivity 61 and the contribution degree 62 of each category is the same as in the first embodiment.

 ステップS103の処理は実施の形態1と同様である。 The processing in step S103 is the same as in embodiment 1.

***本実施の形態の効果の説明***
 本実施の形態に係る生産性算出装置100によれば、個人の属性に応じた知的生産性を算出することができる。これにより、より正確に知的生産性および影響した要因を推定することができる。
***Description of the Effects of This Embodiment***
According to the productivity calculation device 100 of this embodiment, it is possible to calculate intellectual productivity according to the attributes of an individual, thereby making it possible to more accurately estimate intellectual productivity and influencing factors.

 実施の形態4.
 本実施の形態では、主に、実施の形態1と異なる点および実施の形態1に追加する点について説明する。
 本実施の形態において、実施の形態1と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
Embodiment 4.
In this embodiment, differences from and additions to the first embodiment will be mainly described.
In this embodiment, components having the same functions as those in the first embodiment are given the same reference numerals, and the description thereof will be omitted.

***構成の説明***
 図17は、本実施の形態に係る生産性算出装置100の構成例を示す図である。
 本実施の形態に係る生産性算出装置100は、実施の形態1で説明した図1の構成要素に加えて、客観データ収集部170と結果推定部180を備える。
 その他の構成については、実施の形態1と同様である。
***Configuration Description***
FIG. 17 is a diagram showing an example of the configuration of a productivity calculation device 100 according to this embodiment.
The productivity calculation device 100 according to this embodiment includes an objective data collection unit 170 and a result estimation unit 180 in addition to the components shown in FIG. 1 described in the first embodiment.
The other configurations are the same as those in the first embodiment.

 本実施の形態では、個人の客観データから一部のアンケート結果を推定する態様について説明する。
 客観データ収集部170は、利用者における客観的なデータである客観データを収集する。
 結果推定部180は、客観データに基づいてアンケート結果の少なくとも一部を推定する。
In this embodiment, a mode will be described in which some survey results are estimated from objective data of individuals.
The objective data collection section 170 collects objective data, which is objective data on the user.
The result estimation unit 180 estimates at least a part of the survey results based on the objective data.

***動作の説明***
 図18は、本実施の形態に係る生産性算出装置100の動作を示すフロー図である。
 ステップS101の処理は実施の形態1と同様である。
***Explanation of Operation***
FIG. 18 is a flowchart showing the operation of the productivity calculation device 100 according to this embodiment.
The process in step S101 is the same as in the first embodiment.

 ステップS401において、客観データ収集部170は、利用者における客観的なデータである客観データを収集する。ウェアラブルデバイス等を用いて、心拍あるいは脳波、脈波等の身体情報を収集する。また、環境センサから、温度あるいは明るさ、空気質等の情報を収集する。
 ステップS402において、結果推定部180は、客観データに基づいてアンケート結果の少なくとも一部を推定する。収集したデータから、一部のアンケート回答を推定する。例えば、利用者について、客観データから特定の照度範囲の環境の場合に快適と感じていると判定し、アンケートの回答を推定する。
In step S401, the objective data collection unit 170 collects objective data, which is objective data about the user. Physical information such as heart rate, brain waves, and pulse waves is collected using a wearable device, etc. Information such as temperature, brightness, and air quality is also collected from an environmental sensor.
In step S402, the result estimation unit 180 estimates at least a portion of the survey results based on the objective data. Some of the survey responses are estimated from the collected data. For example, for a user, it may be determined from the objective data that the user feels comfortable in an environment with a specific illuminance range, and the survey responses may be estimated.

 ステップS102およびステップS103の処理は実施の形態1と同様である。
 また、図18では、ステップS101においてアンケート結果を収集し、ステップS401において客観データを収集している。ステップS101とステップS401の処理はどのような順番でもよいし、並列に実施されてもよい。
The processes in steps S102 and S103 are the same as those in the first embodiment.
18, questionnaire results are collected in step S101, and objective data is collected in step S401. The processing of steps S101 and S401 may be performed in any order, or may be performed in parallel.

