[go: up one dir, main page]

WO2025209453A1 - Communication method and apparatus, terminal, network side device, medium, and product - Google Patents

Communication method and apparatus, terminal, network side device, medium, and product

Info

Publication number
WO2025209453A1
WO2025209453A1 PCT/CN2025/086551 CN2025086551W WO2025209453A1 WO 2025209453 A1 WO2025209453 A1 WO 2025209453A1 CN 2025086551 W CN2025086551 W CN 2025086551W WO 2025209453 A1 WO2025209453 A1 WO 2025209453A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
model
communication device
data
output data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/CN2025/086551
Other languages
French (fr)
Chinese (zh)
Inventor
王园园
杨昂
孙鹏
谢天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vivo Mobile Communication Co Ltd
Original Assignee
Vivo Mobile Communication Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vivo Mobile Communication Co Ltd filed Critical Vivo Mobile Communication Co Ltd
Publication of WO2025209453A1 publication Critical patent/WO2025209453A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/16Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks using machine learning or artificial intelligence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a communication method, apparatus, terminal, network-side equipment, medium and product.
  • AI Artificial Intelligence
  • the embodiments of the present application provide a communication method, apparatus, terminal, network-side equipment, medium, and product, which can solve the problem of poor application effect of communication AI functional models in the communication field.
  • a communication method comprising: a first communication device acquiring a first data set, the first data set comprising first input data;
  • the first communication device determines first information based on the first data set and a first artificial intelligence (AI) model
  • the first information includes at least one of the following:
  • first output data where the first output data is output data obtained based on the first input data and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;
  • First monitoring information where the first monitoring information is used to determine a monitoring result of the first AI model.
  • a communication method comprising:
  • the monitoring device receives at least one of a test result and a monitoring result of the first artificial intelligence AI model sent by the first communication device or the fourth communication device;
  • the monitoring device determines at least one of the following based on at least one of the test result and the monitoring result of the first artificial intelligence (AI) model:
  • the target first AI model is at least one of the first AI models.
  • the fourth communication device is used to receive the first output data sent by the first communication device and decompress the first output data, where the first output data is output data obtained based on the first input number of the first data set and the first AI model.
  • a communication device including:
  • a first acquisition module is configured to acquire a first data set, where the first data set includes first input data
  • a first determination module configured to determine first information based on the first data set and a first artificial intelligence (AI) model
  • the first information includes at least one of the following:
  • first output data where the first output data is output data obtained based on the first input data and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;
  • First monitoring information where the first monitoring information is used to determine a monitoring result of the first AI model.
  • a communication device comprising:
  • a fourth receiving module configured to receive first information sent by the first communication device
  • a second determination module is configured to determine at least one of a test result and a monitoring result of the first artificial intelligence AI model based on the first information
  • the device comprises:
  • a second sending module configured to send a first data set to a first communication device, so that the first communication device determines first information
  • First monitoring information where the first monitoring information is used to determine a monitoring result of the first AI model.
  • a communication device comprising:
  • a fifth receiving module configured to receive fourth output data sent by a fourth communication device, where the fourth output data is decompressed data of the first output data
  • a third determining module configured to determine at least one of a test result and a monitoring result of the first artificial intelligence (AI) model based on the fourth output data;
  • a sixth receiving module is configured to receive at least one of a test result and a monitoring result of the first artificial intelligence AI model sent by the first communication device or the fourth communication device;
  • a fourth determination module is configured to determine at least one of the following based on at least one of the test result and the monitoring result of the first artificial intelligence (AI) model:
  • the target first AI model is at least one of the first AI models.
  • the fourth communication device is used to receive the first output data sent by the first communication device and decompress the first output data, where the first output data is output data obtained based on the first input number of the first data set and the first AI model.
  • a terminal which includes a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented, or when the program or instruction is executed by the processor, the steps of the method described in the second aspect are implemented.
  • a terminal comprising a processor and a communication interface, wherein the communication interface is configured to obtain a first data set, the first data set comprising first input data;
  • the processor is configured to determine first information based on the first data set and a first artificial intelligence (AI) model;
  • AI artificial intelligence
  • the communication interface is used to receive first information sent by a first communication device
  • the processor is configured to determine at least one of a test result and a monitoring result of a first artificial intelligence (AI) model based on the first information;
  • AI artificial intelligence
  • the communication interface is used to send a first data set to the first communication device for the first communication device to determine the first information
  • the first information includes at least one of the following:
  • first output data where the first output data is output data obtained based on the first input data and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;
  • First monitoring information where the first monitoring information is used to determine a monitoring result of the first AI model.
  • a network side device which includes a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented, or when the program or instruction is executed by the processor, the steps of the method described in the second aspect are implemented, or when the program or instruction is executed by the processor, the steps of the method described in the third aspect are implemented.
  • a network-side device comprising a processor and a communication interface, wherein the communication interface is used to obtain a first data set, wherein the first data set comprises first input data;
  • the processor is configured to determine first information based on the first data set and a first artificial intelligence (AI) model;
  • AI artificial intelligence
  • the first information includes at least one of the following:
  • first output data where the first output data is output data obtained based on the first input data and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;
  • First monitoring information where the first monitoring information is used to determine a monitoring result of the first AI model
  • the processor is configured to determine at least one of a test result and a monitoring result of the first artificial intelligence (AI) model based on the fourth output data;
  • AI artificial intelligence
  • target first AI model is at least one of the first AI models
  • the fourth communication device is used to receive the first output data sent by the first communication device and decompress the first output data, where the first output data is output data obtained based on the first input number of the first data set and the first AI model.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect are implemented, or the steps of the method described in the third aspect are implemented.
  • a wireless communication system comprising: a terminal and a network-side device, wherein the terminal is configured to perform the steps of the method according to the first aspect, and the network-side device is configured to perform the steps of the method according to the second aspect; or, the terminal is configured to perform the steps of the method according to the second aspect, and the network-side device is configured to perform the steps of the method according to the first aspect;
  • a chip which includes a processor and a communication interface, the communication interface and the processor are coupled, and the processor is used to run programs or instructions to implement the method as described in the first aspect, or the method as described in the second aspect, or the method as described in the third aspect.
  • a computer program/program product is provided, which is stored in a storage medium, and is executed by at least one processor to implement the steps of the communication method described in the first aspect, or the computer program/program product is executed by at least one processor to implement the steps of the communication method described in the second aspect, or the computer program/program product is executed by at least one processor to implement the steps of the communication method described in the third aspect.
  • a first communication device obtains a first data set, which includes first input data; the first communication device determines first information based on the first data set and a first artificial intelligence (AI) model; wherein the first information includes at least one of the following: first output data, which is output data obtained based on the first input data input and the first AI model, and the first output data is used to determine or assist in determining at least one of the test results and monitoring results of the first AI model; a first test result, which is used to determine the test result of the first AI model; first monitoring information, which is used to determine the monitoring result of the first AI model, that is, by obtaining at least one of the test results and monitoring results of the first AI model through the first data set and the first AI model, the deployment effect of the AI functional model in the communication device or system can be evaluated, thereby helping to improve the application effect of the communication AI functional model.
  • AI artificial intelligence
  • FIG1 is a block diagram of a wireless communication system to which embodiments of the present application may be applied;
  • FIG2 is a schematic diagram of a CSI compression solution applicable to an embodiment of the present application.
  • FIG3 is a schematic diagram of a CSI reporting solution applicable to an embodiment of the present application.
  • FIG4 is a schematic diagram of another CSI reporting solution applicable to an embodiment of the present application.
  • FIG7 is a flow chart of another communication method provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of a monitoring method provided in an embodiment of the present application.
  • FIG10 is a flowchart of another communication method provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of a communication device provided in an embodiment of the present application.
  • FIG13 is a schematic diagram of another communication device provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of a communication device provided in an embodiment of the present application.
  • FIG15 is a schematic diagram of a terminal provided in an embodiment of the present application.
  • FIG16 is a schematic diagram of a network-side device provided in an embodiment of the present application.
  • Figure 17 is a schematic diagram of another network-side device provided in an embodiment of the present application.
  • indication in this application can be either a direct indication (or explicit indication) or an indirect indication (or implicit indication).
  • a direct indication can be understood as the sender explicitly informing the receiver of specific information, the operation to be performed, or the requested result, etc. in the instruction sent;
  • an indirect indication can be understood as the receiver determining the corresponding information based on the instruction sent by the sender, or making a judgment and determining the operation to be performed or the requested result, etc. based on the judgment result.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • 6G 6th Generation
  • FIG1 shows a block diagram of a wireless communication system applicable to embodiments of the present application.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a notebook computer, a personal digital assistant (PDA), a handheld computer, a netbook, an ultra-mobile personal computer (UMPC), a mobile Internet device (MID), an augmented reality (AR), a virtual reality (VR) device, a robot, a wearable device (Wearable Device), a flight vehicle, a vehicle user equipment (VUE), a ship-borne equipment, a pedestrian user equipment (PUE), a smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), a game console, a personal computer (PC), an ATM or a self-service machine and other terminal-side devices.
  • PC personal computer
  • ATM an ATM or a self-service machine and other terminal
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the vehicle-mounted device can also be called a vehicle-mounted terminal, a vehicle-mounted controller, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip or a vehicle-mounted unit, etc. It should be noted that the specific type of the terminal 11 is not limited in the embodiment of the present application.
  • the network side device 12 may include an access network device or a core network device, wherein the access network device may also be called a radio access network (Radio Access Network, RAN) device, a radio access network function or a radio access network unit.
  • the access network device may include a base station, a wireless local area network (Wireless Local Area Network, WLAN) access point (Access Point, AP) or a wireless fidelity (Wireless Fidelity, WiFi) node, etc.
  • WLAN wireless Local Area Network
  • AP Access Point
  • WiFi wireless Fidelity
  • the base station can be called Node B (NB), Evolved Node B (eNB), the next generation Node B (gNB), New Radio Node B (NR Node B), access point, Relay Base Station (RBS), Serving Base Station (SBS), Base Transceiver Station (BTS), radio base station, radio transceiver, base The Basic Service Set (BSS), Extended Service Set (ESS), home Node B (HNB), home evolved Node B, transmission reception point (TRP) or other appropriate terms in the relevant field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary. It should be noted that in the embodiments of the present application, only the base station in the NR system is introduced as an example, and the specific type of the base station is not limited.
  • the core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, Mobility Management Entity (MME), Access and Mobility Management Function (AMF), Session Management Function (SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Server Discovery Function (EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), and so on.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • PCF Policy Control Function
  • PCF Policy and Charging Rules Function
  • EASDF Edge Application Server Discovery Function
  • UDM Unified Data Management
  • UDM Unified Data Repository
  • the NR system comprises the following components: a central repository function (UDR), a home subscriber server (HSS), a centralized network configuration (CNC), a network repository function (NRF), a network exposure function (NEF), a local NEF (L-NEF), a binding support function (BSF), an application function (AF), a location management function (LMF), a gateway mobile location center (GMLC), and a network data analytics function (NWDAF).
  • UDR central repository function
  • HSS home subscriber server
  • CNC centralized network configuration
  • NEF network exposure function
  • L-NEF local NEF
  • BSF binding support function
  • AF application function
  • LMF location management function
  • GMLC gateway mobile location center
  • NWDAAF network data analytics function
  • a neural network is composed of neurons, typically with a 1 , a 2 , ..., a K as input, w as the weight (multiplicative coefficient), b as the bias (additive coefficient), and ⁇ (.) as the activation function.
  • Common activation functions include sigmoid, tanh, linear rectification function, or rectified linear unit (ReLU).
  • Neural network parameters are optimized using optimization algorithms.
  • An optimization algorithm is a type of algorithm that minimizes or maximizes an objective function (sometimes called a loss function).
  • the objective function is often a mathematical combination of model parameters and data. For example, given data X and its corresponding label Y, a neural network model f(.) can be constructed. With this model, the predicted output f(x) can be obtained based on the input x, and the difference between the predicted value and the true value (label) (f(x) - Y) can be calculated. This is the loss function.
  • the goal of neural network training is to find the appropriate W (a vector of weights w) that minimizes the value of this loss function. The smaller the loss value, the closer the model is to the true state.
  • BP error back propagation
  • the basic idea of the BP algorithm is that the learning process consists of two processes: forward signal propagation and back propagation of errors.
  • forward propagation input samples are passed from the input layer, processed layer by layer by each hidden layer, and then passed to the output layer. If the actual output of the output layer does not match the expected output, the error back propagation phase begins.
  • Error back propagation is the process of propagating the output error back through the hidden layer to the input layer layer by layer in some form, and distributing the error to all units in each layer, thereby obtaining an error signal for each unit in each layer. This error signal serves as the basis for correcting the weights of each unit.
  • This process of adjusting the weights of each layer through forward signal propagation and back propagation of errors is repeated in a cycle.
  • the process of continuous weight adjustment is the learning and training process of the network. This process continues until the error in the network output is reduced to an acceptable level, or until a pre-set number of learning times is reached.
  • Common optimization algorithms include Gradient Descent, Stochastic Gradient Descent (SGD), mini-batch gradient descent, Momentum, Nesterov (name of the inventor, specifically stochastic gradient descent with momentum), Adaptive Gradient Descent (Adagrad), Adadelta, root mean square prop (RMSprop), and Adaptive Moment Estimation (Adam).
  • these optimization algorithms calculate the derivative/partial derivative of the current neuron based on the error/loss obtained from the loss function, add the learning rate, previous gradients/derivatives, and partial derivatives, and finally obtain the gradient, which is then passed to the previous layer.
  • the AI unit/AI model may also be referred to as an AI unit, an AI model, a machine learning (ML) model, an ML unit, an AI structure, an AI function, an AI characteristic, a neural network, a neural network function, a neural network function, etc., or the AI unit/AI model may also refer to a processing unit capable of implementing specific algorithms, formulas, processing flows, capabilities, etc.
  • the AI unit/AI model may be a processing method, algorithm, function, module or unit for a specific data set, or the AI unit/AI model may be a processing method, algorithm, function, module or unit running on AI/ML related hardware such as a graphics processing unit (GPU), a neural network processor (NPU), a tensor processing unit (TPU), an application-specific integrated circuit (ASIC), etc., and the present application does not make specific limitations on this.
  • the specific data set includes the input and/or output of the AI unit/AI model.
  • CSI Channel State Information
  • access network equipment sends a Channel State Information Reference Signal (CSI-RS) on certain time-frequency resources in a certain time slot.
  • CSI-RS Channel State Information Reference Signal
  • the terminal performs channel estimation based on the CSI-RS, calculates the channel information on this slot, and feeds back the codebook information to the base station through the PMI.
  • the base station combines the channel information based on the codebook information fed back by the terminal, and uses this to perform data precoding and multi-user scheduling before the next CSI report.
  • the terminal can change the PMI reported for each subband to reporting it according to the delay. Since the channels in the delay domain are more concentrated, a PMI with less delay can approximately represent the PMI of all subbands, that is, the delay domain information is compressed before reporting.
  • the base station can pre-code the CSI-RS in advance and send the encoded CSI-RS to the terminal. The terminal sees the channel corresponding to the encoded CSI-RS. The terminal only needs to select several ports with higher strength from the ports indicated by the network side (for example, 32 ports per channel) and report the coefficients corresponding to these ports.
  • the terminal compresses and encodes the channel information, and the base station decodes the compressed content to recover the channel information.
  • the base station's decoding network and the terminal's encoding network need to be jointly trained to achieve a reasonable match.
  • a neural network is formed by the terminal's encoder and the base station's decoder, forming a joint neural network. Joint training is performed by the network. After training is complete, the base station sends the encoder network to the terminal.
  • the terminal estimates the CSI-RS and calculates the channel information. This calculated channel information or the original estimated channel information is passed through the encoding network to obtain an encoding result.
  • the encoding result is then sent to the base station.
  • the base station receives the encoded result and inputs it into the decoding network to recover the channel information.
  • the CSI compression use case is a typical two-end model use case, meaning the complete CSI compression model needs to be deployed on different communication nodes.
  • Currently, most considerations involve deploying the encoder on the user equipment (UE) side and the decoder on the network (NW) side.
  • the (sub-)models deployed on multiple nodes need to be paired with each other to function properly.
  • the protocol defines several basic AI/ML CSI compression model training collaboration types:
  • the first expected information is expected output information corresponding to the first input data determined by the second communication device or protocol based on the first input data and a reference model;
  • the first label data is label data corresponding to the first input data.
  • the first data set is a special data set, characterized in that the output corresponding to the input of the data set is known (first label data), or the input of the data set is known to correspond to the output of the reference model (first expected information).
  • the standard may specify multiple first data sets with different characteristics or different functions.
  • the first communication device needs to determine the specific first data set to be used, or the second communication device sends identification information or functional information of the first data set to indicate the first data set that the first communication device needs to use.
  • the first data set further includes first expected information
  • the first expected information includes original channel information compressed according to a reference model
  • the first data set further includes first label data corresponding to the first input data
  • the first tag data includes a location tag of the terminal, which is the actual location of the terminal at the time of association with the first input data;
  • the first tag data includes a location tag of the terminal which is an estimated location of the terminal at the time of association with the first input data
  • the present application does not limit the application scenario of the first AI model.
  • a preset mapping relationship exists between the first input data and the second output data.
  • This embodiment of the present application provides an exemplary illustration of the above-mentioned preset mapping relationship.
  • the second data set is the training data of the first AI model.
  • the statistical information corresponding to the first input data includes at least one of the following:
  • the data labels of the first data set and the second data set may correspond to each other, for example, the data label of the first data set and the data label of the second data set are both compressed channel state information or codebook information.
  • the statistical information corresponding to the first input data and/or the feature information corresponding to the first data set can also be used as the first label data.
  • the signal to interference plus noise ratio (SNR) of the first data set can be used as the first label data of the first data set.
  • the first data set includes at least one of the following:
