[go: up one dir, main page]

WO2025210868A1 - Terminal, wireless base station, and wireless communication method - Google Patents

Terminal, wireless base station, and wireless communication method

Info

Publication number
WO2025210868A1
WO2025210868A1 PCT/JP2024/014038 JP2024014038W WO2025210868A1 WO 2025210868 A1 WO2025210868 A1 WO 2025210868A1 JP 2024014038 W JP2024014038 W JP 2024014038W WO 2025210868 A1 WO2025210868 A1 WO 2025210868A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
model
predicted value
measurement
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2024/014038
Other languages
French (fr)
Japanese (ja)
Inventor
天楊 閔
佑太 寒河江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to PCT/JP2024/014038 priority Critical patent/WO2025210868A1/en
Publication of WO2025210868A1 publication Critical patent/WO2025210868A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • This disclosure relates to a terminal, a wireless base station, and a wireless communication method that utilizes an AI/ML model.
  • 3GPP Release 19 has established a work item (WI) on artificial intelligence/machine learning models (AI/ML Models) (Non-Patent Document 1).
  • the following disclosure has been made in light of this situation, and aims to provide a terminal, wireless base station, and wireless communication method that can contribute to utilization according to the accuracy of various predicted values using AI/ML models.
  • One aspect of the present disclosure is a wireless communication method in a terminal that includes the steps of generating a predicted value of a specified target using a learning model, and transmitting the predicted value and a prediction result including the accuracy of the predicted value to a network.
  • FIG. 1 is a diagram showing the overall configuration of a wireless communication system 10.
  • Figure 2 is a functional block diagram of gNB100.
  • FIG. 3 is a functional block diagram of the UE 200.
  • Figure 4 shows an example of the functional architecture of an AI/ML model.
  • Figure 5 is a diagram showing an example sequence for setting up AI/ML reporting (Measurement Report) for operation example 1.
  • Figure 6 shows an example of the configuration of information elements (IEs) for AI/ML reporting.
  • Figure 7 is a diagram showing an example sequence for AI/ML reporting related to operation example 2.
  • FIG. 8 is a diagram illustrating the relationship between the movement trajectory of a UE and neighboring cells according to the second operation example.
  • Figure 9 is a diagram showing an example of AI/ML reporting related to operation example 2.
  • FIG. 1 is a diagram showing the overall configuration of a wireless communication system 10.
  • Figure 2 is a functional block diagram of gNB100.
  • FIG. 3 is a functional block diagram of the UE 200.
  • FIG. 1 is a diagram showing the overall schematic configuration of a wireless communication system 10 according to this embodiment.
  • the wireless communication system 10 is a wireless communication system conforming to 5G New Radio (NR) and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN 20) and a terminal 200 (User Equipment 200, hereinafter, UE 200).
  • NR 5G New Radio
  • NG-RAN 20 Next Generation-Radio Access Network 20
  • UE 200 User Equipment 200
  • the wireless communication system 10 may be a wireless communication system conforming to a method called Beyond 5G, 5G Evolution, or 6G, or may include a wireless communication system conforming to a method called Long Term Evolution (LTE) or 4G.
  • the wireless communication system 10 may support functions related to the Industrial Internet of Things (IIoT) and URLLC (Ultra-Reliable and Low Latency Communications).
  • IIoT Industrial Internet of Things
  • URLLC Ultra-Reliable and Low Latency Communications
  • the wireless communication system 10 may also be configured using multiple radio access technologies (RATs), for example, 4G/LTE and 5G.
  • RATs radio access technologies
  • NG-RAN 20 includes a radio base station 100 (hereinafter, gNB 100).
  • gNB 100 radio base station 100
  • the gNB100 may also employ a fronthaul (FH) interface specified by the Open Radio Access Network Alliance (O-RAN).
  • the gNB100 may include an O-DU (O-RAN Distributed Unit) and an O-RU (O-RAN Radio Unit).
  • the gNB100 can function as a type of NG-RAN node.
  • NG-RAN20 actually includes multiple NG-RAN nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown).
  • 5GC may introduce the concept of CUPS (Control and User Plane Separation), which clearly separates the functions of the user plane and the control plane.
  • NG-RAN20 may be connected to OAM/RIC40 and NF50 via 5GC or directly from NG-RAN20.
  • OAM/RIC40 network device
  • OAM/RIC40 can provide functions related to operation and maintenance of the wireless communication system 10 (OAM).
  • OAM/RIC40 can also provide functions related to control of NG-RAN20 (RIC: RAN Intelligent Controller).
  • RIC RAN Intelligent Controller
  • the specific functions of the RIC are defined by the O-RAN specifications (e.g., O-RAN Architecture-Description 6.0).
  • OAM/RIC40 may constitute an entity that performs operation, maintenance, or control.
  • NF50 may be interpreted as a logical node that provides network functions.
  • NF50 may include the Access and Mobility Management Function (AMF), which is included in the 5G system architecture and provides access and mobility management functions for UE200, the Session Management Function (SMF), which provides session management functions, and the Location Management Function (LMF), which is responsible for communication control related to location information services specified in 5GC.
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • LMF Location Management Function
  • UDM/UDR Unified Data Management/User Data Repository
  • NG-RAN20 and 5GC may also be simply referred to as "networks.”
  • NG-RAN20 may be connected to a server managed by a 3GPP service provider or a server managed by a party other than that provider (3GPP or non-3GPP server).
  • gNB100 is a radio base station that complies with NR and performs radio communication with UE200 that complies with NR.
  • gNB100 may be composed of a CU (Central Unit) and a DU (Distributed Unit), and the DU may be separated from the CU and installed in a different geographical location.
  • One or more DUs may be connected to a CU.
  • gNB100 gNB-CU
  • gNB-CU may be connected to each other via an Xn interface
  • CUs and DUs may be connected via an F1 interface.
  • AI/machine learning may be applied in the NG-RAN 20.
  • a learning model (herein referred to as an AI/ML model) may be used to optimize the mobility or handover (which may also be interpreted as transition, cell transition, cell selection, etc.) of the UE 200.
  • AI/ML Model may also be expressed as other terms that refer to AI or ML, such as artificial intelligence (AI) model or machine learning (ML) model.
  • AI artificial intelligence
  • ML machine learning
  • the mobility of UE200 may refer to the ease of movement and maneuverability of UE200, but in this embodiment, it may also refer to the minimization of call drops, radio link (including beam) failures, unnecessary handovers, ping-pong states, etc.
  • UE200 may periodically perform measurement reporting. UE200 may also perform measurement reporting for each event.
  • An entering condition for starting measurement reporting and a leaving condition for ending measurement reporting may be defined for each event.
  • Existing events may include the events shown below (see 3GPP TS38.331). Note that the entering condition may be interpreted as a condition for determining whether or not to include a measurement report, and the leaving condition may be interpreted as a condition for determining whether or not to exclude a measurement report from the measurement report.
  • Event A1 (Serving becomes better than threshold)
  • Event A1 is an event in which the reception quality of the serving cell becomes better than a threshold.
  • the entering condition is Ms - Hys > Thresh
  • the leaving condition is Ms + Hys ⁇ Thresh.
  • Ms is the reception quality of the serving cell
  • Hys is the hysteresis parameter
  • Thresh is the threshold value.
  • Ms is the reception quality of the serving cell
  • Hys is the hysteresis parameter
  • Thresh is the threshold value.
  • Event A3 (Neighbor becomes offset better than SpCell)
  • Event A3 is an event in which the reception quality of the neighboring cell is better than the reception quality of the serving cell by an offset.
  • the entering condition is Mn + Ofn + Ocn - Hys > Mp + Ofp + Ocp + Off
  • the leaving condition is Mn + Ofn + Ocn + Hys ⁇ Mp + Ofp + Ocp + Off.
  • Mn is the reception quality of the neighboring cell
  • Ofn is an offset specific to the measurement target
  • Ocn is an offset specific to the cell
  • Mp is the reception quality of the serving cell
  • Ofp is an offset specific to the measurement target
  • Ocp is an offset specific to the cell.
  • Hys is the hysteresis parameter
  • Off is the parameter used in Event A3.
  • Ms is the reception quality of the serving cell
  • Hys is the hysteresis parameter
  • Thresh1 is the threshold value
  • Mn is the reception quality of the neighboring cell
  • Ofn is an offset specific to the measurement target
  • Ocn is an offset specific to the cell
  • Hys is the hysteresis parameter
  • Thresh2 is the threshold value.
  • Event A6 (Neighbor becomes offset better than SCell)
  • Event A6 is an event in which the reception quality of a neighboring cell is better than the reception quality of a SCell (Secondary Cell) by an offset.
  • the entering condition is Mn + Ocn - Hys > Ms + Ocs + Off
  • the leaving condition is Mn + Ocn + Hys ⁇ Ms + Ocs + Off.
  • events related to inter-RAT may also be included.
  • inter-RAT Radio Access Technology
  • such an AI/ML model can be used to optimize the mobility or handover of the UE 200.
  • the AI/ML model may be provided in the OAM/RIC 40 or in the gNB 100.
  • the AI/ML model may also be provided in the UE 200.
  • Figure 2 is a functional block configuration diagram of the gNB 100.
  • Figure 3 is a functional block configuration diagram of the UE 200.
  • the gNB 100 includes a wireless communication unit 110, a handover processing unit 120, an AI/ML model unit 130, and a control unit 140.
  • the wireless communication unit 110 transmits downlink signals (DL signals) conforming to NR.
  • the wireless communication unit 110 also receives uplink signals (UL signals) conforming to NR.
  • the wireless communication unit 110 may transmit DL signals and receive UL signals using one or more transmit/receive points (TRPs).
  • TRPs transmit/receive points
  • a TRP may be interpreted as meaning multiple DL transmit antennas.
  • the handover processing unit 120 executes handover of the UE 200. Specifically, the handover processing unit 120 executes handover from the serving cell of the UE 200 to another nearby cell.
  • the serving cell may be interpreted simply as the cell to which UE 200 is connected, but more precisely, in the case of an RRC_CONNECTED UE (connected state in the radio resource control layer) in which carrier aggregation (CA) is not configured, there is only one serving cell that constitutes the primary cell.
  • the serving cell may be interpreted as indicating a set of one or more cells including the primary cell and all secondary cells.
  • the execution conditions may consist of one or two trigger conditions (CHO event A3/A5 as specified in 3GPP TS38.331).
  • a single reference signal (RS) type may be triggered, and up to two different trigger quantities (e.g., Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ), RSRP and Signal-to-Interference plus Noise power Ratio (SINR), etc.) may be set simultaneously for the evaluation of the CHO execution conditions for a single candidate cell.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal-to-Interference plus Noise power Ratio
  • the AI/ML model unit 130 executes processing using a learning model (AI/ML model). Specifically, the AI/ML model unit 130 executes processing using an AI/ML model that is applied to the optimization of the mobility and/or handover of the UE 200.
  • AI/ML model a learning model
  • the AI/ML model unit 130 may transmit to the UE 200 a measurement configuration (MeasConfig) that configures measurements using the AI/ML model.
  • the AI/ML model unit 130 may constitute a transmission unit that transmits the measurement configuration to the terminal.
  • the measurement configuration may be transmitted to the UE 200, for example, by a radio resource control layer (RRC) message.
  • RRC radio resource control layer
  • the AI/ML model unit 130 may receive from the UE 200 a measurement report including measurement results generated by applying the AI/ML model to the measurement object (MeasObject) included in the measurement setting.
  • the AI/ML model unit 130 may constitute a receiving unit that receives the measurement report from the terminal.
  • the AI/ML model unit 130 may transmit to the UE 200 a request to report the accuracy of the predicted value by the AI/ML model for the specified target.
  • the AI/ML model unit 130 may constitute a transmission unit that transmits the report request to the terminal.
  • the specified target may refer to the target of prediction by the AI/ML model, and may include, for example, a measured value of cell quality (such as RSRP), the probability of handover failure (HOF), the probability of radio link failure (RLF), etc.
  • the accuracy of the predicted value may be expressed as a percentage, or may be expressed in multiple stages.
  • An evaluation value for the predicted value (which may also be called an estimated value) may also be used.
  • the evaluation value may be a parameter indicating the degree of agreement between a predicted value based on past prediction results and an actual measurement value, or a parameter indicating the degree of deviation between the predicted value and the actual measurement value. More specific details of the prediction results will be discussed further below.
  • the control unit 140 controls each functional block that makes up the gNB 100.
  • the control unit 140 may use the AI/ML model unit 130 to obtain predicted values such as measured cell quality, HOF probability, and RLF probability, and may perform control related to SON (Self-Organizing Networks) according to the predicted values and their accuracy.
  • SON Self-Organizing Networks
  • control unit 140 may perform mobility control of the UE 200, including handover, based on the cell quality measurement results and HOF/RLF reports obtained from the UE 200.
  • the measurement results and reports may be predicted using an AI/ML model.
  • channels include control channels and data channels.
  • Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), and PBCH (Physical Broadcast Channel), etc.
  • Data channels also include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • reference signals include Demodulation reference signals (DMRS), Sounding Reference Signals (SRS), Phase Tracking Reference Signals (PTRS), and Channel State Information-Reference Signals (CSI-RS), and signals include channels and reference signals.
  • DMRS Demodulation reference signals
  • SRS Sounding Reference Signals
  • PTRS Phase Tracking Reference Signals
  • CSI-RS Channel State Information-Reference Signals
  • data may refer to data transmitted via a data channel.
  • the UE 200 includes a radio communication unit 210 , an AI/ML model unit 215 , a measurement processing unit 220 , a handover execution unit 230 , and a control unit 240 .
  • the wireless communication unit 210 transmits uplink signals (UL signals) that comply with NR.
  • the wireless communication unit 210 also receives uplink signals (DL signals) that comply with NR.
  • the AI/ML model unit 215 may transmit prediction information indicating the predicted result of handover failure (HOF) or radio link failure (RLF) to the network.
  • the AI/ML model unit 215 may constitute a transmission unit that transmits the prediction information to the network.
  • the HOF and RLF prediction results may be targeted at the serving cell or at neighboring cells (which may also be called adjacent cells, peripheral cells, etc.).
  • the AI/ML model unit 215 may transmit prediction information including at least one of the probability of handover failure and the probability of radio link failure.
  • the probability of occurrence may be indicated by a percentage, or may be indicated by multiple stages, etc.
  • the prediction information may be transmitted to the network via an AI/ML report (AI/ML reporting), or may be transmitted to the network via a Measurement Report.
  • the AI/ML model unit 215 may also transmit prediction information including the degree of match between the positions of neighboring cells and the movement trajectory of UE200.
  • the movement trajectory of UE200 may be interpreted as time-series information indicating the position of UE200.
  • the movement trajectory may be past information or predicted future information.
  • the movement trajectory may be information that allows the positional relationship with a neighboring cell (which may be the serving cell) to be determined (such as the distance from a specified position of the cell).
  • the AI/ML model unit 215 may transmit prediction information including future quality prediction values in neighboring cells. Specifically, the AI/ML model unit 215 may predict future values of cell quality (RSRP, RSRQ, etc.) in neighboring cells (which may be the serving cell) and transmit prediction information including the predicted values.
  • the future is not particularly limited, but considering the accuracy of the predicted values, it is preferable to target a time point several tens of milliseconds in the future.
  • the accuracy of the predicted value may be expressed as a percentage, or may be expressed in multiple stages.
  • the prediction result may include the predicted value and the accuracy of the predicted value, but the predicted value and the accuracy of the predicted value do not necessarily have to be transmitted together, and the accuracy of the predicted value may be transmitted less frequently than the predicted value.
  • the AI/ML model unit 215 may transmit prediction results including the degree of match between past predicted values of a specified target (measured values, HOF/RLF, etc.) and actual measured values of the target (which may include the actual occurrence of HOF/RLF).
  • the degree of match may be calculated based on past predicted values and actual measured values.
  • the degree of match may be expressed as a percentage or in multiple stages. Note that the accuracy of the predicted value does not necessarily take past performance into consideration, and may be uniquely determined depending on the length of time from the present to the time of prediction, the type of quality, etc.
  • the AI/ML model unit 215 may receive a request to report the accuracy of the predicted value from the network.
  • the AI/ML model unit 215 may constitute a receiving unit that receives the report request from the network.
  • the AI/ML model unit 215 may obtain the predicted value and the accuracy of the predicted value within a specified time period, and transmit the prediction result including the predicted value and accuracy to the network.
  • the AI/ML model unit 215 may also transmit the prediction result including the actual measured value of the specified prediction target. In other words, the AI/ML model unit 215 can report the predicted value, the accuracy of the predicted value, and the actual measured value to the network.
  • the measurement processing unit 220 can measure the quality of the serving cell of the UE 200 and the cells neighboring the serving cell, and report the measurement results to the network (Measurement Report).
  • the measurement processing unit 220 may perform measurement reports of the source cell and target cell during handover.
  • the quality to be measured may be, for example, the quality included in the Measurement Report specified in 3GPP TS38.331 (e.g., RSRP, RSRQ).
  • the measurement processing unit 220 receives measurement settings (MeasConfig) from the network, which configure measurements using an AI/ML model.
  • the measurement processing unit 220 may constitute a receiving unit that receives the measurement settings from the network.
  • the measurement processing unit 220 may receive a measurement configuration that includes identification information that identifies the AI/ML model or a function of the AI/ML model. Specifically, an AI model ID that identifies the AI/ML model itself may be used, or an AI functionality ID that identifies a function of the AI/ML model may be used.
  • the measurement processing unit 220 may receive measurement settings that include conditions for measurement reporting.
  • the measurement report here may be a report related to AI/ML (AI/ML reporting) or a Measurement Report.
  • the conditions may be, for example, the reporting period of AI/ML reporting, the volume (amount) of AI/ML reporting, the number of reports, or whether a specified event is satisfied.
  • the specified event may be, for example, an event related to an AI/ML model or an event related to cell quality.
  • the measurement processing unit 220 may transmit a measurement report to the network that includes measurement results using the AI/ML model based on the received measurement settings.
  • the measurement processing unit 220 may constitute a transmitting unit that transmits the measurement report to the network.
  • the measurement processing unit 220 may transmit a measurement report based on the above-mentioned conditions. Specifically, the measurement processing unit 220 may transmit a measurement report when the conditions are satisfied (or not satisfied).
  • the measurement processing unit 220 may receive a stop instruction from the network to stop the measurement report. Based on the received stop instruction, the measurement processing unit 220 may stop sending the measurement report, including the measurement results using the AI/ML model, to the network.
  • the stop instruction may be temporary or permanent. The stop may be interpreted as a cancellation or a stop.
  • the handover execution unit 230 executes handover of the UE 200. Specifically, the handover execution unit 230 may execute handover to the destination cell (NG-RAN node) based on control by the gNB 100.
  • NG-RAN node the destination cell
  • the handover execution unit 230 can perform processing related to normal handover (legacy handover) and conditional handover (CHO).
  • the handover execution unit 230 may transition to a candidate cell when an execution condition is met.
  • the execution condition may be determined based on the quality of the reference signal (RS), specifically, the RSRP, RSRQ, or SINR value.
  • RS reference signal
  • the destination of a CHO may or may not involve an SCG.
  • the destination cell of a CHO may be a single cell, or may be composed of multiple cells (which may be interpreted as a cell group) according to a DC.
  • the control unit 240 controls each functional block that constitutes the UE 200.
  • the control unit 240 may use the AI/ML model unit 215 to perform control related to measurement settings and measurement reports by the measurement processing unit 220.
  • control unit 240 may apply an AI/ML model to the measurement object (MeasObject) included in the measurement configuration received from the network to generate measurement results.
  • the control unit 240 may also use the AI/ML model to predict the occurrence of handover failure (HOF) or radio link failure (RLF).
  • HAF handover failure
  • RLF radio link failure
  • the control unit 240 may select an AI/ML model or a function of the AI/ML model based on identification information that identifies the AI/ML model or a function of the AI/ML model. Specifically, the control unit 240 can select the AI/ML model itself or a function that operates in the AI/ML model unit 215 based on an AI model ID that identifies the AI/ML model itself, or an AI functionality ID that identifies a function of the AI/ML model.
  • Example of AI/ML Model Configuration Figure 4 shows an example of the functional architecture of an AI/ML model. As shown in Figure 4, the architecture may include the following functions:
  • Data collection Providing input data for model training and model inference functions.
  • Model training Train, validate, and test ML models. As part of the model testing procedure, model performance metrics may be generated.
  • the model training function may also be responsible for data preparation (data preprocessing and cleaning, formatting, conversion, etc.).
  • Model inference Provides inference output (such as predictions or decisions).
  • the model inference function may also provide control of model inference to the model management/performance monitoring function.
  • ⁇ Model management/performance monitoring Manage ML models and monitor model performance.
  • Figure 5 shows an example sequence for setting up AI/ML reporting (Measurement Report) for Operation Example 1.
  • Figure 6 shows an example configuration of an information element (IE) for AI/ML reporting.
  • IE information element
  • the gNB may instruct the UE on the AI/ML measurement configuration in the following ways:
  • An AI/ML measurement object may be specified (see Figure 6).
  • An AI/ML measurement object may refer to the object to be predicted using an AI/ML model (e.g., a specific frequency (band)).
  • an AI/ML model e.g., a specific frequency (band)
  • An AI model ID may be specified.
  • An AI functionality ID may also be specified (see Figure 6).
  • the AI model ID may identify the AI/ML model itself, and the AI functionality ID may identify the functionality of the AI/ML model.
  • An AI/ML measurement ID and an AI/ML reporting config ID may be specified (see Figure 6).
  • the AI/ML measurement ID may have the role of managing the number of AI/ML measurements.
  • the AI/ML measurement ID may have the role of associating an AI/ML measurement object with an AI/ML reporting config, AI model ID, or AI functionality ID.
  • the AI/ML reporting config may include AI/ML reporting conditions.
  • the cancellation/stop instruction may be realized by an RRC message, a Medium Access Control Layer (MAC) control element (MAC CE), or PDCCH.
  • the cancellation/stop instruction may be per AI/ML measurement object or per frequency, or per AI model ID or AI functionality ID. Alternatively, the cancellation/stop instruction may be per AI/ML measurement ID or per AI/ML reporting ID.
  • Figure 7 shows an example sequence related to AI/ML reporting for Operation Example 2.
  • Figure 8 shows the relationship between the UE movement trajectory and neighboring cells for Operation Example 2.
  • Figure 9 shows an example of AI/ML reporting for Operation Example 2.
  • Figure 10 shows an example configuration of a RIC based on the O-RAN architecture.
  • the RIC may include a Near-Real Time RIC and/or a Non-Real Time RIC.
  • the Near-Real Time RIC may be connected to the O-DU and the Non-Real Time RIC via interfaces (A1, E2).
  • the Near-Real Time RIC may be connected to the O-eNB (radio base station) via an interface (E2).
  • the RIC included in such an O-RAN architecture may constitute an OAM/RIC40.
  • feedback on the performance of the AI/ML model may be provided to the Near-Real Time RIC or the Non-Real Time RIC.
  • the O-RAN Non-Real Time RIC may notify the O-CU-CP or O-DU of the following AI/ML predicted values via the O1 interface.
  • the predicted values may be per UE, and UE associated signaling may be used to transmit the predicted values (i.e., they may be associated with the UE ID).
  • the UE can transmit predicted values for handover failure (HOF) and radio link failure (RLF) to the network. Specifically, it can report to the network the future probability of HOF and RLF (which may include beams).
  • HAF handover failure
  • RLF radio link failure
  • the HOF and RLF predicted values can be effectively utilized on the network side, contributing to the construction of SON (Self-Organizing Networks).
  • the UE reports the predicted value by the AI/ML model and information indicating the accuracy of the predicted value to the network.
  • the predicted value (estimated value) by the AI/ML model may have good or bad accuracy (prediction accuracy), and if the predicted value deviates from the actual measured value, the predicted value may be difficult for the network operator to use.
  • Figure 11 shows an example sequence for setting up AI/ML reporting (Measurement Report) for Operation Example 3.
  • the UE may add a parameter (prediction accuracy) indicating the precision (accuracy) of the predicted value (AI/ML estimated value) by the AI/ML model.
  • the parameter may be an evaluation value for the AI/ML estimated value within the UE.
  • the evaluation value may be the degree of match calculated from the relationship between the AI/ML estimated value and the measured value within a specified period of time in the past. The degree of match may be expressed as a percentage, or in multiple levels (5 levels, 3 levels, etc.). Alternatively, the evaluation value may be a parameter indicating the degree of deviation between the AI/ML estimated value and the actual measured value.
  • the gNB may request the UE to report the parameter (prediction accuracy) for the immediate future (e.g., 30 minutes).
  • the gNB may also request a report of the parameter for a specific prediction target (e.g., the probability of RLF occurrence in the serving cell).
  • the UE may report the parameter periodically based on the report request, or may report the parameter when a specified event is met (such as when the parameter falls below or exceeds a specified threshold).
  • the UE may report actual information in AI/ML reporting.
  • the UE may report the quality information (RSRP, RSRQ, SINR) of the UE's own cell (beam) and/or neighboring cells (beams) that it has measured.
  • RSRP quality information
  • RSRQ RSRQ
  • SINR SINR
  • the UE may report AI/ML predicted values separately from the information that actually occurred (measured values), or may report them together. When reporting them together, a display may be added to distinguish between the AI/ML predicted values and the actual measured values. Alternatively, the AI/ML predicted values and the actual measured values may be included in separate containers (specified locations within the report).
  • the UE reports the predicted value by the AI/ML model and information indicating the accuracy of that predicted value to the network. This allows the network to appropriately determine how to use the predicted value based on that accuracy. In other words, reporting information indicating the accuracy of the measured value can contribute to utilizing various predicted values using the AI/ML model according to their accuracy.
  • operation examples 1 to 3 were described, but only operations related to some of these operation examples may be applied.
  • precoding "precoder,” “weight (precoding weight),” “Quasi-Co-Location (QCL),” “Transmission Configuration Indication state (TCI state),” "spatial relation,” “spatial domain filter,” “transmit power,” “phase rotation,” “antenna port,” “antenna port group,” “layer,” “number of layers,” “rank,” “resource,” “resource set,” “resource group,” “beam,” “beam width,” “beam angle,” “antenna,” “antenna element,” and “panel” may be used interchangeably.
  • the above-mentioned gNB100 and UE200 may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • Figure 12 is a diagram showing an example of the hardware configuration of the device. As shown in Figure 12, the device may be configured as a computer device including a processor 1001, memory 1002, storage 1003, a communication device 1004, an input device 1005, an output device 1006, and a bus 1007.
  • apparatus can be interpreted as a circuit, device, unit, etc.
  • the hardware configuration of the apparatus may be configured to include one or more of the devices shown in the diagram, or may be configured to exclude some of the devices.
  • Each functional block of the device (see Figures 2 and 3) is realized by one of the hardware elements of the computer device, or a combination of those hardware elements.
  • each function of the device is realized by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communications device 1004, and control at least one of reading and writing data from and to the memory 1002 and storage 1003.
  • the processor 1001 for example, runs an operating system to control the entire computer.
  • the processor 1001 may be configured as a central processing unit (CPU) that includes an interface with peripheral devices, a control unit, an arithmetic unit, registers, etc.
  • CPU central processing unit
  • the processor 1001 reads programs (program code), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes in accordance with these.
  • the programs used are those that cause a computer to execute at least some of the operations described in the above-mentioned embodiments.
  • the various processes described above may be executed by a single processor 1001, or may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the programs may also be transmitted from a network via telecommunications lines.
  • Memory 1002 is a computer-readable recording medium and may be composed of, for example, at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc.
  • Memory 1002 may also be called a register, cache, main memory (primary storage device), etc.
  • Memory 1002 can store a program (program code), software module, etc. that can execute a method according to one embodiment of the present disclosure.
  • Storage 1003 is a computer-readable recording medium, and may be composed of, for example, at least one of an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disc), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the above-mentioned recording medium may be, for example, a database, a server, or other suitable medium including at least one of memory 1002 and storage 1003.
  • the communication device 1004 may be configured to include high-frequency switches, duplexers, filters, frequency synthesizers, etc. to realize, for example, at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the input device 1005 is an input device (e.g., a keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (e.g., a display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one device (e.g., a touch panel).
  • each device such as the processor 1001 and memory 1002, is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between each device.
  • the device may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the processor 1001 may be implemented using at least one of these pieces of hardware.
  • the notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB))), other signals, or a combination of these.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4th generation mobile communication system 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is, for example, an integer or decimal point
  • Future Radio Access (FRA) New Radio (NR)
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 High Mobile Broadband
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth (registered trademark), or other appropriate systems
  • multiple systems may be combined (for example, a combination of at least one of LTE and LTE-A with 5G).
  • certain operations that are described as being performed by a base station may in some cases be performed by its upper node.
  • various operations performed for communication with terminals may be performed by at least one of the base station and other network nodes other than the base station (such as, but not limited to, an MME or S-GW). While the above example shows a case where there is one other network node other than the base station, it may also be a combination of multiple other network nodes (for example, an MME and an S-GW).
  • Information, signals can be output from a higher layer (or lower layer) to a lower layer (or higher layer). They may also be input and output via multiple network nodes.
  • Input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table. Input and output information may be overwritten, updated, or appended. Output information may be deleted. Input information may be sent to another device.
  • the determination may be made based on a value represented by a single bit (0 or 1), a Boolean value (true or false), or a numerical comparison (for example, comparison with a predetermined value).
  • notification of specified information is not limited to being done explicitly, but may also be done implicitly (e.g., not notifying the specified information).
  • Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.
  • system and “network” are used interchangeably.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations may also be referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • TTI refers to, for example, the smallest time unit for scheduling in wireless communication.
  • a base station schedules each user terminal by allocating radio resources (such as the frequency bandwidth and transmission power available for use by each user terminal) in TTI units.
  • radio resources such as the frequency bandwidth and transmission power available for use by each user terminal
  • TTI is not limited to this.
  • a long TTI (e.g., a normal TTI, subframe, etc.) may be interpreted as a TTI with a time length exceeding 1 ms
  • a short TTI e.g., a shortened TTI, etc.
  • TTI length shorter than the TTI length of a long TTI but equal to or greater than 1 ms.
  • BWPs may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a specific signal/channel outside of the active BWP.
  • BWP bit stream
  • connection refers to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other.
  • the coupling or connection between elements may be physical, logical, or a combination thereof.
  • “connected” may be read as "access.”
  • two elements may be considered to be “connected” or “coupled” to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.
  • FIG. 13 shows an example configuration of a vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also called a handle) and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2027 provided in the vehicle.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • the driving assistance system unit 2030 is composed of various devices that provide functions to prevent accidents and reduce the driver's driving burden, such as millimeter-wave radar, LiDAR (Light Detection and Ranging), cameras, positioning locators (e.g., GNSS, etc.), map information (e.g., high-definition (HD) maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors, as well as one or more ECUs that control these devices.
  • the driving assistance system unit 2030 also transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.
  • the communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 1 via the communication port.
  • the communication module 2013 transmits and receives data via the communication port 2033 to and from the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axles 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and sensors 2021-2028, all of which are provided on the vehicle 2001.
  • a first feature is a terminal including: a receiving unit that receives, from a network, a measurement configuration that configures measurement using a learning model, a control unit that applies the learning model to a measurement target included in the measurement configuration and generates a measurement result, and a transmitting unit that transmits, to the network, a measurement report that includes the measurement result based on the measurement configuration.
  • a second feature is that in the first feature, the receiving unit receives the measurement configuration including identification information that identifies the learning model or a function of the learning model, and the control unit selects the learning model or a function of the learning model based on the identification information.
  • a third feature is the first or second feature, wherein the receiving unit receives the measurement configuration including conditions for the measurement report, and the transmitting unit transmits the measurement report based on the conditions.
  • An eighth feature is any one of the fifth to seventh features, wherein the transmitter transmits the prediction information including a degree of match between the positions of neighboring cells and the movement trajectory of the terminal.
  • a tenth feature is a terminal that includes a control unit that uses a learning model to generate a predicted value for a specified target, and a transmission unit that transmits the predicted value and a prediction result including the accuracy of the predicted value to a network.
  • a twelfth feature is the tenth or eleventh feature, further comprising a receiving unit that receives a request for reporting the accuracy of the predicted value from the network, and the transmitting unit transmits the prediction result, including the predicted value within a specified time period and the accuracy of the predicted value, based on the reporting request.
  • a thirteenth feature is any one of the tenth to twelfth features, wherein the transmission unit transmits the prediction result including an actual measurement value of the target.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to the present invention uses a training model to generate a predicted value for a designated target, and transmits a prediction result, which includes said predicted value and the accuracy of said predicted value, to a network.

