WO2025211279A1 - Communication method, user equipment, and network node - Google Patents
Communication method, user equipment, and network nodeInfo
- Publication number
- WO2025211279A1 WO2025211279A1 PCT/JP2025/012819 JP2025012819W WO2025211279A1 WO 2025211279 A1 WO2025211279 A1 WO 2025211279A1 JP 2025012819 W JP2025012819 W JP 2025012819W WO 2025211279 A1 WO2025211279 A1 WO 2025211279A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement
- measurement result
- network node
- measurement object
- user equipment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
Definitions
- the network node is a network node used in a mobile communications system, and has a transmitter that transmits to the user device information for identifying a combination of a first measurement object for which a user device actually measures reception quality, and a second measurement object for which the user device can infer the measurement result of reception quality using an artificial intelligence or machine learning (AI/ML) model based on the measurement result of the first measurement object.
- AI/ML artificial intelligence or machine learning
- a communication method is a communication method executed by a user device in a mobile communication system, and includes the steps of measuring the reception quality of a first measurement object to obtain a first measurement result, inferring a second measurement result of the reception quality of a second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model, and transmitting the measured first measurement result and the inferred second measurement result to a network node.
- the user device transmits identification information to the network node to identify whether each of the transmitted measurement results is a measured value or an inferred value.
- a user device is a user device used in a mobile communications system, and includes: a control unit that measures the reception quality of a first measurement object to obtain a first measurement result, and then infers a second measurement result of the reception quality of a second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model; and a transmission unit that transmits the measured first measurement result and the inferred second measurement result to a network node.
- the transmission unit transmits identification information to the network node to identify whether each of the transmitted measurement results is a measured value or an inferred value.
- a network node is a network node used in a mobile communications system, and includes a receiving unit that receives from the user device a first measurement result obtained by the user device measuring the reception quality of a first measurement object, and a second measurement result obtained by the user device inferring a second measurement result of the reception quality of a second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model.
- the receiving unit receives identification information from the user device for identifying whether each measurement result transmitted from the user device is a measured value or an inferred value.
- the technology described in the background art above can be considered as a use case for AI/ML technology in mobility control of user equipment.
- AI/ML technology for example, it is conceivable to apply AI/ML technology to control the switching of serving cells from a source cell to a target cell.
- a specific mechanism for applying AI/ML technology to mobility control of user equipment has not yet been established, making it difficult to utilize AI/ML technology in mobile communication systems.
- the purpose of this disclosure is to utilize AI/ML technology in mobile communication systems.
- UE100 is a mobile wireless communication device.
- UE100 may be any device used by a user.
- UE100 is a mobile phone terminal (which may be a smartphone) and/or a tablet terminal, a notebook PC, a communication module (which may be a communication card or chipset), a sensor or a device provided in a sensor, a vehicle or a device provided in a vehicle (Vehicle UE), or an aircraft or a device provided in an aircraft (Aerial UE).
- the link in the transmission direction from UE100 to network 5 is called the uplink (UL), and the link in the transmission direction from network 5 to UE100 is called the downlink (DL).
- UL uplink
- DL downlink
- NG-RAN10 includes base stations (referred to as "gNBs" in 5G systems) 200, which are a type of network node. gNBs 200 are connected to each other via an Xn interface, which is an interface between base stations. gNBs 200 manage one or more cells. gNBs 200 perform wireless communication with UEs 100 that have established a connection with their own cell. gNBs 200 have radio resource management (RRM) functions, user data (hereinafter simply referred to as “data”) routing functions, measurement control functions for mobility control and scheduling, and more.
- RRM radio resource management
- Cell is used as a term to indicate the smallest unit of a wireless communication area.
- Cell is also used as a term to indicate functions or resources for wireless communication with UEs 100.
- One cell belongs to one carrier frequency (hereinafter simply referred to as "frequency").
- gNBs can also connect to the EPC (Evolved Packet Core), which is the LTE core network.
- EPC Evolved Packet Core
- LTE base stations can also connect to 5GC.
- LTE base stations and gNBs can also be connected via a base station-to-base station interface.
- 5GC20 includes an AMF (Access and Mobility Management Function) and a UPF (User Plane Function) 300.
- the AMF performs various mobility controls for UE100.
- the AMF manages the mobility of UE100 by communicating with UE100 using NAS (Non-Access Stratum) signaling.
- the UPF controls data forwarding.
- the AMF and UPF are connected to gNB200 via the NG interface, which is an interface between the base station and the core network.
- FIG. 2 is a diagram showing an example configuration of a UE 100 (user equipment) according to an embodiment.
- the UE 100 has a receiving unit 110, a transmitting unit 120, and a control unit 130.
- the receiving unit 110 and the transmitting unit 120 constitute a wireless communication unit 140 that performs wireless communication with the gNB 200.
- the receiving unit 110 performs various types of reception under the control of the control unit 130.
- the receiving unit 110 includes an antenna and a receiver.
- the receiver converts the radio signal received by the antenna into a baseband signal (received signal) and outputs it to the control unit 130.
- the transmitting unit 120 performs various transmissions under the control of the control unit 130.
- the transmitting unit 120 includes an antenna and a transmitter.
- the transmitter converts the baseband signal (transmission signal) output by the control unit 130 into a radio signal and transmits it from the antenna.
- the control unit 130 performs various controls and processes in the UE 100. Such processes include the processes of each layer described below. The operations of the UE 100 described above and below may be operations under the control of the control unit 230.
- the control unit 130 includes at least one processor and at least one memory.
- the memory stores programs executed by the processor and information used in the processing by the processor.
- the processor may include a baseband processor and a CPU (Central Processing Unit).
- the baseband processor performs modulation/demodulation and encoding/decoding of baseband signals.
- the CPU executes programs stored in the memory to perform various processes.
- FIG. 3 is a diagram showing an example configuration of a gNB200 (network node) according to an embodiment.
- the gNB200 has a transmitter 210, a receiver 220, a controller 230, and a network communication unit 240.
- the transmitter 210 and receiver 220 constitute a wireless communication unit 250 that performs wireless communication with the UE100.
- the network communication unit 240 has a transmitter 241 that performs transmission and a receiver 242 that performs reception.
- the transmitting unit 210 performs various transmissions under the control of the control unit 230.
- the transmitting unit 210 includes an antenna and a transmitter.
- the transmitter converts the baseband signal (transmission signal) output by the control unit 230 into a radio signal and transmits it from the antenna.
- the receiving unit 220 performs various types of reception under the control of the control unit 230.
- the receiving unit 220 includes an antenna and a receiver.
- the receiver converts the radio signal received by the antenna into a baseband signal (received signal) and outputs it to the control unit 230.
- the control unit 230 performs various controls and processes in the gNB 200. Such processes include the processes of each layer described below.
- the operations of the gNB 200 described above and below may be operations under the control of the control unit 230.
- the control unit 230 includes at least one processor and at least one memory.
- the memory stores programs executed by the processor and information used in the processing by the processor.
- the processor may include a baseband processor and a CPU.
- the baseband processor performs modulation/demodulation and encoding/decoding of baseband signals.
- the CPU executes programs stored in the memory to perform various processes.
- the network communication unit 240 is connected to adjacent base stations via an Xn interface, which is an interface between base stations.
- the network communication unit 240 is connected to the AMF/UPF 300 via an NG interface, which is an interface between a base station and a core network.
- the gNB 200 may be composed of a CU (Central Unit) and a DU (Distributed Unit) (i.e., functionally divided), and the two units may be connected via an F1 interface, which is a fronthaul interface.
- Figure 4 shows the protocol stack configuration of the user plane radio interface that handles data.
- the user plane radio interface protocol has a physical (PHY) layer, a medium access control (MAC) layer, a radio link control (RLC) layer, a packet data convergence protocol (PDCP) layer, and a service data adaptation protocol (SDAP) layer.
- PHY physical
- MAC medium access control
- RLC radio link control
- PDCP packet data convergence protocol
- SDAP service data adaptation protocol
- the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping.
- Data and control information are transmitted between the PHY layer of UE100 and the PHY layer of gNB200 via a physical channel.
- the PHY layer of UE100 receives downlink control information (DCI) transmitted from gNB200 on the physical downlink control channel (PDCCH).
- DCI downlink control information
- UE100 performs blind decoding of the PDCCH using a radio network temporary identifier (RNTI) and acquires successfully decoded DCI as DCI addressed to the UE.
- RNTI radio network temporary identifier
- the DCI transmitted from gNB200 has CRC (Cyclic Redundancy Code) parity bits scrambled by the RNTI added.
- the MAC layer performs data priority control, retransmission processing using Hybrid Automatic Repeat reQuest (HARQ), random access procedures, etc.
- Data and control information are transmitted between the MAC layer of UE100 and the MAC layer of gNB200 via a transport channel.
- the MAC layer of gNB200 includes a scheduler. The scheduler determines the uplink and downlink transport format (transport block size, modulation and coding scheme (MCS)) and the resource blocks to be allocated to UE100.
- MCS modulation and coding scheme
- the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of UE100 and the RLC layer of gNB200 via logical channels.
- the PDCP layer performs header compression/decompression, encryption/decryption, etc.
- the SDAP layer maps IP flows, which are the units by which the core network controls QoS (Quality of Service), to radio bearers, which are the units by which the AS (Access Stratum) controls QoS. Note that if the RAN is connected to the EPC, SDAP is not required.
- Figure 5 shows the protocol stack configuration of the radio interface of the control plane, which handles signaling (control signals).
- the protocol stack for the radio interface of the control plane has an RRC (Radio Resource Control) layer and a NAS (Non-Access Stratum) layer instead of the SDAP layer shown in Figure 4.
- RRC Radio Resource Control
- NAS Non-Access Stratum
- RRC signaling for various settings is transmitted between the RRC layer of UE100 and the RRC layer of gNB200.
- the RRC layer controls logical channels, transport channels, and physical channels in accordance with the establishment, re-establishment, and release of radio bearers.
- RRC connection connection between the RRC of UE100 and the RRC of gNB200
- UE100 is in an RRC connected state.
- RRC connection no connection between the RRC of UE100 and the RRC of gNB200
- UE100 is in an RRC idle state.
- UE100 is in an RRC inactive state.
- the NAS layer (also simply referred to as "NAS"), located above the RRC layer, performs session management, mobility management, etc.
- NAS signaling is transmitted between the NAS layer of UE100 and the NAS layer of AMF300A.
- UE100 also has an application layer, etc.
- the layer below the NAS layer is called the AS layer (also simply referred to as "AS").
- Measurement by UE The UE 100 in the RRC connected state performs measurements used for mobility control. Measurements include intra-frequency measurements within the same frequency as the current serving cell and inter-frequency measurements within a frequency different from that of the current serving cell. Measurements also include inter-RAT measurements for a RAT (Radio Access Technology) different from that of the current serving cell.
- the gNB 200 transmits a measurement configuration (measurement command) to the UE 100 via RRC to instruct the UE 100 to start, change, or stop the measurement.
- measurement object ID The association between a measurement object (measurement object ID) and a reporting configuration (measurement configuration ID) is made by a measurement identity (measurement ID).
- measurement ID links one measurement object and one reporting configuration of the same RAT. Using multiple measurement IDs (one per measurement object and reporting configuration pair) makes it possible to associate multiple reporting configurations with one measurement object, or one reporting configuration with multiple measurement objects. The measurement ID is also used when reporting measurement results.
- UE100 in the RRC connected state measures at least one beam of a cell and averages the measurement results (power values) to derive the radio quality (also referred to as "reception quality") for that cell.
- UE100 is configured to consider a subset of the detected beams.
- filtering which is measurement averaging, is performed at two different levels.
- UE100 first derives beam quality using L1 filtering, which is filtering at the physical layer (PHY, Layer 1 (L1)), and then derives cell quality from multiple beams using L3 filtering, which is filtering at the RRC layer (Layer 3 (L3)) level.
- L1 filtering which is filtering at the physical layer (PHY, Layer 1 (L1)
- L3 filtering which is filtering at the RRC layer (Layer 3 (L3)
- cell quality from beam measurements is derived in the same way for serving and non-serving cells.
- UE100 may include measurement results of the X best beams in the L3 measurement report, depending on the configuration by gNB
- the L1 filter 11 includes K L1 filters 11 corresponding to the K beams.
- K measurement results A obtained by the UE 100 (receiving unit 110) measuring the radio quality for each of the K beams are input to the L1 filter 11.
- the K measurement results A for the K beams are measurement results (beam-specific samples) within the physical layer, and are measurement results of SSB (SS/PBCH block) or CSI (Channel State Information) reference signal resources detected by the UE 100 (receiving unit 110) in L1.
- the L1 filter 11 performs L1 filtering on the K measurement results A for the K beams in L1, and outputs the beam-specific measurement results A1 after L1 filtering to the beam combining/selecting unit 12 and the L3 beam filter 15.
- the L3 filter 13 filters the measurement result (cell quality B) output by the beam combining/selection unit 12 at L3 and outputs the measurement result C after L3 filtering to the evaluation unit 14.
- the operation of the L3 filter 13 is configured by RRC signaling from the gNB 200.
- the measurement result C after L3 filtering is used as input for one or more evaluations of the L3 measurement report from the UE 100 to the gNB 200.
- the L3 filter 13 adapts the filter so that its time characteristics are preserved at different input rates, while assuming a sample rate where the filter coefficient k is equal to X milliseconds.
- the value of X corresponds to one intra-frequency L1 measurement period assuming non-DRX operation and is frequency range dependent.
- the evaluation unit 14 evaluates whether an L3 measurement report D to the gNB 200 is necessary. This evaluation can be made based on a comparison of multiple measurement flows at reference point C, for example, different measurement results. This is shown by input C and input C1 .
- the evaluation unit 14 performs a measurement reporting event evaluation corresponding to the reporting criteria at least every time a new measurement result is reported at points C and C1 .
- the reporting criteria setting is provided by RRC signaling from the gNB 200.
- the L3 measurement report D represents measurement report information (RRC message) transmitted from the UE 100 to the gNB 200.
- the L3 measurement report D includes the measurement ID of the associated measurement setting that triggered the report.
- the L3 beam filter 15 filters the k measurement results A 1 (i.e., beam-specific measurement results) on a per-beam basis and outputs k measurement results E (i.e., beam-specific measurement results) to the beam selection unit 16.
- the measurement results E are used as input for selecting the X measurement results to be reported.
- the beam selection unit 16 selects X measurement results F from the k measurement results E and outputs the X measurement results F.
- the X measurement results F are beam measurement information included in the measurement report information (RRC message) transmitted from E100 to gNB200.
- a mobile communication system 1 applies the AI/ML technology to wireless communication (i.e., air interface).
- FIG. 7 is a diagram showing the functional block configuration of AI/ML technology in a mobile communication system 1 according to an embodiment.
- the functional block configuration includes a data collection unit A1, a model learning unit A2, a model inference unit A3, and a data processing unit A4.
- the data collection unit A1 collects input data, specifically, learning data and inference data, and outputs the learning data to the model learning unit A2 and the inference data to the model inference unit A3.
- the data collection unit A1 may acquire data from the device on which the data collection unit A1 is installed as input data.
- the data collection unit A1 may also acquire data from another device as input data.
- the model learning unit A2 performs model learning (also referred to as "learning processing”). Specifically, the model learning unit A2 optimizes parameters of a learning model (hereinafter also referred to as “model” or “AI/ML model”) through machine learning using learning data, derives (generates, updates) a learned model, and outputs the learned model to the model inference unit A3.
- Supervised learning is a method that uses correct answer data as training data.
- Unsupervised learning is a method that does not use correct answer data as training data. For example, in unsupervised learning, feature points are memorized from a large amount of training data, and the correct answer is determined (range estimation).
- Reinforcement learning is a method that assigns a score to the output result and learns how to maximize the score.
- the model inference unit A3 may provide model performance feedback to the model learning unit A2.
- the data processing unit A4 receives the inference result data and performs processing that utilizes the inference result data.
- the UE100 has an AI/ML model for inferring the measurement results of one measurement target from the measurement results of another measurement target.
- the AI/ML model of this embodiment is a model that uses the measurement results of one measurement target as inference data (input parameters) and outputs the measurement results of another measurement target.
- the measurement target may be synonymous with the measurement object.
- the "inference data" may include the measurement results of a certain measurement object as one of the input parameters, and other parameters.
- the other parameters may be information on the geographical location of UE100, information on the movement speed of UE100, information on the receiver 111 used for the measurement, and/or information on the attributes of the measurement object (e.g., frequency, etc.).
- the AI/ML model possessed by UE100 is assumed to have learned the correlation between these parameters through model learning.
- An at least partially learned AI/ML model may be set to UE100 by gNB200.
- the AI/ML model may be transferred from gNB200 to UE100 when communication between gNB200 and UE100 begins.
- UE100 may generate a learned AI/ML model by performing model learning in various environments.
- UE100 is in an RRC connected state with cell a of gNB200 as the serving cell.
- cell a of gNB200 There are multiple neighboring cells (cell b, cell c, and cell d) that partially overlap with this serving cell.
- the neighboring cells may be managed by the same gNB200 as the serving cell.
- the neighboring cells may also be managed by a gNB200 different from the serving cell.
- the frequencies of each cell may be the same or different.
- step S2 UE100 performs measurements on the measurement target defined according to the measurement object. For example, UE100 measures the reception quality of each cell belonging to each frequency specified in the measurement object.
- step S4 UE100 transmits the measurement results of each cell (including the inferred measurement results) to gNB200 via an RRC message (measurement report) at a timing determined according to the reporting settings associated with the measurement object.
- gNB200 receives the measurement report.