  • a standard data set a data set sent by the second communication device, and first input data measured by the first communication device.
  • the above-mentioned standard data set and the data set sent by the second communication device can be understood as data prepared in advance, and the devices have the same understanding of the data set;
  • the first input data measured by the above-mentioned first communication device can be understood as data obtained in real time, and the devices do not have the same understanding of the data.
  • the first data set (test case) in the embodiment of the present application may include at least one of the following examples:
  • Example 1 standardized dataset (test case)
  • the data set includes at least K first communication device-sided model input information, and the data set includes at least one of the following:
  • standardized datasets also include:
  • K1 first communication device side model output (first communication device-sided Model output) information (second output data), such as K1 expected compressed codebook information or raw channel information.
  • the first input data of the first data set includes at least one of the following: N first input data associated with the second output data, and M first input data not associated with the second output data, where N and M are both natural numbers.
  • the second output data may also be at least one of position, distance, round-trip time (RTT), and reference signal time difference (RSTD).
  • RTT round-trip time
  • RSTD reference signal time difference
  • the first input data includes at least one of the following:
  • the application scenario of the first AI model is not limited.
  • the corresponding first AI model can be determined according to the specific application scenario, that is, the first input data corresponding to the first AI model can be determined, for example, CSI-related channel state information, codebook information, or original channel information, etc.; positioning-related delay profile (DP), power delay profile (PDP), channel impulse response (CIR), delay information corresponding to multipath, delay power information corresponding to multipath, etc.; it can also be beam-related information, such as beam set B, etc.
  • DP positioning-related delay profile
  • PDP power delay profile
  • CIR channel impulse response
  • the UE first obtains the raw channel/PDP/multipath information of the positioning reference unit (PRU) and the position information of the PRU.
  • the UE inputs the raw channel PDP/multipath information of the PRU into its own AI model. If the position output by the AI model has an error less than a certain threshold with the position of the PRU, the monitoring result is considered valid.
  • the input can be the beams corresponding to set B
  • the output can be the beams corresponding to set A.
  • Set B is the indices and/or Reference Signal Received Power (RSRP) of Y beams
  • the output is the indices and/or RSRP of the Z best beams.
  • RSRP Reference Signal Received Power
  • Example 2 Data set (test case) sent by the peer device (second communication device) to the first communication device
  • the dataset includes at least K first communication device-side model input information (first communication device-sided Model input), and the dataset includes at least one of the following:
  • the above dataset includes:
  • K1 first communication device side model output (first communication device-sided Model output) information (second output data), such as K1 expected compressed codebook information or raw channel information.
  • the data set sent by the peer device (the second communication device) to the first communication device may or may not include label information (the second output data).
  • the label information may be the first label data, or may be the output information of the codebook information or the raw channel information after compression and/or quantization by the reference model, i.e., the "expected compressed codebook information or the expected compressed raw channel information" (the first expected information).
  • the K1 expected compressed codebook information or raw channel information is determined by the second communication device based on the codebook information or raw channel information in the reference model and test case.
  • Example 3 The first input data measured by the first communication device
  • the first input data measured by the first communication device can be understood as the data measured by the first communication device being directly used for testing and/or monitoring the first AI model during the operation or inference phase of the first AI model (the first AI model has completed training, or has completed training and testing). It is understood that the data measured by the first communication device only includes the first input data and does not include the corresponding second output data (label).
  • the second communication device may further send at least one of the following to the first communication device: a reference model, (all or part of) parameters of the reference model, and a second data set.
  • the reference model, (all or part of) the parameters of the reference model, and the second data set may also be sent to the first communication device by a third communication device.
  • the third communication device may be, for example, a functional device on the core network side.
  • the first AI model is determined by the first communication device itself.
  • the method further includes:
  • the first communication device receives third information sent by the second communication device or the third communication device, where the second communication device includes at least one of a fourth communication device and a monitoring device;
  • the third information includes at least one of the following:
  • the first communication device can determine the first AI model based on the above-mentioned third information.
  • the fourth communication device may be any one of a network side device (eg, an access network device), a decoding device, and a decompression device.
  • the first data set is associated with the third information.
  • different second information can determine different first AI models.
  • the first data sets used for testing and/or monitoring the first AI model are also different, and the first data set and the second information can be considered to be associated.
  • the second output data of the first data set is associated with the reference model, or if the first data set and the second data set are different data belonging to the same third data set, the first data set is associated with the second data set.
  • the first data set can be used to determine whether the reference model and/or the parameters of the reference model are properly installed or used by the first communication device.
  • the second communication device can determine whether the first AI model of the first communication device is used as expected based on the data in the first data set, such as whether the first output data is similar to the expected first output data (second output data).
  • the first communication device can determine whether the first AI model of the first communication device is used as expected based on the data in the first data set.
  • Step 502 The first communication device determines first information based on the first data set and the first artificial intelligence (AI) model.
  • AI artificial intelligence
  • the first information includes at least one of the following:
  • first output data where the first output data is output data obtained based on the first input data and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;
  • First monitoring information where the first monitoring information is used to determine a monitoring result of the first AI model.
  • the first AI model can be understood as an AI model that has been trained and deployed on the first communication device.
  • the first communication device can use the first data set to test or monitor the performance of the first AI model before or during the communication application of the first AI model.
  • test results can be understood as the results obtained by conducting a forward test before the first AI model is applied in communication;
  • the above monitoring results can be understood as the results obtained by backward testing in the communication application of the first AI model.
  • the performance of the first AI model can be determined through the actual operation results of the communication system or equipment.
  • the compression performance of the first AI model is determined by judging the throughput of the communication system.
  • the positioning performance of the first AI model is determined by position continuity, etc.
  • the first communication device determines, based on the first data set and the first artificial intelligence (AI) model, first information including at least one of the following:
  • the first communication device inputs the first input data into the first AI model to obtain the first output data
  • the first communication device determines at least one of the first test result and the first monitoring information according to the first data set and the first output data.
  • the first output data can be understood as the output corresponding to the first input data after passing through the first AI model.
  • the first test result and the first monitoring information are further determined based on the first output data.
  • the first output data includes compressed channel state information or codebook information
  • the first output data includes compressed original channel information
  • the first output data includes decompressed channel state information or codebook information
  • the first output data includes decompressed original channel information
  • the first output data includes at least one of the location information of the terminal, the distance information between the terminal and other devices, the round-trip delay RTT, the reference signal time difference RSTD, and the time difference between transmitting and receiving signals;
  • the first output data includes beam information corresponding to beam set A.
  • the embodiments of this application do not limit the application scenarios of the first AI model. However, it is understood that, for a specific first AI model, a preset mapping relationship exists between the first input data and the first output data.
  • the embodiments of this application provide an exemplary description of the preset mapping relationship.
  • the corresponding first AI model is used for channel compression
  • the first input data may be at least one of channel state information, codebook information, and original channel information
  • the corresponding output data may be at least one of compressed channel state information, compressed codebook information, and compressed original channel information
  • the first communication device serves as a channel compression-decompression device
  • the corresponding first AI model is used for channel compression-decompression
  • the first input data may be at least one of channel state information, codebook information, and original channel information
  • the corresponding output data may be at least one of decompressed channel state information, decompressed codebook information, and decompressed original channel information.
  • the above-mentioned beam set B is a subset of beam set A; or, set B is a historical time relative to set A.
  • the test results and/or monitoring results of the above-mentioned first AI model can be determined on the first communication device side, or on the second communication device side.
  • the second communication device side obtains the above-mentioned test results and/or monitoring results based on the first information sent by the first communication device.
  • the above-mentioned first test result can be an intermediate parameter of the test result of the first AI model, or it can be the test result of the first AI model itself;
  • the above-mentioned first monitoring information can be an intermediate parameter of the monitoring result of the first AI model (such as the error information of the first AI model), or it can be the monitoring result of the first AI model itself, that is, the above-mentioned first communication device can report the intermediate parameters of the above-mentioned test results and/or monitoring results to the second communication device, and the second communication device can judge the test results and/or monitoring results (such as the quality of the test results, the status information of the first AI model, whether the first AI model needs to be switched, etc.), or it can directly report the test results and/or monitoring results to the second communication device.
  • the first AI model includes at least one of a first model and a second model, the first model is a reference model, and the second model is a model determined based on the first model and different from the first model.
  • the optimization model and the reference model are different AI models.
  • the optimization model is generated based on the reference model.
  • the reference model includes at least one of the following:
  • the reference model sent by the second communication device is the reference model sent by the second communication device.
  • the reference model may be one or more of a fully connected model, a convolutional model, or a transformer model, or a subsequently evolved model.
  • the reference model agreed upon in the protocol includes at least one of the following information:
  • Convolution kernel parameters such as kernel size, feature map filling method, and output channels
  • the first condition includes at least one of the following:
  • the method further includes: the first communication device receiving first auxiliary information sent by a second communication device or a third communication device, where the second communication device includes at least one of a fourth communication device and a monitoring device;
  • the first threshold value includes at least one of the following:
  • the first communication device determines first information based on the first data set and the first artificial intelligence (AI) model, including:
  • the first communication device determines the first information based on the first data set, the first AI model and the first auxiliary information.
  • the second communication device or the third communication device may provide auxiliary information to the first communication device for determining the first information, for example, for determining the first test result and the first monitoring information.
  • the first communication device reports the first monitoring result, such as information in the monitoring result, such as first difference information, statistical information of the first difference information, first ratio information, and statistical information of the first ratio information;
  • the first communication device obtains the first monitoring result, such as monitoring result information, such as the first AI model monitoring result, such as status information of the first AI model, or the quality of the first AI model, or the degree of quality;
  • monitoring result information such as the first AI model monitoring result, such as status information of the first AI model, or the quality of the first AI model, or the degree of quality;
  • the first communication device determines the test result of the first AI model of the terminal based on the first monitoring result.
  • statistical information of the training data set may be provided to the first communication device as reference information for determining first information, for example, for determining a first test result and/or first monitoring information.
  • the first information includes first monitoring information
  • the method further includes:
  • the second information includes at least one of the following:
  • the decompressed codebook information acquired by the second communication device is the decompressed codebook information acquired by the second communication device.
  • the first communication device determines first information based on the first data set and the first artificial intelligence (AI) model, including:
  • the first communication device determines the first monitoring information according to the first data set, the first output data and the second information.
  • the second information sent by the second communication device may be received as reference information for determining the first monitoring information.
  • the monitoring result of the first AI model may be determined by comparing the first output data with the second information.
  • the throughput in the first output data may be compared with the throughput determined by the second communication device to determine whether the current first AI model meets the communication performance requirements.
  • the first communication device performs operations such as switching, rollback, and redeployment when at least one of the test results and monitoring results of the first AI model fails.
  • the above-mentioned failure judgment can be determined by the first communication device or indicated to the first communication device after the second communication device determines it.
  • the test results and monitoring results of the first AI model fails, it can be understood that the first AI model deployment was unsuccessful, and the model can be redeployed by re-receiving the same reference model and/or reference model parameters (the reference model and/or reference model parameters can also generate an optimized model). It can also be understood that the performance of the first AI model cannot meet current business needs, and an updated reference model and/or reference model parameters can be received for subsequent testing and/or application.
  • the embodiment of the present application may include the following steps:
  • the first communication device determines the output and/or performs first monitoring based on the first data set (test case) and the first AI model; the performed first monitoring is used to determine whether the first AI model passes the test case or operates normally;
  • the first monitoring determines the monitoring result based on the output (the compressed codebook of the first AI model) and the expected compressed codebook corresponding to the first data set (the test case);
  • the reference data is updated or sent repeatedly.
  • the first monitoring result includes at least one of the following:
  • the first data set (test case);
  • the first monitoring includes at least one of the following:
  • the first monitoring determines the monitoring result based on the codebook after the output is decompressed and the codebook corresponding to the first data set (test case);
  • the first AI model fails the test case or does not work properly
  • the reference data is updated or sent repeatedly.
  • the first monitoring result includes at least one of the following:
  • Error information of the first AI model difference between the codebook of the test case (first input data) and the codebook restored after output decompression
  • Error statistical information which is statistical information of the error information corresponding to the three difference information mentioned above.
  • Ratio information such as a ratio of the acquired throughput of the first AI model to a throughput threshold, or a ratio of the throughput of the first AI model to the randomly selected throughput.
  • the first monitoring result, the first communications device or the fourth communications device reports at least one of the following to the monitoring entity:
  • the first communication device reports the first information, where the first information includes at least one of the following:
  • the output information output information after the first AI model (such as PMI information, i.e., codebook information compressed by the first AI model), or
  • the output information is the difference or ratio between the output information after passing through the first AI model and the label information in the first data set;
  • the output information is statistical information of the accuracy of the multiple output information compared to the label in the first data
  • the information reported by the first communication device carries information related to the first data set.
  • the first information is associated with a sample in a first data set
  • the first information corresponds one-to-one to samples in a specified first data set (e.g., samples in the first data set specified by a network-side device, or samples in the first data set that satisfy certain rules); optionally, the second communication device sends indication information including samples to the first data set.
  • a specified first data set e.g., samples in the first data set specified by a network-side device, or samples in the first data set that satisfy certain rules.
  • the first information is associated with a first AI model, such as a reference model or an optimization model.
  • the first information is associated with the functionality (functionality)/feature (feature) of the model and the identifier (ID) of the model.
  • the method further includes:
  • the first communication device sends the first information to a second communication device, wherein the second communication device includes at least one of a fourth communication device and a monitoring device.
  • the first communication device can send the first information to the second communication device, which can be to send the test results and monitoring results of the first AI model to the second communication device, or the test results and monitoring results of the first AI model can be determined by the second communication device by sending the first information to the second communication device.
  • the communication device needs to be tested when introducing new functions.
  • the AI model requires cooperation between both ends, the devices on both sides or at least one side need to have a certain understanding of the output of the other side.
  • the first information is determined in the first communication device through the first data set, and interacted with the second communication device to determine whether the AI deployment of the first communication device meets expectations.
  • Identification information of the second data set wherein the second data set is training data for the first AI model
  • the first communication device sends the first output data to the second communication device
  • the first communication device sends, to the second communication device, first output data corresponding to first input data not associated with second output data;
  • the first communication device sends the first input data to the second communication device
  • the first communication device sends multiple first information corresponding to a first input data to the second communication device, where different first information in the multiple first information is associated with different first AI models;
  • the second output data includes at least one of the following:
  • first expected information where the first expected information is expected output information corresponding to the first input data, determined by the second communication device or protocol based on the first input data and a reference model;
  • First label data where the first label data is label data corresponding to the first input data.
  • sending the first output data may be sending the first output data corresponding to multiple first input data together, which can be understood as the packaged sending shown in FIG4 .
  • the first output data sent is also the sum of the first output data sets after the same first input data is input into different first AI models.
  • first input data can also be provided to the second communication device so that the second communication device determines the test results and monitoring results of the first AI model based on the first input data and the first information.
  • the first AI model is associated with at least one of the following parameters:
  • FIG. 7 is a flowchart of another communication method provided in an embodiment of the present application, which is used for a second communication device. As shown in part (a) of FIG. 7 , the method includes the following steps:
  • the second communication device includes at least one of a fourth communication device and a monitoring device.
  • Step 702a The second communication device determines at least one of a test result and a monitoring result of the first artificial intelligence (AI) model based on the first information.
  • AI artificial intelligence
  • the first information includes at least one of the following:
  • First output data where the first output data is output data obtained based on the first input data of the first data set and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;
  • First monitoring information where the first monitoring information is used to determine a monitoring result of the first AI model.
  • the method includes the following steps:
  • Step 701b The second communication device sends a first data set to the first communication device, for the first communication device to determine the first information;
  • the first information includes at least one of the following:
  • First output data where the first output data is output data obtained based on the first input data of the first data set and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;
  • First monitoring information where the first monitoring information is used to determine a monitoring result of the first AI model.
  • the first AI model includes at least one of a first model and a second model, the first model is a reference model, and the second model is a model determined based on the first model and different from the first model.
  • the reference model includes at least one of the following:
  • the target model parameters including model parameters sent by the second communication device
  • the second communication device sends first auxiliary information to the first communication device
  • the second communication device sends second information to the first communication device