***本実施の形態の効果の説明***
 本実施の形態に係る生産性算出装置100によれば、客観データから一部のアンケート結果を推定することで、個人に対するアンケート質問数を削減することができる。また、本実施の形態に係る生産性算出装置100によれば、主観データに加えて客観データに基づいた知的生産性および影響した要因を推定することができる。これにより、知的生産性の算出結果が主観データのみに依存することなく、より算出精度を向上させることができる。
***Description of the Effects of This Embodiment***
According to the productivity calculation device 100 of this embodiment, by estimating some of the survey results from objective data, it is possible to reduce the number of survey questions to be asked to individuals. Furthermore, according to the productivity calculation device 100 of this embodiment, it is possible to estimate intellectual productivity and influencing factors based on objective data in addition to subjective data. This allows the calculation results of intellectual productivity to not depend solely on subjective data, and the calculation accuracy can be further improved.

 実施の形態5.
 本実施の形態では、主に、実施の形態1と異なる点および実施の形態1に追加する点について説明する。
 本実施の形態において、実施の形態1と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
Embodiment 5.
In this embodiment, differences from and additions to the first embodiment will be mainly described.
In this embodiment, components having the same functions as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted.

***構成の説明***
 図19は、本実施の形態に係る生産性算出装置100の構成例を示す図である。
 本実施の形態に係る生産性算出装置100は、実施の形態1で説明した図1の構成要素に加えて、目標値決定部191とパラメータ設定部192を備える。また、記憶部150には目標値54が記憶される。
 その他の構成については、実施の形態1と同様である。
***Configuration Description***
FIG. 19 is a diagram showing an example of the configuration of a productivity calculation device 100 according to this embodiment.
1 described in the first embodiment, the productivity calculation device 100 according to the present embodiment includes a target value determination unit 191 and a parameter setting unit 192. Furthermore, the storage unit 150 stores the target value 54.
The other configurations are the same as those in the first embodiment.

 目標値決定部191は、複数の単位因子のうち利用者の環境に対応する単位因子に対するアンケート結果を取得する。そして、目標値決定部191は、利用者の環境に対応する単位因子に対するアンケート結果に基づいて、利用者の環境における設備の目標値54を決定する。
 パラメータ設定部192は、目標値54に応じて利用者の環境における設備のパラメータを設定する。
The target value determination unit 191 acquires the survey results for the unit factors corresponding to the user's environment from among the plurality of unit factors, and then determines the target value 54 for the equipment in the user's environment based on the survey results for the unit factors corresponding to the user's environment.
The parameter setting unit 192 sets parameters of the equipment in the user's environment in accordance with the target values 54 .

***動作の説明***
 図20は、本実施の形態に係る生産性算出装置100の動作を示すフロー図である。
 ステップS101からステップS103の処理は実施の形態1と同様である。
***Explanation of Operation***
FIG. 20 is a flowchart showing the operation of the productivity calculation device 100 according to this embodiment.
The processes from step S101 to step S103 are the same as those in the first embodiment.

 ステップS501において、目標値決定部191は、利用者の環境に対応する単位因子に対するアンケート結果に基づいて、利用者の環境における設備の目標値54を決定する。
 具体的には、目標値決定部191は、知的生産性モデル51のうち、働く環境に関わるアンケート結果を確認し、働く環境を改善するための目標値54を決定する。このとき、目標値決定部191は、幸福度あるいは室内環境満足度といった、知的生産性以外の指標を反映させて目標値54の決定を決定してもよい。
 例えば、温熱環境満足度のアンケート結果が低い場合、適切な温熱環境になるように部屋の目標温度を決定する。適切な目標温度を算出するためには、例えばPMVのような温熱快適性モデルを活用する。PMVは、予想平均温冷感申告、Predicted Mean Voteの略語である。PMVでは、一般的にPMVが0に近いと快適と判断される。
In step S501, the target value determination unit 191 determines the target value 54 of the equipment in the user's environment based on the results of a questionnaire regarding the unit factors corresponding to the user's environment.
Specifically, the target value determination unit 191 checks the results of a questionnaire related to the working environment in the productivity model 51 and determines the target value 54 for improving the working environment. At this time, the target value determination unit 191 may determine the target value 54 by reflecting an index other than productivity, such as happiness level or indoor environment satisfaction.
For example, if the results of a survey on thermal environment satisfaction are low, a target temperature for the room is determined to provide an appropriate thermal environment. To calculate the appropriate target temperature, a thermal comfort model such as PMV is utilized. PMV stands for Predicted Mean Vote. In PMV, a PMV close to 0 is generally considered comfortable.