Description

端末、無線基地局及び無線通信方法Terminal, wireless base station, and wireless communication method

 本開示は、AI/ML Modelを利用する端末、無線基地局及び無線通信方法に関する。 This disclosure relates to a terminal, a wireless base station, and a wireless communication method that utilizes an AI/ML model.

 3rd Generation Partnership Project(3GPP:登録商標)は、Long Term Evolution(LTE)、及び5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP: registered trademark) is developing specifications for Long Term Evolution (LTE) and 5th generation mobile communication systems (5G, also known as New Radio (NR) or Next Generation (NG)), and is also developing specifications for the next generation, known as Beyond 5G, 5G Evolution, or 6G.

 3GPP Release 19では、人工知能/機械学習のモデル(AI/ML Model)に関する作業項目(WI)が策定されている(非特許文献1)。 3GPP Release 19 has established a work item (WI) on artificial intelligence/machine learning models (AI/ML Models) (Non-Patent Document 1).

 例えば、AI/ML Modelを用いて、セル品質の測定結果、ハンドオーバー失敗(HOF)または無線リンク障害(RLF)などを予測することが検討される予定である。 For example, it is planned to consider using AI/ML models to predict cell quality measurement results, handover failures (HOF), radio link failures (RLF), etc.

"Revised SID on AIML for mobility in NR", RP-240082, 3GPP TSG RAN Meeting #103, 3GPP, 2024年3月"Revised SID on AIML for mobility in NR", RP-240082, 3GPP TSG RAN Meeting #103, 3GPP, March 2024

 端末(User Equipment, UE)などによるAI/ML Modelを用いた各種の予測値は、精度が高い場合もあれば低い場合もあり得る。AI/ML Modelによる予測値と、実際の測定値などとが乖離していると、当該予測値は、あまり実用的ではなく、ネットワークオペレータにとっては必ずしも利用価値が高いとは言えない場合がある。このため、単純に当該予測値を利用することが必ずしも適当でない場合がある。 Various predicted values using AI/ML models by terminals (User Equipment, UE) etc. can be highly accurate or less accurate. If there is a discrepancy between the predicted value by the AI/ML model and the actual measured value, the predicted value may not be very practical and may not necessarily be of great value to network operators. For this reason, simply using the predicted value may not always be appropriate.