- gNB200 performs mobility control for UE100 based on the measurement results of each cell included in the measurement report. For example, gNB200 determines a target cell for handover and performs control to switch the serving cell from the current serving cell (source cell) to the target cell.
- step S3 it may be difficult for UE100 to appropriately determine which measurement objects to actually measure and which measurement objects to infer. Furthermore, if the combination of the measured measurement object and the measurement object whose measurement results are inferred based on the measurement results of the measured measurement object (i.e., the combination of the measurement object to be measured and the measurement object to be inferred) is inappropriate, it is difficult to perform model inference accurately.
- step S1 (measurement setting) of FIG. 8
- UE100 receives information from gNB200 for identifying a combination of a first measurement object for which UE100 actually measures reception quality and a second measurement object for which UE100 can infer the measurement result of reception quality based on the measurement result of the first measurement object.
- steps S2 (measurement) and S3 (model inference) of FIG. 8 UE100 obtains the first measurement result by measuring the first measurement object, and then infers the second measurement result of the second measurement object based on the first measurement result using AI/ML model 101.
- UE100 receives from gNB200 information for identifying a combination of a first measurement object for which UE100 actually measures reception quality and a second measurement object for which UE100 can infer the measurement result of reception quality based on the measurement result of the first measurement object, thereby making it possible to use an appropriate combination as the combination of measurement object to be measured and measurement object to be inferred. Therefore, UE100 can perform model inference with high accuracy.
- the UE100 that performs such operations has a receiver 110 that receives from the gNB200 information for identifying a combination of a first measurement object for which the UE100 actually measures the reception quality and a second measurement object for which the UE100 can infer the measurement result of the reception quality based on the measurement result of the first measurement object, and a control unit 130 that, after obtaining a first measurement result by measuring the first measurement object, infers a second measurement result of the second measurement object based on the first measurement result using the AI/ML model 101 (see Figure 2).
- the gNB200 has a transmitter 210 that transmits to the UE100 information for identifying a combination of the first measurement object for which the UE100 actually measures the reception quality and the second measurement object for which the UE100 can infer the measurement result of the reception quality using the AI/ML model 101 based on the measurement result of the first measurement object (see Figure 3).
- Each of the first measurement object and the second measurement object is one of a cell, a frequency, a beam, a reference signal, and a measurement object.
- each measurement object is a cell (or a frequency).
- UE100 may transmit to gNB200 proposal information indicating a combination of a first measurement object to be measured and a second measurement object to be inferred.
- the combination may be a combination of measurement objects supported by UE100's AI/ML model 101.
- the combination of a first measurement target to be measured and a second measurement target to be inferred may be a combination of a first measurement target and a second measurement target that transmit radio waves from the same location (co-location).
- a combination of a first measurement target and a second measurement target that transmit radio waves from the same antenna or the same location can be considered to have spatially identical or similar radio wave propagation paths.
- the gNB200 notifies the UE100 of information about this combination. This makes it possible to improve the inference accuracy in the UE100.
- the channel characteristics vary depending on the frequency, but these channel responses can be expected to have a certain degree of correlation.
- the radio wave path is the same when using the same antenna, it is possible to infer differences in propagation loss (path loss) and/or reflection loss/diffraction loss due to differences in frequency.
- Figure 9 is a diagram showing a specific example of the operation of the mobile communication system 1 according to the first embodiment.
- step S101 UE100 is in an RRC connected state with the cell of gNB200 as the serving cell.
- UE100 may transmit to gNB200 proposal information (preference information) indicating the input data (measurement targets to be measured) and output data (measurement targets to be inferred) supported by its own AI/ML model 101.
- gNB200 may receive the proposal information (preference information).
- UE100 may include the proposal information (preference information) in a UE Assistance Information message or a UE Capability message, which are types of RRC messages, and transmit the message to gNB200.
- step S103 gNB200 transmits an RRC message (e.g., an RRC Reconfiguration message) including measurement settings to UE100.
- UE100 receives the RRC message.
- the measurement settings include at least one of a measurement ID, a measurement object and its ID, and a reporting setting and its ID.
- the RRC message (measurement settings) of step S103 may include information for configuring (specifying) the AI/ML model 101 of UE100, such as a model ID.
- the RRC message (measurement setting) of step S103 includes information (hereinafter also referred to as "identification information") for identifying the combination of the first measurement object to be measured and the second measurement object to be inferred (measurement object that can be inferred).
- the gNB200 may set the first measurement object to be used as input data in model inference and the second measurement object to be used as the output (inference) result, taking into account the model already set in the UE100.
- the gNB200 may set a measurement object that is important (main information) in mobility control as the first measurement object to be measured.
- the gNB200 may set a measurement object that is only reference information in mobility control as the second measurement object.
- UE100 performs measurements on the first measurement object to be measured based on the identification information. Furthermore, UE100 infers the second measurement result of the second measurement object to be inferred using AI/ML model 101 based on the first measurement result of the first measurement object. For example, if the combination is "cell #1 on Freq #1" and "cell #2 on Freq #2," UE100 may measure the RSRP (Reference Signal Received Power) of cell #1 and then infer the RSRP of cell #2 by taking into account the detuning frequency (difference) between Freq #1 and Freq #2. Furthermore, UE100 may perform model inference using the estimated information of the propagation path as input data, by estimating whether the propagation path is within line of sight or whether there is reflection/diffraction, taking into account the timing advance value and the RSRP of cell #1.
- RSRP Reference Signal Received Power
- step S106 gNB200 performs mobility control (e.g., handover control) for UE100 based on the measurement results received from UE100 in step S105.
- mobility control e.g., handover control
- Second Embodiment The second embodiment will be described mainly focusing on the differences from the first embodiment.
- the operation of the second embodiment may be based on the operation of the first embodiment.
- the operation of the second embodiment may not be based on the operation of the first embodiment.
- the UE 100 is capable of identifying the combination of the first measurement object to be measured and the second measurement object to be inferred, using the operation according to the first embodiment or another method.
- the other method may be, for example, a method using a UE-side model (AI/ML model 101), but the inference accuracy may be lower than that of the operation according to the first embodiment.
- UE100 transmits the measured first measurement result and the inferred second measurement result to gNB200.
- gNB200 cannot clearly distinguish whether each measurement result received from UE100 is a measured value or an inferred value, there is a concern that it will not be able to perform appropriate mobility control.
- the measurement result is an inferred value, there is a concern that gNB200 will not be able to perform appropriate mobility control if it cannot grasp the accuracy of the inference.
- step S2 UE100 measures the reception quality of the first measurement target and obtains a first measurement result.
- step S3 (model inference)
- UE 100 uses AI/ML model 101 to infer a second measurement result of the reception quality of the second measurement target based on the first measurement result.
- step S4 (measurement report)
- UE100 transmits the measured first measurement result and the inferred second measurement result to gNB200.
- UE100 transmits identification information to gNB200 to identify whether each transmitted measurement result is a measured value or an inferred value.
- UE100 transmits to gNB200 identification information for identifying whether each measurement result to be transmitted is a measured value or an inferred value. This allows gNB200 to clearly identify whether each measurement result received from UE100 is a measured value or an inferred value, thereby enabling appropriate mobility control.
- the UE100 may transmit information indicating the inference accuracy of the inferred second measurement result to gNB200.
- the inference accuracy may be a likelihood indicating the likelihood of the estimation.
- the inference accuracy may be output from AI/ML model 101 during model inference. This allows gNB200 to grasp the inference accuracy when the measurement result is an inferred value, enabling gNB200 to perform appropriate mobility control.
- UE100 may transmit the inferred second measurement result to gNB200 only if the value indicating the inference accuracy of the inferred second measurement result exceeds a threshold.
- the threshold may be set by gNB200 to UE100. This prevents inappropriate measurement results (inference results) from being reported to gNB200, enabling gNB200 to perform appropriate mobility control.
- UE100 may transmit information (e.g., a model ID) for identifying the AI/ML model 101 used for inference to gNB200. It is assumed that a UE100 having multiple AI/ML models 101 will select one AI/ML model 101 from among them to use for inference. Under such assumptions, by UE100 notifying gNB200 of information for identifying the AI/ML model 101 used for inference, gNB200 can grasp the inference accuracy, etc. of the inferred second measurement result (inference result).
- information e.g., a model ID
- gNB200 can grasp the inference accuracy, etc. of the inferred second measurement result (inference result).
- Figure 10 is a diagram showing a specific example of the operation of the mobile communication system 1 according to the second embodiment.
- gNB200 transmits an RRC message (e.g., an RRC Reconfiguration message) including measurement settings to UE100.
- the measurement settings include at least one of a measurement ID, a measurement object and its ID, and a reporting setting and its ID.
- the RRC message (measurement settings) in step S202 may include at least one of the following settings: 1) whether to provide information identifying whether the value is an actual measurement or an inferred value; 2) whether to report the accuracy of the inference result; 3) a threshold for the inference accuracy; and 4) whether to report the model ID used for the inference.
- step S203 UE 100 performs a measurement on the first measurement object to be measured.
- UE 100 also infers a second measurement result of a second measurement object to be inferred based on the first measurement result of the first measurement object using AI/ML model 101.
- UE 100 may obtain the inference accuracy of the inferred second measurement result from AI/ML model 101, compare the value indicating the inference accuracy with a threshold, and discard (i.e., exclude from reporting) second measurement results (inferred values) that fall below the threshold.
- step S204 UE100 transmits a message to gNB200 including the first measurement result measured in step S204, the inferred measurement result, and additional information (auxiliary information).
- gNB200 receives the message.
- the message is an L3 measurement report message, but the message may also be a UE Assistance Information message.
- the additional information in step S204 may be provided for each measurement ID or each measurement result.
- the additional information may include at least one of the following: a) identification information for distinguishing between an actual measurement value and an inferred value; b) information on the accuracy of the inference result (e.g., [%]); and c) the model ID used for the inference.
- the gNB200 may make various decisions (e.g., handover decisions) by prioritizing (trusting) the actual measured value over the inferred value based on a) identification information for distinguishing between an actual measured value and an inferred value. For example, the gNB200 may make various decisions by prioritizing the actual measured value under the assumption that the inference accuracy is low.
- the gNB200 may make various decisions based on b) information on the accuracy of the inference result (e.g., [%]) and prioritize the actual measured value if the inference accuracy is low.
- the gNB200 may discard the corresponding measurement result (inferred value) if the inference accuracy does not meet certain standards.
- the gNB200 may c) determine the inference accuracy of the inference value based on the model ID used for the inference. For example, the gNB200 may use a model database to obtain model performance information from the model ID and determine the inference accuracy.
- first and second embodiments described above may be implemented independently, or at least a portion of the operation according to the first embodiment may be implemented in combination with at least a portion of the operation according to the second embodiment.
- handover has been described as an example of mobility control, but the present invention is not limited to handover and can be applied to any type of mobility control.
- the operations according to the above-described embodiment may be applied to setting handover execution conditions in conditional handover.
- the operations according to the above-described embodiment may be applied to LTM (L1/L2 Triggered Mobility), which is cell switching initiated by Layer 1 and/or Layer 2 (L1/L2).
- LTM L1/L2 Triggered Mobility
- the above-described measurement report may be read as an L1 measurement report.
- the present invention may be applied to PSCell change, which switches the primary/secondary cell (PSCell) of UE 100 initiated by the RRC layer.
- the present invention is not limited to mobility control in the RRC connected state, but may also be applied to mobility control (e.g., cell reselection) in the RRC idle state or RRC inactive state.
- the base station is an NR base station (gNB), but the base station may also be an LTE base station (eNB) or a 6G base station.
- the base station may be a relay node such as an IAB (Integrated Access and Backhaul) node.
- the base station may also be a DU of an IAB node.
- UE100 may be an MT (Mobile Termination) of an IAB node.
- UE100 may be a terminal function unit (a type of communication module) that allows the base station to control a repeater that relays signals.
- Such a terminal function unit is referred to as an MT.
- IAB-MT other examples of MT include NCR (Network Controlled Repeater)-MT and RIS (Reconfigurable Intelligent Surface)-MT.
- network node primarily refers to a base station, but may also refer to a core network device or part of a base station (CU, DU, or RU).
- a network node may also be composed of a combination of at least part of a core network device and at least part of a base station.
- a program may be provided that causes a computer to execute each process performed by UE100 or gNB200.
- the program may be recorded on a computer-readable medium.
- the computer-readable medium can be used to install the program on a computer.
- the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
- the non-transitory recording medium is not particularly limited, but may be, for example, a CD-ROM and/or DVD-ROM.
- circuits that execute each process performed by UE100 or gNB200 may be integrated, and at least a portion of UE100 or gNB200 may be configured as a semiconductor integrated circuit (chipset, SoC: System on a chip).
- UE100 or gNB200 may be implemented in circuitry or processing circuitry, including general-purpose processors, application-specific processors, integrated circuits, ASICs (Application Specific Integrated Circuits), CPUs (Central Processing Units), conventional circuits, and/or combinations thereof, programmed to perform the described functions.
- a processor includes transistors and/or other circuits and is considered to be circuitry or processing circuitry.
- a processor may also be a programmed processor that executes a program stored in memory.
- circuitry, unit, or means refers to hardware that is programmed to perform the described functions or hardware that executes them.
- the hardware may be any hardware disclosed herein or any hardware known to be programmed or capable of performing the described functions. If the hardware is a processor, which is considered a type of circuitry, the circuitry, means, or unit is a combination of hardware and software used to configure the hardware and/or processor.
- the terms “based on” and “depending on/in response to” do not mean “based only on” or “depending only on,” unless expressly stated otherwise.
- the term “based on” means both “based only on” and “based at least in part on.”
- the term “depending on” means both “depending only on” and “depending at least in part on.”
- the terms “include,” “comprise,” and variations thereof do not mean including only the listed items, but may mean including only the listed items or including additional items in addition to the listed items. Additionally, the term “or,” as used in this disclosure, is not intended to mean an exclusive or.
- any reference to elements using designations such as “first,” “second,” etc., as used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein, or that the first element must precede the second element in some way.
- articles are added by translation, such as a, an, and the in English, these articles shall include the plural unless the context clearly indicates otherwise.
- Appendix 6 The communication method of claim 1, further comprising transmitting the measured first measurement result and the inferred second measurement result to the network node.
- Appendix 7 the user equipment sending a measurement report to the network node as a Radio Resource Control (RRC) message; 7.
- RRC Radio Resource Control
- Appendix 8 A user device for use in a mobile communication system, comprising: A receiver that receives, from a network node, information for identifying a combination of a first measurement object for which the user equipment actually measures reception quality and a second measurement object for which the user equipment can infer a measurement result of reception quality based on a measurement result of the first measurement object; and a control unit that, after obtaining a first measurement result by measuring the first measurement object, infers a second measurement result of the second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model.
- AI/ML artificial intelligence or machine learning
- Appendix 10 A communication method performed by a user device in a mobile communication system, comprising: measuring the reception quality of a first measurement object to obtain a first measurement result; inferring a second measurement result of the reception quality of a second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model; transmitting the measured first measurement result and the inferred second measurement result to a network node; The user equipment transmits to the network node identification information for identifying whether each of the transmitted measurement results is a measured value or an inferred value.
- AI/ML artificial intelligence or machine learning
- Appendix 11 11 The communication method of claim 10, wherein each of the first measurement object and the second measurement object is one of a cell, a frequency, a beam, a reference signal, and a measurement object.
- Appendix 12 The communication method according to claim 10 or 11, wherein the user equipment transmits information indicating an inference accuracy of the inferred second measurement result to the network node.
- Appendix 13 13 The communication method according to any one of claims 10 to 12, wherein the user equipment transmits the inferred second measurement result to the network node only if a value indicating an inference accuracy of the inferred second measurement result exceeds a threshold.
- Appendix 14 The communication method of claim 10, wherein the user equipment transmits information to the network node to identify the AI/ML model used for the inference.
- Appendix 15 the user equipment sending a measurement report to the network node as a Radio Resource Control (RRC) message; 15. The communication method according to any one of Supplementary Notes 10 to 14, wherein the measurement report includes the first measured measurement result, the second inferred measurement result, and the identification information.
- RRC Radio Resource Control
- Appendix 16 A user device for use in a mobile communication system, comprising: a control unit that measures the reception quality of a first object to be measured to obtain a first measurement result, and then infers a second measurement result of the reception quality of a second object to be measured based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model; a transmitter configured to transmit the measured first measurement result and the inferred second measurement result to a network node; The transmitting unit transmits, to the network node, identification information for identifying whether each of the transmitted measurement results is a measured value or an inferred value.
- AI/ML artificial intelligence or machine learning
- Appendix 17 A network node for use in a mobile communication system, comprising: A receiving unit receives from the user device a first measurement result obtained by the user device measuring the reception quality of a first measurement object and a second measurement result obtained by the user device inferring a second measurement result of the reception quality of a second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model; The receiving unit receives, from the user equipment, identification information for identifying whether each measurement result transmitted from the user equipment is a measured value or an inferred value.
- AI/ML artificial intelligence or machine learning
- Mobile communication system 5 Network 10: RAN (NG-RAN) 11: L1 filter 12: Beam integration/selection unit 13: L3 filter 14: Evaluation unit 15: L3 beam filter 16: Beam selection unit 20: CN (5GC) 100: UE 101: AI/ML model 110: Receiving unit 111: Receiver (RF chain) 120: Transmitter 130: Controller 140: Wireless Communication Unit 200: gNB 210: Transmitting unit 220: Receiving unit 230: Control unit 240: Network communication unit 241: Transmitting unit 242: Receiving unit 250: Wireless communication unit A1: Data collecting unit A2: Model learning unit A3: Model inference unit A4: Data processing unit
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
本開示は、移動通信システムで用いる通信方法、ユーザ装置、及びネットワークノードに関する。 This disclosure relates to a communication method, user equipment, and network node used in a mobile communication system.