 ステップS502において、パラメータ設定部192は、目標値54に応じて利用者の環境における設備のパラメータを設定する。設備のパラメータとは、各設備システムが動作するためのパラメータである。パラメータ設定部192は、設備に対してパラメータを送信し、設備を制御する。あるいは、利用者にパラメータを通知し、利用者が適宜設備を制御してもよい。 In step S502, the parameter setting unit 192 sets the parameters of the equipment in the user's environment according to the target values 54. The equipment parameters are parameters for the operation of each equipment system. The parameter setting unit 192 transmits the parameters to the equipment and controls the equipment. Alternatively, the parameters may be notified to the user, who may then control the equipment as appropriate.

***本実施の形態の効果の説明***
 本実施の形態に係る生産性算出装置100によれば、知的生産性が最大化するように環境の目標値を設定し、目標値に合わせて設備を制御することができる。
***Description of the Effects of This Embodiment***
According to the productivity calculation device 100 of this embodiment, it is possible to set a target value for the environment so as to maximize intellectual productivity, and to control equipment in accordance with the target value.

 実施の形態6.
 本実施の形態では、主に、実施の形態2および4と異なる点および実施の形態2および4に追加する点について説明する。
 本実施の形態において、実施の形態2および4と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
Embodiment 6.
In this embodiment, differences from the second and fourth embodiments and additional features to the second and fourth embodiments will be mainly described.
In this embodiment, components having the same functions as those in the second and fourth embodiments are given the same reference numerals, and the description thereof will be omitted.

***構成の説明***
 図21は、本実施の形態に係る生産性算出装置100の構成例を示す図である。
 本実施の形態に係る生産性算出装置100は、実施の形態2で説明した図12の構成要素に加えて、客観データ収集部170と作業環境推定部171を備える。
 その他の構成については、実施の形態2と同様である。また、客観データ収集部170については実施の形態4と同様である。
***Configuration Description***
FIG. 21 is a diagram showing an example of the configuration of a productivity calculation device 100 according to this embodiment.
The productivity calculation device 100 according to this embodiment includes an objective data collection unit 170 and a work environment estimation unit 171 in addition to the components shown in FIG. 12 described in the second embodiment.
Other configurations are the same as those in the second embodiment. The objective data collection unit 170 is the same as that in the fourth embodiment.

 客観データ収集部170は、利用者における客観的なデータである客観データを収集する。
 作業環境推定部171は、客観データに基づいて利用者に適した作業環境を推定する。
The objective data collection section 170 collects objective data, which is objective data on the user.
The work environment estimation unit 171 estimates a work environment suitable for a user based on objective data.

***動作の説明***
 図22は、本実施の形態に係る生産性算出装置100の動作を示すフロー図である。
 ステップS201からステップS205の処理は実施の形態2と同様である。
***Explanation of Operation***
FIG. 22 is a flowchart showing the operation of the productivity calculation device 100 according to this embodiment.
The processes from step S201 to step S205 are the same as those in the second embodiment.

 ステップS601において、客観データ収集部170は、利用者における客観的なデータである客観データを収集する。客観データ収集処理については実施の形態4のステップS401と同様である。ウェアラブルデバイスによる身体情報等の収集、および環境センサから温度情報あるいは在室人数情報等を収集する。 In step S601, the objective data collection unit 170 collects objective data, which is objective data about the user. The objective data collection process is the same as step S401 in embodiment 4. Physical information, etc. is collected using a wearable device, and temperature information or information about the number of people present in the room, etc. is collected from an environmental sensor.

 ステップS602において、作業環境推定部171は、客観データに基づいて利用者に適した作業環境を推定する。作業環境推定部171は、寄与度比較処理により選出された、個人における寄与度の高い項目と低い項目について、客観データと照合し、個人に適した作業環境を推定する。
 例えば、コミュニケーションの寄与度が高いユーザに対して、アンケートの属性と、客観データ収集部で収集した在室人数を基に、自分の仕事と関連の深い人物が多く在室している作業環境が適していると推定する。推定の基準となる要因には、温湿度、光等の物理環境をはじめ、働く時間あるいは共同作業者の人数等、知的生産性モデルに含むすべての要素を含む。
In step S602, the work environment estimation unit 171 estimates a work environment suitable for the user based on the objective data. The work environment estimation unit 171 compares the items with high and low contributions for the individual selected by the contribution comparison process with the objective data, and estimates a work environment suitable for the individual.
For example, for a user who contributes highly to communication, it is estimated that a work environment where many people closely related to the user's work are present is suitable, based on the attributes of the questionnaire and the number of people present collected by the objective data collection unit.The factors used as the basis for estimation include all elements included in the intellectual productivity model, such as the physical environment (temperature, humidity, light, etc.), as well as working hours and the number of co-workers.