  • the second communication device sends third information to the first communication device
  • the first auxiliary information includes at least one of the following:
  • the first threshold includes at least one of the following:
  • the second threshold includes at least one of the following:
  • the second information includes at least one of the following:
  • the third information includes at least one of the following:
  • Target model parameters associated with the reference model are
  • the first data set is associated with the third information.
  • the first information further includes at least one of the following:
  • Type information of the first AI model
  • the second communication device receiving the first information sent by the first communication device includes:
  • the second communication device receives the first output data sent by the first communication device
  • the second communication device receives first output data corresponding to the plurality of first input data sent by the first communication device
  • the second communication device receives first output data corresponding to first input data not associated with second output data sent by the first communication device;
  • the second communication device receives the first input data sent by the first communication device
  • the second communication device receives multiple first information corresponding to a first input data sent by the first communication device, wherein different first information in the multiple first information is associated with different first AI models;
  • the second output data includes at least one of the following:
  • first expected information where the first expected information is expected output information corresponding to the first input data, determined by the second communication device or protocol based on the first input data and a reference model;
  • First label data where the first label data is label data corresponding to the first input data.
  • the second communication device determines, based on the first information, at least one of a test result and a monitoring result of the first artificial intelligence (AI) model in the first communication device, including at least one of the following:
  • the second condition includes at least one of the following:
  • the payload of the first output data is the same as the payload of the first expected information
  • the third difference information between the first output data and the first expected information is less than or equal to a third threshold
  • the second communication device decompresses the first output data to obtain third output data
  • the precision loss of the third output data relative to the decompressed first tag data is less than or equal to a ninth threshold
  • Fourth difference information between the third output data and the decompressed first tag data is less than or equal to an eleventh threshold
  • Statistical information of fourth difference information between the third output data and the decompressed first tag data is less than or equal to a twelfth threshold.
  • the fourth communication device may be a decompression device for the first output data.
  • the fourth communication device decompresses the first output data to obtain third output data
  • the fourth communication device compares the third output data with the first input data, or compares the third output data with the decompressed data of the first label data, to determine at least one of a test result and a monitoring result of the first artificial intelligence (AI) model.
  • the decompression process of the first label data may also be performed by the fourth communication device or by the first communication device.
  • the first input data (Test case-codebook) or the first label data after decompression (the decompressed codebook of the reference model label) is compared with the third output data (the restored codebook after decompression) to determine the monitoring result.
  • the method further includes:
  • the second communication device sends feedback information to the first communication device
  • the second communication device can also provide relevant results to the first communication device when determining at least one of the test results and monitoring results of the first artificial intelligence AI model.
  • the second communication device is a fourth communication device
  • the above-mentioned relevant results can also be sent by the fourth communication device to the monitoring device.
  • the second communication device indicates the reference model or optimization model in the first AI model used by the first communication device, or indicates the specific optimization model used. It can be understood that when the first communication device reports the output of the optimization model, the opposite device can determine the model that the first communication device should use based on the output.
  • the second communication device indication information may indicate whether to use a reference model
  • the second communication device instructs the first communication device to fallback to the reference model.
  • the second communication device indicates identification information of the model (eg, model ID).
  • the second peer device instructs the first communication device on the model to be subsequently applied.
  • the second peer device indicates category information of the model.
  • the first AI model is associated with at least one of the following parameters:
  • the second data set is the training data set of the first AI model.
  • this embodiment is an implementation method of the second communication device corresponding to the embodiment shown in Figures 5-6. Its specific implementation method can refer to the relevant descriptions in the embodiment shown in Figures 5-6, and both can achieve the same or similar beneficial effects. To avoid repetitive description, this embodiment will not be repeated.
  • Step 1001a The monitoring device receives fourth output data sent by the fourth communication device, where the fourth output data is decompressed data of the first output data;
  • Step 1002a The monitoring device determines at least one of a test result and a monitoring result of the first artificial intelligence (AI) model based on the fourth output data.
  • AI artificial intelligence
  • Step 1002b The monitoring device determines at least one of the following based on at least one of the test result and the monitoring result of the first artificial intelligence (AI) model:
  • target first AI model is at least one of the first AI models
  • the fourth communication device is used to receive the first output data sent by the first communication device and decompress the first output data, where the first output data is output data obtained based on the first input number of the first data set and the first AI model.
  • the fourth communication device receives the first output data sent by the first communication device and decompresses the first output data.
  • the fourth communication device sends the decompressed data to the monitoring device, and the monitoring device performs a judgment on at least one of the test results and the monitoring results of the first artificial intelligence (AI) model; or, the fourth communication device sends at least one of the test results and the monitoring results of the first artificial intelligence (AI) model to the monitoring device, and the monitoring device further determines the status information of the target first AI model and/or the first AI model.
  • the fourth communication device can send the difference information between the fourth output data and the first input data to the monitoring device, and the monitoring device specifically judges the status information of the first AI model, or selects the target first AI model from multiple first AI models.
  • the monitoring device determines the test result and monitoring result of the first artificial intelligence AI model in the first communication device based on the fourth output data, including:
  • the fourth condition includes at least one of the following:
  • the precision loss of the fourth output data relative to the first input data is less than or equal to a thirteenth threshold
  • the accuracy loss statistics of the fourth output data relative to the first input data is less than or equal to a fourteenth threshold
  • the precision of the fourth output data is greater than or equal to the precision of the first input data
  • the precision loss of the fourth output data relative to the decompressed first tag data is less than or equal to a fifteenth threshold
  • the judgment logic of the test results and monitoring results of the first artificial intelligence AI model is similar to the judgment logic of the second communication device, and will not be repeated here.
  • the test results and monitoring results of the first artificial intelligence (AI) model are determined based on the first output data of the first data set in the first AI model.
  • the above-mentioned determination process can be performed in the first communication device and the second communication device (including the fourth communication device and/or the monitoring setting).
  • the first data set (test case) is used to determine whether the first AI model of the terminal meets the first requirement (in an optional embodiment, meeting the first requirement can be understood as passing the first data set (test case) test), wherein the first requirement includes at least one of the following:
  • the output of the first AI model or the compressed codebook information or raw channel information reported by the first communication device is the same as the expected compressed codebook information or raw channel information payload;
  • the error between the output of the first AI model or the compressed codebook information or raw channel information reported by the first communication device and the expected compressed codebook information or raw channel information is less than a first preset threshold
  • the codebook information or raw channel information recovered by the fourth communication device has similar or higher accuracy than the codebook information or raw channel information in the first data set (test case);
  • a loss in accuracy between the codebook information or raw channel information recovered by the fourth communication device and the codebook information or raw channel information in the first data set (test case) is less than a third preset threshold
  • the statistical accuracy loss between the codebook information or raw channel information recovered by the fourth communication device and the codebook information or raw channel information in the first data set (test case) is less than a fourth preset threshold.
  • the process of determining the test results and monitoring results of the first artificial intelligence AI model is executed in different communication devices (first communication device, fourth communication device or monitoring setting)
  • the values of the above-mentioned first preset threshold, second preset threshold, third preset threshold, and fourth preset threshold may be different.
  • the first data set (test case) can assist the first communication device in determining a suitable AI model, thereby helping to optimize the output results of non-test cases in subsequent applications, or, the first data set (test case) can assist the first communication device in determining the monitoring results of the first communication device, or, the first data set (test case) can assist the first communication device in determining the requirement of the first communication device, for example, the lower limit of accuracy.
  • the first data set (test case) is a special data set, and the different first communication devices need to confirm the performance of the reference model and/or optimization model based on the test case.
  • this embodiment is an implementation method of the fourth communication device corresponding to the embodiment shown in Figures 5-7. Its specific implementation method can refer to the relevant descriptions in the embodiments shown in Figures 5-7, and both can achieve the same or similar beneficial effects. To avoid repetitive descriptions, this embodiment will not be repeated.
  • the communication device provided in the embodiment of the present application can be executed by a communication device.
  • the communication device 1100 provided in the embodiment of the present application is illustrated in FIG11 by taking the communication device executing the communication device as an example.
  • a first acquisition module 1101 is configured to acquire a first data set, where the first data set includes first input data
  • a first determining module 1102 is configured to determine first information based on the first data set and a first artificial intelligence (AI) model;
  • the first information includes at least one of the following:
  • first output data where the first output data is output data obtained based on the first input data and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;
  • First monitoring information where the first monitoring information is used to determine a monitoring result of the first AI model.
  • the first data set further includes second output data
  • the second output data includes at least one of the following:
  • a second determining submodule configured to determine that the first AI model does not meet the test requirement when the first condition is not met
  • the first information includes first monitoring information
  • the apparatus further includes:
  • the second information includes at least one of the following:
  • the first determining module includes:
  • the fourth determining submodule is configured to determine the first monitoring information according to the first data set, the first output data and the second information.
  • the device further includes:
  • the third information includes at least one of the following:
  • Target model parameters associated with the reference model are
  • the first determining module includes at least one of the following:
  • the sixth determining submodule is configured to determine the first test result based on at least one of second ratio information of the first output data to the first input data and a statistical value of the second ratio information.
  • the device further includes:
  • an execution module configured to, when at least one of the test result and the monitoring result of the first AI model fails, perform at least one of the following operations:
  • the first sending module is configured to send the first information to a second communication device, wherein the second communication device includes at least one of a fourth communication device and a monitoring device.
  • the first sending module includes:
  • a third sending submodule configured to send, to the second communication device, first output data corresponding to the first input data not associated with the second output data
  • a fourth sending submodule configured to send the first input data to a second communication device
  • first expected information where the first expected information is expected output information corresponding to the first input data, determined by the second communication device or protocol based on the first input data and a reference model;
  • the communication device provided in the embodiment of the present application can be executed by a communication device.
  • the communication device executing the communication device is taken as an example, as shown in Figure 12, which illustrates the communication devices 1200a and 1200b provided in the embodiment of the present application.
  • the apparatus 1200a includes:
  • the fourth receiving module 1201a is configured to receive first information sent by the first communication device
  • a second determining module 1202a is configured to determine at least one of a test result and a monitoring result of a first artificial intelligence (AI) model based on the first information;
  • AI artificial intelligence
  • the apparatus 1200b includes:
  • the first information includes at least one of the following:
  • First output data where the first output data is output data obtained based on the first input data of the first data set and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;
  • First monitoring information where the first monitoring information is used to determine a monitoring result of the first AI model.
  • the first data set further includes second output data
  • the second output data includes at least one of the following:
  • the first expected information is expected output information corresponding to the first input data determined by the second communication device or protocol based on the first input data and a reference model;
  • the first label data is label data corresponding to the first input data.
  • a third sending module configured to send first auxiliary information to the first communication device
  • a fifth sending module configured to send third information to the first communication device
  • the first threshold includes at least one of the following:
  • the second threshold includes at least one of the following:
  • the second information includes at least one of the following:
  • the third information includes at least one of the following:
  • Target model parameters associated with the reference model are
  • the fourth receiving module includes:
  • a second receiving submodule configured to receive first output data corresponding to a plurality of first input data sent by the first communication device
  • a third receiving submodule configured to receive first output data corresponding to first input data not associated with second output data and sent by the first communication device
  • first expected information where the first expected information is expected output information corresponding to the first input data, determined by a second communication device or protocol based on the first input data and a reference model;
  • First label data where the first label data is label data corresponding to the first input data.
  • a seventh determination submodule configured to determine that the first AI model meets the test requirement when the second condition is met
  • an eighth determining submodule configured to determine that the first AI model does not meet the test requirement if the second condition is not met
  • the second condition includes at least one of the following:
  • the payload of the first output data is the same as the payload of the first expected information
  • Statistical information of the third difference information between the first output data and the first expected information is less than or equal to a fourth threshold
  • the second difference information between the third difference information and the reference model error is less than or equal to a fifth threshold
  • Statistical information of the third difference information and the second difference information of the reference model error is less than or equal to a sixth threshold
  • the communication apparatus is a fourth communication device, and when the first input data includes at least one of channel state information, codebook information, and original channel information, and the first output data includes at least one of compressed codebook information and compressed original channel information, the second determination module includes:
  • a first decompression module configured to decompress the first output data to obtain third output data
  • a ninth determining submodule configured to determine that the first AI model meets the test requirement if a third condition is met, or to determine that the first AI model does not meet the test requirement if the third condition is not met;
  • the precision loss of the third output data relative to the decompressed first label data is less than or equal to a ninth threshold
  • the precision of the third output data is greater than or equal to the precision of the decompressed first tag data
  • the fourth difference information between the third output data and the decompressed first label data is less than or equal to an eleventh threshold
  • the device further includes:
  • the feedback information includes at least one of the following:
  • the communication device provided in the embodiment of the present application is a device capable of executing the above-mentioned communication method. Therefore, all implementation methods in the above-mentioned communication method embodiment are applicable to the communication device and can achieve the same or similar beneficial effects. To avoid repetition, this embodiment will not be described in detail.
  • the communication device provided in the embodiment of the present application can be executed by a communication device.
  • the communication device executing the communication device is taken as an example, as shown in Figure 13, which illustrates the communication devices 1300a and 1300b provided in the embodiment of the present application.
  • the apparatus 1300a includes:
  • a fifth receiving module 1301a configured to receive fourth output data sent by a fourth communication device, where the fourth output data is decompressed data of the first output data
  • a third determining module 1302a is configured to determine at least one of a test result and a monitoring result of the first artificial intelligence (AI) model based on the fourth output data;
  • a sixth receiving module 1301b configured to receive at least one of a test result and a monitoring result of the first artificial intelligence AI model sent by the first communication device or the fourth communication device;
  • the fourth determining module 1302b is configured to determine at least one of the following based on at least one of the test result and the monitoring result of the first artificial intelligence (AI) model:
  • target first AI model is at least one of the first AI models
  • the fourth communication device is used to receive the first output data sent by the first communication device and decompress the first output data, where the first output data is output data obtained based on the first input number of the first data set and the first AI model.
  • the fourth condition includes at least one of the following:
  • the accuracy loss statistics of the fourth output data relative to the first input data is less than or equal to a fourteenth threshold
  • the precision of the fourth output data is greater than or equal to the precision of the first input data
  • the precision loss of the fourth output data relative to the decompressed first label data is less than or equal to a fifteenth threshold
  • the precision of the fourth output data is greater than or equal to the precision of the decompressed first tag data
  • the communication device 1100, communication device 1200a, communication device 1200b, communication device 1300a or communication device 1300b in the embodiments of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device can be a terminal, or it can be other devices other than a terminal.
  • the terminal can include but is not limited to the types of terminal 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiments of the present application.
  • the present application also provides a terminal including a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is configured to execute a program or instruction to implement the steps of the method embodiment shown in Figure 5 or Figure 7.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to this terminal embodiment and can achieve the same technical effect.
  • Figure 15 is a schematic diagram of the hardware structure of a terminal implementing an embodiment of the present application.
  • the processor 1510 is configured to determine at least one of a test result and a monitoring result of a first artificial intelligence AI model based on the first information;
  • the radio frequency unit 1501 is configured to send a first data set to the first communication device, for the first communication device to determine the first information;
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • ROM computer read-only memory
  • RAM random access memory
  • magnetic disk such as a hard disk, a hard disk, or a magnetic disk.
  • optical disk such as a hard disk, a hard disk, or an optical disk.
  • the readable storage medium may be a non-transitory readable storage medium.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the communication method embodiments shown in Figures 5, 7, or 10 above, and can achieve the same technical effects. To avoid repetition, they will not be repeated here.
  • An embodiment of the present application further provides a computer program/program product, which is stored in a storage medium and is executed by at least one processor to implement the various processes of the communication embodiment shown in Figures 5, 7, or 10 above, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Software Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Artificial Intelligence (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present application relates to the technical field of communications, and discloses a communication method and apparatus, a terminal, a network side device, a medium, and a product. The communication method in embodiments of the present application comprises: a first communication device acquires a first data set, the first data set comprising first input data; and the first communication device determines first information on the basis of the first data set and a first artificial intelligence (AI) model, wherein the first information comprises at least one of the following: first output data, the first output data being output data obtained by inputting the first input data to the first AI model, and the first output data being used for determining or assisting in determining at least one of a test result and a monitoring result of the first AI model; a first test result, the first test result being used for determining the test result of the first AI model; and first monitoring information, the first monitoring information being used for determining the monitoring result of the first AI model.