移動通信システムの標準化プロジェクトである3GPP(Third Generation Partnership Project)(登録商標。以下同じ)において、人工知能又は機械学習(「AI/ML」とも称する)技術を移動通信システムの無線通信(すなわち、エアインターフェイス)に適用しようとする検討がされている。 3GPP (Third Generation Partnership Project) (registered trademark; the same applies hereinafter), a standardization project for mobile communications systems, is considering applying artificial intelligence or machine learning (also referred to as "AI/ML") technology to wireless communications (i.e., air interfaces) in mobile communications systems.
第1の態様に係る通信方法は、移動通信システムにおいてユーザ装置が実行する通信方法であって、前記ユーザ装置が実際に受信品質を測定する第1測定対象と、前記第1測定対象の測定結果に基づいて前記ユーザ装置が受信品質の測定結果を推論可能な第2測定対象と、の組み合わせを特定するための情報をネットワークノードから受信することと、前記第1測定対象の測定により第1測定結果を得た後、人工知能又は機械学習(AI/ML)モデルを用いて前記第2測定対象の第2測定結果を前記第1測定結果に基づいて推論することと、を有する。 A communication method according to a first aspect is a communication method executed by a user device in a mobile communication system, and includes receiving information from a network node for identifying a combination of a first measurement object for which the user device actually measures reception quality and a second measurement object for which the user device can infer a measurement result of reception quality based on the measurement result of the first measurement object; and, after obtaining a first measurement result by measuring the first measurement object, inferring a second measurement result of the second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model.
第2の態様に係るユーザ装置は、移動通信システムで用いるユーザ装置であって、前記ユーザ装置が実際に受信品質を測定する第1測定対象と、前記第1測定対象の測定結果に基づいて前記ユーザ装置が受信品質の測定結果を推論可能な第2測定対象と、の組み合わせを特定するための情報をネットワークノードから受信する受信部と、前記第1測定対象の測定により第1測定結果を得た後、人工知能又は機械学習(AI/ML)モデルを用いて前記第2測定対象の第2測定結果を前記第1測定結果に基づいて推論する制御部と、を有する。 The user equipment according to the second aspect is a user equipment used in a mobile communications system, and includes a receiver that receives, from a network node, information for identifying a combination of a first measurement object whose reception quality the user equipment actually measures and a second measurement object whose reception quality measurement result the user equipment can infer based on the measurement result of the first measurement object; and a controller that, after obtaining a first measurement result by measuring the first measurement object, infers a second measurement result of the second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model.
第3の態様に係るネットワークノードは、移動通信システムで用いるネットワークノードであって、ユーザ装置が実際に受信品質を測定する第1測定対象と、前記第1測定対象の測定結果に基づいて前記ユーザ装置が受信品質の測定結果を人工知能又は機械学習(AI/ML)モデルを用いて推論可能な第2測定対象と、の組み合わせを特定するための情報を前記ユーザ装置に送信する送信部を有する。 The network node according to the third aspect is a network node used in a mobile communications system, and has a transmitter that transmits to the user device information for identifying a combination of a first measurement object for which a user device actually measures reception quality, and a second measurement object for which the user device can infer the measurement result of reception quality using an artificial intelligence or machine learning (AI/ML) model based on the measurement result of the first measurement object.
第4の態様に係る通信方法は、移動通信システムにおいてユーザ装置が実行する通信方法であって、第1測定対象の受信品質を測定して第1測定結果を得ることと、人工知能又は機械学習(AI/ML)モデルを用いて第2測定対象の受信品質の第2測定結果を前記第1測定結果に基づいて推論することと、前記測定した第1測定結果と前記推論した第2測定結果とをネットワークノードに送信することと、を有する。前記ユーザ装置は、前記送信される各測定結果が測定値であるか又は推論値であるかを識別するための識別情報を前記ネットワークノードに送信する。 A communication method according to a fourth aspect is a communication method executed by a user device in a mobile communication system, and includes the steps of measuring the reception quality of a first measurement object to obtain a first measurement result, inferring a second measurement result of the reception quality of a second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model, and transmitting the measured first measurement result and the inferred second measurement result to a network node. The user device transmits identification information to the network node to identify whether each of the transmitted measurement results is a measured value or an inferred value.
第5の態様に係るユーザ装置は、移動通信システムで用いるユーザ装置であって、第1測定対象の受信品質を測定して第1測定結果を得た後、人工知能又は機械学習(AI/ML)モデルを用いて第2測定対象の受信品質の第2測定結果を前記第1測定結果に基づいて推論する制御部と、前記測定した第1測定結果と前記推論した第2測定結果とをネットワークノードに送信する送信部と、を有する。前記送信部は、前記送信される各測定結果が測定値であるか又は推論値であるかを識別するための識別情報を前記ネットワークノードに送信する。 A user device according to a fifth aspect is a user device used in a mobile communications system, and includes: a control unit that measures the reception quality of a first measurement object to obtain a first measurement result, and then infers a second measurement result of the reception quality of a second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model; and a transmission unit that transmits the measured first measurement result and the inferred second measurement result to a network node. The transmission unit transmits identification information to the network node to identify whether each of the transmitted measurement results is a measured value or an inferred value.
第6の態様に係るネットワークノードは、移動通信システムで用いるネットワークノードであって、ユーザ装置が第1測定対象の受信品質を測定して得た第1測定結果と、前記ユーザ装置が人工知能又は機械学習(AI/ML)モデルを用いて第2測定対象の受信品質の第2測定結果を前記第1測定結果に基づいて推論して得た第2測定結果と、を前記ユーザ装置から受信する受信部を有する。前記受信部は、前記ユーザ装置から送信される各測定結果が測定値であるか又は推論値であるかを識別するための識別情報を前記ユーザ装置から受信する。 A network node according to a sixth aspect is a network node used in a mobile communications system, and includes a receiving unit that receives from the user device a first measurement result obtained by the user device measuring the reception quality of a first measurement object, and a second measurement result obtained by the user device inferring a second measurement result of the reception quality of a second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model. The receiving unit receives identification information from the user device for identifying whether each measurement result transmitted from the user device is a measured value or an inferred value.
上述した背景技術で説明した技術は、AI/ML技術のユースケースとしてユーザ装置のモビリティ制御が考えられる。例えば、ソースセルからターゲットセルへのサービングセルの切り替えの制御にAI/ML技術を適用することが考えられる。しかしながら、ユーザ装置のモビリティ制御にAI/ML技術を適用する具体的なメカニズムは未だ確立されておらず、移動通信システムにおいてAI/ML技術を活用することが難しい。 The technology described in the background art above can be considered as a use case for AI/ML technology in mobility control of user equipment. For example, it is conceivable to apply AI/ML technology to control the switching of serving cells from a source cell to a target cell. However, a specific mechanism for applying AI/ML technology to mobility control of user equipment has not yet been established, making it difficult to utilize AI/ML technology in mobile communication systems.
本開示は、移動通信システムにおいてAI/ML技術を活用することを目的とする。 The purpose of this disclosure is to utilize AI/ML technology in mobile communication systems.
図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。 The mobile communication system according to the embodiment will be described with reference to the drawings. In the drawings, the same or similar parts are denoted by the same or similar reference numerals.
(1)第1実施形態
第1実施形態について説明する。
(1) First Embodiment The first embodiment will be described.
(1.1)移動通信システムの構成
図1は、実施形態に係る移動通信システム1の構成例を示す図である。移動通信システム1は、3GPP規格の第5世代システム(5GS:5th Generation System)に準拠する。以下において、5GSを例に挙げて説明するが、移動通信システムにはLTE(Long Term Evolution)システムが少なくとも部分的に適用されてもよい。移動通信システムには第6世代(6G)システムが少なくとも部分的に適用されてもよい。
(1.1) Configuration of a Mobile Communication System FIG. 1 is a diagram showing an example of the configuration of a mobile communication system 1 according to an embodiment. The mobile communication system 1 conforms to the 5th Generation System (5GS) of the 3GPP standard. In the following description, 5GS is used as an example, but the mobile communication system may also be at least partially based on an LTE (Long Term Evolution) system. The mobile communication system may also be at least partially based on a 6th Generation (6G) system.
移動通信システム1は、ユーザ装置(UE:User Equipment)100と、5Gの無線アクセスネットワーク(NG-RAN:Next Generation Radio Access Network)10と、5Gのコアネットワーク(5GC:5G Core Network)20とを有する。以下において、NG-RAN10を単にRAN10と称することがある。また、5GC20を単にコアネットワーク(CN)20と称することがある。RAN10及びCN20は、移動通信システム1のネットワーク5を構成する。 The mobile communication system 1 includes a user equipment (UE) 100, a 5G radio access network (NG-RAN: Next Generation Radio Access Network) 10, and a 5G core network (5GC: 5G Core Network) 20. Hereinafter, the NG-RAN 10 may be simply referred to as the RAN 10. The 5GC 20 may also be simply referred to as the core network (CN) 20. The RAN 10 and the CN 20 constitute the network 5 of the mobile communication system 1.
UE100は、移動可能な無線通信装置である。UE100は、ユーザにより利用される装置であればどのような装置であっても構わない。例えば、UE100は、携帯電話端末(スマートフォンであってもよい)及び/又はタブレット端末、ノートPC、通信モジュール(通信カード又はチップセットであってもよい)、センサ若しくはセンサに設けられる装置、車両若しくは車両に設けられる装置(Vehicle UE)、飛行体若しくは飛行体に設けられる装置(Aerial UE)である。UE100からネットワーク5への送信方向のリンクを上りリンク(UL)と称し、ネットワーク5からUE100への送信方向のリンクを下りリンク(DL)と称する。 UE100 is a mobile wireless communication device. UE100 may be any device used by a user. For example, UE100 is a mobile phone terminal (which may be a smartphone) and/or a tablet terminal, a notebook PC, a communication module (which may be a communication card or chipset), a sensor or a device provided in a sensor, a vehicle or a device provided in a vehicle (Vehicle UE), or an aircraft or a device provided in an aircraft (Aerial UE). The link in the transmission direction from UE100 to network 5 is called the uplink (UL), and the link in the transmission direction from network 5 to UE100 is called the downlink (DL).
NG-RAN10は、ネットワークノードの一種である基地局(5Gシステムにおいて「gNB」と称される)200を含む。gNB200は、基地局間インターフェイスであるXnインターフェイスを介して相互に接続される。gNB200は、1又は複数のセルを管理する。gNB200は、自セルとの接続を確立したUE100との無線通信を行う。gNB200は、無線リソース管理(RRM)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数(以下、単に「周波数」と称する)に属する。 NG-RAN10 includes base stations (referred to as "gNBs" in 5G systems) 200, which are a type of network node. gNBs 200 are connected to each other via an Xn interface, which is an interface between base stations. gNBs 200 manage one or more cells. gNBs 200 perform wireless communication with UEs 100 that have established a connection with their own cell. gNBs 200 have radio resource management (RRM) functions, user data (hereinafter simply referred to as "data") routing functions, measurement control functions for mobility control and scheduling, and more. "Cell" is used as a term to indicate the smallest unit of a wireless communication area. "Cell" is also used as a term to indicate functions or resources for wireless communication with UEs 100. One cell belongs to one carrier frequency (hereinafter simply referred to as "frequency").
なお、gNBがLTEのコアネットワークであるEPC(Evolved Packet Core)に接続することもできる。LTEの基地局が5GCに接続することもできる。LTEの基地局とgNBとが基地局間インターフェイスを介して接続されることもできる。 In addition, gNBs can also connect to the EPC (Evolved Packet Core), which is the LTE core network. LTE base stations can also connect to 5GC. LTE base stations and gNBs can also be connected via a base station-to-base station interface.
5GC20は、AMF(Access and Mobility Management Function)及びUPF(User Plane Function)300を含む。AMFは、UE100に対する各種モビリティ制御等を行う。AMFは、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信することにより、UE100のモビリティを管理する。UPFは、データの転送制御を行う。AMF及びUPFは、基地局-コアネットワーク間インターフェイスであるNGインターフェイスを介してgNB200と接続される。 5GC20 includes an AMF (Access and Mobility Management Function) and a UPF (User Plane Function) 300. The AMF performs various mobility controls for UE100. The AMF manages the mobility of UE100 by communicating with UE100 using NAS (Non-Access Stratum) signaling. The UPF controls data forwarding. The AMF and UPF are connected to gNB200 via the NG interface, which is an interface between the base station and the core network.
図2は、実施形態に係るUE100(ユーザ装置)の構成例を示す図である。UE100は、受信部110、送信部120、及び制御部130を有する。受信部110及び送信部120は、gNB200との無線通信を行う無線通信部140を構成する。 FIG. 2 is a diagram showing an example configuration of a UE 100 (user equipment) according to an embodiment. The UE 100 has a receiving unit 110, a transmitting unit 120, and a control unit 130. The receiving unit 110 and the transmitting unit 120 constitute a wireless communication unit 140 that performs wireless communication with the gNB 200.
受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部130に出力する。 The receiving unit 110 performs various types of reception under the control of the control unit 130. The receiving unit 110 includes an antenna and a receiver. The receiver converts the radio signal received by the antenna into a baseband signal (received signal) and outputs it to the control unit 130.
送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。 The transmitting unit 120 performs various transmissions under the control of the control unit 130. The transmitting unit 120 includes an antenna and a transmitter. The transmitter converts the baseband signal (transmission signal) output by the control unit 130 into a radio signal and transmits it from the antenna.
制御部130は、UE100における各種の制御及び処理を行う。このような処理は、後述の各レイヤの処理を含む。上述及び後述のUE100の動作は、制御部230の制御による動作であってもよい。制御部130は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)とを含んであってもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。 The control unit 130 performs various controls and processes in the UE 100. Such processes include the processes of each layer described below. The operations of the UE 100 described above and below may be operations under the control of the control unit 230. The control unit 130 includes at least one processor and at least one memory. The memory stores programs executed by the processor and information used in the processing by the processor. The processor may include a baseband processor and a CPU (Central Processing Unit). The baseband processor performs modulation/demodulation and encoding/decoding of baseband signals. The CPU executes programs stored in the memory to perform various processes.
図3は、実施形態に係るgNB200(ネットワークノード)の構成例を示す図である。gNB200は、送信部210、受信部220、制御部230、及びネットワーク通信部240を有する。送信部210及び受信部220は、UE100との無線通信を行う無線通信部250を構成する。ネットワーク通信部240は、送信を行う送信部241と、受信を行う受信部242とを有する。 Figure 3 is a diagram showing an example configuration of a gNB200 (network node) according to an embodiment. The gNB200 has a transmitter 210, a receiver 220, a controller 230, and a network communication unit 240. The transmitter 210 and receiver 220 constitute a wireless communication unit 250 that performs wireless communication with the UE100. The network communication unit 240 has a transmitter 241 that performs transmission and a receiver 242 that performs reception.
送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。 The transmitting unit 210 performs various transmissions under the control of the control unit 230. The transmitting unit 210 includes an antenna and a transmitter. The transmitter converts the baseband signal (transmission signal) output by the control unit 230 into a radio signal and transmits it from the antenna.
受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。 The receiving unit 220 performs various types of reception under the control of the control unit 230. The receiving unit 220 includes an antenna and a receiver. The receiver converts the radio signal received by the antenna into a baseband signal (received signal) and outputs it to the control unit 230.
制御部230は、gNB200における各種の制御及び処理を行う。このような処理は、後述の各レイヤの処理を含む。上述及び後述のgNB200の動作は、制御部230の制御による動作であってもよい。制御部230は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUとを含んであってもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。 The control unit 230 performs various controls and processes in the gNB 200. Such processes include the processes of each layer described below. The operations of the gNB 200 described above and below may be operations under the control of the control unit 230. The control unit 230 includes at least one processor and at least one memory. The memory stores programs executed by the processor and information used in the processing by the processor. The processor may include a baseband processor and a CPU. The baseband processor performs modulation/demodulation and encoding/decoding of baseband signals. The CPU executes programs stored in the memory to perform various processes.
ネットワーク通信部240は、基地局間インターフェイスであるXnインターフェイスを介して隣接基地局と接続される。ネットワーク通信部240は、基地局-コアネットワーク間インターフェイスであるNGインターフェイスを介してAMF/UPF300と接続される。なお、gNB200は、CU(Central Unit)とDU(Distributed Unit)とで構成され(すなわち、機能分割され)、両ユニット間がフロントホールインターフェイスであるF1インターフェイスで接続されてもよい。 The network communication unit 240 is connected to adjacent base stations via an Xn interface, which is an interface between base stations. The network communication unit 240 is connected to the AMF/UPF 300 via an NG interface, which is an interface between a base station and a core network. The gNB 200 may be composed of a CU (Central Unit) and a DU (Distributed Unit) (i.e., functionally divided), and the two units may be connected via an F1 interface, which is a fronthaul interface.
図4は、データを取り扱うユーザプレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。 Figure 4 shows the protocol stack configuration of the user plane radio interface that handles data.
ユーザプレーンの無線インターフェイスプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、SDAP(Service Data Adaptation Protocol)レイヤとを有する。 The user plane radio interface protocol has a physical (PHY) layer, a medium access control (MAC) layer, a radio link control (RLC) layer, a packet data convergence protocol (PDCP) layer, and a service data adaptation protocol (SDAP) layer.
PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤとgNB200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。なお、UE100のPHYレイヤは、gNB200から物理下りリンク制御チャネル(PDCCH)上で送信される下りリンク制御情報(DCI)を受信する。具体的には、UE100は、無線ネットワーク一時識別子(RNTI)を用いてPDCCHのブラインド復号を行い、復号に成功したDCIを自UE宛てのDCIとして取得する。gNB200から送信されるDCIには、RNTIによってスクランブルされたCRC(Cyclic Redundancy Code)パリティビットが付加されている。 The PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of UE100 and the PHY layer of gNB200 via a physical channel. The PHY layer of UE100 receives downlink control information (DCI) transmitted from gNB200 on the physical downlink control channel (PDCCH). Specifically, UE100 performs blind decoding of the PDCCH using a radio network temporary identifier (RNTI) and acquires successfully decoded DCI as DCI addressed to the UE. The DCI transmitted from gNB200 has CRC (Cyclic Redundancy Code) parity bits scrambled by the RNTI added.
MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ:Hybrid Automatic Repeat reQuest)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤとgNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。gNB200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS:Modulation and Coding Scheme))及びUE100への割当リソースブロックを決定する。 The MAC layer performs data priority control, retransmission processing using Hybrid Automatic Repeat reQuest (HARQ), random access procedures, etc. Data and control information are transmitted between the MAC layer of UE100 and the MAC layer of gNB200 via a transport channel. The MAC layer of gNB200 includes a scheduler. The scheduler determines the uplink and downlink transport format (transport block size, modulation and coding scheme (MCS)) and the resource blocks to be allocated to UE100.
RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとgNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。 The RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of UE100 and the RLC layer of gNB200 via logical channels.
PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化等を行う。 The PDCP layer performs header compression/decompression, encryption/decryption, etc.
SDAPレイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。なお、RANがEPCに接続される場合は、SDAPが無くてもよい。 The SDAP layer maps IP flows, which are the units by which the core network controls QoS (Quality of Service), to radio bearers, which are the units by which the AS (Access Stratum) controls QoS. Note that if the RAN is connected to the EPC, SDAP is not required.
図5は、シグナリング(制御信号)を取り扱う制御プレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。 Figure 5 shows the protocol stack configuration of the radio interface of the control plane, which handles signaling (control signals).
制御プレーンの無線インターフェイスのプロトコルスタックは、図4に示したSDAPレイヤに代えて、RRC(Radio Resource Control)レイヤ及びNAS(Non-Access Stratum)レイヤを有する。 The protocol stack for the radio interface of the control plane has an RRC (Radio Resource Control) layer and a NAS (Non-Access Stratum) layer instead of the SDAP layer shown in Figure 4.
UE100のRRCレイヤとgNB200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとgNB200のRRCとの間にコネクション(RRC接続)がある場合、UE100はRRCコネクティッド状態である。UE100のRRCとgNB200のRRCとの間にコネクション(RRC接続)がない場合、UE100はRRCアイドル状態である。UE100のRRCとgNB200のRRCとの間のコネクションがサスペンドされている場合、UE100はRRCインアクティブ状態である。 RRC signaling for various settings is transmitted between the RRC layer of UE100 and the RRC layer of gNB200. The RRC layer controls logical channels, transport channels, and physical channels in accordance with the establishment, re-establishment, and release of radio bearers. When there is a connection (RRC connection) between the RRC of UE100 and the RRC of gNB200, UE100 is in an RRC connected state. When there is no connection (RRC connection) between the RRC of UE100 and the RRC of gNB200, UE100 is in an RRC idle state. When the connection between the RRC of UE100 and the RRC of gNB200 is suspended, UE100 is in an RRC inactive state.
RRCレイヤの上位に位置するNASレイヤ(単に「NAS」とも称する)は、セッション管理及びモビリティ管理等を行う。UE100のNASレイヤとAMF300AのNASレイヤとの間では、NASシグナリングが伝送される。なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。また、NASレイヤよりも下位のレイヤをASレイヤと称する(単に「AS」とも称する)。 The NAS layer (also simply referred to as "NAS"), located above the RRC layer, performs session management, mobility management, etc. NAS signaling is transmitted between the NAS layer of UE100 and the NAS layer of AMF300A. In addition to the radio interface protocol, UE100 also has an application layer, etc. The layer below the NAS layer is called the AS layer (also simply referred to as "AS").
(1.2)UEによる測定
RRCコネクティッド状態のUE100は、モビリティ制御に用いられる測定を行う。測定には、現在のサービングセルと同じ周波数内でのイントラ周波数測定と、現在のサービングセルと異なる周波数内でのインター周波数測定とがある。また、測定には、現在のサービングセルと異なるRAT(Radio Access Technology)に対するインターRAT測定もある。gNB200は、RRCで測定設定(測定コマンド)をUE100に送信し、測定の開始、変更、又は停止を指示する。
(1.2) Measurement by UE The UE 100 in the RRC connected state performs measurements used for mobility control. Measurements include intra-frequency measurements within the same frequency as the current serving cell and inter-frequency measurements within a frequency different from that of the current serving cell. Measurements also include inter-RAT measurements for a RAT (Radio Access Technology) different from that of the current serving cell. The gNB 200 transmits a measurement configuration (measurement command) to the UE 100 via RRC to instruct the UE 100 to start, change, or stop the measurement.
各測定のタイプに対して、1つ又は複数の測定対象(「測定オブジェクト」とも称される)を定義できる。測定オブジェクトは、例えば、監視される周波数(搬送波周波数)であるが、セルであってもよい。各測定オブジェクトに対して、1つ又は複数の報告設定を定義でき、報告設定は報告基準を定義する。報告基準(測定報告のタイプ)には、測定報告(Measurement Report)のイベントトリガ報告、定期報告、イベントトリガ定期報告の3つがある。 For each measurement type, one or more measurement targets (also called "measurement objects") can be defined. A measurement object is, for example, a monitored frequency (carrier frequency), but it can also be a cell. For each measurement object, one or more reporting configurations can be defined, which define the reporting criteria. There are three reporting criteria (measurement report types): event-triggered reporting, periodic reporting, and event-triggered periodic reporting for measurement reports.
測定オブジェクト(測定オブジェクトID)と報告設定(測定設定ID)との間の関連付けは、測定アイデンティティ(測定ID)によって行われる。測定IDは、同じRATの1つの測定オブジェクトと1つの報告設定とをリンクする。複数の測定ID(測定オブジェクトと報告設定とのペアに1つ)を使用すると、複数の報告設定を1つの測定オブジェクトに関連付けたり、1つの報告設定を複数の測定オブジェクトに関連付けたりすることができる。測定IDは、測定結果を報告するときにも使用される。 The association between a measurement object (measurement object ID) and a reporting configuration (measurement configuration ID) is made by a measurement identity (measurement ID). A measurement ID links one measurement object and one reporting configuration of the same RAT. Using multiple measurement IDs (one per measurement object and reporting configuration pair) makes it possible to associate multiple reporting configurations with one measurement object, or one reporting configuration with multiple measurement objects. The measurement ID is also used when reporting measurement results.
RRCコネクティッド状態のUE100は、セルの少なくとも1つのビームを測定し、測定結果(電力値)を平均して当該セルについての無線品質(「受信品質」とも称する)を導出する。その際、UE100は、検出されたビームのサブセットを考慮するように設定される。ここで、測定平均化であるフィルタリングが2つの異なるレベルで行われる。UE100は、まず物理層(PHY、レイヤ1(L1))のフィルタリングであるL1フィルタリングによりビーム品質を導出し、次にRRC層(レイヤ3(L3))レベルのフィルタリングであるL3フィルタリングにより複数のビームからセル品質を導き出す。なお、ビーム測定からのセル品質は、サービングセル及び非サービングセルについて同じ方法で導出される。UE100は、gNB200による設定に応じて、L3測定報告にX個の最良のビームの測定結果を含める場合がある。 UE100 in the RRC connected state measures at least one beam of a cell and averages the measurement results (power values) to derive the radio quality (also referred to as "reception quality") for that cell. In doing so, UE100 is configured to consider a subset of the detected beams. Here, filtering, which is measurement averaging, is performed at two different levels. UE100 first derives beam quality using L1 filtering, which is filtering at the physical layer (PHY, Layer 1 (L1)), and then derives cell quality from multiple beams using L3 filtering, which is filtering at the RRC layer (Layer 3 (L3)) level. Note that cell quality from beam measurements is derived in the same way for serving and non-serving cells. UE100 may include measurement results of the X best beams in the L3 measurement report, depending on the configuration by gNB200.
図6は、実施形態に係るUE100による測定に関する構成を示す図である。UE100の制御部130は、L1フィルタ11と、ビーム統合/選択部12と、L3フィルタ13と、評価部14と、L3ビームフィルタ15と、ビーム選択部16とを有する。制御部130には、受信部110内のいずれかの受信機111で測定したビームの無線品質が入力される。図示の例では、受信機111が2つ(受信機111a及び受信機111b)であるが、受信機111は1つ、又は3つ以上であってもよい。以下において、受信機111を「RF(Radio Frequency)チェーン」とも称する。複数の受信機111は、対応可能な周波数が互いに異なっていてもよい。 Figure 6 is a diagram showing the configuration for measurements by a UE 100 according to an embodiment. The control unit 130 of the UE 100 has an L1 filter 11, a beam combining/selecting unit 12, an L3 filter 13, an evaluation unit 14, an L3 beam filter 15, and a beam selecting unit 16. The control unit 130 receives the wireless quality of a beam measured by one of the receivers 111 in the receiving unit 110. In the example shown, there are two receivers 111 (receiver 111a and receiver 111b), but there may be one receiver 111, or three or more receivers 111. Below, the receiver 111 is also referred to as an "RF (Radio Frequency) chain." The multiple receivers 111 may support different frequencies.
L1フィルタ11は、K個のビームに対応するK個のL1フィルタ11を含む。L1フィルタ11には、UE100(受信部110)がK個のビームのそれぞれに対する無線品質を測定して得られたK個の測定結果Aが入力される。K個のビームのK個の測定結果Aは、物理層内部の測定結果(ビーム固有のサンプル)であり、L1でUE100(受信部110)によって検出されるSSB(SS/PBCH block)又はCSI(Channel State Information)参照信号リソースの測定結果である。L1フィルタ11は、L1において、K個のビームのK個の測定結果Aに対するL1フィルタリングを行い、L1フィルタリング後のビーム固有の測定結果A1をビーム統合/選択部12及びL3ビームフィルタ15に出力する。 The L1 filter 11 includes K L1 filters 11 corresponding to the K beams. K measurement results A obtained by the UE 100 (receiving unit 110) measuring the radio quality for each of the K beams are input to the L1 filter 11. The K measurement results A for the K beams are measurement results (beam-specific samples) within the physical layer, and are measurement results of SSB (SS/PBCH block) or CSI (Channel State Information) reference signal resources detected by the UE 100 (receiving unit 110) in L1. The L1 filter 11 performs L1 filtering on the K measurement results A for the K beams in L1, and outputs the beam-specific measurement results A1 after L1 filtering to the beam combining/selecting unit 12 and the L3 beam filter 15.
ビーム統合/選択部12は、ビーム固有の測定結果A1を統合し、セルの無線品質(Cell quality)Bを導出し、セル品質BをL3フィルタ13に出力する。ビーム統合/選択部12の動作の設定は、gNB200からのRRCシグナリングによって提供される。 The beam integrating/selecting unit 12 integrates the beam-specific measurement results A1 , derives the cell radio quality (cell quality) B, and outputs the cell quality B to the L3 filter 13. The operation of the beam integrating/selecting unit 12 is configured by RRC signaling from the gNB 200.
L3フィルタ13は、ビーム統合/選択部12が出力する測定結果(セル品質B)に対して、L3においてフィルタリングを行い、L3フィルタリング後の測定結果Cを評価部14に出力する。L3フィルタ13の動作の設定は、gNB200からのRRCシグナリングによって提供される。L3フィルタリング後の測定結果Cは、UE100からgNB200へのL3測定報告の1つ以上の評価の入力として使用される。 The L3 filter 13 filters the measurement result (cell quality B) output by the beam combining/selection unit 12 at L3 and outputs the measurement result C after L3 filtering to the evaluation unit 14. The operation of the L3 filter 13 is configured by RRC signaling from the gNB 200. The measurement result C after L3 filtering is used as input for one or more evaluations of the L3 measurement report from the UE 100 to the gNB 200.
L3フィルタ13は、各セル測定量及び各ビーム測定量について、報告基準の評価又はL3測定報告に使用する前に次の式(1)によって測定結果をフィルタリングする:
Fn=(1-a)×Fn-1+a×Mn ・・・(1)
ここで、Mnは、物理層(L1)からの最新の測定結果である。Fnは、更新されたフィルタリングされた測定結果であり、報告基準の評価又はL3測定報告に使用される。Fn-1は、古いフィルタリングされた測定結果であり、物理層(L1)から最初の測定結果を受け取ったときにF0がM1にセットされる。
The L3 filter 13 filters the measurement results for each cell measurement and each beam measurement by the following equation (1) before using them for evaluation of reporting criteria or for L3 measurement reporting:
F n =(1-a)×F n-1 +a×M n ...(1)
where M n is the latest measurement from the physical layer (L1), F n is the updated filtered measurement, used for evaluation of reporting criteria or L3 measurement reporting, and F n-1 is the old filtered measurement, F 0 is set to M 1 when the first measurement is received from the physical layer (L1).
RRCでMeasObjectNRが設定された場合、a=1/2(ki/4)である。ここで、kiは、quantityConfigNR-List内のi番目のQuantityConfigNRの対応する測定量のフィルタ係数(filterCoefficient)であり、iは、MeasObjectNR内のquantityConfigIndexによって示される。他の測定結果の場合、a=1/2(k/4)である。ここでkは、quantityConfigによって受信された対応する測定量のフィルタ係数である。 When MeasObjectNR is configured in RRC, a = 1/2 (ki/4) , where k i is the filter coefficient (filterCoefficient) of the corresponding measurement of the i-th QuantityConfigNR in the quantityConfigNR-List, and i is indicated by the quantityConfigIndex in MeasObjectNR. For other measurements, a = 1/2 (k/4) , where k is the filter coefficient of the corresponding measurement received by the quantityConfig.
L3フィルタ13は、フィルタ係数kがXミリ秒に等しいサンプルレートを仮定しながら、フィルタの時間特性が異なる入力レートで保存されるようにフィルタを適応させる。Xの値は、非DRX動作を想定した1つの周波数内L1測定期間に相当し、周波数レンジに依存する。 The L3 filter 13 adapts the filter so that its time characteristics are preserved at different input rates, while assuming a sample rate where the filter coefficient k is equal to X milliseconds. The value of X corresponds to one intra-frequency L1 measurement period assuming non-DRX operation and is frequency range dependent.
なお、フィルタ係数kが0(ゼロ)にセットされている場合、L3フィルタリングは適用されない。 Note that if the filter coefficient k is set to 0 (zero), L3 filtering is not applied.
評価部14は、gNB200へのL3測定報告Dが必要か否かの評価を行う。この評価は、基準ポイントCでの複数の測定フロー、例えば、異なる測定結果の比較に基づいて行うことができる。これは入力Cと入力C1で示されている。評価部14は、少なくとも新しい測定結果がポイントC、C1で報告されるたびに、報告基準(reporting criteria)に対応する測定報告イベント評価を行う。報告基準の設定は、gNB200からのRRCシグナリングによって提供される。L3測定報告Dは、UE100からgNB200へ送信される測定報告情報(RRCメッセージ)を表す。L3測定報告Dには、報告をトリガした関連する測定設定の測定IDが含まれる。 The evaluation unit 14 evaluates whether an L3 measurement report D to the gNB 200 is necessary. This evaluation can be made based on a comparison of multiple measurement flows at reference point C, for example, different measurement results. This is shown by input C and input C1 . The evaluation unit 14 performs a measurement reporting event evaluation corresponding to the reporting criteria at least every time a new measurement result is reported at points C and C1 . The reporting criteria setting is provided by RRC signaling from the gNB 200. The L3 measurement report D represents measurement report information (RRC message) transmitted from the UE 100 to the gNB 200. The L3 measurement report D includes the measurement ID of the associated measurement setting that triggered the report.
L3ビームフィルタ15は、k個の測定結果A1(つまり、ビーム固有の測定結果)に対してビーム単位でフィルタリングを行い、k個の測定結果E(つまり、ビーム固有の測定結果)をビーム選択部16に出力される。測定結果Eは、報告されるX個の測定結果を選択するための入力として使用される。 The L3 beam filter 15 filters the k measurement results A 1 (i.e., beam-specific measurement results) on a per-beam basis and outputs k measurement results E (i.e., beam-specific measurement results) to the beam selection unit 16. The measurement results E are used as input for selecting the X measurement results to be reported.
ビーム選択部16は、k個の測定結果EからX個の測定結果Fを選択し、X個の測定結果Fを出力する。X個の測定結果Fは、E100からgNB200へ送信される測定報告情報(RRCメッセージ)に含まれるビーム測定情報である。 The beam selection unit 16 selects X measurement results F from the k measurement results E and outputs the X measurement results F. The X measurement results F are beam measurement information included in the measurement report information (RRC message) transmitted from E100 to gNB200.
(1.3)AI/ML技術の概要
AI/ML技術の概要について説明する。実施形態に係る移動通信システム1は、AI/ML技術を無線通信(すなわち、エアインターフェイス)に適用する。
(1.3) Overview of AI/ML Technology An overview of the AI/ML technology will be described. A mobile communication system 1 according to an embodiment applies the AI/ML technology to wireless communication (i.e., air interface).
図7は、実施形態に係る移動通信システム1におけるAI/ML技術の機能ブロック構成を示す図である。当該機能ブロック構成は、データ収集部A1と、モデル学習部A2と、モデル推論部A3と、データ処理部A4とを有する。 FIG. 7 is a diagram showing the functional block configuration of AI/ML technology in a mobile communication system 1 according to an embodiment. The functional block configuration includes a data collection unit A1, a model learning unit A2, a model inference unit A3, and a data processing unit A4.