 図23は、本実施の形態に係る推定結果が記載された表示例を示す図である。
 図23のユーザAの例では、分類「コミュニケーション」の寄与度が「90」と高いことがわかる。作業環境推定部171は、ユーザAにおけるコミュニケーションと関連する客観データを参照し、ユーザAに適した作業環境を推定する。図23では、推定結果として「最適な作業環境は居室A、在室人数が多く、活発にコミュニケーションが起きるため」と表示されている。
FIG. 23 is a diagram showing an example of a display in which the estimation results according to this embodiment are described.
In the example of user A in Fig. 23, it can be seen that the contribution of the category "communication" is high at "90". The work environment estimation unit 171 refers to objective data related to communication between user A and estimates a work environment suitable for user A. In Fig. 23, the estimation result is displayed as "The optimal work environment is room A, because there are many people in the room and active communication occurs."

***本実施の形態の効果の説明***
 本実施の形態に係る生産性算出装置100によれば、個人にとって最も知的生産性の高くなる作業環境を推定し、提示することができる。
***Description of the Effects of This Embodiment***
According to the productivity calculation device 100 of this embodiment, it is possible to estimate and present a work environment that will maximize intellectual productivity for an individual.

 以上の実施の形態1から6では、生産性算出装置の各部を独立した機能ブロックとして説明した。しかし、生産性算出装置の構成は、上述した実施の形態のような構成でなくてもよい。生産性算出装置の機能ブロックは、上述した実施の形態で説明した機能を実現することができれば、どのような構成でもよい。また、生産性算出装置は、1つの装置でなく、複数の装置から構成されたシステムでもよい。
 また、実施の形態1から6のうち、複数の部分を組み合わせて実施しても構わない。あるいは、これらの実施の形態のうち、1つの部分を実施しても構わない。その他、これら実施の形態を、全体としてあるいは部分的に、どのように組み合わせて実施しても構わない。
 すなわち、実施の形態1から6では、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
In the above first to sixth embodiments, each unit of the productivity calculation device has been described as an independent functional block. However, the configuration of the productivity calculation device does not have to be the same as that of the above-described embodiments. The functional blocks of the productivity calculation device may have any configuration as long as they can realize the functions described in the above-described embodiments. Furthermore, the productivity calculation device may not be a single device, but may be a system composed of multiple devices.
Furthermore, it is possible to combine multiple parts of the first to sixth embodiments. Alternatively, it is possible to implement only one part of these embodiments. In addition, it is possible to implement any combination of these embodiments, either as a whole or in part.
That is, in the first to sixth embodiments, the embodiments can be freely combined, or any of the components in each embodiment can be modified, or any of the components in each embodiment can be omitted.

 なお、上述した実施の形態は、本質的に好ましい例示であって、本開示の範囲、本開示の適用物の範囲、および本開示の用途の範囲を制限することを意図するものではない。上述した実施の形態は、必要に応じて種々の変更が可能である。例えば、フロー図あるいはシーケンス図を用いて説明した手順は、適宜に変更してもよい。 Note that the above-described embodiments are essentially preferred examples and are not intended to limit the scope of the present disclosure, the scope of applications of the present disclosure, or the scope of uses of the present disclosure. The above-described embodiments can be modified in various ways as needed. For example, procedures explained using flow charts or sequence diagrams may be modified as appropriate.

 51 知的生産性モデル、52 寄与率、53 閾値、54 目標値、61 知的生産性、62 寄与度、100 生産性算出装置、110 アンケート収集部、120 算出部、130 閾値決定部、140 寄与度比較部、150 記憶部、160 属性判定部、170 客観データ収集部、171 作業環境推定部、180 結果推定部、191 目標値決定部、192 パラメータ設定部、511 分類、512 中間因子、513 単位因子、909 電子回路、910 プロセッサ、921 メモリ、922 補助記憶装置、930 入力インタフェース、940 出力インタフェース、950 通信装置。 51 Intellectual productivity model, 52 Contribution rate, 53 Threshold, 54 Target value, 61 Intellectual productivity, 62 Contribution rate, 100 Productivity calculation device, 110 Questionnaire collection unit, 120 Calculation unit, 130 Threshold determination unit, 140 Contribution rate comparison unit, 150 Memory unit, 160 Attribute determination unit, 170 Objective data collection unit, 171 Work environment estimation unit, 180 Result estimation unit, 191 Target value determination unit, 192 Parameter setting unit, 511 Classification, 512 Intermediate factor, 513 Unit factor, 909 Electronic circuit, 910 Processor, 921 Memory, 922 Auxiliary storage device, 930 Input interface, 940 Output interface, 950 Communication device.