 そこで、以下の開示は、このような状況に鑑みてなされたものであり、AI/ML Modelを用いた各種の予測値の精度に応じた活用に貢献し得る端末、無線基地局及び無線通信方法の提供を目的とする。 The following disclosure has been made in light of this situation, and aims to provide a terminal, wireless base station, and wireless communication method that can contribute to utilization according to the accuracy of various predicted values using AI/ML models.

 本開示の一態様は、学習モデルを用いた測定を設定する測定設定をネットワークから受信する受信部(測定処理部220)と、前記測定設定に含まれる測定対象に対して前記学習モデルを適用し、測定結果を生成する制御部(制御部240)と、前記測定設定に基づいて前記測定結果を含む測定報告を前記ネットワークに送信する送信部(測定処理部220)とを備える端末(UE200)である。 One aspect of the present disclosure is a terminal (UE200) that includes a receiver (measurement processing unit 220) that receives from the network a measurement configuration that configures measurements using a learning model, a controller (control unit 240) that applies the learning model to measurement targets included in the measurement configuration and generates measurement results, and a transmitter (measurement processing unit 220) that transmits a measurement report including the measurement results to the network based on the measurement configuration.

 本開示の一態様は、学習モデルを用いた測定を設定する測定設定を端末に送信する送信部(AI/MLモデル部130)と、前記測定設定に含まれる測定対象に対して前記学習モデルを適用して生成された測定結果を含む測定報告を前記端末から受信する受信部(AI/MLモデル部130)とを備える無線基地局(gNB100)である。 One aspect of the present disclosure is a radio base station (gNB100) that includes a transmitter (AI/ML model unit 130) that transmits a measurement configuration that configures measurements using a learning model to a terminal, and a receiver (AI/ML model unit 130) that receives from the terminal a measurement report that includes measurement results generated by applying the learning model to a measurement target included in the measurement configuration.

 本開示の一態様は、学習モデルを用いた測定を設定する測定設定をネットワークから受信するステップと、前記測定設定に含まれる測定対象に対して前記学習モデルを適用し、測定結果を生成するステップと、前記測定設定に基づいて前記測定結果を含む測定報告を前記ネットワークに送信するステップとを含む端末における無線通信方法である。 One aspect of the present disclosure is a wireless communication method in a terminal that includes the steps of receiving, from a network, a measurement configuration that configures measurements using a learning model, applying the learning model to measurement targets included in the measurement configuration to generate measurement results, and transmitting, to the network, a measurement report that includes the measurement results based on the measurement configuration.

 本開示の一態様は、学習モデルを用いてハンドオーバー失敗または無線リンク障害の発生を予測する制御部(制御部240)と、前記ハンドオーバー失敗または前記無線リンク障害の予測結果を示す予測情報をネットワークに送信する送信部(AI/MLモデル部215)とを備える端末(UE200)である。 One aspect of the present disclosure is a terminal (UE200) that includes a control unit (control unit 240) that uses a learning model to predict the occurrence of a handover failure or a radio link failure, and a transmission unit (AI/ML model unit 215) that transmits prediction information indicating the predicted result of the handover failure or the radio link failure to the network.

 本開示の一態様は、学習モデルを用いてハンドオーバー失敗または無線リンク障害の発生を予測する制御部と、前記ハンドオーバー失敗または前記無線リンク障害の予測結果を示す予測情報をネットワークに送信する送信部とを備えるネットワーク装置(OAM/RIC40)である。 One aspect of the present disclosure is a network device (OAM/RIC40) that includes a control unit that uses a learning model to predict the occurrence of a handover failure or a radio link failure, and a transmission unit that transmits prediction information indicating the predicted result of the handover failure or the radio link failure to a network.

 本開示の一態様は、学習モデルを用いて、指定された対象の予測値を生成する制御部(制御部240)と、前記予測値、及び前記予測値の精度を含む予測結果をネットワークに送信する送信部(AI/MLモデル部215)とを備える端末(UE200)である。 One aspect of the present disclosure is a terminal (UE200) that includes a control unit (control unit 240) that uses a learning model to generate a predicted value for a specified target, and a transmission unit (AI/ML model unit 215) that transmits the predicted value and a prediction result including the accuracy of the predicted value to a network.

 本開示の一態様は、指定された対象の学習モデルによる予測値の精度の報告要求を端末に送信する送信部(AI/MLモデル部130)と、前記予測値、及び前記予測値の精度を含む予測結果を前記端末から受信する受信部(AI/MLモデル部130)とを備える無線基地局(gNB100)である。 One aspect of the present disclosure is a radio base station (gNB100) that includes a transmitter (AI/ML model unit 130) that transmits to a terminal a request to report the accuracy of a predicted value based on a specified target learning model, and a receiver (AI/ML model unit 130) that receives from the terminal a prediction result including the predicted value and the accuracy of the predicted value.

 本開示の一態様は、学習モデルを用いて、指定された対象の予測値を生成するステップと、前記予測値、及び前記予測値の精度を含む予測結果をネットワークに送信するステップとを含む端末における無線通信方法である。 One aspect of the present disclosure is a wireless communication method in a terminal that includes the steps of generating a predicted value of a specified target using a learning model, and transmitting the predicted value and a prediction result including the accuracy of the predicted value to a network.

図1は、無線通信システム10の全体概略構成図である。FIG. 1 is a diagram showing the overall configuration of a wireless communication system 10. 図2は、gNB100の機能ブロック構成図である。Figure 2 is a functional block diagram of gNB100. 図3は、UE200の機能ブロック構成図である。FIG. 3 is a functional block diagram of the UE 200. 図4は、AI/ML Modelの機能的なアーキテクチャの例を示す図である。Figure 4 shows an example of the functional architecture of an AI/ML model. 図5は、動作例1に係るAI/ML reporting(Measurement Report)の設定に関するシーケンス例を示す図である。Figure 5 is a diagram showing an example sequence for setting up AI/ML reporting (Measurement Report) for operation example 1. 図6は、AI/ML reportingの情報要素(IE)の構成例を示す図である。Figure 6 shows an example of the configuration of information elements (IEs) for AI/ML reporting. 図7は、動作例2に係るAI/ML reportingに関するシーケンス例を示す図である。Figure 7 is a diagram showing an example sequence for AI/ML reporting related to operation example 2. 図8は、動作例2に係るUEの移動軌跡と近隣セルとの関係を示す図である。FIG. 8 is a diagram illustrating the relationship between the movement trajectory of a UE and neighboring cells according to the second operation example. 図9は、動作例2に係るAI/ML reportingの例を示す図である。Figure 9 is a diagram showing an example of AI/ML reporting related to operation example 2. 図10は、O-RANアーキテクチャに基づくRICの構成例を示す図である。FIG. 10 is a diagram illustrating an example of the configuration of a RIC based on the O-RAN architecture. 図11は、動作例3に係るAI/ML reporting(Measurement Report)の設定に関するシーケンス例を示す図である。Figure 11 is a diagram showing an example sequence for setting up AI/ML reporting (Measurement Report) for operation example 3. 図12は、gNB100及びUE200のハードウェア構成の一例を示す図である。Figure 12 is a diagram showing an example of the hardware configuration of gNB100 and UE200. 図13は、車両2001の構成例を示す図である。FIG. 13 is a diagram showing an example of the configuration of a vehicle 2001.

 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 The following describes embodiments based on the drawings. Note that identical or similar reference symbols are used to designate identical functions and configurations, and descriptions of these will be omitted where appropriate.

 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(User Equipment 200、以下、UE200)を含む。
(1) Overall Schematic Configuration of Wireless Communication System Fig. 1 is a diagram showing the overall schematic configuration of a wireless communication system 10 according to this embodiment. The wireless communication system 10 is a wireless communication system conforming to 5G New Radio (NR) and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN 20) and a terminal 200 (User Equipment 200, hereinafter, UE 200).

 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよいし、Long Term Evolution(LTE)或いは4Gと呼ばれる方式に従った無線通信システムが含まれてもよい。無線通信システム10は、Industrial Internet of Things(IIoT)及びURLLC(Ultra-Reliable and Low Latency Communications)に関する機能をサポートしてよい。また、無線通信システム10は、複数の無線アクセス技術(RAT)、例えば、4G/LTEと5Gを用いて構成されてもよい。 The wireless communication system 10 may be a wireless communication system conforming to a method called Beyond 5G, 5G Evolution, or 6G, or may include a wireless communication system conforming to a method called Long Term Evolution (LTE) or 4G. The wireless communication system 10 may support functions related to the Industrial Internet of Things (IIoT) and URLLC (Ultra-Reliable and Low Latency Communications). The wireless communication system 10 may also be configured using multiple radio access technologies (RATs), for example, 4G/LTE and 5G.

 NG-RAN20は、無線基地局100(以下、gNB100)を含む。なお、gNB(eNBなどでもよい)及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN 20 includes a radio base station 100 (hereinafter, gNB 100). Note that the specific configuration of the radio communication system 10, including the number of gNBs (or eNBs, etc.) and UEs, is not limited to the example shown in Figure 1.

 また、gNB100は、O-RAN(Open Radio Access Network Alliance)によって規定されているフロントホール(FH)インターフェースを採用してもよい。gNB100は、O-DU(O-RAN Distributed Unit)及びO-RU(O-RAN Radio Unit)を含んでよい。gNB100は、NG-RANノードの一種として機能できる。 The gNB100 may also employ a fronthaul (FH) interface specified by the Open Radio Access Network Alliance (O-RAN). The gNB100 may include an O-DU (O-RAN Distributed Unit) and an O-RU (O-RAN Radio Unit). The gNB100 can function as a type of NG-RAN node.

 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。5GCでは、ユーザプレーンと制御プレーンとの機能が明確に分離されたCUPS(Control and User Plane Separation)のコンセプトが導入されてよい。 NG-RAN20 actually includes multiple NG-RAN nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). 5GC may introduce the concept of CUPS (Control and User Plane Separation), which clearly separates the functions of the user plane and the control plane.

 NG-RAN20には、5GCを介して、或いはNG-RAN20から直接、OAM/RIC40及びNF50と接続されてもよい。OAM/RIC40(ネットワーク装置)は、無線通信システム10の運用保守に関する機能(OAM)を提供できる。また、OAM/RIC40は、NG-RAN20の制御に関する機能(RIC:RAN Intelligent Controller)を提供できる。RICの具体的な機能は、O-RANの仕様(例えば、O-RAN Architecture-Description 6.0)によって規定されている。本実施形態において、OAM/RIC40は、運用保守または制御を実行するエンティティを構成してよい。 NG-RAN20 may be connected to OAM/RIC40 and NF50 via 5GC or directly from NG-RAN20. OAM/RIC40 (network device) can provide functions related to operation and maintenance of the wireless communication system 10 (OAM). OAM/RIC40 can also provide functions related to control of NG-RAN20 (RIC: RAN Intelligent Controller). The specific functions of the RIC are defined by the O-RAN specifications (e.g., O-RAN Architecture-Description 6.0). In this embodiment, OAM/RIC40 may constitute an entity that performs operation, maintenance, or control.

 NF50は、ネットワーク機能(Network Function)を提供する論理的なノードと解釈されてよい。NF50には、5Gのシステムアーキテクチャに含まれ、UE200のアクセス及びモビリティの管理機能を提供するAccess and Mobility Management Function(AMF)、セッションの管理機能の提供するSession Management Function(SMF)、及び5GCにおいて規定された位置情報サービスに関する通信制御を担うLocation Management Function(LMF)などが含まれてよい。また、AMF及び/またはSMFには、UDM/UDR(Unified Data Management/User Data Repository)が接続されてもよい。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 NF50 may be interpreted as a logical node that provides network functions. NF50 may include the Access and Mobility Management Function (AMF), which is included in the 5G system architecture and provides access and mobility management functions for UE200, the Session Management Function (SMF), which provides session management functions, and the Location Management Function (LMF), which is responsible for communication control related to location information services specified in 5GC. Furthermore, UDM/UDR (Unified Data Management/User Data Repository) may be connected to the AMF and/or SMF. NG-RAN20 and 5GC may also be simply referred to as "networks."

 また、NG-RAN20には、3GPPのよるサービス提供主体が管理するサーバまたは当該提供主体以外が管理するサーバ(3GPP or non-3GPP server)が接続されてもよい。 In addition, NG-RAN20 may be connected to a server managed by a 3GPP service provider or a server managed by a party other than that provider (3GPP or non-3GPP server).

 gNB100は、NRに従った無線基地局であり、UE200とNRに従った無線通信を実行する。なお、gNB100は、CU(Central Unit)とDU(Distributed Unit)とによって構成されてもよく、DUは、CUから分離して地理的に異なる場所に設置されてもよい。CUには、1つまたは複数のDUが接続されてよい。また、gNB100(gNB-CU)間は、Xnインターフェースによって接続されてよく、CUとDUとの間は、F1インターフェースによって接続されてよい。 gNB100 is a radio base station that complies with NR and performs radio communication with UE200 that complies with NR. Note that gNB100 may be composed of a CU (Central Unit) and a DU (Distributed Unit), and the DU may be separated from the CU and installed in a different geographical location. One or more DUs may be connected to a CU. Furthermore, gNB100 (gNB-CU) may be connected to each other via an Xn interface, and CUs and DUs may be connected via an F1 interface.

 gNB100及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと複数のNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。また、UE200は、異なるRATへのハンドオーバー(HO)を実行してよい。UE200は、セルA~D(サービングセルまたは近隣セル)間においてハンドオーバーを実行してよい。 The gNB100 and UE200 are capable of supporting Massive MIMO, which generates a more directional beam (BM) by controlling the radio signals transmitted from multiple antenna elements; Carrier Aggregation (CA), which aggregates multiple component carriers (CCs); and Dual Connectivity (DC), which enables simultaneous communication between the UE and multiple NG-RAN nodes. The UE200 may also perform handover (HO) to a different RAT. The UE200 may also perform handover between cells A to D (serving cells or neighboring cells).

 無線通信システム10では、NG-RAN20において人工知能(AI)/機械学習(ML)が適用されてよい。具体的には、UE200のモビリティまたはハンドオーバー(遷移、セル遷移セル選択などと読み替えられてもよい)を最適化するために、学習モデル(ここでは、AI/ML Modelと呼ぶ)が利用されてよい。 In the wireless communication system 10, artificial intelligence (AI)/machine learning (ML) may be applied in the NG-RAN 20. Specifically, a learning model (herein referred to as an AI/ML model) may be used to optimize the mobility or handover (which may also be interpreted as transition, cell transition, cell selection, etc.) of the UE 200.

 AI/ML Modelは、人工知能(AI)モデル、機械学習(ML)モデルなど、AIまたはMLを意味する別の用語で表現されてもよい。 AI/ML Model may also be expressed as other terms that refer to AI or ML, such as artificial intelligence (AI) model or machine learning (ML) model.

 UE200のモビリティとは、広義には、UE200の動き易さ、機動性を意味してよいが、本実施形態では、呼損(call drop)、無線リンク(ビームを含む)障害、不要なハンドオーバー、ピンポン状態などの最小化を意味してもよい。 In a broad sense, the mobility of UE200 may refer to the ease of movement and maneuverability of UE200, but in this embodiment, it may also refer to the minimization of call drops, radio link (including beam) failures, unnecessary handovers, ping-pong states, etc.

 UE200は、定期的に測定報告(Measurement reporting)を実行してもよい。UE200は、イベント毎にMeasurement reportingを実行してもよい。Measurement reportingを開始するエンタリング条件及びMeasurement reportingを終了するリービング条件がイベント毎に定められてもよい。既存のイベントは、以下に示すイベントを含んでもよい(3GPP TS38.331参照)。なお、エンタリング条件は、測定報告の報告対象とするか否かを判定する条件、リービング条件は、測定報告の報告対象から除外するか否かを判定する条件と解釈されてよい。 UE200 may periodically perform measurement reporting. UE200 may also perform measurement reporting for each event. An entering condition for starting measurement reporting and a leaving condition for ending measurement reporting may be defined for each event. Existing events may include the events shown below (see 3GPP TS38.331). Note that the entering condition may be interpreted as a condition for determining whether or not to include a measurement report, and the leaving condition may be interpreted as a condition for determining whether or not to exclude a measurement report from the measurement report.

 (i)Event A1 (Serving becomes better than threshold)
 Event A1は、サービングセルの受信品質が閾値よりも良くなるイベントである。例えば、エンタリング条件は、Ms - Hys > Threshであり、リービング条件は、Ms + Hys < Threshである。
(i)Event A1 (Serving becomes better than threshold)
Event A1 is an event in which the reception quality of the serving cell becomes better than a threshold. For example, the entering condition is Ms - Hys > Thresh, and the leaving condition is Ms + Hys < Thresh.

 ここで、Msは、サービングセルの受信品質であり、Hysは、ヒステリシスパラメータであり、Threshは、閾値である。 Here, Ms is the reception quality of the serving cell, Hys is the hysteresis parameter, and Thresh is the threshold value.

 (ii)Event A2 (Serving becomes worse than threshold)
 Event A2は、サービングセルの受信品質が閾値よりも悪くなるイベントである。例えば、エンタリング条件は、Ms + Hys < Threshであり、リービング条件は、Ms - Hys > Threshである。
(ii) Event A2 (Serving becomes worse than threshold)
Event A2 is an event in which the reception quality of the serving cell becomes worse than a threshold. For example, the entering condition is Ms + Hys < Thresh, and the leaving condition is Ms - Hys > Thresh.