データ収集部A1は、入力データ、具体的には、学習用データ及び推論用データを収集し、学習用データをモデル学習部A2に出力し、推論用データをモデル推論部A3に出力する。データ収集部A1は、データ収集部A1が設けられる自装置におけるデータを入力データとして取得してもよい。データ収集部A1は、別の装置におけるデータを入力データとして取得してもよい。 The data collection unit A1 collects input data, specifically, learning data and inference data, and outputs the learning data to the model learning unit A2 and the inference data to the model inference unit A3. The data collection unit A1 may acquire data from the device on which the data collection unit A1 is installed as input data. The data collection unit A1 may also acquire data from another device as input data.
モデル学習部A2は、モデル学習(「学習処理」とも称する)を行う。具体的には、モデル学習部A2は、学習用データを用いた機械学習により学習モデル(以下、「モデル」又は「AI/MLモデル」とも称する。)のパラメータを最適化し、学習済みモデルを導出(生成、更新)し、学習済みモデルをモデル推論部A3に出力する。モデルは、AI/ML技術を適用して、入力のセットに基づいて出力のセットを生成するデータ駆動型アルゴリズムである。例えば、
y=ax+b
で考えると、a(傾き)及びb(切片)がパラメータであって、これらを最適化していくことが機械学習に相当する。一般的に、機械学習には、教師あり学習(supervised learning)、教師なし学習(unsupervised learning)、及び強化学習(reinforcement learning)がある。教師あり学習は、学習用データに正解データを用いる方法である。教師なし学習は、学習用データに正解データを用いない方法である。例えば、教師なし学習では、大量の学習用データから特徴点を覚え、正解の判断(範囲の推定)を行う。強化学習は、出力結果にスコアを付けて、スコアを最大化する方法を学習する方法である。
The model learning unit A2 performs model learning (also referred to as "learning processing"). Specifically, the model learning unit A2 optimizes parameters of a learning model (hereinafter also referred to as "model" or "AI/ML model") through machine learning using learning data, derives (generates, updates) a learned model, and outputs the learned model to the model inference unit A3. The model is a data-driven algorithm that applies AI/ML technology to generate a set of outputs based on a set of inputs. For example,
y = ax + b
In this sense, a (slope) and b (intercept) are parameters, and optimizing these corresponds to machine learning. Generally, machine learning is classified into supervised learning, unsupervised learning, and reinforcement learning. Supervised learning is a method that uses correct answer data as training data. Unsupervised learning is a method that does not use correct answer data as training data. For example, in unsupervised learning, feature points are memorized from a large amount of training data, and the correct answer is determined (range estimation). Reinforcement learning is a method that assigns a score to the output result and learns how to maximize the score.
モデル推論部A3は、モデル推論(「推論処理」とも称する)を行う。具体的には、モデル推論部A3は、学習済みモデルを用いて推論用データから出力を推論し、推論結果データをデータ処理部A4に出力する。例えば、
y=ax+b
で考えると、xが推論用データであって、yが推論結果データに相当する。なお、「y=ax+b」はモデルである。傾き及び切片が最適化されたモデル、例えば「y=5x+3」は学習済みモデルである。ここで、モデルの手法は様々であり、線形回帰分析、ニューラルネットワーク、決定木分析等がある。上記の「y=ax+b」は線形回帰分析の一種と考えることができる。モデル推論部A3は、モデル学習部A2に対してモデル性能フィードバックを行ってもよい。
The model inference unit A3 performs model inference (also referred to as "inference processing"). Specifically, the model inference unit A3 infers an output from inference data using a trained model, and outputs inference result data to the data processing unit A4. For example,
y = ax + b
In this case, x corresponds to the inference data and y corresponds to the inference result data. Note that "y = ax + b" is a model. A model with optimized slope and intercept, for example, "y = 5x + 3", is a trained model. There are various modeling techniques, including linear regression analysis, neural networks, and decision tree analysis. The above "y = ax + b" can be considered a type of linear regression analysis. The model inference unit A3 may provide model performance feedback to the model learning unit A2.
データ処理部A4は、推論結果データを受け取り、推論結果データを利用する処理を行う。 The data processing unit A4 receives the inference result data and performs processing that utilizes the inference result data.
モデル学習及び/又はモデル推論をネットワーク5側で行うケース、すなわち、AI/MLモデルをネットワーク5が有するケースをネットワーク側(Network-sided)モデルと称する。モデル学習及び/又はモデル推論をUE100側で行うケース、すなわち、AI/MLモデルをUE100が有するケースをUE側(UE-sided)モデルと称する。 A case in which model learning and/or model inference is performed on the network 5 side, i.e., a case in which the network 5 has an AI/ML model, is referred to as a network-sided model. A case in which model learning and/or model inference is performed on the UE 100 side, i.e., a case in which the UE 100 has an AI/ML model, is referred to as a UE-sided model.
(1.4)UE側モデルを用いたモビリティ制御
実施形態では、AI/ML技術をUE100のモビリティ制御に適用する。具体的には、UE100がRRCコネクティッド状態であるときにRRCレイヤ主導でUE100のサービングセル(プライマリセル)を切り替えるハンドオーバにAI/ML技術を適用する。
(1.4) Mobility Control Using UE-Side Model In the embodiment, the AI/ML technique is applied to mobility control of the UE 100. Specifically, when the UE 100 is in an RRC-connected state, the AI/ML technique is applied to handover that switches the serving cell (primary cell) of the UE 100 under the initiative of the RRC layer.
UE100は、ある測定対象の測定結果から別の測定対象の測定結果を推論するためのAI/MLモデルを有する。実施形態に係るAI/MLモデルは、ある測定対象の測定結果を推論用データ(入力パラメータ)として、別の測定対象の測定結果を出力するモデルである。測定対象は、測定オブジェクトと同義であってもよい。 UE100 has an AI/ML model for inferring the measurement results of one measurement target from the measurement results of another measurement target. The AI/ML model of this embodiment is a model that uses the measurement results of one measurement target as inference data (input parameters) and outputs the measurement results of another measurement target. The measurement target may be synonymous with the measurement object.
ここで、「測定対象」は、セル、周波数、ビーム、参照信号、及び測定オブジェクトのうち1つである。参照信号(RS)は、SSB(同期信号(SS)/物理ブローキャストチャネル(PBCH))、チャネル状態情報(CSI)-RS、又は復調(DM)-RS等であってもよい。当該参照信号(RS)は、位置測位(Positioning)-RSであってもよい。当該参照信号(RS)は、その他の参照信号であってもよい。実施形態では、測定対象がセル(又は周波数)である一例について主として説明する。 Here, the "measurement target" is one of a cell, frequency, beam, reference signal, and measurement object. The reference signal (RS) may be SSB (synchronization signal (SS)/physical broadcast channel (PBCH)), channel state information (CSI)-RS, demodulation (DM)-RS, etc. The reference signal (RS) may be a positioning-RS. The reference signal (RS) may also be another reference signal. In the embodiment, an example in which the measurement target is a cell (or frequency) will be mainly described.
「測定結果」は、測定対象のIDとその測定値とのセットであってもよい。「測定値」は、参照信号受信電力(RSRP)、参照信号無線品質(RSRQ)、信号対干渉雑音比(SINR)、ビット誤り率(BER)、又はブロック誤り率(BLER)等であってもよい。 The "measurement result" may be a set of the ID of the measurement target and its measurement value. The "measurement value" may be reference signal received power (RSRP), reference signal radio quality (RSRQ), signal-to-interference-plus-noise ratio (SINR), bit error rate (BER), block error rate (BLER), etc.
「推論用データ」は、ある測定対象の測定結果を入力パラメータの1つとして、他のパラメータを含んでもよい。他のパラメータは、UE100の地理的位置の情報、UE100の移動速度の情報、測定に用いた受信機111の情報、及び/又は測定対象の属性(例えば周波数等)の情報であってもよい。UE100が有するAI/MLモデルは、これらのパラメータの相関関係をモデル学習により学習済みであるものとする。少なくとも部分的に学習済みのAI/MLモデルがgNB200からUE100に設定されてもよい。例えば、gNB200とUE100との通信開始時にAI/MLモデルがgNB200からUE100に転送されてもよい。或いは、UE100は、様々な環境でモデル学習を行うことで学習済みのAI/MLモデルを生成してもよい。 The "inference data" may include the measurement results of a certain measurement object as one of the input parameters, and other parameters. The other parameters may be information on the geographical location of UE100, information on the movement speed of UE100, information on the receiver 111 used for the measurement, and/or information on the attributes of the measurement object (e.g., frequency, etc.). The AI/ML model possessed by UE100 is assumed to have learned the correlation between these parameters through model learning. An at least partially learned AI/ML model may be set to UE100 by gNB200. For example, the AI/ML model may be transferred from gNB200 to UE100 when communication between gNB200 and UE100 begins. Alternatively, UE100 may generate a learned AI/ML model by performing model learning in various environments.
図8は、実施形態に係る移動通信システム1の動作シナリオの一例を示す図である。 FIG. 8 is a diagram showing an example of an operation scenario of the mobile communication system 1 according to the embodiment.
図示の例では、UE100は、gNB200のセルaをサービングセルとしてRRCコネクティッド状態である。このサービングセルと一部重複して複数の隣接セル(セルb、セルc、セルd)が存在する。隣接セルは、サービングセルと同じgNB200が管理していてもよい。当該隣接セルは、サービングセルと異なるgNB200が管理していてもよい。各セルの周波数は、同じであってもよいし、異なっていてもよい。 In the example shown, UE100 is in an RRC connected state with cell a of gNB200 as the serving cell. There are multiple neighboring cells (cell b, cell c, and cell d) that partially overlap with this serving cell. The neighboring cells may be managed by the same gNB200 as the serving cell. The neighboring cells may also be managed by a gNB200 different from the serving cell. The frequencies of each cell may be the same or different.
ステップS1(測定設定)において、gNB200は、測定設定を含むRRCメッセージをUE100に送信する。UE100は、測定設定を受信し、測定設定に従った測定を開始する。測定設定は、測定オブジェクト(及びそのID)、報告設定(及びそのID)、測定IDを含み得る。 In step S1 (measurement configuration), gNB200 sends an RRC message including measurement configuration to UE100. UE100 receives the measurement configuration and starts measurement according to the measurement configuration. The measurement configuration may include a measurement object (and its ID), a reporting configuration (and its ID), and a measurement ID.
ステップS2(測定)において、UE100は、測定オブジェクトに応じて定められる測定対象に対する測定を行う。例えば、UE100は、測定オブジェクトで指定された各周波数に属する各セルの受信品質を測定する。 In step S2 (measurement), UE100 performs measurements on the measurement target defined according to the measurement object. For example, UE100 measures the reception quality of each cell belonging to each frequency specified in the measurement object.
ステップS3(モデル推論)において、UE100は、ある測定対象(例えばセルa)の測定結果を推論用データとして、別のセル(例えばセルb)の測定結果をAI/MLモデル101を用いて推論する。 In step S3 (model inference), UE100 uses the measurement results of a certain measurement target (e.g., cell a) as inference data and infers the measurement results of another cell (e.g., cell b) using AI/ML model 101.
ステップS4(測定報告)において、UE100は、測定オブジェクトと関連付けられた報告設定に応じて定められるタイミングで、各セルの測定結果(推論した測定結果を含む)をRRCメッセージ(測定報告)によりgNB200に送信する。gNB200は、測定報告を受信する。gNB200は、測定報告に含まれる各セルの測定結果に基づいてUE100のモビリティ制御を行う。例えば、gNB200は、ハンドオーバのターゲットセルを決定し、現在のサービングセル(ソースセル)からターゲットセルへサービングセルを切り替えるための制御を行う。 In step S4 (measurement report), UE100 transmits the measurement results of each cell (including the inferred measurement results) to gNB200 via an RRC message (measurement report) at a timing determined according to the reporting settings associated with the measurement object. gNB200 receives the measurement report. gNB200 performs mobility control for UE100 based on the measurement results of each cell included in the measurement report. For example, gNB200 determines a target cell for handover and performs control to switch the serving cell from the current serving cell (source cell) to the target cell.
このような動作におけるモデル推論(ステップS3)では、UE100は、どの測定対象を実際に測定し、どの測定対象を推論するのかを適切に決定することが難しい場合があり得る。また、測定した測定対象と、当該測定対象の測定結果に基づいて測定結果を推論する測定対象と、の組み合わせ(すなわち、測定する測定対象と推論する測定対象との組み合わせ)が不適切である場合、モデル推論を精度よく行うことが難しい。 In model inference (step S3) during such operation, it may be difficult for UE100 to appropriately determine which measurement objects to actually measure and which measurement objects to infer. Furthermore, if the combination of the measured measurement object and the measurement object whose measurement results are inferred based on the measurement results of the measured measurement object (i.e., the combination of the measurement object to be measured and the measurement object to be inferred) is inappropriate, it is difficult to perform model inference accurately.
(1.5)第1実施形態に係る動作
まず、第1実施形態に係る動作の概要について説明する。第1実施形態では、UE側モデルを用いて例えばセルレベル(セル単位)での測定結果のモデル推論を行う場合において、適切なモデル推論を行うことが可能な動作について説明する。
(1.5) Operation According to First Embodiment First, an overview of the operation according to the first embodiment will be described. In the first embodiment, an operation capable of performing appropriate model inference when performing model inference of measurement results at, for example, a cell level (cell unit) using a UE-side model will be described.
第1実施形態では、図8のステップS1(測定設定)において、UE100は、UE100が実際に受信品質を測定する第1測定対象と、第1測定対象の測定結果に基づいてUE100が受信品質の測定結果を推論可能な第2測定対象と、の組み合わせを特定するための情報をgNB200から受信する。そして、図8のステップS2(測定)及びステップS3(モデル推論)において、UE100は、第1測定対象の測定により第1測定結果を得た後、AI/MLモデル101を用いて第2測定対象の第2測定結果を第1測定結果に基づいて推論する。 In the first embodiment, in step S1 (measurement setting) of FIG. 8, UE100 receives information from gNB200 for identifying a combination of a first measurement object for which UE100 actually measures reception quality and a second measurement object for which UE100 can infer the measurement result of reception quality based on the measurement result of the first measurement object. Then, in steps S2 (measurement) and S3 (model inference) of FIG. 8, UE100 obtains the first measurement result by measuring the first measurement object, and then infers the second measurement result of the second measurement object based on the first measurement result using AI/ML model 101.
このように、第1実施形態によれば、UE100は、UE100が実際に受信品質を測定する第1測定対象と、第1測定対象の測定結果に基づいてUE100が受信品質の測定結果を推論可能な第2測定対象と、の組み合わせを特定するための情報をgNB200から受信するため、測定する測定対象と推論する測定対象との組み合わせとして適切な組み合わせを用いることが可能になる。よって、UE100は、モデル推論を精度よく行うことができる。 In this way, according to the first embodiment, UE100 receives from gNB200 information for identifying a combination of a first measurement object for which UE100 actually measures reception quality and a second measurement object for which UE100 can infer the measurement result of reception quality based on the measurement result of the first measurement object, thereby making it possible to use an appropriate combination as the combination of measurement object to be measured and measurement object to be inferred. Therefore, UE100 can perform model inference with high accuracy.
このような動作を行うUE100は、UE100が実際に受信品質を測定する第1測定対象と、第1測定対象の測定結果に基づいてUE100が受信品質の測定結果を推論可能な第2測定対象と、の組み合わせを特定するための情報をgNB200から受信する受信部110と、第1測定対象の測定により第1測定結果を得た後、AI/MLモデル101を用いて第2測定対象の第2測定結果を第1測定結果に基づいて推論する制御部130と、を有する(図2参照)。一方、gNB200は、UE100が実際に受信品質を測定する第1測定対象と、第1測定対象の測定結果に基づいてUE100が受信品質の測定結果をAI/MLモデル101を用いて推論可能な第2測定対象と、の組み合わせを特定するための情報をUE100に送信する送信部210を有する(図3参照)。 The UE100 that performs such operations has a receiver 110 that receives from the gNB200 information for identifying a combination of a first measurement object for which the UE100 actually measures the reception quality and a second measurement object for which the UE100 can infer the measurement result of the reception quality based on the measurement result of the first measurement object, and a control unit 130 that, after obtaining a first measurement result by measuring the first measurement object, infers a second measurement result of the second measurement object based on the first measurement result using the AI/ML model 101 (see Figure 2). On the other hand, the gNB200 has a transmitter 210 that transmits to the UE100 information for identifying a combination of the first measurement object for which the UE100 actually measures the reception quality and the second measurement object for which the UE100 can infer the measurement result of the reception quality using the AI/ML model 101 based on the measurement result of the first measurement object (see Figure 3).
第1測定対象及び第2測定対象のそれぞれは、セル、周波数、ビーム、参照信号、及び測定オブジェクトのうち1つである。例えば、各測定対象は、セル(又は周波数)である。 Each of the first measurement object and the second measurement object is one of a cell, a frequency, a beam, a reference signal, and a measurement object. For example, each measurement object is a cell (or a frequency).
UE100は、測定する第1測定対象と推論する第2測定対象との組み合わせを示す提案情報をgNB200に送信してもよい。当該組み合わせは、UE100のAI/MLモデル101がサポートしている測定対象の組み合わせであってもよい。 UE100 may transmit to gNB200 proposal information indicating a combination of a first measurement object to be measured and a second measurement object to be inferred. The combination may be a combination of measurement objects supported by UE100's AI/ML model 101.