Claims (13)

 知的活動を行う利用者における知的生産性を算出する生産性算出装置において、
 記憶部に記憶され、前記利用者の知的活動に影響を与える要因を示す複数の分類と、前記複数の分類の各分類に含まれる中間因子と、前記中間因子に寄与する複数の単位因子とを備え、前記複数の単位因子の各々が前記中間因子に寄与する際の寄与率と、前記中間因子が他の分類の中間因子に寄与する際の寄与率とが付与されており、前記複数の単位因子が前記中間因子の一つである知的生産性を示す知的生産性因子に集約される知的生産性モデルと、
 前記利用者から前記複数の単位因子の各々に対する点数をアンケート結果として取得するアンケート収集部と、
 前記複数の単位因子の各々に対する点数を前記知的生産性モデルに入力し、前記知的生産性モデルから出力される前記知的生産性因子の点数を前記利用者の知的生産性として取得する算出部と
を備える生産性算出装置。
A productivity calculation device for calculating intellectual productivity of a user performing intellectual activity,
an intellectual productivity model stored in a storage unit, comprising a plurality of classifications indicating factors that affect the intellectual activity of the user, intermediate factors included in each of the plurality of classifications, and a plurality of unit factors that contribute to the intermediate factors, and to which a contribution rate when each of the plurality of unit factors contributes to the intermediate factor and a contribution rate when the intermediate factor contributes to the intermediate factor of another classification are assigned, and the plurality of unit factors are aggregated into an intellectual productivity factor that indicates intellectual productivity, which is one of the intermediate factors;
a questionnaire collection unit that acquires a score for each of the plurality of unit factors from the user as a questionnaire result;
A productivity calculation device comprising: a calculation unit that inputs scores for each of the plurality of unit factors into the intellectual productivity model and obtains the scores for the intellectual productivity factors output from the intellectual productivity model as the intellectual productivity of the user.
 前記複数の分類には、前記利用者の属性を示す分類が含まれ、前記利用者の属性を示す分類に含まれる前記中間因子に寄与する前記複数の単位因子は前記利用者の属性を示す単位因子である請求項1に記載の生産性算出装置。 The productivity calculation device described in claim 1, wherein the multiple classifications include a classification indicating the attributes of the user, and the multiple unit factors contributing to the intermediate factors included in the classification indicating the attributes of the user are unit factors indicating the attributes of the user.  前記利用者の属性を示す分類は、前記利用者の内面を示す分類と前記利用者のコミュニケーション力を示す分類と前記利用者の知的活動力を示す分類の少なくとも1つが含まれる請求項2に記載の生産性算出装置。 The productivity calculation device described in claim 2, wherein the classification indicating the user's attributes includes at least one of a classification indicating the user's inner self, a classification indicating the user's communication ability, and a classification indicating the user's intellectual activity ability.  前記複数の分類には、前記利用者の環境を示す分類が含まれ、前記利用者の環境を示す分類に含まれる前記中間因子に寄与する前記複数の単位因子は前記利用者における知的活動の環境を示す単位因子である請求項2または請求項3に記載の生産性算出装置。 The productivity calculation device described in claim 2 or claim 3, wherein the multiple classifications include a classification indicating the user's environment, and the multiple unit factors contributing to the intermediate factors included in the classification indicating the user's environment are unit factors indicating the user's intellectual activity environment.  前記利用者の環境を示す分類は、前記利用者の知的活動の作業環境を示す分類と前記利用者がリラックスする環境を示す分類との少なくとも1つが含まれる請求項4に記載の生産性算出装置。 The productivity calculation device of claim 4, wherein the classification indicating the user's environment includes at least one of a classification indicating the user's work environment for intellectual activity and a classification indicating the user's relaxation environment.  前記算出部は、
 前記利用者の知的生産性と前記知的生産性に対する前記複数の分類の各々の寄与の度合いを示す寄与度とを算出する請求項1から請求項5のいずれか1項に記載の生産性算出装置。
The calculation unit
6. The productivity calculation device according to claim 1, further comprising: a contribution level indicating the degree of contribution of each of the plurality of categories to the user's intellectual productivity;