 ここで、Msは、サービングセルの受信品質であり、Hysは、ヒステリシスパラメータであり、Threshは、閾値である。 Here, Ms is the reception quality of the serving cell, Hys is the hysteresis parameter, and Thresh is the threshold value.

 (iii)Event A3 (Neighbor becomes offset better than SpCell)
 Event A3は、近隣セルの受信品質がサービングの受信品質よりもオフセットだけ良くなるイベントである。例えば、エンタリング条件は、Mn + Ofn+ Ocn - Hys > Mp + Ofp + Ocp + Offであり、リービング条件は、Mn + Ofn + Ocn + Hys < Mp + Ofp + Ocp + Offである。
(iii) Event A3 (Neighbor becomes offset better than SpCell)
Event A3 is an event in which the reception quality of the neighboring cell is better than the reception quality of the serving cell by an offset. For example, the entering condition is Mn + Ofn + Ocn - Hys > Mp + Ofp + Ocp + Off, and the leaving condition is Mn + Ofn + Ocn + Hys < Mp + Ofp + Ocp + Off.

 ここで、Mnは、近隣セルの受信品質であり、Ofnは、測定対象に固有のオフセットであり、Ocnは、セルに固有のオフセットである。Mpは、サービングセルの受信品質であり、Ofpは、測定対象に固有のオフセットであり、Ocpは、セルに固有のオフセットである。Hysは、ヒステリシスパラメータであり、Offは、Event A3で用いるパラメータである。 Here, Mn is the reception quality of the neighboring cell, Ofn is an offset specific to the measurement target, and Ocn is an offset specific to the cell. Mp is the reception quality of the serving cell, Ofp is an offset specific to the measurement target, and Ocp is an offset specific to the cell. Hys is the hysteresis parameter, and Off is the parameter used in Event A3.

 (iv)Event A4 (Neighbor becomes better than threshold)
 Event A4は、近隣セルの受信品質が閾値よりも良くなるイベントである。例えば、エンタリング条件は、Mn + Ofn + Ocn - Hys > Threshであり、リービング条件は、Mn + Ofn + Ocn + Hys < Threshである。
(iv) Event A4 (Neighbor becomes better than threshold)
Event A4 is an event in which the reception quality of a neighboring cell becomes better than a threshold. For example, the entering condition is Mn + Ofn + Ocn - Hys > Thresh, and the leaving condition is Mn + Ofn + Ocn + Hys < Thresh.

 ここで、Mnは、近隣セルの受信品質であり、Ofnは、測定対象に固有のオフセットであり、Ocnは、セルに固有のオフセットである。Hysは、ヒステリシスパラメータであり、Threshは、閾値である。 Here, Mn is the reception quality of the neighboring cell, Ofn is the offset specific to the measurement target, and Ocn is the offset specific to the cell. Hys is the hysteresis parameter, and Thresh is the threshold value.

 (v)Event A5 (SpCell becomes worse than threshold1 and neighbor becomes better than threshold2)
 Event A5は、サービングセルの受信品質が閾値よりも悪くなり、かつ、近隣セルの受信品質が閾値よりも良くなるイベントである。例えば、エンタリング条件は、Mp + Hys < Thresh1、かつ、Mn + Ofn + Ocn - Hys > Thresh2であり、リービング条件は、Mp - Hys > Thresh1、かつ、Mn + Ofn + Ocn + Hys < Thresh2である。
(v)Event A5 (SpCell becomes worse than threshold1 and neighbor becomes better than threshold2)
Event A5 is an event in which the reception quality of the serving cell becomes worse than a threshold and the reception quality of the neighboring cell becomes better than a threshold. For example, the entering condition is Mp + Hys < Thresh1 and Mn + Ofn + Ocn - Hys > Thresh2, and the leaving condition is Mp - Hys > Thresh1 and Mn + Ofn + Ocn + Hys < Thresh2.

 ここで、Msは、サービングセルの受信品質であり、Hysは、ヒステリシスパラメータであり、Thresh1は、閾値である。Mnは、近隣セルの受信品質であり、Ofnは、測定対象に固有のオフセットであり、Ocnは、セルに固有のオフセットである。Hysは、ヒステリシスパラメータであり、Thresh2は、閾値である。 Here, Ms is the reception quality of the serving cell, Hys is the hysteresis parameter, and Thresh1 is the threshold value. Mn is the reception quality of the neighboring cell, Ofn is an offset specific to the measurement target, and Ocn is an offset specific to the cell. Hys is the hysteresis parameter, and Thresh2 is the threshold value.

 (vi)Event A6 (Neighbour becomes offset better than SCell)
 Event A6は、近隣セルの受信品質がSCell(Secondary Cell)の受信品質よりもオフセットだけ良くなるイベントである。例えば、エンタリング条件は、Mn + Ocn - Hys > Ms + Ocs + Offであり、リービング条件は、Mn + Ocn + Hys < Ms + Ocs + Offである。
(vi)Event A6 (Neighbor becomes offset better than SCell)
Event A6 is an event in which the reception quality of a neighboring cell is better than the reception quality of a SCell (Secondary Cell) by an offset. For example, the entering condition is Mn + Ocn - Hys > Ms + Ocs + Off, and the leaving condition is Mn + Ocn + Hys < Ms + Ocs + Off.

 なお、上述したイベント以外に、RAT(Radio Access technology)間に関するイベント(例えば、B1(Inter RAT neighbour becomes better than threshold)、B2(Serving becomes worse than threshold1 and inter RAT neighbour becomes better than threshold2))が含まれてよい。 In addition to the events mentioned above, events related to inter-RAT (Radio Access Technology) (e.g., B1 (Inter RAT neighbor becomes better than threshold), B2 (Serving becomes worse than threshold1 and inter RAT neighbor becomes better than threshold2)) may also be included.

 ここで、Mnは、近隣セルの受信品質であり、Ocnは、セルに固有のオフセットである。Msは、SCellの受信品質であり、Ocsは、セルに固有のオフセットである。Hysは、ヒステリシスパラメータであり、Offは、Event A6で用いるパラメータである。 Here, Mn is the reception quality of the neighboring cell, and Ocn is an offset specific to the cell. Ms is the reception quality of the SCell, and Ocs is an offset specific to the cell. Hys is the hysteresis parameter, and Off is the parameter used in Event A6.

 無線通信システム10では、このようなAI/ML Modelを用いて、UE200のモビリティまたはハンドオーバーを最適化できる。AI/ML Modelは、OAM/RIC40に設けられてもよいし、gNB100に設けられてもよい。また、AI/ML Modelは、UE200に設けられてもよい。 In the wireless communication system 10, such an AI/ML model can be used to optimize the mobility or handover of the UE 200. The AI/ML model may be provided in the OAM/RIC 40 or in the gNB 100. The AI/ML model may also be provided in the UE 200.

 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、gNB100及びUE200の機能ブロック構成について説明する。図2は、gNB100の機能ブロック構成図である。図3は、UE200の機能ブロック構成図である。 Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of the gNB 100 and UE 200 will be described. Figure 2 is a functional block configuration diagram of the gNB 100. Figure 3 is a functional block configuration diagram of the UE 200.

 (2.1)gNB100
 図2に示すように、gNB100は、無線通信部110、ハンドオーバー処理部120、AI/MLモデル部130及び制御部140を備える。
(2.1) gNB100
As shown in FIG. 2, the gNB 100 includes a wireless communication unit 110, a handover processing unit 120, an AI/ML model unit 130, and a control unit 140.

 無線通信部110は、NRに従った下りリンク信号(DL信号)を送信する。また、無線通信部110は、NRに従った上りリンク信号(UL信号)を受信する。無線通信部110は、1つまたは複数の送受信ポイント(TRP)を用いて、DL信号を送信し、UL信号を受信してよい。本実施形態では、TRPは、DLの複数の送信アンテナを意味するものとして解釈されてもよい。 The wireless communication unit 110 transmits downlink signals (DL signals) conforming to NR. The wireless communication unit 110 also receives uplink signals (UL signals) conforming to NR. The wireless communication unit 110 may transmit DL signals and receive UL signals using one or more transmit/receive points (TRPs). In this embodiment, a TRP may be interpreted as meaning multiple DL transmit antennas.

 ハンドオーバー処理部120は、UE200のハンドオーバーを実行する。具体的には、ハンドオーバー処理部120は、UE200のサービングセルから近隣の他のセルへのハンドオーバーを実行する。 The handover processing unit 120 executes handover of the UE 200. Specifically, the handover processing unit 120 executes handover from the serving cell of the UE 200 to another nearby cell.

 なお、サービングセルとは、単にUE200が接続中のセルと解釈されてもよいが、もう少し厳密には、キャリアアグリゲーション(CA)が設定されていないRRC_CONNECTED(無線リソース制御レイヤにおける接続状態)のUEの場合、プライマリーセルを構成するサービングセルは1つだけである。CAを用いて構成されたRRC_CONNECTEDのUEの場合、サービングセルは、プライマリーセルと全てのセカンダリセルとを含む1つまたは複数のセルのセットを示すと解釈されてもよい。 Note that the serving cell may be interpreted simply as the cell to which UE 200 is connected, but more precisely, in the case of an RRC_CONNECTED UE (connected state in the radio resource control layer) in which carrier aggregation (CA) is not configured, there is only one serving cell that constitutes the primary cell. In the case of an RRC_CONNECTED UE configured using CA, the serving cell may be interpreted as indicating a set of one or more cells including the primary cell and all secondary cells.

 また、ハンドオーバーには、条件付きハンドオーバー(CHO:Conditional Handover)及び/またはDAPS(dual active protocol stack)ハンドオーバーが含まれてもよい。CHOは、特定の実行条件(execution condition)が満たされたときに、UE200主導のハンドオーバーを実行できる。CHOが適用できない場合、通常のハンドオーバーが実行されてよい(CHO recoveryと呼ばれてもよい)。CHO recoveryでは、CHO failure後にUE200がセル選択を実行するが、CHO candidate cellを選択した場合、RRC Reestablishment Requestをcandidate target cellに送信せずに、直接当該セルのconditional RRC Reconfigurationを適用し再接続できる。 The handover may also include a conditional handover (CHO) and/or a dual active protocol stack (DAPS) handover. CHO can perform a UE200-initiated handover when certain execution conditions are met. If CHO is not applicable, a normal handover may be performed (which may be called CHO recovery). In CHO recovery, UE200 performs cell selection after a CHO failure, but if a CHO candidate cell is selected, it can directly apply conditional RRC Reconfiguration of that cell to reconnect without sending an RRC Reestablishment Request to the candidate target cell.

 実行条件は、1つまたは2つのトリガ条件(3GPP TS38.331において規定されるCHOイベントA3/A5)によって構成されてよい。単一の参照信号(RS)タイプがトリガされ、単一候補セルのCHO実行条件の評価のために、最大2つの異なるトリガ量(例えば、Reference Signal Received Power(RSRP)とReference Signal Received Quality(RSRQ)、RSRPとSignal-to-Interference plus Noise power Ratio(SINR)など)が同時に設定されてよい。 The execution conditions may consist of one or two trigger conditions (CHO event A3/A5 as specified in 3GPP TS38.331). A single reference signal (RS) type may be triggered, and up to two different trigger quantities (e.g., Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ), RSRP and Signal-to-Interference plus Noise power Ratio (SINR), etc.) may be set simultaneously for the evaluation of the CHO execution conditions for a single candidate cell.

 AI/MLモデル部130は、学習モデル(AI/ML Model)を利用した処理を実行する。具体的には、AI/MLモデル部130は、UE200のモビリティ及び/またはハンドオーバーの最適化に適用されるAI/ML Modelを利用した処理を実行する。 The AI/ML model unit 130 executes processing using a learning model (AI/ML model). Specifically, the AI/ML model unit 130 executes processing using an AI/ML model that is applied to the optimization of the mobility and/or handover of the UE 200.

 特に、本実施形態では、AI/MLモデル部130は、AI/ML Modelを用いた測定を設定する測定設定(MeasConfig)をUE200に送信してよい。本実施形態において、AI/MLモデル部130は、測定設定を端末に送信する送信部を構成してよい。当該測定設定は、例えば、無線リソース制御レイヤ(RRC)のメッセージによってUE200に送信されてよい。 In particular, in this embodiment, the AI/ML model unit 130 may transmit to the UE 200 a measurement configuration (MeasConfig) that configures measurements using the AI/ML model. In this embodiment, the AI/ML model unit 130 may constitute a transmission unit that transmits the measurement configuration to the terminal. The measurement configuration may be transmitted to the UE 200, for example, by a radio resource control layer (RRC) message.

 AI/MLモデル部130は、当該測定設定に含まれる測定対象(MeasObject)に対してAI/ML Modelを適用して生成された測定結果を含む測定報告(Measurement Report)をUE200から受信してよい。本実施形態において、AI/MLモデル部130は、測定報告を端末から受信する受信部を構成してよい。 The AI/ML model unit 130 may receive from the UE 200 a measurement report including measurement results generated by applying the AI/ML model to the measurement object (MeasObject) included in the measurement setting. In this embodiment, the AI/ML model unit 130 may constitute a receiving unit that receives the measurement report from the terminal.

 また、AI/MLモデル部130は、指定された対象のAI/ML Modelによる予測値の精度の報告要求をUE200に送信してよい。本実施形態において、AI/MLモデル部130は、報告要求を端末に送信する送信部を構成してよい。指摘された対象とは、AI/ML Modelによる予測の対象を意味してよく、例えば、セル品質の測定値(RSRPなど)、ハンドオーバー失敗(HOF)の確率、無線リンク障害(RLF)の確率などが含まれてよい。 Furthermore, the AI/ML model unit 130 may transmit to the UE 200 a request to report the accuracy of the predicted value by the AI/ML model for the specified target. In this embodiment, the AI/ML model unit 130 may constitute a transmission unit that transmits the report request to the terminal. The specified target may refer to the target of prediction by the AI/ML model, and may include, for example, a measured value of cell quality (such as RSRP), the probability of handover failure (HOF), the probability of radio link failure (RLF), etc.

 AI/MLモデル部130は、AI/ML Modelによって予測された当該対象の予測値、及び当該予測値の精度を含む予測結果をUE200から受信してよい。本実施形態において、AI/MLモデル部130は、予測結果を端末から受信する受信部を構成してよい。具体的には、AI/MLモデル部130は、予測値と、予測値の精度(prediction accuracy)とを含む予測結果を受信してよい。 The AI/ML model unit 130 may receive a prediction result from the UE 200, including the predicted value of the target predicted by the AI/ML model and the accuracy of the predicted value. In this embodiment, the AI/ML model unit 130 may constitute a receiving unit that receives the prediction result from the terminal. Specifically, the AI/ML model unit 130 may receive a prediction result including the predicted value and the prediction accuracy of the predicted value.

 予測値の精度は、パーセンテージによって示されてもよいし、複数の段階などによって示されてもよい。また、予測値(推測値と呼ばれてもよい)に対する評価値が用いられてもよい。評価値は、過去の予測結果に基づく予測値と実測値との合致度を示すパラメータでもよいし、予測値と実測値との乖離度を示すパラメータでもよい。なお、より具体的な予測結果の内容については、さらに後述する。 The accuracy of the predicted value may be expressed as a percentage, or may be expressed in multiple stages. An evaluation value for the predicted value (which may also be called an estimated value) may also be used. The evaluation value may be a parameter indicating the degree of agreement between a predicted value based on past prediction results and an actual measurement value, or a parameter indicating the degree of deviation between the predicted value and the actual measurement value. More specific details of the prediction results will be discussed further below.

 制御部140は、gNB100を構成する各機能ブロックを制御する。特に、本実施形態では、制御部140は、AI/MLモデル部130を用いて、セル品質の測定値、HOFの確率、RLFの確率などの予測値を取得し、当該予測値及び予測値の精度に応じたSON(Self-Organizing Networks)に関する制御などを実行してよい。 The control unit 140 controls each functional block that makes up the gNB 100. In particular, in this embodiment, the control unit 140 may use the AI/ML model unit 130 to obtain predicted values such as measured cell quality, HOF probability, and RLF probability, and may perform control related to SON (Self-Organizing Networks) according to the predicted values and their accuracy.

 また、制御部140は、UE200から取得したセル品質の測定結果、及びHOF/RLFの報告などに基づいてハンドオーバーなどを含むUE200のモビリティ制御などを実行してよい。当該測定結果及び報告は、AI/ML Modelを用いて予測されたものでもよい。 In addition, the control unit 140 may perform mobility control of the UE 200, including handover, based on the cell quality measurement results and HOF/RLF reports obtained from the UE 200. The measurement results and reports may be predicted using an AI/ML model.

 また、本実施形態では、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、PRACH(Physical Random Access Channel)、及びPBCH(Physical Broadcast Channel)などが含まれる。 In addition, in this embodiment, channels include control channels and data channels. Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), and PBCH (Physical Broadcast Channel), etc.

 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。 Data channels also include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).