Description

通信方法、装置、终端、网络侧设备、介质及产品Communication methods, devices, terminals, network-side equipment, media, and products

相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS

本申请主张在2024年4月3日在中国提交的中国专利申请号No.202410403747.5的优先权,其全部内容通过引用包含于此。This application claims priority to Chinese Patent Application No. 202410403747.5 filed in China on April 3, 2024, the entire contents of which are incorporated herein by reference.

技术领域Technical Field

本申请属于通信技术领域,具体涉及一种通信方法、装置、终端、网络侧设备、介质及产品。The present application belongs to the field of communication technology, and specifically relates to a communication method, apparatus, terminal, network-side equipment, medium and product.

背景技术Background Art

人工智能(Artificial Intelligence,AI)目前在各个领域获得了广泛的应用,通信领域与AI的结合也日益加深。通信设备或系统在引入AI功能模型时,需要进行模型的训练和应用,然而,目前,AI功能模型在所述通信设备或系统中的部署效果难以被确定,这可能导致通信领域中的通信AI功能模型应用效果不佳。Artificial Intelligence (AI) is currently gaining widespread application across various fields, and its integration with the communications sector is increasingly deepening. When introducing AI functional models into communications equipment or systems, model training and application are required. However, the effectiveness of deploying AI functional models in these communications equipment or systems is currently difficult to determine, potentially leading to poor application results for these AI functional models in the communications sector.

发明内容Summary of the Invention

本申请实施例提供一种通信方法、装置、终端、网络侧设备、介质及产品,能够解决通信领域中的通信AI功能模型应用效果不佳的问题。The embodiments of the present application provide a communication method, apparatus, terminal, network-side equipment, medium, and product, which can solve the problem of poor application effect of communication AI functional models in the communication field.

第一方面,提供了一种通信方法,该方法包括:第一通信设备获取第一数据集,所述第一数据集包括第一输入数据;In a first aspect, a communication method is provided, the method comprising: a first communication device acquiring a first data set, the first data set comprising first input data;

所述第一通信设备根据所述第一数据集和第一人工智能AI模型,确定第一信息;The first communication device determines first information based on the first data set and a first artificial intelligence (AI) model;

其中,第一信息包括以下至少之一:The first information includes at least one of the following:

第一输出数据,所述第一输出数据为根据所述第一输入数据输入和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;first output data, where the first output data is output data obtained based on the first input data and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;

第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;a first test result, where the first test result is used to determine a test result of the first AI model;

第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果。First monitoring information, where the first monitoring information is used to determine a monitoring result of the first AI model.

第二方面,提供了一种通信方法,该方法包括:In a second aspect, a communication method is provided, the method comprising:

第二通信设备接收第一通信设备发送的第一信息;The second communication device receives the first information sent by the first communication device;

第二通信设备根据所述第一信息确定第一人工智能AI模型的测试结果和监控结果中的至少一项;The second communication device determines at least one of a test result and a monitoring result of the first artificial intelligence AI model based on the first information;

或者,第二通信设备向第一通信设备发送第一数据集,用于第一通信设备确定第一信息;Alternatively, the second communication device sends the first data set to the first communication device for the first communication device to determine the first information;

其中,所述第一信息包括以下至少之一:The first information includes at least one of the following:

第一输出数据,所述第一输出数据为根据第一数据集的第一输入数和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;First output data, where the first output data is output data obtained based on the first input data of the first data set and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;

第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;a first test result, where the first test result is used to determine a test result of the first AI model;

第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果。First monitoring information, where the first monitoring information is used to determine a monitoring result of the first AI model.

第三方面,提供了一种通信方法,该方法包括:According to a third aspect, a communication method is provided, the method comprising:

监控设备接收第四通信设备发送的第四输出数据,所述第四输出数据为所述第一输出数据的解压缩数据;The monitoring device receives fourth output data sent by the fourth communication device, where the fourth output data is decompressed data of the first output data;

所述监控设备根据所述第四输出数据,确定第一人工智能AI模型的测试结果和监控结果中的至少一项;The monitoring device determines at least one of a test result and a monitoring result of the first artificial intelligence (AI) model based on the fourth output data;

或者,监控设备接收所述第一通信设备或者第四通信设备发送的所述第一人工智能AI模型的测试结果和监控结果中的至少一项;Alternatively, the monitoring device receives at least one of a test result and a monitoring result of the first artificial intelligence AI model sent by the first communication device or the fourth communication device;

所述监控设备基于所述第一人工智能AI模型的测试结果和监控结果中的至少一项,确定如下至少一项:The monitoring device determines at least one of the following based on at least one of the test result and the monitoring result of the first artificial intelligence (AI) model:

目标第一AI模型;Target-first AI model;

所述第一AI模型的状态信息;Status information of the first AI model;

其中,所述目标第一AI模型是所述第一AI模型的中的至少一个。The target first AI model is at least one of the first AI models.

其中,所述第四通信设备用于接收所述第一通信设备发送的第一输出数据,并对所述第一输出数据进行解压缩,所述第一输出数据为根据第一数据集的第一输入数和所述第一AI模型得到的输出数据。Among them, the fourth communication device is used to receive the first output data sent by the first communication device and decompress the first output data, where the first output data is output data obtained based on the first input number of the first data set and the first AI model.

第四方面,提供了一种通信装置,包括:In a fourth aspect, a communication device is provided, including:

第一获取模块,用于获取第一数据集,所述第一数据集包括第一输入数据;A first acquisition module is configured to acquire a first data set, where the first data set includes first input data;

第一确定模块,用于根据所述第一数据集和第一人工智能AI模型,确定第一信息;A first determination module, configured to determine first information based on the first data set and a first artificial intelligence (AI) model;

其中,第一信息包括以下至少之一:The first information includes at least one of the following:

第一输出数据,所述第一输出数据为根据所述第一输入数据输入和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;first output data, where the first output data is output data obtained based on the first input data and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;

第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;a first test result, where the first test result is used to determine a test result of the first AI model;

第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果。First monitoring information, where the first monitoring information is used to determine a monitoring result of the first AI model.

第五方面,提供了一种通信装置,所述装置包括:According to a fifth aspect, a communication device is provided, the device comprising:

第四接收模块,用于接收第一通信设备发送的第一信息;A fourth receiving module, configured to receive first information sent by the first communication device;

第二确定模块,用于根据所述第一信息确定第一人工智能AI模型的测试结果和监控结果中的至少一项;A second determination module is configured to determine at least one of a test result and a monitoring result of the first artificial intelligence AI model based on the first information;

或者,所述装置包括:Alternatively, the device comprises:

第二发送模块,用于向第一通信设备发送第一数据集,以使得所述第一通信设备确定第一信息;a second sending module, configured to send a first data set to a first communication device, so that the first communication device determines first information;

其中,所述第一信息包括以下至少之一:The first information includes at least one of the following:

第一输出数据,所述第一输出数据为根据第一数据集的第一输入数和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;First output data, where the first output data is output data obtained based on the first input data of the first data set and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;

第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;a first test result, where the first test result is used to determine a test result of the first AI model;

第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果。First monitoring information, where the first monitoring information is used to determine a monitoring result of the first AI model.

第六方面,提供了一种通信装置,所述装置包括:In a sixth aspect, a communication device is provided, the device comprising:

第五接收模块,用于接收第四通信设备发送的第四输出数据,所述第四输出数据为所述第一输出数据的解压缩数据;a fifth receiving module, configured to receive fourth output data sent by a fourth communication device, where the fourth output data is decompressed data of the first output data;

第三确定模块,用于根据所述第四输出数据,确定第一人工智能AI模型的测试结果和监控结果中的至少一项;a third determining module, configured to determine at least one of a test result and a monitoring result of the first artificial intelligence (AI) model based on the fourth output data;

或者,第六接收模块,用于接收所述第一通信设备或者第四通信设备发送的所述第一人工智能AI模型的测试结果和监控结果中的至少一项;Alternatively, a sixth receiving module is configured to receive at least one of a test result and a monitoring result of the first artificial intelligence AI model sent by the first communication device or the fourth communication device;

第四确定模块,用于基于所述第一人工智能AI模型的测试结果和监控结果中的至少一项,确定如下至少一项:A fourth determination module is configured to determine at least one of the following based on at least one of the test result and the monitoring result of the first artificial intelligence (AI) model:

目标第一AI模型;Target-first AI model;

所述第一AI模型的状态信息;Status information of the first AI model;

其中,所述目标第一AI模型是所述第一AI模型的中的至少一个。The target first AI model is at least one of the first AI models.

其中,所述第四通信设备用于接收所述第一通信设备发送的第一输出数据,并对所述第一输出数据进行解压缩,所述第一输出数据为根据第一数据集的第一输入数和所述第一AI模型得到的输出数据。Among them, the fourth communication device is used to receive the first output data sent by the first communication device and decompress the first output data, where the first output data is output data obtained based on the first input number of the first data set and the first AI model.

第七方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。In the seventh aspect, a terminal is provided, which includes a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented, or when the program or instruction is executed by the processor, the steps of the method described in the second aspect are implemented.

第八方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于获取第一数据集,所述第一数据集包括第一输入数据;In an eighth aspect, a terminal is provided, comprising a processor and a communication interface, wherein the communication interface is configured to obtain a first data set, the first data set comprising first input data;

所述处理器用于根据所述第一数据集和第一人工智能AI模型,确定第一信息;The processor is configured to determine first information based on the first data set and a first artificial intelligence (AI) model;

或者,所述通信接口用于接收第一通信设备发送的第一信息;Alternatively, the communication interface is used to receive first information sent by a first communication device;

所述处理器用于根据所述第一信息确定第一人工智能AI模型的测试结果和监控结果中的至少一项;The processor is configured to determine at least one of a test result and a monitoring result of a first artificial intelligence (AI) model based on the first information;

或者,所述通信接口用于向第一通信设备发送第一数据集,用于第一通信设备确定第一信息;Alternatively, the communication interface is used to send a first data set to the first communication device for the first communication device to determine the first information;

其中,第一信息包括以下至少之一:The first information includes at least one of the following:

第一输出数据,所述第一输出数据为根据所述第一输入数据输入和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;first output data, where the first output data is output data obtained based on the first input data and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;

第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;a first test result, where the first test result is used to determine a test result of the first AI model;

第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果。First monitoring information, where the first monitoring information is used to determine a monitoring result of the first AI model.

第九方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤,或所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤,或所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。In the ninth aspect, a network side device is provided, which includes a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented, or when the program or instruction is executed by the processor, the steps of the method described in the second aspect are implemented, or when the program or instruction is executed by the processor, the steps of the method described in the third aspect are implemented.

第十方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于获取第一数据集,所述第一数据集包括第一输入数据;In a tenth aspect, a network-side device is provided, comprising a processor and a communication interface, wherein the communication interface is used to obtain a first data set, wherein the first data set comprises first input data;

所述处理器用于根据所述第一数据集和第一人工智能AI模型,确定第一信息;The processor is configured to determine first information based on the first data set and a first artificial intelligence (AI) model;

或者,所述通信接口用于接收第一通信设备发送的第一信息;Alternatively, the communication interface is used to receive first information sent by a first communication device;

所述处理器用于根据所述第一信息确定第一人工智能AI模型的测试结果和监控结果中的至少一项;The processor is configured to determine at least one of a test result and a monitoring result of a first artificial intelligence (AI) model based on the first information;

或者,所述通信接口用于向第一通信设备发送第一数据集,用于第一通信设备确定第一信息;Alternatively, the communication interface is used to send a first data set to the first communication device for the first communication device to determine the first information;

其中,第一信息包括以下至少之一:The first information includes at least one of the following:

第一输出数据,所述第一输出数据为根据所述第一输入数据输入和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;first output data, where the first output data is output data obtained based on the first input data and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;

第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;a first test result, where the first test result is used to determine a test result of the first AI model;

第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果;First monitoring information, where the first monitoring information is used to determine a monitoring result of the first AI model;

或者,所述通信接口用于接收第四通信设备发送的第四输出数据,所述第四输出数据为第一输出数据的解压缩数据;Alternatively, the communication interface is used to receive fourth output data sent by a fourth communication device, where the fourth output data is decompressed data of the first output data;

所述处理器用于根据所述第四输出数据,确定第一人工智能AI模型的测试结果和监控结果中的至少一项;The processor is configured to determine at least one of a test result and a monitoring result of the first artificial intelligence (AI) model based on the fourth output data;

或者,所述通信接口用于接收第一通信设备或者第四通信设备发送的所述第一人工智能AI模型的测试结果和监控结果中的至少一项;Alternatively, the communication interface is used to receive at least one of a test result and a monitoring result of the first artificial intelligence AI model sent by the first communication device or the fourth communication device;

所述处理器用于基于所述第一人工智能AI模型的测试结果和监控结果中的至少一项,确定如下至少一项:The processor is configured to determine at least one of the following based on at least one of a test result and a monitoring result of the first artificial intelligence (AI) model:

目标第一AI模型;Target-first AI model;

所述第一AI模型的状态信息;Status information of the first AI model;

其中,所述目标第一AI模型是所述第一AI模型的中的至少一个;wherein the target first AI model is at least one of the first AI models;

其中,所述第四通信设备用于接收所述第一通信设备发送的第一输出数据,并对所述第一输出数据进行解压缩,所述第一输出数据为根据第一数据集的第一输入数和所述第一AI模型得到的输出数据。Among them, the fourth communication device is used to receive the first output data sent by the first communication device and decompress the first output data, where the first output data is output data obtained based on the first input number of the first data set and the first AI model.