測定する第1測定対象と推論する第2測定対象との組み合わせは、同じ場所(co-location)から電波を送信する第1測定対象及び第2測定対象の組み合わせであってもよい。具体的には、同一アンテナ又は同じ位置から電波を送信している第1測定対象及び第2測定対象の組み合わせは、電波の伝搬経路(パス)が空間的に同一又は近似と見なせる。gNB200は、当該組み合わせの情報をUE100に通知する。これにより、UE100における推論精度を向上させることが可能である。 The combination of a first measurement target to be measured and a second measurement target to be inferred may be a combination of a first measurement target and a second measurement target that transmit radio waves from the same location (co-location). Specifically, a combination of a first measurement target and a second measurement target that transmit radio waves from the same antenna or the same location can be considered to have spatially identical or similar radio wave propagation paths. The gNB200 notifies the UE100 of information about this combination. This makes it possible to improve the inference accuracy in the UE100.
例えば、同じアンテナから800MHzセルと2GHzセルの送信を行っている場合のように、別周波数の異なるセルが、物理的に同じ位置と見なせるアンテナから送信される実装がある。この場合、周波数によってチャネル特性は周波数に応じて異なるが、これらチャネル応答はある程度の相関性を持つことが期待できる。また、同一アンテナであれば電波のパスは同一であるため、周波数の違いによる伝搬損失(パスロス)及び/又は反射損失/回折損失の違いを推論すればよい。 For example, there are implementations where different cells with different frequencies transmit from antennas that can be considered to be in the same physical location, such as when an 800 MHz cell and a 2 GHz cell are transmitting from the same antenna. In this case, the channel characteristics vary depending on the frequency, but these channel responses can be expected to have a certain degree of correlation. Furthermore, since the radio wave path is the same when using the same antenna, it is possible to infer differences in propagation loss (path loss) and/or reflection loss/diffraction loss due to differences in frequency.
次に、第1実施形態に係る移動通信システム1の動作の具体例について説明する。図9は、第1実施形態に係る移動通信システム1の動作の具体例を示す図である。 Next, a specific example of the operation of the mobile communication system 1 according to the first embodiment will be described. Figure 9 is a diagram showing a specific example of the operation of the mobile communication system 1 according to the first embodiment.
ステップS101において、UE100は、gNB200のセルをサービングセルとしてRRCコネクティッド状態である。 In step S101, UE100 is in an RRC connected state with the cell of gNB200 as the serving cell.
ステップS102において、UE100は、自身が有しているAI/MLモデル101がサポートしている入力データ(実測する測定対象)と出力データ(推論する測定対象)を示す提案情報(プリファレンス情報)をgNB200に送信してもよい。gNB200は、当該提案情報(プリファレンス情報)を受信してもよい。UE100は、RRCメッセージの一種であるUE Assistance Informationメッセージ又はUE Capabilityメッセージに当該提案情報(プリファレンス情報)を含めてgNB200に送信してもよい。 In step S102, UE100 may transmit to gNB200 proposal information (preference information) indicating the input data (measurement targets to be measured) and output data (measurement targets to be inferred) supported by its own AI/ML model 101. gNB200 may receive the proposal information (preference information). UE100 may include the proposal information (preference information) in a UE Assistance Information message or a UE Capability message, which are types of RRC messages, and transmit the message to gNB200.
ステップS103において、gNB200は、測定設定を含むRRCメッセージ(例えば、RRC Reconfigurationメッセージ)をUE100に送信する。UE100は、当該RRCメッセージを受信する。測定設定は、測定ID、測定オブジェクト及びそのID、報告設定及びそのIDのうち、少なくとも1つを含む。ステップS103のRRCメッセージ(測定設定)は、UE100のAI/MLモデル101を設定(指定)するための情報、例えば、モデルIDを含んでもよい。 In step S103, gNB200 transmits an RRC message (e.g., an RRC Reconfiguration message) including measurement settings to UE100. UE100 receives the RRC message. The measurement settings include at least one of a measurement ID, a measurement object and its ID, and a reporting setting and its ID. The RRC message (measurement settings) of step S103 may include information for configuring (specifying) the AI/ML model 101 of UE100, such as a model ID.
ステップS103のRRCメッセージ(測定設定)は、測定する第1測定対象と推論する第2測定対象(推論可能な測定対象)の組み合わせを特定するための情報(以下、「特定用情報」とも称する」)を含む。gNB200は、UE100に設定済みのモデルを考慮して、モデル推論において入力データとする第1測定対象と出力(推論)結果とする第2測定対象とを設定してもよい。gNB200は、モビリティ制御で重要(主要情報)となる測定対象を、測定する第1測定対象として設定してもよい。gNB200は、モビリティ制御で参考情報程度の測定対象を第2測定対象として設定してもよい。当該組み合わせは、同一パスと見なせる測定対象の組み合わせ、すなわち、同一アンテナ又は同じ位置から送信している測定対象の組み合わせであってもよい。特定用情報は、測定する測定対象及び/又は推論する測定対象を、セルID、周波数ID(ARFCN:Absolute Radio-Frequency Channel Number)、測定オブジェクトID、測定ID、及び/又は参照信号IDで指定してもよい。 The RRC message (measurement setting) of step S103 includes information (hereinafter also referred to as "identification information") for identifying the combination of the first measurement object to be measured and the second measurement object to be inferred (measurement object that can be inferred). The gNB200 may set the first measurement object to be used as input data in model inference and the second measurement object to be used as the output (inference) result, taking into account the model already set in the UE100. The gNB200 may set a measurement object that is important (main information) in mobility control as the first measurement object to be measured. The gNB200 may set a measurement object that is only reference information in mobility control as the second measurement object. The combination may be a combination of measurement objects that can be considered to be the same path, i.e., a combination of measurement objects transmitting from the same antenna or the same location. The identification information may specify the measurement target to be measured and/or the measurement target to be inferred using a cell ID, frequency ID (ARFCN: Absolute Radio-Frequency Channel Number), measurement object ID, measurement ID, and/or reference signal ID.
ステップS104において、UE100は、特定用情報に基づいて、測定する第1測定対象に対する測定を行う。また、UE100は、第1測定対象の第1測定結果に基づいて、推論する第2測定対象の第2測定結果をAI/MLモデル101を用いて推論する。例えば、当該組み合わせが「セル#1 on Freq#1」と「セル#2 on Freq#2」である場合、UE100は、セル#1のRSRP(Reference Signal Received Power)を測定した後、Freq#1とFreq#2との離調周波数(差分)を考慮してセル#2のRSRPを推論してもよい。また、UE100は、タイミングアドバンス値とセル#1のRSRPとを考慮して、見通し内であるか否かを推定したり、反射/回折の有無を推定したりして、当該伝搬路の推定情報を入力データとしてモデル推論を行ってもよい。 In step S104, UE100 performs measurements on the first measurement object to be measured based on the identification information. Furthermore, UE100 infers the second measurement result of the second measurement object to be inferred using AI/ML model 101 based on the first measurement result of the first measurement object. For example, if the combination is "cell #1 on Freq #1" and "cell #2 on Freq #2," UE100 may measure the RSRP (Reference Signal Received Power) of cell #1 and then infer the RSRP of cell #2 by taking into account the detuning frequency (difference) between Freq #1 and Freq #2. Furthermore, UE100 may perform model inference using the estimated information of the propagation path as input data, by estimating whether the propagation path is within line of sight or whether there is reflection/diffraction, taking into account the timing advance value and the RSRP of cell #1.
ステップS105において、UE100は、ステップS104で測定した第1測定結果及び推論した測定結果を含むメッセージをgNB200に送信する。gNB200は、当該メッセージを受信する。実施形態では、当該メッセージはL3測定報告メッセージであるが、当該メッセージはUE Assistance Informationメッセージであってもよい。 In step S105, UE100 transmits a message to gNB200 including the first measurement result measured in step S104 and the inferred measurement result. gNB200 receives the message. In the embodiment, the message is an L3 measurement report message, but the message may also be a UE Assistance Information message.
ステップS106において、gNB200は、ステップS105でUE100から受信した各測定結果に基づいてUE100のモビリティ制御(例えば、ハンドオーバ制御)を行う。 In step S106, gNB200 performs mobility control (e.g., handover control) for UE100 based on the measurement results received from UE100 in step S105.
(2)第2実施形態
第2実施形態について、第1実施形態との相違点を主として説明する。第2実施形態に係る動作は、第1実施形態に係る動作を前提とした実施形態であってもよい。或いは、第2実施形態に係る動作は、第1実施形態に係る動作を前提としない実施形態であってもよい。
(2) Second Embodiment The second embodiment will be described mainly focusing on the differences from the first embodiment. The operation of the second embodiment may be based on the operation of the first embodiment. Alternatively, the operation of the second embodiment may not be based on the operation of the first embodiment.
第2実施形態では、UE100は、第1実施形態に係る動作又は他の方法により、測定する第1測定対象と推論する第2測定対象との組み合わせを特定できるものとする。他の方法は、例えばUE側モデル(AI/MLモデル101)を使用した方法であってもよいが、第1実施形態に係る動作に比べて推論精度が低下し得る。 In the second embodiment, the UE 100 is capable of identifying the combination of the first measurement object to be measured and the second measurement object to be inferred, using the operation according to the first embodiment or another method. The other method may be, for example, a method using a UE-side model (AI/ML model 101), but the inference accuracy may be lower than that of the operation according to the first embodiment.
上述のように、測定報告において、UE100は、測定した第1測定結果と推論した第2測定結果とをgNB200に送信する。ここで、gNB200は、UE100から受信した各測定結果が測定値であるか又は推論値であるかを明確に識別できないと、適切なモビリティ制御を行うことができない懸念がある。また、測定結果が推論値である場合、その推論精度をgNB200が把握できないと、gNB200が適切なモビリティ制御を行うことができない懸念がある。 As described above, in the measurement report, UE100 transmits the measured first measurement result and the inferred second measurement result to gNB200. Here, if gNB200 cannot clearly distinguish whether each measurement result received from UE100 is a measured value or an inferred value, there is a concern that it will not be able to perform appropriate mobility control. Furthermore, if the measurement result is an inferred value, there is a concern that gNB200 will not be able to perform appropriate mobility control if it cannot grasp the accuracy of the inference.
第2実施形態では、UE100におけるモデル推論に関する情報を測定報告に付加することにより、そのような問題を解決する。UE100は、RRCメッセージである測定報告をgNB200に送信する際に、測定された第1測定結果と、推論された第2測定結果と、付加情報(補助情報)とを当該測定報告に含めてもよい。 In the second embodiment, this problem is solved by adding information about model inference in UE100 to the measurement report. When UE100 transmits a measurement report, which is an RRC message, to gNB200, UE100 may include the measured first measurement result, the inferred second measurement result, and additional information (auxiliary information) in the measurement report.
まず、図8を参照して、第2実施形態に係る動作の概要について説明する。第2実施形態では、UE側モデルを用いて例えばセルレベル(セル単位)での測定結果のモデル推論を行う場合において、gNB200が適切なモビリティ制御を行うことが可能な動作について説明する。 First, an overview of the operation according to the second embodiment will be described with reference to Figure 8. In the second embodiment, we will describe the operation that enables the gNB200 to perform appropriate mobility control when performing model inference of measurement results, for example, at the cell level (cell unit) using a UE-side model.
ステップS2(測定)において、UE100は、第1測定対象の受信品質を測定して第1測定結果を得る。 In step S2 (measurement), UE100 measures the reception quality of the first measurement target and obtains a first measurement result.
ステップS3(モデル推論)において、UE100は、AI/MLモデル101を用いて第2測定対象の受信品質の第2測定結果を第1測定結果に基づいて推論する。 In step S3 (model inference), UE 100 uses AI/ML model 101 to infer a second measurement result of the reception quality of the second measurement target based on the first measurement result.
ステップS4(測定報告)において、UE100は、測定した第1測定結果と推論した第2測定結果とをgNB200に送信する。ここで、UE100は、送信される各測定結果が測定値であるか又は推論値であるかを識別するための識別情報をgNB200に送信する。 In step S4 (measurement report), UE100 transmits the measured first measurement result and the inferred second measurement result to gNB200. Here, UE100 transmits identification information to gNB200 to identify whether each transmitted measurement result is a measured value or an inferred value.
このように、第1実施形態によれば、UE100は、送信される各測定結果が測定値であるか又は推論値であるかを識別するための識別情報をgNB200に送信する。これにより、gNB200は、UE100から受信した各測定結果が測定値であるか又は推論値であるかを明確に識別できるため、適切なモビリティ制御を行うことが可能になる。 In this way, according to the first embodiment, UE100 transmits to gNB200 identification information for identifying whether each measurement result to be transmitted is a measured value or an inferred value. This allows gNB200 to clearly identify whether each measurement result received from UE100 is a measured value or an inferred value, thereby enabling appropriate mobility control.
このような動作を行うUE100は、第1測定対象の受信品質を測定して第1測定結果を得た後、AI/MLモデル101を用いて第2測定対象の受信品質の第2測定結果を第1測定結果に基づいて推論する制御部130と、測定した第1測定結果と推論した第2測定結果と識別情報とをgNB200に送信する送信部120と、を有する(図2参照)。一方、gNB200は、第1測定結果と第2測定結果と識別情報とをUE100から受信する受信部220を有する(図3参照)。 UE100, which performs such operations, has a control unit 130 that measures the reception quality of a first measurement object to obtain a first measurement result, and then uses AI/ML model 101 to infer a second measurement result of the reception quality of a second measurement object based on the first measurement result, and a transmission unit 120 that transmits the measured first measurement result, the inferred second measurement result, and identification information to gNB200 (see Figure 2). Meanwhile, gNB200 has a reception unit 220 that receives the first measurement result, the second measurement result, and identification information from UE100 (see Figure 3).
UE100は、推論した第2測定結果の推論精度を示す情報をgNB200に送信してもよい。推論精度は、推定の尤もらしさを表す尤度であってもよい。推論精度は、モデル推論時にAI/MLモデル101から出力されたものであってもよい。これにより、測定結果が推論値である場合において、その推論精度をgNB200が把握できるため、gNB200が適切なモビリティ制御を行うことが可能になる。 UE100 may transmit information indicating the inference accuracy of the inferred second measurement result to gNB200. The inference accuracy may be a likelihood indicating the likelihood of the estimation. The inference accuracy may be output from AI/ML model 101 during model inference. This allows gNB200 to grasp the inference accuracy when the measurement result is an inferred value, enabling gNB200 to perform appropriate mobility control.
UE100は、推論した第2測定結果の推論精度を示す値が閾値を超える場合に限り、推論した第2測定結果をgNB200に送信してもよい。当該閾値は、gNB200からUE100に設定されてもよい。これにより、不適切な測定結果(推論結果)がgNB200に報告されることを防止でき、gNB200が適切なモビリティ制御を行うことが可能になる。 UE100 may transmit the inferred second measurement result to gNB200 only if the value indicating the inference accuracy of the inferred second measurement result exceeds a threshold. The threshold may be set by gNB200 to UE100. This prevents inappropriate measurement results (inference results) from being reported to gNB200, enabling gNB200 to perform appropriate mobility control.
UE100は、推論に用いたAI/MLモデル101を識別するための情報(例えば、モデルID)をgNB200に送信してもよい。複数のAI/MLモデル101を有するUE100は、その中から1つのAI/MLモデル101を選択して推論に用いることが想定される。このような想定下で、推論に用いたAI/MLモデル101を識別するための情報をUE100がgNB200に通知することで、gNB200は、推論した第2測定結果(推論結果)の推論精度等を把握し得る。 UE100 may transmit information (e.g., a model ID) for identifying the AI/ML model 101 used for inference to gNB200. It is assumed that a UE100 having multiple AI/ML models 101 will select one AI/ML model 101 from among them to use for inference. Under such assumptions, by UE100 notifying gNB200 of information for identifying the AI/ML model 101 used for inference, gNB200 can grasp the inference accuracy, etc. of the inferred second measurement result (inference result).
次に、第2実施形態に係る移動通信システム1の動作の具体例について説明する。図10は、第2実施形態に係る移動通信システム1の動作の具体例を示す図である。 Next, a specific example of the operation of the mobile communication system 1 according to the second embodiment will be described. Figure 10 is a diagram showing a specific example of the operation of the mobile communication system 1 according to the second embodiment.
ステップS201において、UE100は、gNB200のセルをサービングセルとしてRRCコネクティッド状態である。 In step S201, UE100 is in an RRC connected state with the cell of gNB200 as the serving cell.
ステップS202において、gNB200は、測定設定を含むRRCメッセージ(例えば、RRC Reconfigurationメッセージ)をUE100に送信する。UE100は、当該RRCメッセージを受信する。測定設定は、測定ID、測定オブジェクト及びそのID、報告設定及びそのIDのうち、少なくとも1つを含む。 In step S202, gNB200 transmits an RRC message (e.g., an RRC Reconfiguration message) including measurement settings to UE100. UE100 receives the RRC message. The measurement settings include at least one of a measurement ID, a measurement object and its ID, and a reporting setting and its ID.
ステップS202のRRCメッセージ(測定設定)は、1)実測値か推論値かを識別する情報を付与するか否かの設定、2)推論結果の精度を報告するか否かの設定、3)推論精度の閾値、4)推論に用いたモデルIDを報告するか否かの設定のうち、少なくとも1つの設定を含んでもよい。 The RRC message (measurement settings) in step S202 may include at least one of the following settings: 1) whether to provide information identifying whether the value is an actual measurement or an inferred value; 2) whether to report the accuracy of the inference result; 3) a threshold for the inference accuracy; and 4) whether to report the model ID used for the inference.