 前記算出部は、
 前記利用者として複数の利用者の各々について、前記知的生産性と前記知的生産性における前記複数の分類の各々の寄与度を算出し、
 前記生産性算出装置は、
 前記複数の利用者の各々における前記知的生産性と前記寄与度に基づいて、前記知的生産性と前記寄与度の閾値を決定する閾値決定部と、
 前記複数の利用者の各々について、前記閾値より高い項目と前記閾値より低い項目とを抽出する寄与度比較部と
を備える請求項6に記載の生産性算出装置。
The calculation unit
Calculating the intellectual productivity and the contribution of each of the plurality of categories to the intellectual productivity for each of the plurality of users as the user;
The productivity calculation device
a threshold value determination unit that determines a threshold value for the intellectual productivity and the contribution level based on the intellectual productivity and the contribution level of each of the plurality of users;
The productivity calculation device according to claim 6 , further comprising a contribution comparison unit that extracts items higher than the threshold value and items lower than the threshold value for each of the plurality of users.
 前記記憶部には、前記利用者の属性に対応する寄与率が設定された複数の知的生産性モデルが記憶され、
 前記生産性算出装置は、
 前記アンケート結果に含まれる前記利用者の属性を示す情報に基づいて、前記利用者の属性を判定する属性判定部を備え、
 前記算出部は、
 前記利用者の属性に基づいて前記複数の知的生産性モデルから前記利用者の属性に対応する寄与率が設定された前記知的生産性モデルを選定する請求項1から請求項7のいずれか1項に記載の生産性算出装置。
the storage unit stores a plurality of intellectual productivity models in which contribution rates corresponding to the attributes of the users are set;
The productivity calculation device
an attribute determination unit that determines the attribute of the user based on information indicating the attribute of the user included in the questionnaire result;
The calculation unit
A productivity calculation device according to any one of claims 1 to 7, wherein an intellectual productivity model having a contribution rate corresponding to the attributes of the user is selected from the plurality of intellectual productivity models based on the attributes of the user.
 前記生産性算出装置は、
 前記利用者における客観的なデータである客観データを収集する客観データ収集部と、
 前記客観データに基づいて前記アンケート結果の少なくとも一部を推定する結果推定部と
を備える請求項1から請求項8のいずれか1項に記載の生産性算出装置。
The productivity calculation device
an objective data collection unit that collects objective data that is objective data about the user;
The productivity calculation device according to claim 1 , further comprising a result estimation unit that estimates at least a part of the survey results based on the objective data.
 前記生産性算出装置は、
 前記複数の単位因子のうち前記利用者の環境に対応する単位因子に対するアンケート結果を取得し、前記利用者の環境に対応する単位因子に対するアンケート結果に基づいて、前記利用者の環境における設備の目標値を決定する目標値決定部と、
 前記目標値に応じて前記利用者の環境における設備のパラメータを設定するパラメータ設定部と
を備える請求項1から請求項9のいずれか1項に記載の生産性算出装置。
The productivity calculation device
a target value determination unit that acquires a survey result for a unit factor corresponding to the user's environment among the plurality of unit factors, and determines a target value for equipment in the user's environment based on the survey result for the unit factor corresponding to the user's environment;
The productivity calculation device according to claim 1 , further comprising: a parameter setting unit that sets parameters of equipment in the user's environment in accordance with the target value.
 前記生産性算出装置は、
 前記利用者における客観的なデータである客観データを収集する客観データ収集部と、
 前記客観データに基づいて前記利用者に適した作業環境を推定する作業環境推定部と
を備える請求項1から請求項8のいずれか1項に記載の生産性算出装置。
The productivity calculation device
an objective data collection unit that collects objective data that is objective data about the user;
9. The productivity calculation device according to claim 1, further comprising a work environment estimation unit that estimates a work environment suitable for the user based on the objective data.
 知的活動を行う利用者における知的生産性を算出するコンピュータに用いられる生産性算出方法において、
 コンピュータが、前記利用者の知的活動に影響を与える要因を示す複数の分類と、前記複数の分類の各分類に含まれる中間因子と、前記中間因子に寄与する複数の単位因子とを備え、前記複数の単位因子の各々が前記中間因子に寄与する際の寄与率と、前記中間因子が他の分類の中間因子に寄与する際の寄与率とが付与されており、前記複数の単位因子が前記中間因子の一つである知的生産性を示す知的生産性因子に集約される知的生産性モデルを記憶し、
 コンピュータが、前記利用者から前記複数の単位因子の各々に対する点数をアンケート結果として取得し、