第十一方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。In the eleventh aspect, a readable storage medium is provided, on which a program or instruction is stored. When the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect are implemented, or the steps of the method described in the third aspect are implemented.

第十二方面,提供了一种无线通信系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的方法的步骤,所述网络侧设备可用于执行如第二方面所述的方法的步骤;或,所述终端可用于执行如第二方面所述的方法的步骤,所述网络侧设备可用于执行如第一方面所述的方法的步骤;In a twelfth aspect, a wireless communication system is provided, comprising: a terminal and a network-side device, wherein the terminal is configured to perform the steps of the method according to the first aspect, and the network-side device is configured to perform the steps of the method according to the second aspect; or, the terminal is configured to perform the steps of the method according to the second aspect, and the network-side device is configured to perform the steps of the method according to the first aspect;

或者,包括:终端、网络侧设备和监控设备;Or, including: terminals, network side equipment and monitoring equipment;

所述终端可用于执行如第一方面所述的方法的步骤,网络侧设备用于执行如第二方面所述的方法的步骤,监控设备用于执行如第三方面所述的方法的步骤。The terminal can be used to execute the steps of the method described in the first aspect, the network side device is used to execute the steps of the method described in the second aspect, and the monitoring device is used to execute the steps of the method described in the third aspect.

第十三方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法,或实现如第三方面所述的方法。In the thirteenth aspect, a chip is provided, which includes a processor and a communication interface, the communication interface and the processor are coupled, and the processor is used to run programs or instructions to implement the method as described in the first aspect, or the method as described in the second aspect, or the method as described in the third aspect.

第十四方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的通信方法的步骤,或所述计算机程序/程序产品被至少一个处理器执行以实现如第二方面所述的通信方法的步骤,或所述计算机程序/程序产品被至少一个处理器执行以实现如第三方面所述的通信方法的步骤。In the fourteenth aspect, a computer program/program product is provided, which is stored in a storage medium, and is executed by at least one processor to implement the steps of the communication method described in the first aspect, or the computer program/program product is executed by at least one processor to implement the steps of the communication method described in the second aspect, or the computer program/program product is executed by at least one processor to implement the steps of the communication method described in the third aspect.

在本申请实施例中,第一通信设备获取第一数据集,所述第一数据集包括第一输入数据;所述第一通信设备根据所述第一数据集和第一人工智能AI模型,确定第一信息;其中,第一信息包括以下至少之一:第一输出数据,所述第一输出数据为根据所述第一输入数据输入和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果,即通过第一数据集和第一AI模型获取第一AI模型的测试结果和监控结果中的至少一项,能够对AI功能模型在所述通信设备或系统中的部署效果进行评价,从而有利于提高通信AI功能模型的应用效果。In an embodiment of the present application, a first communication device obtains a first data set, which includes first input data; the first communication device determines first information based on the first data set and a first artificial intelligence (AI) model; wherein the first information includes at least one of the following: first output data, which is output data obtained based on the first input data input and the first AI model, and the first output data is used to determine or assist in determining at least one of the test results and monitoring results of the first AI model; a first test result, which is used to determine the test result of the first AI model; first monitoring information, which is used to determine the monitoring result of the first AI model, that is, by obtaining at least one of the test results and monitoring results of the first AI model through the first data set and the first AI model, the deployment effect of the AI functional model in the communication device or system can be evaluated, thereby helping to improve the application effect of the communication AI functional model.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本申请实施例可应用的一种无线通信系统的框图;FIG1 is a block diagram of a wireless communication system to which embodiments of the present application may be applied;

图2是本申请实施例可应用的CSI压缩方案示意图;FIG2 is a schematic diagram of a CSI compression solution applicable to an embodiment of the present application;

图3是本申请实施例可应用的一种CSI上报方案示意图;FIG3 is a schematic diagram of a CSI reporting solution applicable to an embodiment of the present application;

图4是本申请实施例可应用的另一种CSI上报方案示意图;FIG4 is a schematic diagram of another CSI reporting solution applicable to an embodiment of the present application;

图5是本申请实施例提供的一种通信方法的流程图;FIG5 is a flow chart of a communication method provided in an embodiment of the present application;

图6是本申请实施例可应用的一种AI模型示意图;FIG6 is a schematic diagram of an AI model applicable to embodiments of the present application;

图7是本申请实施例提供的另一种通信方法的流程图;FIG7 is a flow chart of another communication method provided in an embodiment of the present application;

图8是本申请实施例提供的一种监控方法的示意图;FIG8 is a schematic diagram of a monitoring method provided in an embodiment of the present application;

图9是本申请实施例提供的另一种监控方法的示意图;FIG9 is a schematic diagram of another monitoring method provided in an embodiment of the present application;

图10是本申请实施例提供的另一种通信方法的流程图;FIG10 is a flowchart of another communication method provided in an embodiment of the present application;

图11是本申请实施例提供的一种通信装置的示意图;FIG11 is a schematic diagram of a communication device provided in an embodiment of the present application;

图12是本申请实施例提供的另一种通信装置的示意图;FIG12 is a schematic diagram of another communication device provided in an embodiment of the present application;

图13是本申请实施例提供的另一种通信装置的示意图;FIG13 is a schematic diagram of another communication device provided in an embodiment of the present application;

图14是本申请实施例提供的一种通信设备的示意图;FIG14 is a schematic diagram of a communication device provided in an embodiment of the present application;

图15是本申请实施例提供的一种终端的示意图;FIG15 is a schematic diagram of a terminal provided in an embodiment of the present application;

图16是本申请实施例提供的一种网络侧设备的示意图;FIG16 is a schematic diagram of a network-side device provided in an embodiment of the present application;

图17是本申请实施例提供的另一种网络侧设备的示意图。Figure 17 is a schematic diagram of another network-side device provided in an embodiment of the present application.

具体实施方式DETAILED DESCRIPTION

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。The following will be combined with the accompanying drawings in the embodiments of this application to clearly describe the technical solutions in the embodiments of this application. Obviously, the embodiments described are part of the embodiments of this application, not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by ordinary technicians in this field are within the scope of protection of this application.

本申请的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,本申请中的“或”表示所连接对象的至少其中之一。例如“A或B”涵盖三种方案,即,方案一:包括A且不包括B;方案二:包括B且不包括A;方案三:既包括A又包括B。字符“/”一般表示前后关联对象是一种“或”的关系。The terms "first", "second", etc. in this application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable where appropriate, so that the embodiments of the present application can be implemented in an order other than those illustrated or described herein, and the objects distinguished by "first" and "second" are generally of the same type, and do not limit the number of objects, for example, the first object can be one or more. In addition, "or" in this application represents at least one of the connected objects. For example, "A or B" covers three options, namely, Option 1: including A but not including B; Option 2: including B but not including A; Option 3: including both A and B. The character "/" generally indicates that the objects associated before and after are in an "or" relationship.

本申请的术语“指示”既可以是一个直接的指示(或者说显式的指示),也可以是一个间接的指示(或者说隐含的指示)。其中,直接的指示可以理解为,发送方在发送的指示中明确告知了接收方具体的信息、需要执行的操作或请求结果等内容;间接的指示可以理解为,接收方根据发送方发送的指示确定对应的信息,或者进行判断并根据判断结果确定需要执行的操作或请求结果等。The term "indication" in this application can be either a direct indication (or explicit indication) or an indirect indication (or implicit indication). A direct indication can be understood as the sender explicitly informing the receiver of specific information, the operation to be performed, or the requested result, etc. in the instruction sent; an indirect indication can be understood as the receiver determining the corresponding information based on the instruction sent by the sender, or making a judgment and determining the operation to be performed or the requested result, etc. based on the judgment result.

值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)或其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统以外的系统,如第6代(6th Generation,6G)通信系统。It is worth noting that the technology described in the embodiments of the present application is not limited to the Long Term Evolution (LTE)/LTE-Advanced (LTE-A) system, but can also be used in other wireless communication systems, such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single-carrier Frequency Division Multiple Access (SC-FDMA) or other systems. The terms "system" and "network" in the embodiments of the present application are often used interchangeably, and the described technology can be used for the systems and radio technologies mentioned above, as well as for other systems and radio technologies. The following description describes a New Radio (NR) system for example purposes, and NR terminology is used in most of the following description, but these technologies can also be applied to systems other than NR systems, such as 6th Generation (6G) communication systems.

图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(Ultra-mobile Personal Computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(Augmented Reality,AR)、虚拟现实(Virtual Reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、飞行器(flight vehicle)、车载设备(Vehicle User Equipment,VUE)、船载设备、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(Personal Computer,PC)、柜员机或者自助机等终端侧设备。可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。其中,车载设备也可以称为车载终端、车载控制器、车载模块、车载部件、车载芯片或车载单元等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网(Radio Access Network,RAN)设备、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点(Access Point,AP)或无线保真(Wireless Fidelity,WiFi)节点等。其中,基站可被称为节点B(Node B,NB)、演进节点B(Evolved Node B,eNB)、下一代节点B(the next generation Node B,gNB)、新空口节点B(New Radio Node B,NR Node B)、接入点、中继站(Relay Base Station,RBS)、服务基站(Serving Base Station,SBS)、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点(home Node B,HNB)、家用演进型B节点(home evolved Node B)、发送接收点(Transmission Reception Point,TRP)或所属领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。FIG1 shows a block diagram of a wireless communication system applicable to embodiments of the present application. The wireless communication system includes a terminal 11 and a network-side device 12 . Among them, the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a notebook computer, a personal digital assistant (PDA), a handheld computer, a netbook, an ultra-mobile personal computer (UMPC), a mobile Internet device (MID), an augmented reality (AR), a virtual reality (VR) device, a robot, a wearable device (Wearable Device), a flight vehicle, a vehicle user equipment (VUE), a ship-borne equipment, a pedestrian user equipment (PUE), a smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), a game console, a personal computer (PC), an ATM or a self-service machine and other terminal-side devices. Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), smart wristbands, smart clothing, etc. Among them, the vehicle-mounted device can also be called a vehicle-mounted terminal, a vehicle-mounted controller, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip or a vehicle-mounted unit, etc. It should be noted that the specific type of the terminal 11 is not limited in the embodiment of the present application. The network side device 12 may include an access network device or a core network device, wherein the access network device may also be called a radio access network (Radio Access Network, RAN) device, a radio access network function or a radio access network unit. The access network device may include a base station, a wireless local area network (Wireless Local Area Network, WLAN) access point (Access Point, AP) or a wireless fidelity (Wireless Fidelity, WiFi) node, etc. Among them, the base station can be called Node B (NB), Evolved Node B (eNB), the next generation Node B (gNB), New Radio Node B (NR Node B), access point, Relay Base Station (RBS), Serving Base Station (SBS), Base Transceiver Station (BTS), radio base station, radio transceiver, base The Basic Service Set (BSS), Extended Service Set (ESS), home Node B (HNB), home evolved Node B, transmission reception point (TRP) or other appropriate terms in the relevant field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary. It should be noted that in the embodiments of the present application, only the base station in the NR system is introduced as an example, and the specific type of the base station is not limited.

核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM)、统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF)、网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)、位置管理功能(Location Management Function,LMF)、网关的移动位置中心(Gateway Mobile Location Centre,GMLC)、网络数据分析功能(Network Data Analytics Function,NWDAF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。The core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, Mobility Management Entity (MME), Access and Mobility Management Function (AMF), Session Management Function (SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Server Discovery Function (EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), and so on. The NR system comprises the following components: a central repository function (UDR), a home subscriber server (HSS), a centralized network configuration (CNC), a network repository function (NRF), a network exposure function (NEF), a local NEF (L-NEF), a binding support function (BSF), an application function (AF), a location management function (LMF), a gateway mobile location center (GMLC), and a network data analytics function (NWDAF). It should be noted that in the embodiments of the present application, only the core network device in the NR system is used as an example for introduction, and the specific type of the core network device is not limited.

为了方便理解,以下对本申请实施例涉及的一些内容进行说明:For ease of understanding, some of the contents involved in the embodiments of this application are described below:

人工智能目前在各个领域获得了广泛的应用。AI模型有多种实现方式,例如神经网络、决策树、支持向量机、贝叶斯分类器等。本申请部分实施例以神经网络为例进行说明,但是并不限定AI模型的具体类型。Artificial intelligence is currently being widely used in various fields. AI models can be implemented in a variety of ways, such as neural networks, decision trees, support vector machines, and Bayesian classifiers. Some of the embodiments in this application use neural networks as an example, but the specific type of AI model is not limited.

其中,神经网络由神经元组成,通常以a1,a2...,aK为输入,w为权值(乘性系数),b为偏置(加性系数),σ(.)为激活函数。常见的激活函数包括Sigmoid、tanh、线性整流函数或修正线性单元(Rectified Linear Unit,ReLU)等。A neural network is composed of neurons, typically with a 1 , a 2 , ..., a K as input, w as the weight (multiplicative coefficient), b as the bias (additive coefficient), and σ(.) as the activation function. Common activation functions include sigmoid, tanh, linear rectification function, or rectified linear unit (ReLU).

神经网络的参数通过优化算法进行优化。优化算法就是一种能够将最小化或者最大化目标函数(有时候也叫损失函数)的一类算法。而目标函数往往是模型参数和数据的数学组合。例如给定数据X和其对应的标签Y,可以构建一个神经网络模型f(.),有了模型后,根据输入x就可以得到预测输出f(x),并且可以计算出预测值和真实值(标签)之间的差距(f(x)-Y),这个就是损失函数。神经网络训练目的是找到合适的W(权值w的向量),b使上述的损失函数的值达到最小,损失值越小,则说明模型越接近于真实情况。Neural network parameters are optimized using optimization algorithms. An optimization algorithm is a type of algorithm that minimizes or maximizes an objective function (sometimes called a loss function). The objective function is often a mathematical combination of model parameters and data. For example, given data X and its corresponding label Y, a neural network model f(.) can be constructed. With this model, the predicted output f(x) can be obtained based on the input x, and the difference between the predicted value and the true value (label) (f(x) - Y) can be calculated. This is the loss function. The goal of neural network training is to find the appropriate W (a vector of weights w) that minimizes the value of this loss function. The smaller the loss value, the closer the model is to the true state.