 なお、参照信号には、Demodulation reference signal(DMRS)、Sounding Reference Signal(SRS)、Phase Tracking Reference Signal (PTRS)、及びChannel State Information-Reference Signal(CSI-RS)などが含まれ、信号には、チャネル及び参照信号が含まれる。また、データとは、データチャネルを介して送信されるデータを意味してよい。 Note that reference signals include Demodulation reference signals (DMRS), Sounding Reference Signals (SRS), Phase Tracking Reference Signals (PTRS), and Channel State Information-Reference Signals (CSI-RS), and signals include channels and reference signals. Note that data may refer to data transmitted via a data channel.

 (2.2)UE200
 図3に示すように、UE200は、無線通信部210、AI/MLモデル部215、測定処理部220、ハンドオーバー実行部230及び制御部240を備える。
(2.2) UE200
As shown in FIG. 3 , the UE 200 includes a radio communication unit 210 , an AI/ML model unit 215 , a measurement processing unit 220 , a handover execution unit 230 , and a control unit 240 .

 無線通信部210は、NRに従った上りリンク信号(UL信号)を送信する。また、無線通信部210は、NRに従った上りリンク信号(DL信号)を受信する。 The wireless communication unit 210 transmits uplink signals (UL signals) that comply with NR. The wireless communication unit 210 also receives uplink signals (DL signals) that comply with NR.

 AI/MLモデル部215は、学習モデル(AI/ML Model)を利用した処理を実行する。AI/MLモデル部215は、gNB100のAI/MLモデル部130と同様の機能を有してよい。AI/MLモデル部は、gNB100またはUE200の何れかに設けられてもよいし、両方に設けられてもよい。 The AI/ML model unit 215 executes processing using a learning model (AI/ML Model). The AI/ML model unit 215 may have the same functions as the AI/ML model unit 130 of the gNB100. The AI/ML model unit may be provided in either the gNB100 or the UE200, or in both.

 AI/MLモデル部215は、ハンドオーバー失敗(HOF)または無線リンク障害(RLF)の予測結果を示す予測情報をネットワークに送信してよい。本実施形態において、AI/MLモデル部215は、予測情報をネットワークに送信する送信部を構成してよい。 The AI/ML model unit 215 may transmit prediction information indicating the predicted result of handover failure (HOF) or radio link failure (RLF) to the network. In this embodiment, the AI/ML model unit 215 may constitute a transmission unit that transmits the prediction information to the network.

 HOF及びRLFの予測結果は、サービングセルを対象としてもよいし、近隣セル(隣接セル、周辺セルなどと呼ばれてもよい)を対象としてもよい。 The HOF and RLF prediction results may be targeted at the serving cell or at neighboring cells (which may also be called adjacent cells, peripheral cells, etc.).

 AI/MLモデル部215は、ハンドオーバー失敗の発生確率及び無線リンク障害の発生確率の少なくとも何れかを含む予測情報を送信してよい。発生確率は、パーセンテージによって示されてもよいし、複数の段階などによって示されてもよい。予測情報は、AI/MLに関する報告(AI/ML reporting)によってネットワークに送信されてもよいし、Measurement Reportによってネットワークに送信されてもよい。 The AI/ML model unit 215 may transmit prediction information including at least one of the probability of handover failure and the probability of radio link failure. The probability of occurrence may be indicated by a percentage, or may be indicated by multiple stages, etc. The prediction information may be transmitted to the network via an AI/ML report (AI/ML reporting), or may be transmitted to the network via a Measurement Report.

 AI/MLモデル部215は、サービングセルまたは近隣セルにおけるHOF/RLFの発生確率を含む予測情報を送信してよい。なお、ビームレベルの障害(BF)の発生確率が含まれてもよい。 The AI/ML model unit 215 may transmit prediction information including the probability of HOF/RLF occurring in the serving cell or neighboring cells. It may also include the probability of beam-level failure (BF).

 また、AI/MLモデル部215は、近隣セルの位置とUE200の移動軌跡との合致度を含む予測情報を送信してもよい。UE200の移動軌跡(trajectory)とは、UE200の位置を示す時系列の情報と解釈されてもよい。移動軌跡は、過去の情報でもよいし、予測した未来の情報でもよい。移動軌跡は、近隣セル(サービングセルでもよい)との位置関係(セルの所定位置からの距離など)が判定できる情報であればよい。 The AI/ML model unit 215 may also transmit prediction information including the degree of match between the positions of neighboring cells and the movement trajectory of UE200. The movement trajectory of UE200 may be interpreted as time-series information indicating the position of UE200. The movement trajectory may be past information or predicted future information. The movement trajectory may be information that allows the positional relationship with a neighboring cell (which may be the serving cell) to be determined (such as the distance from a specified position of the cell).

 AI/MLモデル部215は、近隣セルにおける将来の品質予測値を含む予測情報を送信してもよい。具体的には、AI/MLモデル部215は、近隣セル(サービングセルでもよい)におけるセル品質(RSRP, RSRQなど)の将来の数値を予測し、当該予測値を含む予測情報を送信してよい。将来とは、特に限定されないが、予測値の精度を考慮すると、数十ミリ秒後の時点を対象とすることが好ましい。 The AI/ML model unit 215 may transmit prediction information including future quality prediction values in neighboring cells. Specifically, the AI/ML model unit 215 may predict future values of cell quality (RSRP, RSRQ, etc.) in neighboring cells (which may be the serving cell) and transmit prediction information including the predicted values. The future is not particularly limited, but considering the accuracy of the predicted values, it is preferable to target a time point several tens of milliseconds in the future.

 また、AI/MLモデル部215は、AI/ML Modelによる各種の予測値、及び当該予測値の精度を含む予測結果をネットワークに送信してよい。本実施形態において、AI/MLモデル部215は、予測結果をネットワークに送信する送信部を構成してよい。 Furthermore, the AI/ML model unit 215 may transmit prediction results, including various predicted values by the AI/ML model and the accuracy of those predicted values, to the network. In this embodiment, the AI/ML model unit 215 may constitute a transmission unit that transmits the prediction results to the network.

 予測値の精度は、上述したように、パーセンテージによって示されてもよいし、複数の段階などによって示されてもよい。予測結果には、予測値と当該予測値の精度とが含まれてよいが、予測値と予測値の精度とは、必ずしも一緒に送信されなくてもよく、予測値の精度の送信頻度は、予測値の送信頻度よりも少なくしてもよい。 As mentioned above, the accuracy of the predicted value may be expressed as a percentage, or may be expressed in multiple stages. The prediction result may include the predicted value and the accuracy of the predicted value, but the predicted value and the accuracy of the predicted value do not necessarily have to be transmitted together, and the accuracy of the predicted value may be transmitted less frequently than the predicted value.

 AI/MLモデル部215は、指定された対象(測定値、HOF/RLFなど)の過去における予測値と、対象の実測値(HOF/RLFの実際の発生状況を含んでよい)との合致度を含む予測結果を送信してよい。合致度は、過去の予測値と実測値とに基づいて算出されてよい。合致度とは、パーセンテージによって示されてもよいし、複数の段階などによって示されてもよい。なお、予測値の精度は、必ずしも過去の実績を考慮していなくてもよく、現在から予測時点までの時間の長短、品質の種別などに応じて一義的に決定されたものでもよい。 The AI/ML model unit 215 may transmit prediction results including the degree of match between past predicted values of a specified target (measured values, HOF/RLF, etc.) and actual measured values of the target (which may include the actual occurrence of HOF/RLF). The degree of match may be calculated based on past predicted values and actual measured values. The degree of match may be expressed as a percentage or in multiple stages. Note that the accuracy of the predicted value does not necessarily take past performance into consideration, and may be uniquely determined depending on the length of time from the present to the time of prediction, the type of quality, etc.

 AI/MLモデル部215は、予測値の精度の報告要求をネットワークから受信してよい。本実施形態において、AI/MLモデル部215は、報告要求をネットワークから受信する受信部を構成してよい。 The AI/ML model unit 215 may receive a request to report the accuracy of the predicted value from the network. In this embodiment, the AI/ML model unit 215 may constitute a receiving unit that receives the report request from the network.

 AI/MLモデル部215は、受信した報告要求に基づいて、規定された時間内における予測値、及び予測値の精度を取得し、当該予測値及び精度を含む予測結果をネットワークに送信してよい。また、AI/MLモデル部215は、指定された予測の対象の実測値を含む予測結果を送信してもよい。つまり、AI/MLモデル部215は、予測値、予測値の精度及び実測値をネットワークに報告できる。 Based on the received report request, the AI/ML model unit 215 may obtain the predicted value and the accuracy of the predicted value within a specified time period, and transmit the prediction result including the predicted value and accuracy to the network. The AI/ML model unit 215 may also transmit the prediction result including the actual measured value of the specified prediction target. In other words, the AI/ML model unit 215 can report the predicted value, the accuracy of the predicted value, and the actual measured value to the network.

 測定処理部220は、UE200のサービングセル、及び当該サービングセルの近隣セルの品質を測定し、測定結果をネットワークに報告(Measurement Report)できる。測定処理部220は、ハンドオーバーに際して、ソースセル及びターゲットセルの測定報告を実行してよい。 The measurement processing unit 220 can measure the quality of the serving cell of the UE 200 and the cells neighboring the serving cell, and report the measurement results to the network (Measurement Report). The measurement processing unit 220 may perform measurement reports of the source cell and target cell during handover.

 測定対象の品質とは、例えば、3GPP TS38.331において規定されているMeasurement Reportに含まれる品質(例えば、RSRP, RSRQ)などでよい。 The quality to be measured may be, for example, the quality included in the Measurement Report specified in 3GPP TS38.331 (e.g., RSRP, RSRQ).

 測定処理部220は、AI/ML Modelを用いた測定を設定する測定設定(MeasConfig)をネットワークから受信する。本実施形態において、測定処理部220は、測定設定をネットワークから受信する受信部を構成してよい。 The measurement processing unit 220 receives measurement settings (MeasConfig) from the network, which configure measurements using an AI/ML model. In this embodiment, the measurement processing unit 220 may constitute a receiving unit that receives the measurement settings from the network.

 測定処理部220は、受信した測定設定に従って、制御部240による制御に基づいてAI/MLモデル部215を用いた測定を実行してよい。AI/ML Modelを用いた測定とは、セル品質の実測値に基づいて将来または異なる無線リソース(例えば、周波数など)に係るセル品質(ビーム品質を含んでよい)を予測することを意味してよい。 The measurement processing unit 220 may perform measurements using the AI/ML model unit 215 under control of the control unit 240 in accordance with the received measurement settings. Measurement using an AI/ML model may mean predicting future cell quality (which may include beam quality) for different radio resources (e.g., frequencies) based on actual measured values of cell quality.

 測定処理部220は、AI/ML ModelまたはAI/ML Modelの機能を識別する識別情報を含む測定設定を受信してもよい。具体的には、AI/ML Model自体を識別するAI model IDが用いられてもよいし、AI/ML Modelの機能を識別するAI functionality IDが用いられてもよい。 The measurement processing unit 220 may receive a measurement configuration that includes identification information that identifies the AI/ML model or a function of the AI/ML model. Specifically, an AI model ID that identifies the AI/ML model itself may be used, or an AI functionality ID that identifies a function of the AI/ML model may be used.

 測定処理部220は、測定報告の条件を含む測定設定を受信してもよい。なお、ここでの測定報告とは、AI/MLに関する報告(AI/ML reporting)でもよいし、Measurement Reportでもよい。条件とは、例えば、AI/ML reportingの報告周期、AI/ML reportingのボリューム(量)、報告回数、所定のイベントを満足するか否かなどとしてよい。所定のイベントとは、例えば、AI/ML Modelに関するイベントでもよいし、セル品質に関するイベントでもよい。 The measurement processing unit 220 may receive measurement settings that include conditions for measurement reporting. Note that the measurement report here may be a report related to AI/ML (AI/ML reporting) or a Measurement Report. The conditions may be, for example, the reporting period of AI/ML reporting, the volume (amount) of AI/ML reporting, the number of reports, or whether a specified event is satisfied. The specified event may be, for example, an event related to an AI/ML model or an event related to cell quality.

 測定処理部220は、受信した測定設定に基づいて、AI/ML Modelを利用した測定結果を含む測定報告をネットワークに送信してもよい。本実施形態において、測定処理部220は、測定報告をネットワークに送信する送信部を構成してよい。 The measurement processing unit 220 may transmit a measurement report to the network that includes measurement results using the AI/ML model based on the received measurement settings. In this embodiment, the measurement processing unit 220 may constitute a transmitting unit that transmits the measurement report to the network.

 また、測定処理部220は、上述した条件に基づいて測定報告を送信してよい。具体的には、測定処理部220は、当該条件を満足した場合(或いは満足しない場合)、測定報告を送信してよい。 Furthermore, the measurement processing unit 220 may transmit a measurement report based on the above-mentioned conditions. Specifically, the measurement processing unit 220 may transmit a measurement report when the conditions are satisfied (or not satisfied).

 測定処理部220は、測定報告の中止する中止指示をネットワークから受信してもよい。測定処理部220は、受信した中止指示に基づいて、AI/ML Modelを用いた測定結果を含む測定報告のネットワークへの送信を中止してよい。中止指示は、一時的なものでもよいし、恒久的なものでもよい。中止は、キャンセルまたは停止と解釈されてもよい。 The measurement processing unit 220 may receive a stop instruction from the network to stop the measurement report. Based on the received stop instruction, the measurement processing unit 220 may stop sending the measurement report, including the measurement results using the AI/ML model, to the network. The stop instruction may be temporary or permanent. The stop may be interpreted as a cancellation or a stop.

 ハンドオーバー実行部230は、UE200のハンドオーバーを実行する。具体的には、ハンドオーバー実行部230は、gNB100による制御に基づいて、遷移先のセル(NG-RANノード)へのハンドオーバーを実行してよい。 The handover execution unit 230 executes handover of the UE 200. Specifically, the handover execution unit 230 may execute handover to the destination cell (NG-RAN node) based on control by the gNB 100.

 また、ハンドオーバー実行部230は、通常のハンドオーバー(レガシー・ハンドオーバー)、及び条件付きハンドオーバー(CHO)に関する処理を実行できる。 In addition, the handover execution unit 230 can perform processing related to normal handover (legacy handover) and conditional handover (CHO).

 ハンドオーバー実行部230は、CHOの場合、実行条件(execution condition)が満たされたときに候補セルに遷移してよい。実行条件は、上述したように、参照信号(RS)の品質、具体的には、RSRP、RSRQ、或いはSINRの値に基づいて決定されてよい。 In the case of CHO, the handover execution unit 230 may transition to a candidate cell when an execution condition is met. As described above, the execution condition may be determined based on the quality of the reference signal (RS), specifically, the RSRP, RSRQ, or SINR value.

 また、CHOは、遷移先がSCGを伴っていなくてもよいし、SCGを伴っていてもよい。換言すると、CHOによる遷移先のセルとしては、単一のセルでもよいし、DCに従った複数のセル(セルグループと読み替えてもよい)によって構成されていてもよい。 Furthermore, the destination of a CHO may or may not involve an SCG. In other words, the destination cell of a CHO may be a single cell, or may be composed of multiple cells (which may be interpreted as a cell group) according to a DC.

 また、ハンドオーバー実行部230は、UE200のハンドオーバーの要求(handover command)をネットワークから受信できる。本実施形態において、ハンドオーバー実行部230は、受信部を構成してよい。handover commandには、ハンドオーバー元のソースセル用のAI/ML Modelなどの削除を指示するindicationが含まれてもよい。 Furthermore, the handover execution unit 230 can receive a handover request (handover command) for the UE 200 from the network. In this embodiment, the handover execution unit 230 may constitute a receiving unit. The handover command may include an indication to delete an AI/ML model, etc. for the source cell from which the handover originates.

 制御部240は、UE200を構成する各機能ブロックを制御する。特に、本実施形態では、制御部240は、AI/MLモデル部215を用いて測定処理部220による測定設定及び測定報告に関する制御を実行してよい。 The control unit 240 controls each functional block that constitutes the UE 200. In particular, in this embodiment, the control unit 240 may use the AI/ML model unit 215 to perform control related to measurement settings and measurement reports by the measurement processing unit 220.

 具体的には、制御部240は、ネットワークから受信した測定設定に含まれる測定対象(MeasObject)に対してAI/ML Modelを適用し、測定結果を生成してよい。また、制御部240は、AI/ML Modelを用いてハンドオーバー失敗(HOF)または無線リンク障害(RLF)の発生を予測してよい。 Specifically, the control unit 240 may apply an AI/ML model to the measurement object (MeasObject) included in the measurement configuration received from the network to generate measurement results. The control unit 240 may also use the AI/ML model to predict the occurrence of handover failure (HOF) or radio link failure (RLF).

 制御部240は、AI/ML Modelを用いて、指定された対象の予測値を生成してもよい。指定された対象とは、上述したように、AI/ML Modelによる予測の対象を意味してよく、例えば、セル品質の測定値(RSRPなど)、ハンドオーバー失敗(HOF)の確率、無線リンク障害(RLF)の確率などが含まれてよい。 The control unit 240 may use an AI/ML model to generate a predicted value for a specified target. As described above, the specified target may refer to the target of prediction by the AI/ML model, and may include, for example, a cell quality measurement value (such as RSRP), the probability of handover failure (HOF), the probability of radio link failure (RLF), etc.