 コンピュータが、前記複数の単位因子の各々に対する点数を前記知的生産性モデルに入力し、前記知的生産性モデルから出力される前記知的生産性因子の点数を前記利用者の知的生産性として取得する生産性算出方法。
A productivity calculation method used in a computer to calculate intellectual productivity of a user performing intellectual activity,
The computer stores an intellectual productivity model that includes a plurality of classifications indicating factors that affect the intellectual activity of the user, intermediate factors included in each of the plurality of classifications, and a plurality of unit factors that contribute to the intermediate factors, and is assigned a contribution rate when each of the plurality of unit factors contributes to the intermediate factor and a contribution rate when each of the intermediate factors contributes to the intermediate factors of other classifications, and the plurality of unit factors are aggregated into an intellectual productivity factor that indicates intellectual productivity, which is one of the intermediate factors;
a computer acquires a score for each of the plurality of unit factors from the user as a questionnaire result;
A productivity calculation method in which a computer inputs scores for each of the plurality of unit factors into the intellectual productivity model and obtains the scores for the intellectual productivity factors output from the intellectual productivity model as the intellectual productivity of the user.
 知的活動を行う利用者における知的生産性を算出するコンピュータに用いられる生産性算出プログラムにおいて、
 前記利用者の知的活動に影響を与える要因を示す複数の分類と、前記複数の分類の各分類に含まれる中間因子と、前記中間因子に寄与する複数の単位因子とを備え、前記複数の単位因子の各々が前記中間因子に寄与する際の寄与率と、前記中間因子が他の分類の中間因子に寄与する際の寄与率とが付与されており、前記複数の単位因子が前記中間因子の一つである知的生産性を示す知的生産性因子に集約される知的生産性モデルを記憶する記憶処理と、
 前記利用者から前記複数の単位因子の各々に対する点数をアンケート結果として取得するアンケート収集処理と、
 前記複数の単位因子の各々に対する点数を前記知的生産性モデルに入力し、前記知的生産性モデルから出力される前記知的生産性因子の点数を前記利用者の知的生産性として取得する算出処理と
をコンピュータに実行させる生産性算出プログラム。
A productivity calculation program used in a computer to calculate the intellectual productivity of a user who performs intellectual activity,
a storage process for storing an intellectual productivity model comprising a plurality of classifications indicating factors that affect the intellectual activity of the user, intermediate factors included in each of the plurality of classifications, and a plurality of unit factors that contribute to the intermediate factors, each of which is assigned a contribution rate when the plurality of unit factors contribute to the intermediate factor and a contribution rate when the intermediate factor contributes to the intermediate factor of another classification, and in which the plurality of unit factors are aggregated into an intellectual productivity factor that indicates intellectual productivity, which is one of the intermediate factors;
a questionnaire collection process for acquiring a score for each of the plurality of unit factors from the user as a questionnaire result;
A productivity calculation program that causes a computer to execute a calculation process in which a score for each of the plurality of unit factors is input into the intellectual productivity model, and the score of the intellectual productivity factor output from the intellectual productivity model is obtained as the intellectual productivity of the user.
PCT/JP2024/014352 2024-04-09 2024-04-09 Productivity calculation device, productivity calculation method, and productivity calculation program Pending WO2025215724A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2024/014352 WO2025215724A1 (en) 2024-04-09 2024-04-09 Productivity calculation device, productivity calculation method, and productivity calculation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2024/014352 WO2025215724A1 (en) 2024-04-09 2024-04-09 Productivity calculation device, productivity calculation method, and productivity calculation program