目前常见的优化算法,基本都是基于误差反向传播(error Back Propagation,BP)算法。BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出不符,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的。权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出的误差减少到可接受的程度,或进行到预先设定的学习次数为止。常见的优化算法有梯度下降(Gradient Descent)、随机梯度下降(Stochastic Gradient Descent,SGD)、小批量梯度下降(mini-batch gradient descent)、动量法(Momentum)、Nesterov(发明者的名字,具体为带动量的随机梯度下降)、自适应梯度下降(ADAptive GRADient descent,Adagrad)、Adadelta、均方根误差降速(root mean square prop,RMSprop)、自适应动量估计(Adaptive Moment Estimation,Adam)等。这些优化算法在误差反向传播时,都是根据损失函数得到的误差/损失,对当前神经元求导数/偏导,加上学习速率、之前的梯度/导数/偏导等影响,得到梯度,将梯度传给上一层。Currently, most common optimization algorithms are based on the error back propagation (BP) algorithm. The basic idea of the BP algorithm is that the learning process consists of two processes: forward signal propagation and back propagation of errors. During forward propagation, input samples are passed from the input layer, processed layer by layer by each hidden layer, and then passed to the output layer. If the actual output of the output layer does not match the expected output, the error back propagation phase begins. Error back propagation is the process of propagating the output error back through the hidden layer to the input layer layer by layer in some form, and distributing the error to all units in each layer, thereby obtaining an error signal for each unit in each layer. This error signal serves as the basis for correcting the weights of each unit. This process of adjusting the weights of each layer through forward signal propagation and back propagation of errors is repeated in a cycle. The process of continuous weight adjustment is the learning and training process of the network. This process continues until the error in the network output is reduced to an acceptable level, or until a pre-set number of learning times is reached. Common optimization algorithms include Gradient Descent, Stochastic Gradient Descent (SGD), mini-batch gradient descent, Momentum, Nesterov (name of the inventor, specifically stochastic gradient descent with momentum), Adaptive Gradient Descent (Adagrad), Adadelta, root mean square prop (RMSprop), and Adaptive Moment Estimation (Adam). During error backpropagation, these optimization algorithms calculate the derivative/partial derivative of the current neuron based on the error/loss obtained from the loss function, add the learning rate, previous gradients/derivatives, and partial derivatives, and finally obtain the gradient, which is then passed to the previous layer.

本申请实施例中,所述AI单元/AI模型也可称为AI单元、AI模型、机器学习(machine learning,ML)模型、ML单元、AI结构、AI功能、AI特性、神经网络、神经网络函数、神经网络功能等,或者所述AI单元/AI模型也可以是指能够实现与AI相关的特定的算法、公式、处理流程、能力等的处理单元,或者所述AI单元/AI模型可以是针对特定数据集的处理方法、算法、功能、模块或单元,或者所述AI单元/AI模型可以是运行在图形处理器(Graphics Processing Unit,GPU)、神经网络处理器(Neural network Processing Unit,NPU)、张量处理器(Tensor Processing Unit,TPU)、供专门应用的集成电路(Application Specific Integrated Circuit,ASIC)等AI/ML相关硬件上的处理方法、算法、功能、模块或单元,本申请对此不做具体限定。可选地,所述特定数据集包括AI单元/AI模型的输入和或输出。In the embodiments of the present application, the AI unit/AI model may also be referred to as an AI unit, an AI model, a machine learning (ML) model, an ML unit, an AI structure, an AI function, an AI characteristic, a neural network, a neural network function, a neural network function, etc., or the AI unit/AI model may also refer to a processing unit capable of implementing specific algorithms, formulas, processing flows, capabilities, etc. related to AI, or the AI unit/AI model may be a processing method, algorithm, function, module or unit for a specific data set, or the AI unit/AI model may be a processing method, algorithm, function, module or unit running on AI/ML related hardware such as a graphics processing unit (GPU), a neural network processor (NPU), a tensor processing unit (TPU), an application-specific integrated circuit (ASIC), etc., and the present application does not make specific limitations on this. Optionally, the specific data set includes the input and/or output of the AI unit/AI model.

可选地,所述AI单元/AI模型的标识(识别信息),可以是AI模型标识、AI结构标识、AI算法标识,或者所述AI单元/AI模型关联的特定数据集的标识,或者所述AI/ML相关的特定场景、环境、信道特征、设备的标识,或者所述AI/ML相关的功能、特性、能力或模块的标识,本申请实施例对此不做具体限定。Optionally, the identifier (identification information) of the AI unit/AI model may be an AI model identifier, an AI structure identifier, an AI algorithm identifier, or an identifier of a specific data set associated with the AI unit/AI model, or an identifier of a specific scenario, environment, channel feature, or device related to the AI/ML, or an identifier of a function, feature, capability, or module related to the AI/ML. This embodiment of the present application does not specifically limit this.

本申请实施例中,涉及对信道状态信息(Channel State Information,CSI)压缩场景的应用。为了方便理解,以下对CSI涉及的一些相关内容进行介绍。The present application involves the application of Channel State Information (CSI) compression scenarios. For ease of understanding, some relevant content related to CSI is introduced below.

由信息论可知,准确的信道状态信息对信道容量的至关重要。尤其是对于多天线系统来讲,发送端可以根据CSI优化信号的发送,使其更加匹配信道的状态。如:信道质量指示(channel quality indicator,CQI)可以用来选择合适的调制编码方案(modulation and coding scheme,MCS)实现链路自适应;预编码矩阵指示(precoding matrix indicator,PMI)可以用来实现特征波束成形(eigen beamforming)从而最大化接收信号的强度,或者用来抑制干扰(如小区间干扰、多用户之间干扰等)。因此,自从多天线技术(multi-input multi-output,MIMO)被提出以来,CSI获取一直都是研究热点。Information theory shows that accurate channel state information is crucial to channel capacity. Especially for multi-antenna systems, the transmitter can optimize signal transmission based on CSI to better match the channel state. For example, the channel quality indicator (CQI) can be used to select an appropriate modulation and coding scheme (MCS) for link adaptation; the precoding matrix indicator (PMI) can be used to implement eigenbeamforming to maximize the strength of the received signal, or to suppress interference (such as inter-cell interference and multi-user interference). Therefore, since the introduction of multi-input multi-output (MIMO) technology, CSI acquisition has been a research hotspot.

通常,接入网设备,以基站为例,在某个时隙(slot)的某些时频资源上发送信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),终端根据CSI-RS进行信道估计,计算这个slot上的信道信息,通过PMI将码本信息反馈给基站,基站根据终端反馈的码本信息组合出信道信息,在下一次CSI上报之前,基站以此进行数据预编码及多用户调度。Typically, access network equipment, taking a base station as an example, sends a Channel State Information Reference Signal (CSI-RS) on certain time-frequency resources in a certain time slot. The terminal performs channel estimation based on the CSI-RS, calculates the channel information on this slot, and feeds back the codebook information to the base station through the PMI. The base station combines the channel information based on the codebook information fed back by the terminal, and uses this to perform data precoding and multi-user scheduling before the next CSI report.

为了进一步减少CSI反馈开销,终端可以将每个子带上报PMI改成按照延时(delay)上报PMI,由于delay域的信道更集中,用更少的delay的PMI就可以近似表示全部子带的PMI,即将delay域信息压缩之后再上报。同样,为了减少开销,基站可以事先对CSI-RS进行预编码,将编码后的CSI-RS发送个终端,终端看到的是经过编码之后的CSI-RS对应的信道,终端只需要在网络侧指示的端口中选择若干个强度较大的端口(例如,一个信道32端口),并上报这些端口对应的系数即可。To further reduce CSI feedback overhead, the terminal can change the PMI reported for each subband to reporting it according to the delay. Since the channels in the delay domain are more concentrated, a PMI with less delay can approximately represent the PMI of all subbands, that is, the delay domain information is compressed before reporting. Similarly, to reduce overhead, the base station can pre-code the CSI-RS in advance and send the encoded CSI-RS to the terminal. The terminal sees the channel corresponding to the encoded CSI-RS. The terminal only needs to select several ports with higher strength from the ports indicated by the network side (for example, 32 ports per channel) and report the coefficients corresponding to these ports.

进一步,为了更好的压缩信道信息,可以使用神经网络或机器学习的方法。Furthermore, in order to better compress channel information, neural network or machine learning methods can be used.

具体地,在终端对信道信息进行压缩编码,在基站对压缩后的内容进行解码,从而恢复信道信息,此时基站的解码网络和终端的编码网络需要联合训练,达到合理的匹配度。神经网络通过终端的编码器和基站的解码器组成联合的神经网络,由网络侧进行联合训练,训练完成之后,基站将编码器网络发送给终端。在推理时(模型的应用阶段),终端估计CSI-RS,计算信道信息,将计算的信道信息或者原始的估计到的信道信息通过编码网络得到编码结果,将编码结果发送给基站,基站接收编码后的结果,输入到解码网络中,恢复信道信息。Specifically, the terminal compresses and encodes the channel information, and the base station decodes the compressed content to recover the channel information. The base station's decoding network and the terminal's encoding network need to be jointly trained to achieve a reasonable match. A neural network is formed by the terminal's encoder and the base station's decoder, forming a joint neural network. Joint training is performed by the network. After training is complete, the base station sends the encoder network to the terminal. During inference (the model's application phase), the terminal estimates the CSI-RS and calculates the channel information. This calculated channel information or the original estimated channel information is passed through the encoding network to obtain an encoding result. The encoding result is then sent to the base station. The base station receives the encoded result and inputs it into the decoding network to recover the channel information.

CSI压缩用例是一个典型的两端模型用例,即完整的CSI压缩模型需要在不同的通信节点上部署,目前大多数考虑的情况是在用户设备(User Equipment,UE,也叫终端)端部署编码器,网络(Network,NW)端部署解码器。部署在多个节点上的(子)模型之间需要相互配对使用才能正常工作。考虑到两端模型的上述特点,协议确定了几种基本的AI/ML CSI压缩模型的训练协作类型(training collaboration types):The CSI compression use case is a typical two-end model use case, meaning the complete CSI compression model needs to be deployed on different communication nodes. Currently, most considerations involve deploying the encoder on the user equipment (UE) side and the decoder on the network (NW) side. The (sub-)models deployed on multiple nodes need to be paired with each other to function properly. Considering the aforementioned characteristics of the two-end model, the protocol defines several basic AI/ML CSI compression model training collaboration types:

1)单节点上的联合训练(joint training at single entity)(或称为类型(type)1)1) Joint training at single entity (also called type 1)

该训练框架指在某个通信节点(UE或NW或某个第三方服务器节点等)上训练完整的编码器加解码器的模型,再通过模型传递等方法将对应的模型模块部署到目标节点上(例如将编码器部分传递到UE,将解码器部分传递到NW)。This training framework refers to training a complete encoder and decoder model on a communication node (UE or NW or a third-party server node, etc.), and then deploying the corresponding model module to the target node through methods such as model transfer (for example, transferring the encoder part to the UE and the decoder part to the NW).

2)多节点上的联合训练(joint training at multiple entities)(或称为type2)2) Joint training at multiple entities (also known as type 2)

该训练框架指多个节点之间共同参与训练过程,且每个节点单独计算本地模型训练所需要的前向/反向传播信息并更新自己节点的模型参数。由于训练过程需要对整个模型(包括编码器和解码器)进行前向/反向传播,因此参与训练的节点之间需要传递相应的前向/反向传播信息。训练完成后各节点之间不再需要进行模型传递。This training framework involves multiple nodes participating in the training process, with each node independently calculating the forward and backpropagation information required for local model training and updating its own model parameters. Because the training process requires forward and backpropagation of the entire model (including the encoder and decoder), the corresponding forward and backpropagation information must be transferred between participating nodes. After training is complete, the model no longer needs to be transferred between nodes.

3)多节点上的分开(或分步)训练(separate training)(或称为type3)3) Separate training on multiple nodes (also called type 3)

该训练框架指先在某个节点上训练一个用作参考的模型,再将参考模型的相关信息发送至目标节点,最后目标节点根据该信息训练本节点所需的模型,从而保证各节点(子)模型能够互相配对使用。例如NW侧先训练一组编码器加解码器的完整模型并确定所得到的解码器是将来实际使用的解码器,再将(该解码器)所对应的编码器的相关信息(一般是编码器的输入输出数据)发送至UE侧,UE侧基于该信息训练自己所用的编码器。该训练框架可以继续细分为UE先训练(UE-first training)与NW先训练(NW-first training)两种情况。UE先训练指的是先在UE端训练完整的模型,再将NW训练与之相匹配的模型所需要的信息(一般为NW侧待训练模型的输入输出数据)发送到NW侧。相对地,NW先训练指的是先在NW端训练完整的模型,再将UE训练与之相匹配的模型所需要的信息(一般为UE侧待训练模型的输入输出数据)发送到UE侧。This training framework involves first training a reference model on a specific node. Information about the reference model is then sent to the target node. The target node then uses this information to train its own model, ensuring that the node (or sub-)models are compatible. For example, the network (NW) first trains a complete encoder-decoder model and determines that the resulting decoder is the one that will be used. Information about the corresponding encoder (typically, the encoder's input and output data) is then sent to the user end (UE). The UE then uses this information to train its own encoder. This training framework can be further divided into two scenarios: UE-first training and NW-first training. UE-first training involves first training a complete model on the UE, then sending the information needed for the NW to train the matching model (typically, the input and output data of the model to be trained on the NW side). In contrast, NW-first training involves first training a complete model on the NW, then sending the information needed for the UE to train the matching model (typically, the input and output data of the model to be trained on the UE side).

基于AI的CSI/PMI压缩流程,示例性的,如图2所示,其中,UE期待的CSI或者目标CSI(target CSI)或者码本WN*B(其中,N为CSI端口数,B为子带数)通过AI进行压缩,如压缩成基于AI的PMI值(AI based PMI value),然后上报给网络侧设备,网络侧设备执行解压缩,从而获取W′N*BAn exemplary AI-based CSI/PMI compression process is shown in FIG2 , in which the CSI or target CSI (target CSI) or codebook W N*B (where N is the number of CSI ports and B is the number of subbands) expected by the UE is compressed through AI, such as into an AI-based PMI value (AI based PMI value), and then reported to the network-side device. The network-side device performs decompression to obtain W′ N*B .

可选的,本申请实施例中空频域CSI压缩的基础上引入对时域CSI相关性的利用,即可以联合多个slot上的CSI进行压缩,从而进一步降低CSI上报的开销或提升CSI上报精度。示例性的,如图3所示,4个slot上的CSI进行联合压缩上报,而每个slot上的CSI则可以分别认为是一次空频域的CSI上报,其中,内部信息流对应编码器中间节点的输出信息。Optionally, in the embodiments of the present application, the use of time-domain CSI correlation is introduced on the basis of space-frequency domain CSI compression, that is, the CSI on multiple slots can be combined for compression, thereby further reducing the overhead of CSI reporting or improving CSI reporting accuracy. For example, as shown in Figure 3, the CSI on four slots is jointly compressed and reported, and the CSI on each slot can be considered as a space-frequency domain CSI report, where the internal information stream corresponds to the output information of the encoder intermediate node.

根据多slot上的CSI的上报方式,可以进一步将时频空域CSI压缩分为打包式与渐进式两种:打包式上报即一次性上报多个slot上的CSI(如图4所示),而渐进式上报则是以自回归的方式依次上报每个slot上的CSI(如图3所示)。Based on the reporting method of CSI on multiple slots, time-frequency-spatial domain CSI compression can be further divided into two types: packaged reporting and progressive reporting. Packaged reporting is to report CSI on multiple slots at one time (as shown in Figure 4), while progressive reporting is to report CSI on each slot in sequence in an autoregressive manner (as shown in Figure 3).

下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的通信方法、装置、终端、网络侧设备、介质及产品进行详细地说明。The following, in conjunction with the accompanying drawings, describes in detail the communication methods, devices, terminals, network-side equipment, media, and products provided in the embodiments of the present application through some embodiments and their application scenarios.

参见图5,图5是本申请实施例提供的一种通信方法的流程图,用于第一通信设备,如图5所示,所述方法包括以下步骤:5 , which is a flow chart of a communication method provided in an embodiment of the present application, and is used for a first communication device. As shown in FIG5 , the method includes the following steps:

步骤501、第一通信设备获取第一数据集,所述第一数据集包括第一输入数据。Step 501: A first communication device obtains a first data set, where the first data set includes first input data.

本申请实施例中,上述第一通信设备可以是终端,也可以是网络侧设备。在部分实施例中,上述第一通信设备还可以是数据压缩设备、数据编码设备、数据压缩-解压设备、数据编码-解码设备中的任一项。上述数据压缩设备、数据编码设备、数据压缩-解压设备、数据编码-解码设备可以是终端,也可以是网络侧设备。In the embodiments of the present application, the first communication device may be a terminal or a network-side device. In some embodiments, the first communication device may also be any one of a data compression device, a data encoding device, a data compression-decompression device, and a data encoding-decoding device. The data compression device, data encoding device, data compression-decompression device, and data encoding-decoding device may be a terminal or a network-side device.