 制御部240は、AI/ML ModelまたはAI/ML Modelの機能を識別する識別情報に基づいてAI/ML ModelまたはAI/ML Modelの機能を選択してよい。具体的には、制御部240は、AI/ML Model自体を識別するAI model ID、またはAI/ML Modelの機能を識別するAI functionality IDに基づいて、AI/MLモデル部215において動作するAI/ML Model自体または機能を選択できる。 The control unit 240 may select an AI/ML model or a function of the AI/ML model based on identification information that identifies the AI/ML model or a function of the AI/ML model. Specifically, the control unit 240 can select the AI/ML model itself or a function that operates in the AI/ML model unit 215 based on an AI model ID that identifies the AI/ML model itself, or an AI functionality ID that identifies a function of the AI/ML model.

 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、AI/ML Modelを用いたセル品質の測定結果の予測動作について説明する。なお、以下の動作例では、主にセルを対象として説明するが、ビームBM(図1参照)を対象として同様の動作が実行されてもよい。
(3) Operation of the Wireless Communication System Next, the operation of the wireless communication system 10 will be described. Specifically, the operation of predicting the measurement results of cell quality using an AI/ML model will be described. Note that, although the following operation example will be mainly described with respect to a cell, a similar operation may also be performed with respect to a beam BM (see FIG. 1).

 (3.1)AI/ML Modelの構成例
 図4は、AI/ML Modelの機能的なアーキテクチャの例を示す。図4に示すように、当該アーキテクチャには、以下の機能が含まれてよい。
(3.1) Example of AI/ML Model Configuration Figure 4 shows an example of the functional architecture of an AI/ML model. As shown in Figure 4, the architecture may include the following functions:

  ・データ収集: モデルトレーニング及びモデル推論関数に入力データを提供する。 Data collection: Providing input data for model training and model inference functions.

  ・モデルトレーニング: MLモデルのトレーニング、検証、テストを実行する。モデルのテスト手順の一部として、モデルのパフォーマンス(性能)指標を生成してよい。 - Model training: Train, validate, and test ML models. As part of the model testing procedure, model performance metrics may be generated.

 モデルトレーニング機能は、データの準備(データの前処理とクリーニング、フォーマット、変換など)も担当し得る。 The model training function may also be responsible for data preparation (data preprocessing and cleaning, formatting, conversion, etc.).

  ・モデル推論(inference): 推論出力(予測または決定など)を提供する。モデル推論機能は、モデル管理/性能モニタ機能に対してモデル推論の制御内容を提供してもよい。 - Model inference: Provides inference output (such as predictions or decisions). The model inference function may also provide control of model inference to the model management/performance monitoring function.

  ・モデル管理/性能モニタ:MLモデルの管理及びモデルの性能をモニタする。 ・Model management/performance monitoring: Manage ML models and monitor model performance.

 (3.2)動作例1
 本動作例では、AI/ML reporting(Measurement Reportでもよい)に関する設定がUEに対して実行される。
(3.2) Operation example 1
In this operation example, settings related to AI/ML reporting (or Measurement Report) are performed on the UE.

 図5は、動作例1に係るAI/ML reporting(Measurement Report)の設定に関するシーケンス例を示す。図6は、AI/ML reportingの情報要素(IE)の構成例を示す。 Figure 5 shows an example sequence for setting up AI/ML reporting (Measurement Report) for Operation Example 1. Figure 6 shows an example configuration of an information element (IE) for AI/ML reporting.

 gNBは、次のような方法によって、AI/ML measurement configをUEに対して指示してよい。 The gNB may instruct the UE on the AI/ML measurement configuration in the following ways:

  ・AI/ML measurement objectを規定してもよい(図6参照)。 - An AI/ML measurement object may be specified (see Figure 6).

 AI/ML measurement objectは、AI/ML Modelを用いて予測する対象(例えば、所定の周波数(バンド)など)を意味してよい。 An AI/ML measurement object may refer to the object to be predicted using an AI/ML model (e.g., a specific frequency (band)).

  ・AI model IDを規定してもよい。また、AI functionality IDを規定してもよい(図6参照)。 - An AI model ID may be specified. An AI functionality ID may also be specified (see Figure 6).

 上述したように、AI model IDはAI/ML Model自体を識別し、AI functionality IDはAI/ML Modelの機能を識別してよい。 As mentioned above, the AI model ID may identify the AI/ML model itself, and the AI functionality ID may identify the functionality of the AI/ML model.

  ・AI/ML measurement ID及びAI/ML reporting config IDを規定してもよい(図6参照)。 - An AI/ML measurement ID and an AI/ML reporting config ID may be specified (see Figure 6).

 AI/ML measurement IDは、AI/ML measurementの数を管理する役割を有してもよい。AI/ML measurement IDは、AI/ML measurement objectと、AI/ML reporting config、AI model IDまたはAI functionality IDとを関連付ける役割を有してもよい。 The AI/ML measurement ID may have the role of managing the number of AI/ML measurements. The AI/ML measurement ID may have the role of associating an AI/ML measurement object with an AI/ML reporting config, AI model ID, or AI functionality ID.

  ・AI/ML reporting configには、AI/ML reportingの条件が含まれてよい。 - The AI/ML reporting config may include AI/ML reporting conditions.

 例えば、UEがAI/ML reportingを周期的に送信する所定周期が設定されてもよい。所定周期は、gNBから事前に設定されてもよい。 For example, a predetermined period may be set for the UE to periodically transmit AI/ML reporting. The predetermined period may be set in advance by the gNB.

 また、UEは、所定のreport amount(ボリューム)に従ってネットワークにレポートを送信してよい。Report amountは、gNBから事前に設定されてもよい。 The UE may also send reports to the network according to a predetermined report amount (volume). The report amount may be pre-configured by the gNB.

 UEは、所定最大回数までgNBにAI/ML reportingを送信してもよい。また、UEは、所定のイベントが満足した場合、AI/ML reportingを送信するようにしてもよい。 The UE may send an AI/ML reporting to the gNB up to a predetermined maximum number of times. The UE may also be configured to send an AI/ML reporting when a predetermined event is satisfied.

 このように、UEは、AI/ML reporting(Measurement Report)を実行できるが、AI/ML Modelの精度が悪い場合、或いはネットワーク輻輳している場合など、AI/ML reportingを中止(停止)したいことがある。 In this way, the UE can perform AI/ML reporting (Measurement Report), but there may be times when you want to cancel (pause) AI/ML reporting if the accuracy of the AI/ML model is poor or if there is network congestion.

 そこで、UEは、AI/ML reportingのcancellation/stopの指示をネットワークから受信した場合、AI/ML reportingを中止してもよい。 Therefore, if the UE receives an instruction to cancel/stop AI/ML reporting from the network, it may cancel AI/ML reporting.

 cancellation/stopの指示は、RRCのメッセージ、媒体アクセス制御レイヤ(MAC)の制御要素(MAC CE)またはPDCCHによって実現されてよい。cancellation/stopの指示は、AI/ML measurement object毎または周波数毎などでもよいし、AI model ID毎またはAI functionality ID毎でもよい。或いは、cancellation/stopの指示は、AI/ML measurement ID毎でもよいし、 AI/ML reporting ID毎でもよい。 The cancellation/stop instruction may be realized by an RRC message, a Medium Access Control Layer (MAC) control element (MAC CE), or PDCCH. The cancellation/stop instruction may be per AI/ML measurement object or per frequency, or per AI model ID or AI functionality ID. Alternatively, the cancellation/stop instruction may be per AI/ML measurement ID or per AI/ML reporting ID.

 上述した動作例によれば、AI/ML reportingの情報要素(IE)の構成が明確となり、UEとgNBとの間において、AI/ML Modelを用いた設定及び報告を適切かつ効率的に実行できる。 The above-mentioned operational example clarifies the configuration of the AI/ML reporting information element (IE), enabling appropriate and efficient configuration and reporting using the AI/ML model between the UE and gNB.

 (3.3)動作例2
 本動作例では、AI/ML Modelを用いてHOF/RLF(発生確率でもよい)が予測される。また、本動作例では、OAM/RIC40(図1参照)を介しつつ、UEによって予測されたHOF/RLFがネットワークに報告されてよい。
(3.3) Operation example 2
In this operation example, HOF/RLF (or occurrence probability) is predicted using an AI/ML model. In addition, in this operation example, the predicted HOF/RLF may be reported to the network by the UE via the OAM/RIC 40 (see FIG. 1 ).

 図7は、動作例2に係るAI/ML reportingに関するシーケンス例を示す。図8は、動作例2に係るUEの移動軌跡と近隣セルとの関係を示す。図9は、動作例2に係るAI/ML reportingの例を示す。 Figure 7 shows an example sequence related to AI/ML reporting for Operation Example 2. Figure 8 shows the relationship between the UE movement trajectory and neighboring cells for Operation Example 2. Figure 9 shows an example of AI/ML reporting for Operation Example 2.

 UEは、次のような情報を含むAI/ML reportingをgNBに送信してよい。 The UE may send an AI/ML reporting to the gNB containing the following information:

  ・所定タイミング(例えば、gNBがAI/ML reportingを受信したタイミング(time point X))のYms後のサービングセルにおけるRLF発生確率
  ・所定タイミング(例えば、gNBがAI/ML reportingを受信したタイミング(time point X))のYms後のサービングセルにおけるbeam failure発生確率
  ・所定タイミング(例えば、gNBがAI/ML reportingを受信したタイミング(time point X))のYms後にハンドオーバーする際にHOFが発生する確率
  ・所定タイミング(例えば、gNBがAI/ML reportingを受信したタイミング(time point X))のYms後に隣接セルにハンドオーバーするとHOFが発生する確率
  ・所定タイミング(例えば、gNBがAI/ML reportingを受信したタイミング(time point X))のYms後における隣接セルとfuture UE trajectory(UEの移動軌跡)との合致度
 UEの移動軌跡とは、例えば、図8に示す点線に沿った将来の予測された軌跡であり、特定の近隣セル(例えば、セルC)との位置関係(距離など)を判定できればよい。
- Probability of RLF occurrence in the serving cell Y ms after a predetermined timing (e.g., the timing when the gNB receives the AI/ML reporting (time point X)) - Probability of beam failure occurrence in the serving cell Y ms after a predetermined timing (e.g., the timing when the gNB receives the AI/ML reporting (time point X)) - Probability of HOF occurring during handover Y ms after a predetermined timing (e.g., the timing when the gNB receives the AI/ML reporting (time point X)) - Probability of HOF occurring during handover to a neighboring cell Y ms after a predetermined timing (e.g., the timing when the gNB receives the AI/ML reporting (time point X)) - Degree of match between neighboring cells and future UE trajectory (UE movement trajectory) Y ms after a predetermined timing (e.g., the timing when the gNB receives the AI/ML reporting (time point X)) The UE movement trajectory is, for example, a predicted future trajectory along the dotted line shown in Figure 8, and it is sufficient if the positional relationship (distance, etc.) with a specific neighboring cell (e.g., cell C) can be determined.

  ・隣接セルの将来(例えば、20ms, 30ms, 40ms後)それぞれの品質(RSRP, RSRQ, SINR)
 所定タイミングは、AI/ML reportingを受信したタイミング以外に、UEがAI/ML reportingを生成されたタイミングとしてもよい。或いは、UEがAI/ML reportingを送信したタイミングでもよいし、ネットワークなどによって指定されたタイミングでもよい。上述した情報は、Measurement Reportに含められるようにしてもよい。
- Future quality (RSRP, RSRQ, SINR) of neighboring cells (e.g., 20ms, 30ms, 40ms later)
The predetermined timing may be the timing when the UE generates an AI/ML reporting other than the timing when the AI/ML reporting is received. Alternatively, it may be the timing when the UE transmits an AI/ML reporting, or may be a timing designated by the network, etc. The above-mentioned information may be included in the Measurement Report.

 また、AI/ML ModelによるHOF/RLFの予測値はO-RAN Non-Real Time RICまたはNear-Real Time RICによって生成されてもよい。 In addition, HOF/RLF predictions using an AI/ML model may be generated by an O-RAN Non-Real Time RIC or Near-Real Time RIC.

 図10は、O-RANアーキテクチャに基づくRICの構成例を示す。図10に示すように、RICは、Near-Real Time RIC及び/またはNon-Real Time RICを含んでよい。Near-Real Time RICは、O-DU及びNon-Real Time RICとインターフェース(A1, E2)を介して接続されてよい。 Figure 10 shows an example configuration of a RIC based on the O-RAN architecture. As shown in Figure 10, the RIC may include a Near-Real Time RIC and/or a Non-Real Time RIC. The Near-Real Time RIC may be connected to the O-DU and the Non-Real Time RIC via interfaces (A1, E2).

 Near-Real Time RICは、O-eNB(無線基地局)とインターフェース(E2)を介して接続されてよい。このようなO-RANアーキテクチャに含まれるRICは、OAM/RIC40を構成してよい。 The Near-Real Time RIC may be connected to the O-eNB (radio base station) via an interface (E2). The RIC included in such an O-RAN architecture may constitute an OAM/RIC40.

 このようなRICのアーキテクチャにおいて、AI/ML Modelの性能のフィードバックがNear-Real Time RICまたはNon-Real Time RICに提供されてよい。 In such a RIC architecture, feedback on the performance of the AI/ML model may be provided to the Near-Real Time RIC or the Non-Real Time RIC.

 O-RAN Non-Real Time RICは、次のようなAI/ML予測値をO1 interfaceを介してO-CU-CPまたはO-DUに通知してもよい。当該予測値はUE毎でもよく、予測値を送信するシグナリングとしては、UE associated signalingが用いられてもよい(つまり、UE IDと対応付けられていてもよい)。 The O-RAN Non-Real Time RIC may notify the O-CU-CP or O-DU of the following AI/ML predicted values via the O1 interface. The predicted values may be per UE, and UE associated signaling may be used to transmit the predicted values (i.e., they may be associated with the UE ID).

 或いは、O-RAN Near-Real Time RICは、次のようなAI/ML予測値をE2 interfaceでO-CU-CP或いはO-DUに通知してもよい。当該予測値はUE毎でもよく、予測値を送信するシグナリングとしては、UE associated signalingが用いられてもよい(つまり、UE IDと対応付けられていてもよい)。 Alternatively, the O-RAN Near-Real Time RIC may notify the O-CU-CP or O-DU of the following AI/ML predicted values via the E2 interface. The predicted values may be per UE, and UE associated signaling may be used to transmit the predicted values (i.e., they may be associated with the UE ID).

  ・所定タイミング(例えば、gNBがAI/ML reportingを受信したタイミング(time point X))のYms後のサービングセルにおけるRLF発生確率
  ・所定タイミング(例えば、gNBがAI/ML reportingを受信したタイミング(time point X))のYms後にハンドオーバーする際にHOFが発生する確率
  ・所定タイミング(例えば、gNBがAI/ML reportingを受信したタイミング(time point X))のYms後に隣接セルにハンドオーバーするとHOFが発生する確率
  ・所定タイミング(例えば、gNBがAI/ML reportingを受信したタイミング(time point X))のYms後における隣接セルとfuture UE trajectory(UEの移動軌跡)との合致度
  ・隣接セルの将来(例えば、20ms, 30ms, 40ms後)それぞれの品質(RSRP, RSRQ, SINR)
 所定タイミングは、AI/ML reportingを受信したタイミング以外に、UEがAI/ML reportingを生成されたタイミングとしてもよい。或いは、UEがAI/ML reportingを送信したタイミングでもよいし、ネットワークなどによって指定されたタイミングでもよい。
・Probability of RLF occurring in the serving cell Y ms after a specified timing (e.g., the timing when the gNB receives the AI/ML reporting (time point X)) ・Probability of HOF occurring when handing over Y ms after a specified timing (e.g., the timing when the gNB receives the AI/ML reporting (time point X)) ・Probability of HOF occurring when handing over to a neighboring cell Y ms after a specified timing (e.g., the timing when the gNB receives the AI/ML reporting (time point X)) ・Degree of agreement between the neighboring cell and the future UE trajectory (UE movement trajectory) Y ms after a specified timing (e.g., the timing when the gNB receives the AI/ML reporting (time point X)) ・Quality (RSRP, RSRQ, SINR) of each neighboring cell in the future (e.g., 20 ms, 30 ms, 40 ms later)
The predetermined timing may be the timing when the UE generates an AI/ML reporting other than the timing when the AI/ML reporting is received, or may be the timing when the UE transmits an AI/ML reporting, or may be a timing designated by the network or the like.

 上述した動作例によれば、UE(及びOAM/RIC)は、ハンドオーバー失敗(HOF)及び無線リンク障害(RLF)の予測値をネットワークに送信できる。具体的には、HOF及びRLF(ビームを含んでよい)の将来の発生確率などをネットワークに報告できる。 According to the above-described operational example, the UE (and OAM/RIC) can transmit predicted values for handover failure (HOF) and radio link failure (RLF) to the network. Specifically, it can report to the network the future probability of HOF and RLF (which may include beams).

 このため、HOF及びRLFの予測値をネットワーク側において有効に活用でき、SON(Self-Organizing Networks)の構築に資することができる。 As a result, the HOF and RLF predicted values can be effectively utilized on the network side, contributing to the construction of SON (Self-Organizing Networks).

 (3.4)動作例3 
 本動作例では、AI/ML Modelによる予測値と、当該予測値の精度を示す情報が、UEからネットワークに報告される。AI/ML Modelによる予測値(推測値)は、精度(推測正確度)の良否があり、予測値と実測値とが乖離している場合、当該予測値は、ネットワークオペレータにとっては返って利用しにくい場合がある。
(3.4) Operation example 3
In this operation example, the UE reports the predicted value by the AI/ML model and information indicating the accuracy of the predicted value to the network. The predicted value (estimated value) by the AI/ML model may have good or bad accuracy (prediction accuracy), and if the predicted value deviates from the actual measured value, the predicted value may be difficult for the network operator to use.