ステップS203において、UE100は、測定する第1測定対象に対する測定を行う。また、UE100は、第1測定対象の第1測定結果に基づいて、推論する第2測定対象の第2測定結果をAI/MLモデル101を用いて推論する。UE100は、推論した第2測定結果の推論精度をAI/MLモデル101から取得し、当該推論精度を示す値を閾値と比較し、閾値を下回る第2測定結果(推論値)を破棄(すなわち、報告対象から除外)してもよい。 In step S203, UE 100 performs a measurement on the first measurement object to be measured. UE 100 also infers a second measurement result of a second measurement object to be inferred based on the first measurement result of the first measurement object using AI/ML model 101. UE 100 may obtain the inference accuracy of the inferred second measurement result from AI/ML model 101, compare the value indicating the inference accuracy with a threshold, and discard (i.e., exclude from reporting) second measurement results (inferred values) that fall below the threshold.
ステップS204において、UE100は、ステップS204で測定した第1測定結果及び推論した測定結果と、付加情報(補助情報)とを含むメッセージをgNB200に送信する。gNB200は、当該メッセージを受信する。実施形態では、当該メッセージはL3測定報告メッセージであるが、当該メッセージはUE Assistance Informationメッセージであってもよい。 In step S204, UE100 transmits a message to gNB200 including the first measurement result measured in step S204, the inferred measurement result, and additional information (auxiliary information). gNB200 receives the message. In the embodiment, the message is an L3 measurement report message, but the message may also be a UE Assistance Information message.
ステップS204の付加情報は、測定IDごと又は測定結果ごとに設けられてもよい。当該付加情報は、a)実測値か又は推論値かを識別するための識別情報、b)推論結果の精度の情報(例えば[%])、c)推論に用いたモデルIDのうち、少なくとも1つを含んでもよい。 The additional information in step S204 may be provided for each measurement ID or each measurement result. The additional information may include at least one of the following: a) identification information for distinguishing between an actual measurement value and an inferred value; b) information on the accuracy of the inference result (e.g., [%]); and c) the model ID used for the inference.
ステップS205において、gNB200は、ステップS205でUE100から受信した各測定結果に基づいてUE100のモビリティ制御(例えば、ハンドオーバ制御)を行う。 In step S205, gNB200 performs mobility control (e.g., handover control) for UE100 based on the measurement results received from UE100 in step S205.
gNB200は、a)実測値か又は推論値かを識別するための識別情報に基づいて、実測値を推論値よりも優先(信頼)して、各種決定(例えばハンドオーバ決定)を行ってもよい。例えば、gNB200は、推論精度が低いという前提下で、実測値を優先して各種決定を行ってもよい。 The gNB200 may make various decisions (e.g., handover decisions) by prioritizing (trusting) the actual measured value over the inferred value based on a) identification information for distinguishing between an actual measured value and an inferred value. For example, the gNB200 may make various decisions by prioritizing the actual measured value under the assumption that the inference accuracy is low.
gNB200は、b)推論結果の精度の情報(例えば[%])に基づいて、推論精度が低い場合には実測値を優先して各種決定を行ってもよい。gNB200は、推論精度が一定基準を満たさない場合、該当する測定結果(推論値)を破棄してもよい。 The gNB200 may make various decisions based on b) information on the accuracy of the inference result (e.g., [%]) and prioritize the actual measured value if the inference accuracy is low. The gNB200 may discard the corresponding measurement result (inferred value) if the inference accuracy does not meet certain standards.
gNB200は、c)推論に用いたモデルIDに基づいて、推論値の推論精度を判断してもよい。例えば、gNB200は、モデルのデータベースを用いて、モデルIDからモデルの性能情報を入手して推論精度を判断してもよい。 The gNB200 may c) determine the inference accuracy of the inference value based on the model ID used for the inference. For example, the gNB200 may use a model database to obtain model performance information from the model ID and determine the inference accuracy.
(3)他の実施形態
上述の第1実施形態及び第2実施形態は、別個独立に実施してもよいし、第1実施形態に係る動作の少なくとも一部を第2実施形態に係る動作の少なくとも一部と組み合わせて実施してもよい。
(3) Other Embodiments The first and second embodiments described above may be implemented independently, or at least a portion of the operation according to the first embodiment may be implemented in combination with at least a portion of the operation according to the second embodiment.
上述の実施形態では、モビリティ制御の一例としてハンドオーバについて説明したが、ハンドオーバに限定されるものではなく、あらゆるモビリティ制御に適用可能である。例えば、上述の実施形態に係る動作を、条件付きハンドオーバにおけるハンドオーバ実行条件の設定に応用してもよい。或いは、上述の実施形態に係る動作を、レイヤ1及び/又はレイヤ2(L1/L2)主導のセル切り替えであるLTM(L1/L2 Triggered Mobility)に応用してもよい。この場合、上述の測定報告をL1測定報告と読み替えてもよい。或いは、RRCレイヤ主導でUE100のプライマリ・セカンダリセル(PSCell)を切り替えるPSCell変更(PSCell Change)に応用してもよい。また、RRCコネクティッド状態におけるモビリティ制御に限定されるものではなく、RRCアイドル状態又はRRCインアクティブ状態におけるモビリティ制御(例えば、セル再選択)に応用してもよい。 In the above-described embodiment, handover has been described as an example of mobility control, but the present invention is not limited to handover and can be applied to any type of mobility control. For example, the operations according to the above-described embodiment may be applied to setting handover execution conditions in conditional handover. Alternatively, the operations according to the above-described embodiment may be applied to LTM (L1/L2 Triggered Mobility), which is cell switching initiated by Layer 1 and/or Layer 2 (L1/L2). In this case, the above-described measurement report may be read as an L1 measurement report. Alternatively, the present invention may be applied to PSCell change, which switches the primary/secondary cell (PSCell) of UE 100 initiated by the RRC layer. Furthermore, the present invention is not limited to mobility control in the RRC connected state, but may also be applied to mobility control (e.g., cell reselection) in the RRC idle state or RRC inactive state.
上述の実施形態では、AI/ML技術に関連するシグナリングがRRCレイヤ(すなわち、レイヤ3)のシグナリングであるRRCメッセージである一例について主として説明したが、AI/ML関連のシグナリングは、MACレイヤ(すなわち、レイヤ2)のシグナリングであるMAC CEであってもよいし、PHYレイヤ(すなわち、L1)のシグナリングである下りリンク制御情報(DCI)及び/又は上りリンク制御情報(UCI)であってもよい。下りリンクのAI/ML関連シグナリングは、UE個別シグナリング(デディケイテッドシグナリング)であってもよいし、ブロードキャストシグナリング(例えば、SIB(System Information Block))であってもよい。AI/ML関連シグナリングは、人工知能又は機械学習に特化した新たなレイヤ(例えばAI/MLレイヤ)におけるシグナリングであってもよい。 In the above-described embodiment, an example has been described in which signaling related to AI/ML technology is an RRC message, which is signaling of the RRC layer (i.e., Layer 3). However, AI/ML-related signaling may also be MAC CE, which is signaling of the MAC layer (i.e., Layer 2), or downlink control information (DCI) and/or uplink control information (UCI), which are signaling of the PHY layer (i.e., L1). Downlink AI/ML-related signaling may be UE-specific signaling (dedicated signaling) or broadcast signaling (e.g., SIB (System Information Block)). AI/ML-related signaling may also be signaling in a new layer (e.g., the AI/ML layer) specialized for artificial intelligence or machine learning.
上述の各動作フローは、別個独立に実施する場合に限らず、2以上の動作フローを組み合わせて実施可能である。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。各フローにおいて、必ずしもすべてのステップを実行する必要は無く、一部のステップのみを実行してもよい。また、各フローにおいて、ステップ間の順序が適宜変更されてもよい。 The above-mentioned operational flows do not necessarily have to be implemented separately and independently, but can also be implemented by combining two or more operational flows. For example, some steps in one operational flow may be added to another operational flow, or some steps in one operational flow may be replaced with some steps in another operational flow. In each flow, it is not necessary to execute all steps; only some steps may be executed. Furthermore, the order of steps in each flow may be changed as appropriate.
上述の実施形態及び実施例において、基地局がNR基地局(gNB)である一例について説明したが基地局がLTE基地局(eNB)又は6G基地局であってもよい。また、基地局は、IAB(Integrated Access and Backhaul)ノード等の中継ノードであってもよい。基地局は、IABノードのDUであってもよい。また、UE100は、IABノードのMT(Mobile Termination)であってもよい。すなわち、UE100は、信号中継を行う中継器を基地局が制御するための端末機能部(通信モジュールの一種)であってもよい。このような端末機能部をMTと称する。MTの例としては、IAB-MT以外に、例えば、NCR(Network Controlled Repeater)-MT、RIS(Reconfigurable Intelligent Surface)-MTなどがある。 In the above-mentioned embodiments and examples, an example was described in which the base station is an NR base station (gNB), but the base station may also be an LTE base station (eNB) or a 6G base station. Furthermore, the base station may be a relay node such as an IAB (Integrated Access and Backhaul) node. The base station may also be a DU of an IAB node. Furthermore, UE100 may be an MT (Mobile Termination) of an IAB node. In other words, UE100 may be a terminal function unit (a type of communication module) that allows the base station to control a repeater that relays signals. Such a terminal function unit is referred to as an MT. In addition to IAB-MT, other examples of MT include NCR (Network Controlled Repeater)-MT and RIS (Reconfigurable Intelligent Surface)-MT.
また、用語「ネットワークノード」は、主として基地局を意味するが、コアネットワークの装置又は基地局の一部(CU、DU、又はRU)を意味してもよい。また、ネットワークノードは、コアネットワークの装置の少なくとも一部と基地局の少なくとも一部との組み合わせにより構成されてもよい。 Furthermore, the term "network node" primarily refers to a base station, but may also refer to a core network device or part of a base station (CU, DU, or RU). A network node may also be composed of a combination of at least part of a core network device and at least part of a base station.
UE100又はgNB200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM及び/又はDVD-ROM等の記録媒体であってもよい。また、UE100又はgNB200が行う各処理を実行する回路を集積化し、UE100又はgNB200の少なくとも一部を半導体集積回路(チップセット、SoC:System on a chip)として構成してもよい。 A program may be provided that causes a computer to execute each process performed by UE100 or gNB200. The program may be recorded on a computer-readable medium. The computer-readable medium can be used to install the program on a computer. Here, the computer-readable medium on which the program is recorded may be a non-transitory recording medium. The non-transitory recording medium is not particularly limited, but may be, for example, a CD-ROM and/or DVD-ROM. Furthermore, circuits that execute each process performed by UE100 or gNB200 may be integrated, and at least a portion of UE100 or gNB200 may be configured as a semiconductor integrated circuit (chipset, SoC: System on a chip).
UE100又はgNB200により実現される機能は、当該記載された機能を実現するようにプログラムされた、汎用プロセッサ、特定用途プロセッサ、集積回路、ASICs(Application Specific Integrated Circuits)、CPU(a Central Processing Unit)、従来型の回路、及び/又はそれらの組合せを含む、circuitry(回路)又はprocessing circuitry(処理回路)において実装されてもよい。プロセッサは、トランジスタ及び/又はその他の回路を含み、circuitry又はprocessing circuitryとみなされる。プロセッサは、メモリに格納されたプログラムを実行する、programmed processorであってもよい。本明細書において、circuitry、ユニット、手段は、記載された機能を実現するようにプログラムされたハードウェア、又は実行するハードウェアである。当該ハードウェアは、本明細書に開示されているあらゆるハードウェア、又は、当該記載された機能を実現するようにプログラムされた、又は、実行するものとして知られているあらゆるハードウェアであってもよい。当該ハードウェアがcircuitryのタイプであるとみなされるプロセッサである場合、当該circuitry、手段、又はユニットは、ハードウェアと、当該ハードウェア及び又はプロセッサを構成するために用いられるソフトウェアの組合せである。 The functions performed by UE100 or gNB200 may be implemented in circuitry or processing circuitry, including general-purpose processors, application-specific processors, integrated circuits, ASICs (Application Specific Integrated Circuits), CPUs (Central Processing Units), conventional circuits, and/or combinations thereof, programmed to perform the described functions. A processor includes transistors and/or other circuits and is considered to be circuitry or processing circuitry. A processor may also be a programmed processor that executes a program stored in memory. In this specification, circuitry, unit, or means refers to hardware that is programmed to perform the described functions or hardware that executes them. The hardware may be any hardware disclosed herein or any hardware known to be programmed or capable of performing the described functions. If the hardware is a processor, which is considered a type of circuitry, the circuitry, means, or unit is a combination of hardware and software used to configure the hardware and/or processor.
本開示で使用されている「に基づいて(based on)」、「に応じて(depending on/in response to)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。「含む(include)」、「備える(comprise)」、及びそれらの変形の用語は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んであってもよいし、列挙する項目に加えてさらなる項目を含んであってもよいことを意味する。また、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。さらに、本開示で使用されている「第1」、「第2」等の呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。 As used in this disclosure, the terms "based on" and "depending on/in response to" do not mean "based only on" or "depending only on," unless expressly stated otherwise. The term "based on" means both "based only on" and "based at least in part on." Similarly, the term "depending on" means both "depending only on" and "depending at least in part on." The terms "include," "comprise," and variations thereof do not mean including only the listed items, but may mean including only the listed items or including additional items in addition to the listed items. Additionally, the term "or," as used in this disclosure, is not intended to mean an exclusive or. Furthermore, any reference to elements using designations such as "first," "second," etc., as used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein, or that the first element must precede the second element in some way. In this disclosure, where articles are added by translation, such as a, an, and the in English, these articles shall include the plural unless the context clearly indicates otherwise.
以上、図面を参照して実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。 The above describes the embodiments in detail with reference to the drawings, but the specific configuration is not limited to that described above, and various design changes can be made without departing from the spirit of the invention.
本願は、日本国特許出願第2024-060715号(2024年4月4日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。 This application claims priority from Japanese Patent Application No. 2024-060715 (filed April 4, 2024), the entire contents of which are incorporated herein by reference.
(4)付記
上述の実施形態に関する特徴について付記する。
(4) Supplementary Notes The following are additional notes regarding the features of the above-described embodiment.
・付記1
移動通信システムにおいてユーザ装置が実行する通信方法であって、
前記ユーザ装置が実際に受信品質を測定する第1測定対象と、前記第1測定対象の測定結果に基づいて前記ユーザ装置が受信品質の測定結果を推論可能な第2測定対象と、の組み合わせを特定するための情報をネットワークノードから受信することと、
前記第1測定対象の測定により第1測定結果を得た後、人工知能又は機械学習(AI/ML)モデルを用いて前記第2測定対象の第2測定結果を前記第1測定結果に基づいて推論することと、を有する
通信方法。
・Appendix 1
A communication method performed by a user device in a mobile communication system, comprising:
receiving, from a network node, information for identifying a combination of a first measurement object for which the user equipment actually measures reception quality and a second measurement object for which the user equipment can infer a measurement result of reception quality based on a measurement result of the first measurement object;
measuring the first object to be measured to obtain a first measurement result, and then inferring a second measurement result of the second object to be measured based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model.
・付記2
前記第1測定対象及び前記第2測定対象のそれぞれは、セル、周波数、ビーム、参照信号、及び測定オブジェクトのうち1つである
付記1に記載の通信方法。
・Appendix 2
The communication method according to claim 1, wherein each of the first measurement object and the second measurement object is one of a cell, a frequency, a beam, a reference signal, and a measurement object.
・付記3
前記組み合わせを示す提案情報を前記ネットワークノードに送信することをさらに有する
付記1又は2に記載の通信方法。
・Appendix 3
3. The communication method according to claim 1, further comprising transmitting proposal information indicating the combination to the network node.
・付記4
前記組み合わせは、同じ場所から電波を送信する前記第1測定対象及び前記第2測定対象の組み合わせである
付記1乃至3のいずれかに記載の通信方法。
・Appendix 4
The communication method according to any one of Supplementary Notes 1 to 3, wherein the combination is a combination of the first target object and the second target object that transmit radio waves from the same location.
・付記5
前記ユーザ装置は、前記組み合わせを特定するための情報を測定設定として含む無線リソース制御(RRC)メッセージを前記ネットワークノードから受信する
付記1乃至4のいずれかに記載の通信方法。
Appendix 5
5. The communication method according to any one of Supplementary Notes 1 to 4, wherein the user equipment receives, from the network node, a Radio Resource Control (RRC) message including information for identifying the combination as a measurement configuration.
・付記6
前記測定された第1測定結果と前記推論された第2測定結果とを前記ネットワークノードに送信することをさらに有する
付記1乃至5のいずれかに記載の通信方法。
Appendix 6
6. The communication method of claim 1, further comprising transmitting the measured first measurement result and the inferred second measurement result to the network node.
・付記7
前記ユーザ装置は、無線リソース制御(RRC)メッセージである測定報告を前記ネットワークノードに送信し、
前記測定報告は、前記測定された第1測定結果と前記推論された第2測定結果とを含む
付記1乃至6のいずれかに記載の通信方法。
Appendix 7
the user equipment sending a measurement report to the network node as a Radio Resource Control (RRC) message;
7. The communication method according to any one of claims 1 to 6, wherein the measurement report includes the first measured measurement result and the second inferred measurement result.