本申请实施例中,上述第一通信设备可以是终端,也可以是核心网设备。在部分实施例中,上述第一通信设备还可以是位置管理单元,如,LMF。In the embodiment of the present application, the first communication device may be a terminal or a core network device. In some embodiments, the first communication device may also be a location management unit, such as a LMF.

本申请实施例中,上述第一数据集可以理解为用于第一AI模型测试或监控的数据集,上述第一数据集也可以称为测试用例(test case)。In an embodiment of the present application, the above-mentioned first data set can be understood as a data set used for testing or monitoring the first AI model, and the above-mentioned first data set can also be called a test case.

可以理解的是,对于第一AI模型而言,通常是根据相关的训练数据或训练数据集来获得的,本实施例中称为将上述第一AI模型的训练数据或训练数据集称为第二数据集。第二数据集用于第一AI模型的训练,可选的,在一个实施例中,第二数据集包括输入数据以及该输入数据对应的数据标签用于训练所述第一AI模型。It is understood that the first AI model is typically obtained based on relevant training data or a training dataset. In this embodiment, the training data or training dataset of the first AI model is referred to as the second dataset. The second dataset is used to train the first AI model. Optionally, in one embodiment, the second dataset includes input data and data labels corresponding to the input data for training the first AI model.

本申请实施例中,用于第一AI模型测试和/或监控的第一数据集与上述第二数据集为不同的数据集。例如,可以是数据来源不同,通常第二数据集为收集的历史数据,而本申请实施例中的第一数据集可以采用标准化的数据,也可以来自第二通信设备的数据。In the embodiments of the present application, the first dataset used for testing and/or monitoring the first AI model is different from the second dataset. For example, the data sources may be different. Typically, the second dataset is collected historical data, while the first dataset in the embodiments of the present application may be standardized data or data from a second communication device.

本申请实施例中,第二通信设备可以理解为第一通信设备的对端设备,可以是网络侧设备,也可以是终端,也可以是核心网设备,如位置管理单元,NWDAF,或者是对通信系统性能进行监控的监控设备。上述监控设备又可以称为监控模型或监控实体。In the embodiments of the present application, the second communication device can be understood as a peer device of the first communication device, and can be a network-side device, a terminal, a core network device such as a location management unit (NWDAF), or a monitoring device that monitors the performance of the communication system. The aforementioned monitoring device can also be referred to as a monitoring model or a monitoring entity.

本申请实施例中,所述第一数据集的数据格式与所述第二数据集的数据格式相同或不同。第二数据集通常是带有数据标签(或称为标签数据,label)的,上述数据标签通常用于表征输入数据对应的输出的真实值。本申请实施例中,上述第一数据集可以是带数据标签的,也可以是不带数据标签的,例如可以是,带标签数据的标准化数据集、不带标签数据的标准化数据集、第二通信设备发送的带标签数据的数据集、第二通信设备发送的不带标签数据的数据集、第一通信设备测量得到的不带标签数据的数据集中的至少一项。又例如,所述第一数据集对应的可以不是输出的真实值,而是所述第二通信设备根据所述选定的模型,如参考模型获取的预期的第二输出信息。In an embodiment of the present application, the data format of the first data set is the same as or different from the data format of the second data set. The second data set is usually with a data label (or called label data, label), and the above-mentioned data label is usually used to characterize the true value of the output corresponding to the input data. In an embodiment of the present application, the above-mentioned first data set may be with data labels or without data labels, for example, it may be at least one of a standardized data set with labeled data, a standardized data set with unlabeled data, a data set with labeled data sent by the second communication device, a data set with unlabeled data sent by the second communication device, and a data set with unlabeled data measured by the first communication device. For another example, the first data set may not correspond to the true value of the output, but the expected second output information obtained by the second communication device according to the selected model, such as the reference model.

对于CSI场景而言,所述第一数据集(测试用例(test case))只包括第二数据集中输入(input)信息(如:码本信息或原始信道(raw channel)信息这两种类型的信息),并不包括输出(output)信息(如压缩的码本信息或者raw channel信息)。For the CSI scenario, the first data set (test case) only includes the input information in the second data set (such as two types of information: codebook information or raw channel information), and does not include output information (such as compressed codebook information or raw channel information).

上述第二数据集中,至少包括以下至少之一:The second data set includes at least one of the following:

L个码本信息;L codebook information;

L个原始信道(raw channel)信息;L raw channel information;

L1个压缩的码本信息或者raw channel信息。L1 compressed codebook information or raw channel information.

其中,上述L和L1为正整数。Wherein, the above L and L1 are positive integers.

本申请实施例中的第一数据集至少包括第一输入数据用于输入第一AI模型。可选的,可以包括与第一输入数据对应的标签数据,也可以不包括与第一输入数据对应的标签数据。In the embodiment of the present application, the first data set includes at least first input data for inputting into the first AI model. Optionally, it may include or exclude label data corresponding to the first input data.

可选的,所述第一数据集还包括第二输出数据,所述第二输出数据包括以下至少之一:Optionally, the first data set further includes second output data, and the second output data includes at least one of the following:

第一预期信息;First expected information;

第一标签数据;First label data;

其中,第一预期信息为所述第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息;The first expected information is expected output information corresponding to the first input data determined by the second communication device or protocol based on the first input data and a reference model;

第一标签数据为与所述第一输入数据对应的标签数据。The first label data is label data corresponding to the first input data.

本申请实施例中,第一数据集中包括与第一输入数据对应第二输出数据,可以理解为,第二输出数据可以理解为估计的第一AI模型的实际输出(第一输出数据)的参考值,第一输出数据与第二输出数据越接近,表示第一AI模型的性能越好或误差越小。上述第二输出数据可以是常规的标签数据(例如,人工标记的标签,与第一输入信息对应的真实值),与第二数据集的标签含义类似。In the embodiment of the present application, the first data set includes second output data corresponding to the first input data. It can be understood that the second output data can be understood as a reference value of the estimated actual output (first output data) of the first AI model. The closer the first output data is to the second output data, the better the performance of the first AI model or the smaller the error. The above-mentioned second output data can be conventional labeled data (for example, manually marked labels, the real value corresponding to the first input information), which has a similar meaning to the labels of the second data set.

另一种可选实施例中,上述第二输出数据还算可以是所述第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息。本申请实施例中,第一AI模型有对应的参考模型,关于参考模型各个设备之间有相同理解,在已知第一输入数据和参考模型的情况下,第二通信设备或者协议可以对应预期第一输入数据输入参考模型所能够获得的输出信息(即第一预期信息)。与第一标签数据类似,上述第一预期信息也可以作为第一输出数据的参考值。AI模型的测试期望第一输出数据与上述第二输出数据接近。In another optional embodiment, the second output data may also be the expected output information corresponding to the first input data determined by the second communication device or protocol based on the first input data and the reference model. In the embodiment of the present application, the first AI model has a corresponding reference model, and the various devices have the same understanding of the reference model. When the first input data and the reference model are known, the second communication device or protocol may correspond to the output information (i.e., the first expected information) that can be obtained by inputting the reference model into the expected first input data. Similar to the first label data, the first expected information may also be used as a reference value for the first output data. The test of the AI model expects the first output data to be close to the second output data.

本申请实施例中,可选的,第一数据集(测试用例(test case))为一种特殊的数据集,其特征为已知该数据集输入对应的输出(第一标签数据),或者已知该数据集的输入对应于参考模型的输出(第一预期信息)。In an embodiment of the present application, optionally, the first data set (test case) is a special data set, characterized in that the output corresponding to the input of the data set is known (first label data), or the input of the data set is known to correspond to the output of the reference model (first expected information).

在一些可选的实施例中,若第一数据集为标准化的第一数据集,标准可能规范多个不同特征或者不同功能的第一数据集,可选的,第一通信设备需要确定具体使用的第一数据集,或者第二通信设备发送所述第一数据集的识别信息或者功能信息用于指示所述第一通信设备需要使用的第一数据集。In some optional embodiments, if the first data set is a standardized first data set, the standard may specify multiple first data sets with different characteristics or different functions. Optionally, the first communication device needs to determine the specific first data set to be used, or the second communication device sends identification information or functional information of the first data set to indicate the first data set that the first communication device needs to use.

可选的,所述第一数据集还包括第一预期信息;Optionally, the first data set further includes first expected information;

在所述第一输入数据包括所述信道状态信息或码本信息的情况下,所述第一预期信息为根据参考模型压缩的信道状态信息或码本信息;In a case where the first input data includes the channel state information or codebook information, the first expected information is the channel state information or codebook information compressed according to a reference model;

或,在所述第一输入数据包括原始信道信息的情况下,所述第一预期信息包括根据参考模型压缩的原始信道信息;Or, in a case where the first input data includes original channel information, the first expected information includes original channel information compressed according to a reference model;

或,在所述第一输入数据包括所述信道状态信息或码本信息的情况下,所述第一预期信息为根据参考模型获取的解压缩的信道状态信息或码本信息;Or, in a case where the first input data includes the channel state information or codebook information, the first expected information is decompressed channel state information or codebook information obtained according to a reference model;

或,在所述第一输入数据包括原始信道信息的情况下,所述第一预期信息包括根据参考模型解压缩的原始信道信息。Alternatively, in a case where the first input data includes original channel information, the first expected information includes original channel information decompressed according to a reference model.

可选的,所述第一数据集还包括与所述第一输入数据对应的第一标签数据;Optionally, the first data set further includes first label data corresponding to the first input data;

在所述第一输入数据包括所述信道状态信息或码本信息的情况下,所述第一标签数据为压缩的信道状态信息或码本信息;In a case where the first input data includes the channel state information or codebook information, the first label data is compressed channel state information or codebook information;

或,在所述第一输入数据包括原始信道信息的情况下,所述第一标签数据为压缩的原始信道信息;Or, in a case where the first input data includes original channel information, the first label data is compressed original channel information;

或,在所述第一输入数据包括所述信道状态信息或码本信息的情况下,所述第一标签数据为解压缩的信道状态信息或码本信息;Or, when the first input data includes the channel state information or codebook information, the first tag data is decompressed channel state information or codebook information;

或,在所述第一输入数据包括原始信道信息的情况下,所述第一标签数据为解压缩的原始信道信息;Or, in a case where the first input data includes original channel information, the first tag data is decompressed original channel information;

或,在所述第一输入数据包括时延谱(Delay Profile,DP),功率时延谱(Power Delay Profile,PDP),信道冲激响应(Channel Impulse Response,CIR)中的至少一项的情况下,所述第一标签数据包括终端的位置标签,终端与其他设备之间的距离标签,往返时延(Round-Trip Time,RTT),参考信号时差(Reference Signal Time Difference,RSTD)标签,收发信号时间差标签中的至少一项;or, in a case where the first input data includes at least one of a delay profile (DP), a power delay profile (PDP), and a channel impulse response (CIR), the first tag data includes at least one of a location tag of the terminal, a distance tag between the terminal and other devices, a round-trip time (RTT), a reference signal time difference (RSTD) tag, and a time difference tag of a transmitting and receiving signal;

或,在所述第一输入数据包括set B对应的波束信息的情况下,所述第一标签数据包括set A对应的波束标签。Alternatively, when the first input data includes beam information corresponding to set B, the first label data includes beam labels corresponding to set A.

如,上述实施例所述第一标签数据包括终端的位置标签为对应第一输入数据关联时刻所述终端的实际位置;For example, in the above embodiment, the first tag data includes a location tag of the terminal, which is the actual location of the terminal at the time of association with the first input data;

如,上述实施例所述第一标签数据包括终端的位置标签为对应第一输入数据关联时刻所述终端的估计位置;For example, in the above embodiment, the first tag data includes a location tag of the terminal which is an estimated location of the terminal at the time of association with the first input data;

如,上述实施例所述set A对应的波束标签为对应第一输入数据关联时刻所述最强的Top k个波束的集合;For example, in the above embodiment, the beam label corresponding to set A is the set of the strongest top k beams at the time of association of the first input data;

如,上述实施例所述set A对应的波束标签为对应第一输入数据关联时间之后的所述波束信息。For example, the beam tag corresponding to set A in the above embodiment is the beam information after the association time of the corresponding first input data.

如前述实施例所述,本申请实施例不限制第一AI模型的应用场景,但是可以理解的是,在有label的情况下,对应具体的第一AI模型而言,第一输入数据和第二输出数据之间具备预设映射关系。本申请实施例,对于上述预设映射关系进行了示例性的说明。As described in the preceding embodiments, the present application does not limit the application scenario of the first AI model. However, it is understood that, in the presence of a label, for a specific first AI model, a preset mapping relationship exists between the first input data and the second output data. This embodiment of the present application provides an exemplary illustration of the above-mentioned preset mapping relationship.

可以理解的是,在第一数据集中不包括第二输出数据label的情况下,第二通信设备侧对于上述与第一输入数据对应的第一预期信息也有认知。It can be understood that, when the first data set does not include the second output data label, the second communication device side also has knowledge of the first expected information corresponding to the first input data.

可选的,所述第一数据集为所述规范标准化的输入(如码本或者信道信息)(第一输入数据)结合参考模型获得的label(第一预期信息)确定的数据集。Optionally, the first data set is a data set determined by combining the standard standardized input (such as a codebook or channel information) (first input data) with a label (first expected information) obtained by a reference model.

可选的,所述第一数据集还包括与所述第一输入数据对应的第一标签数据;所述第一标签数据关联如下信息中的至少一项:Optionally, the first data set further includes first label data corresponding to the first input data; the first label data is associated with at least one of the following information:

第二数据集的标签数据类型,所述第一输入数据对应的统计信息,所述第一数据集对应的特征信息;The label data type of the second data set, the statistical information corresponding to the first input data, and the feature information corresponding to the first data set;

其中,所述第二数据集为所述第一AI模型的训练数据。Among them, the second data set is the training data of the first AI model.

可选的,所述第一数据集对应的特征信息包括以下至少之一:Optionally, the feature information corresponding to the first data set includes at least one of the following:

所述第一数据集关联的场景信息;scene information associated with the first data set;

所述第一数据集关联的第二输出信息类型;a second output information type associated with the first data set;

可选的,所述第一输入数据对应的统计信息包括以下至少之一:Optionally, the statistical information corresponding to the first input data includes at least one of the following:

输入数据对应的SNR或者信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR);The SNR or Signal to Interference plus Noise Ratio (SINR) of the input data;

输入数据对应的统计均值。The statistical mean corresponding to the input data.

本申请实施例中,可选的,第一数据集和第二数据集的数据标签可以是对应的,例如第一数据集的数据标签和第二数据集的数据标签都是压缩的信道状态信息或码本信息。In the embodiment of the present application, optionally, the data labels of the first data set and the second data set may correspond to each other, for example, the data label of the first data set and the data label of the second data set are both compressed channel state information or codebook information.

本申请实施例中,可选的,所述第一输入数据对应的统计信息和/或所述第一数据集对应特征信息也可以作为第一标签数据,例如,所述第一数据集的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SNR)可以作为所述第一数据集的第一标签数据。In an embodiment of the present application, optionally, the statistical information corresponding to the first input data and/or the feature information corresponding to the first data set can also be used as the first label data. For example, the signal to interference plus noise ratio (SNR) of the first data set can be used as the first label data of the first data set.

可选的,所述第一数据集包括如下至少一项:Optionally, the first data set includes at least one of the following:

标准数据集,所述第二通信设备发送的数据集和所述第一通信设备测量的第一输入数据。a standard data set, a data set sent by the second communication device, and first input data measured by the first communication device.

可以理解的是,所述第二通信设备发送的数据集可以是一个或多个数据,也可以是数据集的指示信息。It can be understood that the data set sent by the second communication device may be one or more data, or may be indication information of the data set.