Publications (1)

Publication Number Publication Date
WO2025215724A1 true WO2025215724A1 (en) 2025-10-16

Family

ID=97350402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/014352 Pending WO2025215724A1 (en) 2024-04-09 2024-04-09 Productivity calculation device, productivity calculation method, and productivity calculation program

Country Status (1)

Country Link
WO (1) WO2025215724A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091214A1 (en) * 2004-03-18 2005-09-29 Denso It Laboratory, Inc. Vehicle information processing system, vehicle information processing method, and program
WO2015155978A1 (en) * 2014-04-11 2015-10-15 日本電気株式会社 Environment control system
WO2020004094A1 (en) * 2018-06-26 2020-01-02 哲祥 志村 Personnel management assistance system
WO2020166236A1 (en) * 2019-02-13 2020-08-20 パナソニックIpマネジメント株式会社 Work efficiency evaluating method, work efficiency evaluating device, and program
CN113435686A (en) * 2021-04-28 2021-09-24 国网冀北电力有限公司计量中心 Evaluation method and device for heat accumulating type electric heating system
JP2023019492A (en) * 2021-07-29 2023-02-09 ライオン株式会社 PRODUCTIVITY PREDICTION SYSTEM, PRODUCTIVITY PREDICTION METHOD, AND PROGRAM
JP7355308B1 (en) * 2022-11-17 2023-10-03 株式会社ファンくる Information provision device, method and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091214A1 (en) * 2004-03-18 2005-09-29 Denso It Laboratory, Inc. Vehicle information processing system, vehicle information processing method, and program
WO2015155978A1 (en) * 2014-04-11 2015-10-15 日本電気株式会社 Environment control system
WO2020004094A1 (en) * 2018-06-26 2020-01-02 哲祥 志村 Personnel management assistance system
WO2020166236A1 (en) * 2019-02-13 2020-08-20 パナソニックIpマネジメント株式会社 Work efficiency evaluating method, work efficiency evaluating device, and program
CN113435686A (en) * 2021-04-28 2021-09-24 国网冀北电力有限公司计量中心 Evaluation method and device for heat accumulating type electric heating system
JP2023019492A (en) * 2021-07-29 2023-02-09 ライオン株式会社 PRODUCTIVITY PREDICTION SYSTEM, PRODUCTIVITY PREDICTION METHOD, AND PROGRAM
JP7355308B1 (en) * 2022-11-17 2023-10-03 株式会社ファンくる Information provision device, method and program

Similar Documents

Publication Publication Date Title
Sokol et al. Development and validation of a future self-continuity questionnaire: A preliminary report
JP6835978B2 (en) How to determine the authenticity of news
US20140095186A1 (en) Identifying group and individual-level risk factors via risk-driven patient stratification
US20180122517A1 (en) Methods and apparatus related to electronic display of a human avatar with display properties particularized to health risks of a patient
Snapp Occupational stress, social support, and depression among black and white professional-managerial women
Regina et al. Masculinity contest culture: Harmful for whom? An examination of emotional exhaustion.
WO2020027213A1 (en) Dementia risk presentation system and method
US20180032674A1 (en) Diagnostic system, diagnostic method, and storage medium
Barnes-Farrell et al. The moderating role of employment status and gender on relationships between psychological age and health: A two-wave cross-lagged panel analysis of data from the Health and Retirement Study
Utianski et al. A longitudinal evaluation of speech rate in primary progressive apraxia of speech
US20170004401A1 (en) Artificial intuition
WO2025215724A1 (en) Productivity calculation device, productivity calculation method, and productivity calculation program
JP7322818B2 (en) Estimation system and simulation system
US7769627B2 (en) Assessing survey presentations
Chen et al. The impact of spousal retirement on health—an empirical analysis based on CFPS
Kim Identifying Factors Affecting Life Satisfaction of Elderly Adults in the ICT Era
Defloor et al. The influence of preference information on equivalent income
JP7536220B1 (en) Happiness model generation device, happiness degree calculation device, happiness degree calculation system, happiness degree model generation method, happiness degree calculation method, happiness degree model generation program, and happiness degree calculation program
JP7745187B1 (en) Information management system, information management method, and program
US20250335840A1 (en) Cooperative action support system and cooperative action support method
JP7709150B1 (en) Information management system, information management method, and program
JP7768371B2 (en) Malfunction factor estimation device, malfunction factor estimation method, and program
JP7473245B2 (en) Judgment method
US20220342956A1 (en) Systems and methods for removing systemic bias
JP7256669B2 (en) Information processing device, estimation device, analysis device, information processing method, and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24935104

Country of ref document: EP

Kind code of ref document: A1