 図11は、動作例3に係るAI/ML reporting(Measurement Report)の設定に関するシーケンス例を示す。 Figure 11 shows an example sequence for setting up AI/ML reporting (Measurement Report) for Operation Example 3.

 図11に示すように、UEは、AI/ML reporting(Measurement Reportでもよい)の際、AI/ML Modelによる予測値(AI/ML推測値)の精度(正確度)を示すパラメータ(prediction accuracy)を付加してよい。 As shown in Figure 11, when reporting AI/ML (or Measurement Report), the UE may add a parameter (prediction accuracy) indicating the precision (accuracy) of the predicted value (AI/ML estimated value) by the AI/ML model.

 当該パラメータは、UE内におけるAI/ML推測値に対する評価値であってもよい。例えば、過去の所定時間内において、AI/ML推測値と測定値との関係から算出された合致度が評価値とされてもよい。合致度とは、パーセンテージによって示されてもよいし、複数の段階(5段階や3段階)などによって示されてもよい。或いは、評価値は、AI/ML推測値と実測値との乖離の程度を示すパラメータであってもよい。 The parameter may be an evaluation value for the AI/ML estimated value within the UE. For example, the evaluation value may be the degree of match calculated from the relationship between the AI/ML estimated value and the measured value within a specified period of time in the past. The degree of match may be expressed as a percentage, or in multiple levels (5 levels, 3 levels, etc.). Alternatively, the evaluation value may be a parameter indicating the degree of deviation between the AI/ML estimated value and the actual measured value.

 gNBは、直近の将来(例えば、30分)までの当該パラメータ(prediction accuracy)報告をUEに要求してもよい。gNBは、特定の推測対象(例えば、サービングセルにおけるRLF発生確率)に絞って当該パラメータの報告を要求してもよい。 The gNB may request the UE to report the parameter (prediction accuracy) for the immediate future (e.g., 30 minutes). The gNB may also request a report of the parameter for a specific prediction target (e.g., the probability of RLF occurrence in the serving cell).

 UEは、当該報告要求に基づいて、周期的に当該パラメータを報告してもよいし、所定イベントを満足(所定閾値を下回ったまたは上回った時など)した場合に当該パラメータを報告してもよい。 The UE may report the parameter periodically based on the report request, or may report the parameter when a specified event is met (such as when the parameter falls below or exceeds a specified threshold).

 UEは、AI/ML reportingにおいて、実際に生じた情報を報告してもよい。例えば、UEは、実測した自セル(ビーム)及び/または隣接セル(ビーム)の品質情報(RSRP, RSRQ, SINR)を報告してもよい。 The UE may report actual information in AI/ML reporting. For example, the UE may report the quality information (RSRP, RSRQ, SINR) of the UE's own cell (beam) and/or neighboring cells (beams) that it has measured.

 UEは、AI/ML reportingにおいて、AI/ML推測値と実際に生じた情報(実測値)とを区別して報告してもよいし、組み合わせて報告してもよい。組み合わせて報告する場合、AI/ML推測値と実測値とを区別できるような表示が付与されてもよい。或いは、AI/ML推測値と実測値とは、別々のコンテナ(レポート内の所定の場所)に含めるようにしてもよい。 In AI/ML reporting, the UE may report AI/ML predicted values separately from the information that actually occurred (measured values), or may report them together. When reporting them together, a display may be added to distinguish between the AI/ML predicted values and the actual measured values. Alternatively, the AI/ML predicted values and the actual measured values may be included in separate containers (specified locations within the report).

 上述した動作例によれば、AI/ML Modelによる予測値と、当該予測値の精度を示す情報が、UEからネットワークに報告される。このため、ネットワーク側においては、当該精度に基づいて、当該予測値をどのように利用するかを適切に判断できる。つまり、測値の精度を示す情報が報告されることによって、AI/ML Modelを用いた各種の予測値の精度に応じた活用に貢献し得る。 In the example operation described above, the UE reports the predicted value by the AI/ML model and information indicating the accuracy of that predicted value to the network. This allows the network to appropriately determine how to use the predicted value based on that accuracy. In other words, reporting information indicating the accuracy of the measured value can contribute to utilizing various predicted values using the AI/ML model according to their accuracy.

 (4)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(4) Other Embodiments Although the embodiments have been described above, it will be obvious to those skilled in the art that the present invention is not limited to the description of the embodiments, and that various modifications and improvements are possible.

 例えば、上述した実施形態では、動作例1~3について説明したが、このうち、一部の動作例に係る動作のみが適用されてもよい。 For example, in the above-described embodiment, operation examples 1 to 3 were described, but only operations related to some of these operation examples may be applied.

 上述した記載において、設定(configure)、アクティブ化(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。同様に、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよく、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、も互いに読み替えられてもよい。 In the above description, configure, activate, update, indicate, enable, specify, and select may be read as interchangeable. Similarly, link, associate, correspond, and map may be read as interchangeable, and allocate, assign, monitor, and map may also be read as interchangeable.

 さらに、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。同様に、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。 Furthermore, specific, dedicated, UE-specific, and UE-individual may be read as interchangeable. Similarly, common, shared, group-common, UE-common, and UE-shared may be read as interchangeable.

 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "precoding," "precoder," "weight (precoding weight)," "Quasi-Co-Location (QCL)," "Transmission Configuration Indication state (TCI state)," "spatial relation," "spatial domain filter," "transmit power," "phase rotation," "antenna port," "antenna port group," "layer," "number of layers," "rank," "resource," "resource set," "resource group," "beam," "beam width," "beam angle," "antenna," "antenna element," and "panel" may be used interchangeably.

 また、上述した実施形態の説明に用いたブロック構成図(図2,3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Furthermore, the block diagrams (Figures 2 and 3) used to explain the above-mentioned embodiments show functional blocks. These functional blocks (components) are realized by any combination of hardware and/or software. Furthermore, there are no particular limitations on how each functional block is realized. That is, each functional block may be realized using a single device that is physically or logically coupled, or may be realized using two or more physically or logically separated devices that are connected directly or indirectly (for example, using wires, wirelessly, etc.) and these multiple devices. A functional block may also be realized by combining software with the single device or multiple devices.

 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include, but are not limited to, judgment, determination, assessment, calculation, computation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, regard, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assignment. For example, a functional block (component) that performs transmission functions is called a transmitting unit or transmitter. As mentioned above, there are no particular limitations on how these functions are implemented.

 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図12は、当該装置のハードウェア構成の一例を示す図である。図12に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the above-mentioned gNB100 and UE200 (the device) may function as a computer that performs processing of the wireless communication method of the present disclosure. Figure 12 is a diagram showing an example of the hardware configuration of the device. As shown in Figure 12, the device may be configured as a computer device including a processor 1001, memory 1002, storage 1003, a communication device 1004, an input device 1005, an output device 1006, and a bus 1007.

 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be interpreted as a circuit, device, unit, etc. The hardware configuration of the apparatus may be configured to include one or more of the devices shown in the diagram, or may be configured to exclude some of the devices.

 当該装置の各機能ブロック(図2,3参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see Figures 2 and 3) is realized by one of the hardware elements of the computer device, or a combination of those hardware elements.

 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Furthermore, each function of the device is realized by loading specific software (programs) onto hardware such as the processor 1001 and memory 1002, causing the processor 1001 to perform calculations, control communications via the communications device 1004, and control at least one of reading and writing data from and to the memory 1002 and storage 1003.

 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 The processor 1001, for example, runs an operating system to control the entire computer. The processor 1001 may be configured as a central processing unit (CPU) that includes an interface with peripheral devices, a control unit, an arithmetic unit, registers, etc.

 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Furthermore, the processor 1001 reads programs (program code), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes in accordance with these. The programs used are those that cause a computer to execute at least some of the operations described in the above-mentioned embodiments. Furthermore, the various processes described above may be executed by a single processor 1001, or may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. The programs may also be transmitted from a network via telecommunications lines.

 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 Memory 1002 is a computer-readable recording medium and may be composed of, for example, at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. Memory 1002 may also be called a register, cache, main memory (primary storage device), etc. Memory 1002 can store a program (program code), software module, etc. that can execute a method according to one embodiment of the present disclosure.

 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 Storage 1003 is a computer-readable recording medium, and may be composed of, for example, at least one of an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, a magneto-optical disk (e.g., a compact disk, a digital versatile disk, a Blu-ray (registered trademark) disc), a smart card, a flash memory (e.g., a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, etc. Storage 1003 may also be referred to as an auxiliary storage device. The above-mentioned recording medium may be, for example, a database, a server, or other suitable medium including at least one of memory 1002 and storage 1003.

 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc.

 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 may be configured to include high-frequency switches, duplexers, filters, frequency synthesizers, etc. to realize, for example, at least one of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).

 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (e.g., a keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (e.g., a display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated into one device (e.g., a touch panel).

 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Furthermore, each device, such as the processor 1001 and memory 1002, is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between each device.

 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device may be configured to include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA), and some or all of the functional blocks may be realized by the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.

 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information may be performed by physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI)), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB))), other signals, or a combination of these. Furthermore, RRC signaling may be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, etc.

 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xは、例えば整数、小数)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure may be applied to Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system ( xG) (x is, for example, an integer or decimal point), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth (registered trademark), or other appropriate systems, and may be applied to at least one of next-generation systems that are extended based on these. Also, multiple systems may be combined (for example, a combination of at least one of LTE and LTE-A with 5G).

 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing steps, sequences, flowcharts, etc. of each aspect/embodiment described in this disclosure may be changed unless inconsistent. For example, the methods described in this disclosure present elements of various steps using an example order, and are not limited to the particular order presented.

 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In this disclosure, certain operations that are described as being performed by a base station may in some cases be performed by its upper node. In a network consisting of one or more network nodes that have base stations, it is clear that various operations performed for communication with terminals may be performed by at least one of the base station and other network nodes other than the base station (such as, but not limited to, an MME or S-GW). While the above example shows a case where there is one other network node other than the base station, it may also be a combination of multiple other network nodes (for example, an MME and an S-GW).

 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from a higher layer (or lower layer) to a lower layer (or higher layer). They may also be input and output via multiple network nodes.

 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 Input and output information may be stored in a specific location (e.g., memory) or may be managed using a management table. Input and output information may be overwritten, updated, or appended. Output information may be deleted. Input information may be sent to another device.

 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made based on a value represented by a single bit (0 or 1), a Boolean value (true or false), or a numerical comparison (for example, comparison with a predetermined value).

 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or switched between depending on the implementation. Furthermore, notification of specified information (e.g., notification that "X is true") is not limited to being done explicitly, but may also be done implicitly (e.g., not notifying the specified information).

 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executable files, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.

 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Software, instructions, information, etc. may also be transmitted and received via a transmission medium. For example, if software is transmitted from a website, server, or other remote source using wired technologies (such as coaxial cable, fiber optic cable, twisted pair, or Digital Subscriber Line (DSL)) and/or wireless technologies (such as infrared or microwave), then these wired and/or wireless technologies are included within the definition of a transmission medium.

 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any combination thereof.

 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Furthermore, a signal may be a message. Furthermore, a component carrier (CC) may be called a carrier frequency, a cell, a frequency carrier, etc.

 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.

 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 Furthermore, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or other corresponding information. For example, radio resources may be indicated by an index.

 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters described above are not intended to be limiting in any way. Furthermore, the mathematical formulas using these parameters may differ from those explicitly disclosed in this disclosure. The various channels (e.g., PUCCH, PDCCH, etc.) and information elements may be identified by any suitable names, and therefore the various names assigned to these various channels and information elements are not intended to be limiting in any way.

 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, terms such as "base station (BS)," "radio base station," "fixed station," "NodeB," "eNodeB (eNB)," "gNodeB (gNB)," "access point," "transmission point," "reception point," "transmission/reception point," "cell," "sector," "cell group," "carrier," and "component carrier" may be used interchangeably. Base stations may also be referred to by terms such as macrocell, small cell, femtocell, and picocell.

 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (e.g., three) cells (also called sectors). When a base station accommodates multiple cells, the base station's overall coverage area can be divided into multiple smaller areas, and each smaller area can be provided with communication services by a base station subsystem (e.g., a small indoor base station (Remote Radio Head: RRH)).

 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The terms "cell" or "sector" refer to part or all of the coverage area of a base station and/or a base station subsystem that provides communication services within that coverage area.

 本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。 In this disclosure, a base station transmitting information to a terminal may be interpreted as the base station instructing the terminal to control or operate based on the information.

 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably.

 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station may also be referred to by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.

 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of the base station and the mobile station may be referred to as a transmitting device, a receiving device, a communication device, etc. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, etc. The mobile object refers to an object that can move at any speed. Naturally, this also includes cases where the mobile object is stationary. Examples of the mobile object include, but are not limited to, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, handcars, rickshaws, ships and other watercraft, airplanes, rockets, satellites, drones (registered trademark), multicopters, quadcopters, balloons, and objects mounted thereon. The mobile object may also be a mobile object that moves autonomously based on an operation command. It may be a vehicle (e.g., a car, an airplane, etc.), an unmanned mobile object (e.g., a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned). Note that at least one of the base station and the mobile station may be a device that does not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.

 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネル(またはサイドリンク)で読み替えられてもよい。 Furthermore, the base station in the present disclosure may be interpreted as a mobile station (user terminal, the same applies hereinafter). For example, the aspects/embodiments of the present disclosure may be applied to a configuration in which communication between a base station and a mobile station is replaced with communication between multiple mobile stations (which may be called, for example, Device-to-Device (D2D) or Vehicle-to-Everything (V2X)). In this case, the mobile station may be configured to have the functions of a base station. Furthermore, terms such as "uplink" and "downlink" may be interpreted as terms corresponding to communication between terminals (for example, "side"). For example, terms such as uplink channel and downlink channel may be interpreted as side channel (or side link).

 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, the mobile station in this disclosure may be interpreted as a base station. In this case, the base station may be configured to have the functions of a mobile station.

 無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more frames in the time domain. Each of the one or more frames in the time domain may be called a subframe. A subframe may further be composed of one or more slots in the time domain. A subframe may have a fixed time length (e.g., 1 ms) that is independent of numerology.

 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology may indicate, for example, at least one of the following: subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, specific filtering operations performed by the transmitter and receiver in the frequency domain, and specific windowing operations performed by the transmitter and receiver in the time domain.

 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols in the time domain (such as Orthogonal Frequency Division Multiplexing (OFDM) symbols or Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols). A slot may also be a numerology-based time unit.

 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple minislots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be called a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be called PDSCH (or PUSCH) mapping type A. A PDSCH (or PUSCH) transmitted using a minislot may be called PDSCH (or PUSCH) mapping type B.

 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frame, subframe, slot, minislot, and symbol all represent time units for transmitting signals. Other names corresponding to radio frame, subframe, slot, minislot, and symbol may also be used.

 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, or one slot or one minislot may be called a TTI. In other words, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (e.g., 1-13 symbols), or a period longer than 1 ms. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.

 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the smallest time unit for scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal by allocating radio resources (such as the frequency bandwidth and transmission power available for use by each user terminal) in TTI units. However, the definition of TTI is not limited to this.

 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for a channel-encoded data packet (transport block), code block, code word, etc., or it may be a processing unit for scheduling, link adaptation, etc. When a TTI is given, the time interval (e.g., number of symbols) to which the transport block, code block, code word, etc. is actually mapped may be shorter than the TTI.

 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is referred to as a TTI, one or more TTIs (i.e., one or more slots or one or more minislots) may be the smallest time unit for scheduling. Furthermore, the number of slots (minislots) that make up the smallest time unit for scheduling may be controlled.

 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI with a time length of 1 ms may be referred to as a regular TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, regular subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a regular TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.

 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that a long TTI (e.g., a normal TTI, subframe, etc.) may be interpreted as a TTI with a time length exceeding 1 ms, and a short TTI (e.g., a shortened TTI, etc.) may be interpreted as a TTI with a TTI length shorter than the TTI length of a long TTI but equal to or greater than 1 ms.

 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers included in an RB may also be determined based on numerology.

 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Furthermore, the time domain of an RB may include one or more symbols and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.

 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs may also be referred to as a physical resource block (PRB), sub-carrier group (SCG), resource element group (REG), PRB pair, RB pair, etc.

 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Furthermore, a resource block may be composed of one or more resource elements (RE). For example, one RE may be a radio resource region of one subcarrier and one symbol.

 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be referred to as a partial bandwidth) may represent a subset of contiguous common resource blocks (RBs) for a given numerology on a given carrier, where the common RBs may be identified by the RB's index relative to the carrier's common reference point. PRBs may be defined in a given BWP and numbered within that BWP.

 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWPs may include a BWP for UL (UL BWP) and a BWP for DL (DL BWP). One or more BWPs may be configured for a UE within one carrier.

 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a specific signal/channel outside of the active BWP. Note that "cell," "carrier," etc. in this disclosure may be read as "BWP."

 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The structures of the radio frames, subframes, slots, minislots, and symbols described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of subcarriers included in an RB, as well as the number of symbols within a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.

 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof, refer to any direct or indirect connection or coupling between two or more elements, and may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. The coupling or connection between elements may be physical, logical, or a combination thereof. For example, "connected" may be read as "access." As used in this disclosure, two elements may be considered to be "connected" or "coupled" to each other using at least one of one or more wires, cables, and printed electrical connections, as well as electromagnetic energy having wavelengths in the radio frequency range, microwave range, and optical (both visible and invisible) range, as some non-limiting and non-exhaustive examples.