・付記8
移動通信システムで用いるユーザ装置であって、
前記ユーザ装置が実際に受信品質を測定する第1測定対象と、前記第1測定対象の測定結果に基づいて前記ユーザ装置が受信品質の測定結果を推論可能な第2測定対象と、の組み合わせを特定するための情報をネットワークノードから受信する受信部と、
前記第1測定対象の測定により第1測定結果を得た後、人工知能又は機械学習(AI/ML)モデルを用いて前記第2測定対象の第2測定結果を前記第1測定結果に基づいて推論する制御部と、を有する
ユーザ装置。
Appendix 8
A user device for use in a mobile communication system, comprising:
A receiver that receives, from a network node, information for identifying a combination of a first measurement object for which the user equipment actually measures reception quality and a second measurement object for which the user equipment can infer a measurement result of reception quality based on a measurement result of the first measurement object;
and a control unit that, after obtaining a first measurement result by measuring the first measurement object, infers a second measurement result of the second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model.
・付記9
移動通信システムで用いるネットワークノードであって、
ユーザ装置が実際に受信品質を測定する第1測定対象と、前記第1測定対象の測定結果に基づいて前記ユーザ装置が受信品質の測定結果を人工知能又は機械学習(AI/ML)モデルを用いて推論可能な第2測定対象と、の組み合わせを特定するための情報を前記ユーザ装置に送信する送信部を有する
ネットワークノード。
Appendix 9
A network node for use in a mobile communication system, comprising:
A network node having a transmitter that transmits to a user device information for identifying a combination of a first measurement object for which a user device actually measures reception quality and a second measurement object for which the user device can infer a measurement result of reception quality using an artificial intelligence or machine learning (AI/ML) model based on the measurement result of the first measurement object.
・付記10
移動通信システムにおいてユーザ装置が実行する通信方法であって、
第1測定対象の受信品質を測定して第1測定結果を得ることと、
人工知能又は機械学習(AI/ML)モデルを用いて第2測定対象の受信品質の第2測定結果を前記第1測定結果に基づいて推論することと、
前記測定した第1測定結果と前記推論した第2測定結果とをネットワークノードに送信することと、を有し、
前記ユーザ装置は、前記送信される各測定結果が測定値であるか又は推論値であるかを識別するための識別情報を前記ネットワークノードに送信する
通信方法。
Appendix 10
A communication method performed by a user device in a mobile communication system, comprising:
measuring the reception quality of a first measurement object to obtain a first measurement result;
inferring a second measurement result of the reception quality of a second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model;
transmitting the measured first measurement result and the inferred second measurement result to a network node;
The user equipment transmits to the network node identification information for identifying whether each of the transmitted measurement results is a measured value or an inferred value.
・付記11
前記第1測定対象及び前記第2測定対象のそれぞれは、セル、周波数、ビーム、参照信号、及び測定オブジェクトのうち1つである
付記10に記載の通信方法。
Appendix 11
11. The communication method of claim 10, wherein each of the first measurement object and the second measurement object is one of a cell, a frequency, a beam, a reference signal, and a measurement object.
・付記12
前記ユーザ装置は、前記推論した第2測定結果の推論精度を示す情報を前記ネットワークノードに送信する
付記10又は11に記載の通信方法。
Appendix 12
The communication method according to claim 10 or 11, wherein the user equipment transmits information indicating an inference accuracy of the inferred second measurement result to the network node.
・付記13
前記ユーザ装置は、前記推論した第2測定結果の推論精度を示す値が閾値を超える場合に限り、前記推論した第2測定結果を前記ネットワークノードに送信する
付記10乃至12のいずれかに記載の通信方法。
Appendix 13
13. The communication method according to any one of claims 10 to 12, wherein the user equipment transmits the inferred second measurement result to the network node only if a value indicating an inference accuracy of the inferred second measurement result exceeds a threshold.
・付記14
前記ユーザ装置は、前記推論に用いた前記AI/MLモデルを識別するための情報を前記ネットワークノードに送信する
付記10に記載の通信方法。
Appendix 14
11. The communication method of claim 10, wherein the user equipment transmits information to the network node to identify the AI/ML model used for the inference.
・付記15
前記ユーザ装置は、無線リソース制御(RRC)メッセージである測定報告を前記ネットワークノードに送信し、
前記測定報告は、前記測定された第1測定結果と、前記推論された第2測定結果と、前記識別情報とを含む
付記10乃至14のいずれかに記載の通信方法。
Appendix 15
the user equipment sending a measurement report to the network node as a Radio Resource Control (RRC) message;
15. The communication method according to any one of Supplementary Notes 10 to 14, wherein the measurement report includes the first measured measurement result, the second inferred measurement result, and the identification information.
・付記16
移動通信システムで用いるユーザ装置であって、
第1測定対象の受信品質を測定して第1測定結果を得た後、人工知能又は機械学習(AI/ML)モデルを用いて第2測定対象の受信品質の第2測定結果を前記第1測定結果に基づいて推論する制御部と、
前記測定した第1測定結果と前記推論した第2測定結果とをネットワークノードに送信する送信部と、を有し、
前記送信部は、前記送信される各測定結果が測定値であるか又は推論値であるかを識別するための識別情報を前記ネットワークノードに送信する
ユーザ装置。
Appendix 16
A user device for use in a mobile communication system, comprising:
a control unit that measures the reception quality of a first object to be measured to obtain a first measurement result, and then infers a second measurement result of the reception quality of a second object to be measured based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model;
a transmitter configured to transmit the measured first measurement result and the inferred second measurement result to a network node;
The transmitting unit transmits, to the network node, identification information for identifying whether each of the transmitted measurement results is a measured value or an inferred value.
・付記17
移動通信システムで用いるネットワークノードであって、
ユーザ装置が第1測定対象の受信品質を測定して得た第1測定結果と、前記ユーザ装置が人工知能又は機械学習(AI/ML)モデルを用いて第2測定対象の受信品質の第2測定結果を前記第1測定結果に基づいて推論して得た第2測定結果と、を前記ユーザ装置から受信する受信部を有し、
前記受信部は、前記ユーザ装置から送信される各測定結果が測定値であるか又は推論値であるかを識別するための識別情報を前記ユーザ装置から受信する
ネットワークノード。
Appendix 17
A network node for use in a mobile communication system, comprising:
A receiving unit receives from the user device a first measurement result obtained by the user device measuring the reception quality of a first measurement object and a second measurement result obtained by the user device inferring a second measurement result of the reception quality of a second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model;
The receiving unit receives, from the user equipment, identification information for identifying whether each measurement result transmitted from the user equipment is a measured value or an inferred value.
1 :移動通信システム
5 :ネットワーク
10 :RAN(NG-RAN)
11 :L1フィルタ
12 :ビーム統合/選択部
13 :L3フィルタ
14 :評価部
15 :L3ビームフィルタ
16 :ビーム選択部
20 :CN(5GC)
100 :UE
101 :AI/MLモデル
110 :受信部
111 :受信機(RFチェーン)
120 :送信部
130 :制御部
140 :無線通信部
200 :gNB
210 :送信部
220 :受信部
230 :制御部
240 :ネットワーク通信部
241 :送信部
242 :受信部
250 :無線通信部
A1 :データ収集部
A2 :モデル学習部
A3 :モデル推論部
A4 :データ処理部
1: Mobile communication system 5: Network 10: RAN (NG-RAN)
11: L1 filter 12: Beam integration/selection unit 13: L3 filter 14: Evaluation unit 15: L3 beam filter 16: Beam selection unit 20: CN (5GC)
100: UE
101: AI/ML model 110: Receiving unit 111: Receiver (RF chain)
120: Transmitter 130: Controller 140: Wireless Communication Unit 200: gNB
210: Transmitting unit 220: Receiving unit 230: Control unit 240: Network communication unit 241: Transmitting unit 242: Receiving unit 250: Wireless communication unit A1: Data collecting unit A2: Model learning unit A3: Model inference unit A4: Data processing unit
Claims (17)
前記ユーザ装置が実際に受信品質を測定する第1測定対象と、前記第1測定対象の測定結果に基づいて前記ユーザ装置が受信品質の測定結果を推論可能な第2測定対象と、の組み合わせを特定するための情報をネットワークノードから受信することと、
前記第1測定対象の測定により第1測定結果を得た後、人工知能又は機械学習(AI/ML)モデルを用いて前記第2測定対象の第2測定結果を前記第1測定結果に基づいて推論することと、を有する
通信方法。 A communication method performed by a user device in a mobile communication system, comprising:
receiving, from a network node, information for identifying a combination of a first measurement object for which the user equipment actually measures reception quality and a second measurement object for which the user equipment can infer a measurement result of reception quality based on a measurement result of the first measurement object;
measuring the first object to be measured to obtain a first measurement result, and then inferring a second measurement result of the second object to be measured based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model.
請求項1に記載の通信方法。 The communication method according to claim 1 , wherein each of the first measurement object and the second measurement object is one of a cell, a frequency, a beam, a reference signal, and a measurement object.
請求項1に記載の通信方法。 The communication method according to claim 1 , further comprising transmitting proposal information indicating the combination to the network node.
請求項1乃至3のいずれか1項に記載の通信方法。 The communication method according to claim 1 , wherein the combination is a combination of the first target object and the second target object that transmit radio waves from the same location.
請求項1乃至3のいずれか1項に記載の通信方法。 The communication method according to claim 1 , wherein the user equipment receives a radio resource control (RRC) message from the network node, the radio resource control (RRC) message including information for identifying the combination as a measurement configuration.
請求項1乃至3のいずれか1項に記載の通信方法。 The method of any one of claims 1 to 3, further comprising transmitting the measured first measurement result and the inferred second measurement result to the network node.
前記測定報告は、前記測定された第1測定結果と前記推論された第2測定結果とを含む
請求項1乃至3のいずれか1項に記載の通信方法。 the user equipment sending a measurement report to the network node as a Radio Resource Control (RRC) message;
The communication method according to claim 1 , wherein the measurement report includes the first measured measurement result and the second inferred measurement result.
前記ユーザ装置が実際に受信品質を測定する第1測定対象と、前記第1測定対象の測定結果に基づいて前記ユーザ装置が受信品質の測定結果を推論可能な第2測定対象と、の組み合わせを特定するための情報をネットワークノードから受信する受信部と、
前記第1測定対象の測定により第1測定結果を得た後、人工知能又は機械学習(AI/ML)モデルを用いて前記第2測定対象の第2測定結果を前記第1測定結果に基づいて推論する制御部と、を有する
ユーザ装置。 A user device for use in a mobile communication system, comprising:
A receiver that receives, from a network node, information for identifying a combination of a first measurement object for which the user equipment actually measures reception quality and a second measurement object for which the user equipment can infer a measurement result of reception quality based on a measurement result of the first measurement object;
and a control unit that, after obtaining a first measurement result by measuring the first measurement object, infers a second measurement result of the second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model.
ユーザ装置が実際に受信品質を測定する第1測定対象と、前記第1測定対象の測定結果に基づいて前記ユーザ装置が受信品質の測定結果を人工知能又は機械学習(AI/ML)モデルを用いて推論可能な第2測定対象と、の組み合わせを特定するための情報を前記ユーザ装置に送信する送信部を有する
ネットワークノード。 A network node for use in a mobile communication system, comprising:
A network node having a transmitter that transmits to a user device information for identifying a combination of a first measurement object for which a user device actually measures reception quality and a second measurement object for which the user device can infer a measurement result of reception quality using an artificial intelligence or machine learning (AI/ML) model based on the measurement result of the first measurement object.
第1測定対象の受信品質を測定して第1測定結果を得ることと、
人工知能又は機械学習(AI/ML)モデルを用いて第2測定対象の受信品質の第2測定結果を前記第1測定結果に基づいて推論することと、
前記測定した第1測定結果と前記推論した第2測定結果とをネットワークノードに送信することと、を有し、
前記ユーザ装置は、前記送信される各測定結果が測定値であるか又は推論値であるかを識別するための識別情報を前記ネットワークノードに送信する
通信方法。 A communication method performed by a user device in a mobile communication system, comprising:
measuring the reception quality of a first measurement object to obtain a first measurement result;
inferring a second measurement result of the reception quality of a second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model;
transmitting the measured first measurement result and the inferred second measurement result to a network node;
The user equipment transmits to the network node identification information for identifying whether each of the transmitted measurement results is a measured value or an inferred value.
請求項10に記載の通信方法。 The communication method according to claim 10 , wherein each of the first measurement object and the second measurement object is one of a cell, a frequency, a beam, a reference signal, and a measurement object.
請求項10に記載の通信方法。 The communication method according to claim 10 , wherein the user equipment transmits information indicating an inference accuracy of the inferred second measurement result to the network node.
請求項10に記載の通信方法。 The communication method according to claim 10 , wherein the user equipment transmits the inferred second measurement result to the network node only if a value indicating an inference accuracy of the inferred second measurement result exceeds a threshold.
請求項10に記載の通信方法。 The communication method according to claim 10 , wherein the user equipment transmits information to the network node to identify the AI/ML model used for the inference.
前記測定報告は、前記測定された第1測定結果と、前記推論された第2測定結果と、前記識別情報とを含む
請求項10乃至14のいずれか1項に記載の通信方法。 the user equipment sending a measurement report to the network node as a Radio Resource Control (RRC) message;
The communication method according to claim 10 , wherein the measurement report includes the first measured measurement result, the second inferred measurement result, and the identification information.
第1測定対象の受信品質を測定して第1測定結果を得た後、人工知能又は機械学習(AI/ML)モデルを用いて第2測定対象の受信品質の第2測定結果を前記第1測定結果に基づいて推論する制御部と、
前記測定した第1測定結果と前記推論した第2測定結果とをネットワークノードに送信する送信部と、を有し、
前記送信部は、前記送信される各測定結果が測定値であるか又は推論値であるかを識別するための識別情報を前記ネットワークノードに送信する
ユーザ装置。 A user device for use in a mobile communication system, comprising:
a control unit that measures the reception quality of a first object to be measured to obtain a first measurement result, and then infers a second measurement result of the reception quality of a second object to be measured based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model;
a transmitter configured to transmit the measured first measurement result and the inferred second measurement result to a network node;
The transmitting unit transmits, to the network node, identification information for identifying whether each of the transmitted measurement results is a measured value or an inferred value.
ユーザ装置が第1測定対象の受信品質を測定して得た第1測定結果と、前記ユーザ装置が人工知能又は機械学習(AI/ML)モデルを用いて第2測定対象の受信品質の第2測定結果を前記第1測定結果に基づいて推論して得た第2測定結果と、を前記ユーザ装置から受信する受信部を有し、
前記受信部は、前記ユーザ装置から送信される各測定結果が測定値であるか又は推論値であるかを識別するための識別情報を前記ユーザ装置から受信する
ネットワークノード。 A network node for use in a mobile communication system, comprising:
A receiving unit receives from the user device a first measurement result obtained by the user device measuring the reception quality of a first measurement object and a second measurement result obtained by the user device inferring a second measurement result of the reception quality of a second measurement object based on the first measurement result using an artificial intelligence or machine learning (AI/ML) model;
The receiving unit receives, from the user equipment, identification information for identifying whether each measurement result transmitted from the user equipment is a measured value or an inferred value.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2024-060715 | 2024-04-04 | ||
| JP2024060715 | 2024-04-04 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025211279A1 true WO2025211279A1 (en) | 2025-10-09 |
Family
ID=97267566
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2025/012819 Pending WO2025211279A1 (en) | 2024-04-04 | 2025-03-28 | Communication method, user equipment, and network node |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025211279A1 (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2021082964A (en) * | 2019-11-20 | 2021-05-27 | 株式会社Kddi総合研究所 | Information providing device, information providing method, and computer program |
| JP2023512992A (en) * | 2020-01-31 | 2023-03-30 | クアルコム,インコーポレイテッド | Beam obstruction detection in second band based on measurements in first band |
-
2025
- 2025-03-28 WO PCT/JP2025/012819 patent/WO2025211279A1/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2021082964A (en) * | 2019-11-20 | 2021-05-27 | 株式会社Kddi総合研究所 | Information providing device, information providing method, and computer program |
| JP2023512992A (en) * | 2020-01-31 | 2023-03-30 | クアルコム,インコーポレイテッド | Beam obstruction detection in second band based on measurements in first band |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240204910A1 (en) | Inter-node exchange of link adaptation assistance information | |
| CN119631473A (en) | Cell switching method, device, equipment and storage medium | |
| US20240056833A1 (en) | Predictive beam management with per-beam error statistics | |
| US20250203457A1 (en) | Communication method | |
| WO2025026255A1 (en) | Method and device used for wireless communication | |
| WO2021066161A1 (en) | Communication control method and user device | |
| WO2025211279A1 (en) | Communication method, user equipment, and network node | |
| WO2025211433A1 (en) | Communication method, user device, and network node | |
| WO2025211268A1 (en) | Communication method, user equipment, and network node | |
| WO2025211269A1 (en) | Communication method, user device, and network node | |
| WO2025211432A1 (en) | Communication method, user equipment, and network node | |
| US20250365634A1 (en) | Communication control method, network node and user equipment | |
| WO2024207419A1 (en) | User equipment-indicated beam partitioning for spatial beam prediction | |
| WO2025055803A1 (en) | Method and apparatus used in communication node for wireless communication | |
| WO2024166864A1 (en) | Communication control method | |
| WO2025170023A1 (en) | Communication control method | |
| WO2025211434A1 (en) | Communication control method | |
| WO2025047813A1 (en) | Communication control method and user device | |
| WO2025234453A1 (en) | Communication control method, network device, and user equipment | |
| WO2025211435A1 (en) | Communication control method and network device | |
| WO2025234454A1 (en) | Communication control method, network device, and user device | |
| WO2025026084A1 (en) | Method and apparatus used in communication node for wireless communication | |
| WO2025070696A1 (en) | Communication control method and network device | |
| WO2024232434A1 (en) | Communication control method and user device | |
| WO2025047814A1 (en) | Communication control method, base station, and user equipment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 25782107 Country of ref document: EP Kind code of ref document: A1 |