 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal may also be abbreviated as Reference Signal (RS) or may be called a pilot depending on the applicable standard.

 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."

 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with "part," "circuit," "device," etc.

 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。従って、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to an element using a designation such as "first," "second," etc. does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, a reference to a first and a second element does not imply that only two elements may be employed therein, or that the first element must in some way precede the second element.

 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 When the terms "include," "including," and variations thereof are used in this disclosure, these terms are intended to be inclusive, similar to the term "comprising." Furthermore, when the term "or" is used in this disclosure, it is not intended to be an exclusive or.

 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, where articles are added by translation, such as a, an, and the in English, this disclosure may include the noun following these articles being plural.

 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)したことを「判断」「決定」したとみなすことなどを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)したことを「判断」「決定」したとみなすことなどを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などしたことを「判断」「決定」したとみなすことを含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなすことを含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of actions. "Determining" and "determining" may include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (e.g., searching a table, database, or other data structure), and ascertaining something as a "judging" or "determining." "Determining" and "determining" may also include receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, accessing (e.g., accessing data in memory), and ascertaining something as a "judging" or "determining." Furthermore, "judgment" and "decision" can include regarding resolving, selecting, choosing, establishing, comparing, etc. as having been "judged" or "decided." In other words, "judgment" and "decision" can include regarding some action as having been "judged" or "decided." Furthermore, "judgment (decision)" can be interpreted as "assuming," "expecting," "considering," etc.

 本開示において、「AとBが異なる」という用語は、AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In this disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean "A and B are each different from C." Terms such as "separate" and "combined" may also be interpreted in the same way as "different."

 図13は、車両2001の構成例を示す。図13に示すように、車両2001は、駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。 FIG. 13 shows an example configuration of a vehicle 2001. As shown in FIG. 13, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, an axle 2009, an electronic control unit 2010, various sensors 2021-2029, an information service unit 2012, and a communication module 2013.

 駆動部2002は、例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。
操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。
電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両に備えられた各種センサ2021~2027からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでもよい。
The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
The steering unit 2003 includes at least a steering wheel (also called a handle) and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
The electronic control unit 2010 is composed of a microprocessor 2031, a memory (ROM, RAM) 2032, and a communication port (IO port) 2033. Signals are input to the electronic control unit 2010 from various sensors 2021 to 2027 provided in the vehicle. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).

 各種センサ2021~2028からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 Signals from the various sensors 2021-2028 include a current signal from a current sensor 2021 that senses the motor current, a front and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, a front and rear wheel air pressure signal obtained by an air pressure sensor 2023, a vehicle speed signal obtained by a vehicle speed sensor 2024, an acceleration signal obtained by an acceleration sensor 2025, an accelerator pedal depression amount signal obtained by an accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by a brake pedal sensor 2026, a shift lever operation signal obtained by a shift lever sensor 2027, and a detection signal for detecting obstacles, vehicles, pedestrians, etc. obtained by an object detection sensor 2028.

 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両1の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The information service unit 2012 is composed of various devices, such as a car navigation system, audio system, speakers, television, and radio, that provide (output) various types of information, including driving information, traffic information, and entertainment information, as well as one or more ECUs that control these devices. The information service unit 2012 uses information obtained from external devices via the communication module 2013, etc., to provide various types of multimedia information and multimedia services to the occupants of the vehicle 1.

 情報サービス部2012は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 2012 may include input devices (e.g., keyboards, mice, microphones, switches, buttons, sensors, touch panels, etc.) that accept input from the outside, and may also include output devices (e.g., displays, speakers, LED lamps, touch panels, etc.) that output to the outside.

 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSSなど)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップなど)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)など)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能または自動運転機能を実現する。 The driving assistance system unit 2030 is composed of various devices that provide functions to prevent accidents and reduce the driver's driving burden, such as millimeter-wave radar, LiDAR (Light Detection and Ranging), cameras, positioning locators (e.g., GNSS, etc.), map information (e.g., high-definition (HD) maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors, as well as one or more ECUs that control these devices. The driving assistance system unit 2030 also transmits and receives various information via the communication module 2013 to realize driving assistance functions or autonomous driving functions.

 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031及び車両1の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~2028との間でデータを送受信する。 The communication module 2013 can communicate with the microprocessor 2031 and components of the vehicle 1 via the communication port. For example, the communication module 2013 transmits and receives data via the communication port 2033 to and from the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axles 2009, microprocessor 2031 and memory (ROM, RAM) 2032 in the electronic control unit 2010, and sensors 2021-2028, all of which are provided on the vehicle 2001.

 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, it transmits and receives various information to and from external devices via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, etc.

 通信モジュール2013は、電子制御部2010に入力された上述の各種センサ2021~2028からの信号、当該信号に基づいて得られる情報、及び情報サービス部2012を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部2010、各種センサ2021~2028、情報サービス部2012などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール2013によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communications module 2013 may transmit, via wireless communication, to an external device at least one of the signals from the various sensors 2021-2028 described above that are input to the electronic control unit 2010, information obtained based on the signals, and information based on input from the outside (user) obtained via the information service unit 2012. The electronic control unit 2010, the various sensors 2021-2028, the information service unit 2012, etc. may also be referred to as input units that accept input. For example, the PUSCH transmitted by the communications module 2013 may include information based on the above input.

 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部2012へ表示する。情報サービス部2012は、情報を出力する(例えば、通信モジュール2013によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、左右の前輪2007、左右の後輪2008、車軸2009、センサ2021~2028などの制御を行ってもよい。 The communication module 2013 receives various information (traffic information, traffic signal information, vehicle-to-vehicle distance information, etc.) transmitted from external devices and displays it on the information service unit 2012 provided in the vehicle. The information service unit 2012 may also be called an output unit that outputs information (for example, outputs information to a device such as a display or speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). The communication module 2013 also stores the various information received from external devices in memory 2032 that can be used by the microprocessor 2031. Based on the information stored in memory 2032, the microprocessor 2031 may control the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, left and right front wheels 2007, left and right rear wheels 2008, axles 2009, sensors 2021-2028, and the like provided in the vehicle 2001.

 (付記)
 上述した開示は、以下のように表現されてもよい。第1の特徴は、学習モデルを用いた測定を設定する測定設定をネットワークから受信する受信部と、前記測定設定に含まれる測定対象に対して前記学習モデルを適用し、測定結果を生成する制御部と、前記測定設定に基づいて前記測定結果を含む測定報告を前記ネットワークに送信する送信部とを備える端末である。
(Additional Note)
The above disclosure may be expressed as follows: A first feature is a terminal including: a receiving unit that receives, from a network, a measurement configuration that configures measurement using a learning model, a control unit that applies the learning model to a measurement target included in the measurement configuration and generates a measurement result, and a transmitting unit that transmits, to the network, a measurement report that includes the measurement result based on the measurement configuration.

 第2の特徴は、第1の特徴において、前記受信部は、前記学習モデルまたは前記学習モデルの機能を識別する識別情報を含む前記測定設定を受信し、前記制御部は、前記識別情報に基づいて前記学習モデルまたは前記学習モデルの機能を選択する。 A second feature is that in the first feature, the receiving unit receives the measurement configuration including identification information that identifies the learning model or a function of the learning model, and the control unit selects the learning model or a function of the learning model based on the identification information.

 第3の特徴は、第1または第2の特徴において、前記受信部は、前記測定報告の条件を含む前記測定設定を受信し、前記送信部は、前記条件に基づいて前記測定報告を送信する。 A third feature is the first or second feature, wherein the receiving unit receives the measurement configuration including conditions for the measurement report, and the transmitting unit transmits the measurement report based on the conditions.

 第4の特徴は、第1乃至第3の特徴において、前記受信部は、前記測定報告の中止する中止指示を受信し、前記送信部は、前記中止指示に基づいて、前記学習モデルを用いた前記測定結果を含む前記測定報告の送信を中止する。 A fourth feature is any one of the first to third features, wherein the receiving unit receives a stop instruction to stop the measurement report, and the transmitting unit stops transmitting the measurement report including the measurement results obtained using the learning model based on the stop instruction.

 第5の特徴は、学習モデルを用いてハンドオーバー失敗または無線リンク障害の発生を予測する制御部と、前記ハンドオーバー失敗または前記無線リンク障害の予測結果を示す予測情報をネットワークに送信する送信部と備える端末である。 The fifth feature is a terminal equipped with a control unit that uses a learning model to predict the occurrence of a handover failure or a radio link failure, and a transmission unit that transmits prediction information indicating the predicted result of the handover failure or the radio link failure to the network.

 第6の特徴は、第5の特徴において、前記送信部は、前記ハンドオーバー失敗の発生確率及び前記無線リンク障害の発生確率の少なくとも何れかを含む前記予測情報を送信する。 The sixth feature is the fifth feature, wherein the transmitter transmits the prediction information including at least one of the probability of handover failure and the probability of radio link failure.

 第7の特徴は、第5または第6の特徴において、前記送信部は、サービングセルまたは近隣セルにおける前記発生確率を含む前記予測情報を送信する。 A seventh feature is the fifth or sixth feature, wherein the transmitter transmits the prediction information including the occurrence probability in a serving cell or a neighboring cell.

 第8の特徴は、第5乃至第7の特徴において、前記送信部は、近隣セルの位置と前記端末の移動軌跡との合致度を含む前記予測情報を送信する。 An eighth feature is any one of the fifth to seventh features, wherein the transmitter transmits the prediction information including a degree of match between the positions of neighboring cells and the movement trajectory of the terminal.

 第9の特徴は、第5乃至第8の特徴において、前記送信部は、近隣セルにおける将来の品質予測値を含む前記予測情報を送信する。 A ninth feature is any one of the fifth to eighth features, wherein the transmitter transmits the prediction information including a future quality prediction value in a neighboring cell.

 第10の特徴は、学習モデルを用いて、指定された対象の予測値を生成する制御部と、前記予測値、及び前記予測値の精度を含む予測結果をネットワークに送信する送信部とを備える端末である。 A tenth feature is a terminal that includes a control unit that uses a learning model to generate a predicted value for a specified target, and a transmission unit that transmits the predicted value and a prediction result including the accuracy of the predicted value to a network.

 第11の特徴は、第10の特徴において、前記送信部は、過去における前記予測値と、前記対象の実測値との合致度を含む前記予測結果を送信する。 An eleventh feature is the tenth feature, wherein the transmission unit transmits the prediction result including a degree of match between the past predicted value and the actual measured value of the target.

 第12の特徴は、第10または第11の特徴において、前記予測値の精度の報告要求を前記ネットワークから受信する受信部を備え、前記送信部は、前記報告要求に基づいて、規定された時間内における前記予測値、及び前記予測値の精度を含む前記予測結果を送信する。 A twelfth feature is the tenth or eleventh feature, further comprising a receiving unit that receives a request for reporting the accuracy of the predicted value from the network, and the transmitting unit transmits the prediction result, including the predicted value within a specified time period and the accuracy of the predicted value, based on the reporting request.

 第13の特徴は、第10乃至第12の特徴において、前記送信部は、前記対象の実測値を含む前記予測結果を送信する。 A thirteenth feature is any one of the tenth to twelfth features, wherein the transmission unit transmits the prediction result including an actual measurement value of the target.

 10無線通信システム
 20 NG-RAN
 40 OAM/RIC
 50 NF
 100 gNB
 110 無線通信部
 120 ハンドオーバー処理部
 130 AI/MLモデル部
 140 制御部
 200 UE
 210 無線通信部
 215 AI/MLモデル部
 220 測定処理部
 230 ハンドオーバー実行部
 240 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 2001 車両
 2002 駆動部
 2003 操舵部
 2004 アクセルペダル
 2005 ブレーキペダル
 2006 シフトレバー
 2007 左右の前輪
 2008 左右の後輪
 2009 車軸
 2010 電子制御部
 2012 情報サービス部
 2013 通信モジュール
 2021 電流センサ
 2022 回転数センサ
 2023 空気圧センサ
 2024 車速センサ
 2025 加速度センサ
 2026 ブレーキペダルセンサ
 2027 シフトレバーセンサ
 2028 物体検出センサ
 2029 アクセルペダルセンサ
 2030 運転支援システム部
 2031 マイクロプロセッサ
 2032 メモリ(ROM, RAM)
 2033 通信ポート
10 Wireless Communication Systems 20 NG-RAN
40 OAM/RIC
50 NF
100 gNB
110 wireless communication unit 120 handover processing unit 130 AI/ML model unit 140 control unit 200 UE
210 Wireless communication unit 215 AI/ML model unit 220 Measurement processing unit 230 Handover execution unit 240 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus 2001 Vehicle 2002 Drive unit 2003 Steering unit 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Left and right front wheels 2008 Left and right rear wheels 2009 Axle 2010 Electronic control unit 2012 Information service unit 2013 Communication module 2021 Current sensor 2022 RPM sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving assistance system section 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 communication port

Claims (6)

 学習モデルを用いて、指定された対象の予測値を生成する制御部と、
 前記予測値、及び前記予測値の精度を含む予測結果をネットワークに送信する送信部と
を備える端末。
a control unit that generates a predicted value of a specified target using a learning model;
a transmitting unit configured to transmit the predicted value and a prediction result including accuracy of the predicted value to a network.
 前記送信部は、過去における前記予測値と、前記対象の実測値との合致度を含む前記予測結果を送信する請求項1に記載の端末。 The terminal according to claim 1, wherein the transmission unit transmits the prediction result including the degree of match between the past predicted value and the actual measured value of the target.  前記予測値の精度の報告要求を前記ネットワークから受信する受信部を備え、
 前記送信部は、前記報告要求に基づいて、規定された時間内における前記予測値、及び前記予測値の精度を含む前記予測結果を送信する請求項1に記載の端末。
a receiving unit that receives a request to report the accuracy of the predicted value from the network;
The terminal according to claim 1 , wherein the transmission unit transmits the prediction result including the predicted value within a specified time period and the accuracy of the predicted value, based on the report request.
 前記送信部は、前記対象の実測値を含む前記予測結果を送信する請求項1に記載の端末。 The terminal according to claim 1, wherein the transmission unit transmits the prediction result including the actual measured value of the target.  指定された対象の学習モデルによる予測値の精度の報告要求を端末に送信する送信部と、
 前記予測値、及び前記予測値の精度を含む予測結果を前記端末から受信する受信部と
を備える無線基地局。
a transmission unit that transmits a request to the terminal to report the accuracy of a predicted value by a learning model of a specified target;
a receiving unit that receives the predicted value and a prediction result including accuracy of the predicted value from the terminal.
 学習モデルを用いて、指定された対象の予測値を生成するステップと、
 前記予測値、及び前記予測値の精度を含む予測結果をネットワークに送信するステップと
を含む端末における無線通信方法。
generating a prediction for a specified target using the learned model;
and transmitting a prediction result including the predicted value and accuracy of the predicted value to a network.
PCT/JP2024/014038 2024-04-05 2024-04-05 Terminal, wireless base station, and wireless communication method Pending WO2025210868A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2024/014038 WO2025210868A1 (en) 2024-04-05 2024-04-05 Terminal, wireless base station, and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2024/014038 WO2025210868A1 (en) 2024-04-05 2024-04-05 Terminal, wireless base station, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2025210868A1 true WO2025210868A1 (en) 2025-10-09

Family

ID=97266905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/014038 Pending WO2025210868A1 (en) 2024-04-05 2024-04-05 Terminal, wireless base station, and wireless communication method

Country Status (1)

Country Link
WO (1) WO2025210868A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023012999A1 (en) * 2021-08-05 2023-02-09 株式会社Nttドコモ Terminal, wireless communication method, and base station

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023012999A1 (en) * 2021-08-05 2023-02-09 株式会社Nttドコモ Terminal, wireless communication method, and base station

Similar Documents

Publication Publication Date Title
WO2024176404A1 (en) Wireless base station
WO2024080250A1 (en) User equipment, wireless base station, and wireless communication method
WO2025210868A1 (en) Terminal, wireless base station, and wireless communication method
WO2025210866A1 (en) Terminal, wireless base station, and wireless communication method
WO2025210867A1 (en) Terminal and network device
WO2025210845A1 (en) Terminal, wireless base station, and wireless communication method
WO2024106452A1 (en) Wireless base station and wireless communication method
WO2024106450A1 (en) Terminal, wireless base station, and wireless communication method
WO2024106447A1 (en) Wireless base station and wireless communication method
JP2025155614A (en) Terminal
WO2025158586A1 (en) Terminal
WO2025196912A1 (en) Wireless base station and terminal
JP2025155690A (en) Radio base station and radio communication method
WO2025196911A1 (en) Wireless base station and terminal
JP2025155689A (en) Terminal, wireless communication system, and wireless communication method
WO2024176403A1 (en) Wireless base station
JP2025157043A (en) Radio base station and radio communication method
JP2025155904A (en) Terminal
JP2025157079A (en) Terminal and wireless communication method
WO2025158589A1 (en) Terminal
JP2025157080A (en) Radio base station and radio communication method
WO2025105438A1 (en) Terminal and wireless communication method
WO2024171311A1 (en) Wireless base station and wireless communication method
WO2024171315A1 (en) Wireless base station and wireless communication method
WO2025210741A1 (en) Terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24934101

Country of ref document: EP

Kind code of ref document: A1