本申请实施例中,上述标准数据集和所述第二通信设备发送的数据集可以理解为提前准备好的数据,设备之间对于该数据集有相同的理解;上述所述第一通信设备测量的第一输入数据,可以理解为实时获取的数据,设备之间对该数据没有相同的理解。In an embodiment of the present application, the above-mentioned standard data set and the data set sent by the second communication device can be understood as data prepared in advance, and the devices have the same understanding of the data set; the first input data measured by the above-mentioned first communication device can be understood as data obtained in real time, and the devices do not have the same understanding of the data.

以CSI相关数据进行示例,本申请实施例中的第一数据集(测试用例)可以包括如下示例中的至少之一:Taking CSI-related data as an example, the first data set (test case) in the embodiment of the present application may include at least one of the following examples:

示例1,标准化的数据集(测试用例)Example 1, standardized dataset (test case)

所述数据集中至少包括K个第一通信设备侧的模型输入(第一通信设备-sided Model input)信息,上述数据集包括以下至少之一:The data set includes at least K first communication device-sided model input information, and the data set includes at least one of the following:

1)K个码本信息1) K codebook information

2)K个原始信道(raw channel)信息(或称为编码输入(encoder input))。2) K raw channel information (or encoder input).

可选的,所述标准化的数据集中可以不包括label信息(第二输出数据),也可以包括label信息。上述label信息可以是第一标签数据,也可以是所述码本信息或者raw channel信息经过所述参考模型压缩和/或量化后的输出信息,即为“预期的压缩的码本信息或者预期的压缩的raw channel信息”(第一预期信息)。Optionally, the standardized dataset may not include label information (second output data) or may include label information. The label information may be first label data or output information of the codebook information or raw channel information after compression and/or quantization by the reference model, i.e., "expected compressed codebook information or expected compressed raw channel information" (first expected information).

可选的,标准化的数据集,还包括:Optional, standardized datasets also include:

K1个第一通信设备侧的模型输出(第一通信设备-sided Model output)信息(第二输出数据),如K1个预期的压缩的码本信息或者raw channel信息。K1 first communication device side model output (first communication device-sided Model output) information (second output data), such as K1 expected compressed codebook information or raw channel information.

上述K1≤K,即标准化的数据集中的第一输入数据可以是部分对应label,部分不对应label,也可以是都不对应label,也可是都对应label。The above K1≤K, that is, the first input data in the standardized data set may partially correspond to the label, partially not correspond to the label, or may not correspond to the label at all, or may all correspond to the label.

可选的,所述第一数据集的第一输入数据包括如下至少一项:N个关联所述第二输出数据的第一输入数据,M个不关联所述第二输出数据的第一输入数据,N和M均为自然数。Optionally, the first input data of the first data set includes at least one of the following: N first input data associated with the second output data, and M first input data not associated with the second output data, where N and M are both natural numbers.

上述示例以CSI相关信息为例,可以理解的是,本申请实施例不局限于CSI相关场景。例如在定位实施例,上述第二输出数据还可以是位置,距离,往返时延(Round-Trip Time,RTT)值,参考信号时差(Reference Signal Time Difference,RSTD)值等至少之一。The above examples use CSI-related information as an example. It is understood that the embodiments of the present application are not limited to CSI-related scenarios. For example, in a positioning embodiment, the second output data may also be at least one of position, distance, round-trip time (RTT), and reference signal time difference (RSTD).

可选的,所述第一输入数据包括如下至少一项:Optionally, the first input data includes at least one of the following:

信道状态信息;Channel state information;

码本信息;Codebook information;

原始信道信息;Original channel information;

时延谱DP;Delay profile DP;

功率时延谱PDP;Power delay profile PDP;

信道冲激响应CIR;Channel impulse response CIR;

多径对应的时延信息;Delay information corresponding to multipath;

多径对应的时延功率信息;Delay power information corresponding to multipath;

波束信息。Beam information.

本申请实施例,不对第一AI模型的应用场景进行限定,可以根据具体的应用场景确定对应的第一AI模型,也即确定所述第一AI模型对应的第一输入数据,例如,CSI相关的信道状态信息,码本信息,或原始信道信息等;定位相关的时延谱(Delay Profile,DP),功率时延谱(Power Delay Profile,PDP),信道冲激响应(Channel Impulse Response,CIR),多径(path)对应的时延信息,多径对应的时延功率信息等;还可以是波束相关的信息,例如波束set B等。In the embodiment of the present application, the application scenario of the first AI model is not limited. The corresponding first AI model can be determined according to the specific application scenario, that is, the first input data corresponding to the first AI model can be determined, for example, CSI-related channel state information, codebook information, or original channel information, etc.; positioning-related delay profile (DP), power delay profile (PDP), channel impulse response (CIR), delay information corresponding to multipath, delay power information corresponding to multipath, etc.; it can also be beam-related information, such as beam set B, etc.

在基于AI的定位实施例,输入可以是DP,PDP,CIR,或者多个path上的时延功率,输出可以是对应输入对应的label,如所述输入对应的UE的位置,与其它设备的距离,或者参考信号时差(Reference Signal Time Difference,RSTD),收发信号时间差(Rx-Tx timing difference)等。In an AI-based positioning embodiment, the input can be DP, PDP, CIR, or delay power on multiple paths, and the output can be a label corresponding to the input, such as the position of the UE corresponding to the input, the distance to other devices, or the reference signal time difference (RSTD), the Rx-Tx timing difference, etc.

示例性的,UE首先获取定位参考单元(positioning reference unit,PRU)的raw channel/PDP/多径信息和PRU的位置信息,UE将PRU的raw channel pdp/多径信息输入到自己的AI模型中,AI模型输出的位置如果与PRU的位置误差小于一定的阈值,则认为监控结果有效。For example, the UE first obtains the raw channel/PDP/multipath information of the positioning reference unit (PRU) and the position information of the PRU. The UE inputs the raw channel PDP/multipath information of the PRU into its own AI model. If the position output by the AI model has an error less than a certain threshold with the position of the PRU, the monitoring result is considered valid.

在基于AI的波束(beam)的实施例中,输入可以是set B对应的beam,输出可以是set A对应的beam。Set B为Y个beam的索引和/或参考信号接收功率(Reference Signal Received Power,RSRP),输出为Z个最好的beam的索引和/或RSRP。In an AI-based beam implementation, the input can be the beams corresponding to set B, and the output can be the beams corresponding to set A. Set B is the indices and/or Reference Signal Received Power (RSRP) of Y beams, and the output is the indices and/or RSRP of the Z best beams.

示例2,对端设备(第二通信设备)发送给第一通信设备的数据集(测试用例)Example 2: Data set (test case) sent by the peer device (second communication device) to the first communication device

与示例1类似,所述数据集中至少包括K个第一通信设备侧的模型输入(第一通信设备-sided Model input)信息,上述数据集包括以下至少之一:Similar to Example 1, the dataset includes at least K first communication device-side model input information (first communication device-sided Model input), and the dataset includes at least one of the following:

1)K个码本信息;1) K codebook information;

2)K个原始信道(raw channel)信息(或称为编码输入encoder input)。2) K raw channel information (or called encoder input).

可选的,上述数据集包括,还包括:Optionally, the above dataset includes:

K1个第一通信设备侧的模型输出(第一通信设备-sided Model output)信息(第二输出数据),如K1个预期的压缩的码本信息或者raw channel信息。K1 first communication device side model output (first communication device-sided Model output) information (second output data), such as K1 expected compressed codebook information or raw channel information.

同样的,对端设备(第二通信设备)发送给第一通信设备的数据集中可以不包括label信息(第二输出数据)也可以包括label信息。上述label信息可以是第一标签数据,也可以是所述码本信息或者raw channel信息经过所述参考模型压缩和/或量化后的输出信息,即为“预期的压缩的码本信息或者预期的压缩的raw channel信息”(第一预期信息)。Similarly, the data set sent by the peer device (the second communication device) to the first communication device may or may not include label information (the second output data). The label information may be the first label data, or may be the output information of the codebook information or the raw channel information after compression and/or quantization by the reference model, i.e., the "expected compressed codebook information or the expected compressed raw channel information" (the first expected information).

可选的,所述K1个预期的压缩的码本信息或者raw channel信息(第一预期数据)是所述第二通信设备根据所述参考模型和测试用例中的码本信息或者raw channel信息确定的。Optionally, the K1 expected compressed codebook information or raw channel information (first expected data) is determined by the second communication device based on the codebook information or raw channel information in the reference model and test case.

示例3,所述第一通信设备测量的第一输入数据Example 3: The first input data measured by the first communication device

上述第一通信设备测量的第一输入数据,可以理解为上述第一AI模型在运行阶段或推理阶段(第一AI模型已经完成训练,或者已经完成训练和测试),将第一通信设备测量得到的数据直接用于第一AI模型的测试和/或监控。可以理解的是,上述第一通信设备测量得到的数据只包括第一输入数据,不包括对应的第二输出数据(label)。The first input data measured by the first communication device can be understood as the data measured by the first communication device being directly used for testing and/or monitoring the first AI model during the operation or inference phase of the first AI model (the first AI model has completed training, or has completed training and testing). It is understood that the data measured by the first communication device only includes the first input data and does not include the corresponding second output data (label).

本申请实施例中,上述第二通信设备还可以向第一通信设备发送如下至少一项:参考模型、参考模型的(全部或部分)参数,以及第二数据集。In the embodiment of the present application, the second communication device may further send at least one of the following to the first communication device: a reference model, (all or part of) parameters of the reference model, and a second data set.

另一种实施例中,上述参考模型、参考模型的(全部或部分)参数,以及第二数据集还可以是第三通信设备发送给第一通信设备的。上述第三通信设备例如可以是核心网侧的功能设备。In another embodiment, the reference model, (all or part of) the parameters of the reference model, and the second data set may also be sent to the first communication device by a third communication device. The third communication device may be, for example, a functional device on the core network side.

在又一种实施例中,上述第一AI模型是第一通信设备自己确定的。In yet another embodiment, the first AI model is determined by the first communication device itself.

可选的,所述方法还包括:Optionally, the method further includes:

所述第一通信设备接收第二通信设备或者第三通信设备发送的第三信息,第二通信设备包括第四通信设备和监控设备中至少一项;The first communication device receives third information sent by the second communication device or the third communication device, where the second communication device includes at least one of a fourth communication device and a monitoring device;

其中,所述第三信息包括以下至少之一:The third information includes at least one of the following:

第二数据集;Second dataset;

参考模型;Reference model;

与参考模型关联的目标模型参数。Target model parameters associated with the reference model.

本申请实施例中,第一通信设备可以基于上述第三信息确定第一AI模型。In an embodiment of the present application, the first communication device can determine the first AI model based on the above-mentioned third information.

本申请实施例中,上述第四通信设备可以是网络侧设备(例如,接入网设备)、解码设备、解压缩设备中的任一项。In an embodiment of the present application, the fourth communication device may be any one of a network side device (eg, an access network device), a decoding device, and a decompression device.

可选的,所述第一数据集与所述第三信息关联。Optionally, the first data set is associated with the third information.

本申请实施例中,不同的第二信息可以确定不同的第一AI模型,对应地,用于第一AI模型测试和/或监控的第一数据集也不相同,第一数据集与上述第二信息可以认为是关联的。典型的,若所述预期的第一输出数据为根据所述参考模型确定的,则所述第一数据集的第二输出数据与所述参考模型关联,或者,若所述第一数据集与第二数据集为同属于第三数据集的不同数据,则所述第一数据集与第二数据集关联。In an embodiment of the present application, different second information can determine different first AI models. Correspondingly, the first data sets used for testing and/or monitoring the first AI model are also different, and the first data set and the second information can be considered to be associated. Typically, if the expected first output data is determined based on the reference model, the second output data of the first data set is associated with the reference model, or if the first data set and the second data set are different data belonging to the same third data set, the first data set is associated with the second data set.

本申请实施例中,在所述参考模型和/或参考模型的参数至少部分由第二通信设备发送给第一通信设备的情况下,利用第一数据集可以确定所述参考模型和/或参考模型的参数是否被第一通信设备恰当的安装或使用。In an embodiment of the present application, when the reference model and/or the parameters of the reference model are at least partially sent by the second communication device to the first communication device, the first data set can be used to determine whether the reference model and/or the parameters of the reference model are properly installed or used by the first communication device.

可以理解的是,所述第二通信设备可以根据第一数据集中的数据去确定所述第一通信设备的第一AI模型是否按照预期使用,如第一输出数据是否与预期的第一输出数据(第二输出数据)类似。或者所述第一通信设备可以根据第一数据集中的数据去确定所述第一通信设备的第一AI模型是否按照预期使用。It is understood that the second communication device can determine whether the first AI model of the first communication device is used as expected based on the data in the first data set, such as whether the first output data is similar to the expected first output data (second output data). Alternatively, the first communication device can determine whether the first AI model of the first communication device is used as expected based on the data in the first data set.

步骤502、所述第一通信设备根据所述第一数据集和第一人工智能AI模型,确定第一信息;Step 502: The first communication device determines first information based on the first data set and the first artificial intelligence (AI) model.

其中,第一信息包括以下至少之一:The first information includes at least one of the following:

第一输出数据,所述第一输出数据为根据所述第一输入数据输入和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;first output data, where the first output data is output data obtained based on the first input data and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;

第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;a first test result, where the first test result is used to determine a test result of the first AI model;

第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果。First monitoring information, where the first monitoring information is used to determine a monitoring result of the first AI model.

本申请实施例中,上述第一AI模型可以理解为已经训练完成部署在第一通信设备上的AI模型。第一通信设备可以在上述第一AI模型通信应用前或通信应用过程中利用第一数据集对上述第一AI模型的性能进行测试或监控。In the embodiment of the present application, the first AI model can be understood as an AI model that has been trained and deployed on the first communication device. The first communication device can use the first data set to test or monitor the performance of the first AI model before or during the communication application of the first AI model.

上述测试结果可以理解为第一AI模型通信应用前做前向测试得到的结果;The above test results can be understood as the results obtained by conducting a forward test before the first AI model is applied in communication;

上述监控结果可以理解为第一AI模型通信应用中做后向测试得到的结果,可以是通过通信系统或设备的实际运行结果确定第一AI模型的性能,例如,在CSI场景下,通过判断通信系统的吞吐量确定第一AI模型的压缩性能,在定位场景中,通过位置连续性判断第一AI模型的定位性能等。The above monitoring results can be understood as the results obtained by backward testing in the communication application of the first AI model. The performance of the first AI model can be determined through the actual operation results of the communication system or equipment. For example, in the CSI scenario, the compression performance of the first AI model is determined by judging the throughput of the communication system. In the positioning scenario, the positioning performance of the first AI model is determined by position continuity, etc.

可选的,所述第一通信设备根据所述第一数据集和第一人工智能AI模型,确定第一信息,包括如下至少一项:Optionally, the first communication device determines, based on the first data set and the first artificial intelligence (AI) model, first information including at least one of the following:

所述第一通信设备将所述第一输入数据输入所述第一AI模型,得到所述第一输出数据;The first communication device inputs the first input data into the first AI model to obtain the first output data;

所述第一通信设备根据所述第一数据集和所述第一输出数据,确定所述第一测试结果和所述第一监控信息中的至少一项。The first communication device determines at least one of the first test result and the first monitoring information according to the first data set and the first output data.

本申请实施例中,上述第一输出数据可以理解为第一输入数据通过第一AI模型后对应的输出。所述第一测试结果和所述第一监控信息则是根据第一输出数据进一步确定的。In the embodiment of the present application, the first output data can be understood as the output corresponding to the first input data after passing through the first AI model. The first test result and the first monitoring information are further determined based on the first output data.

可选的,在所述第一输入数据包括所述信道状态信息或码本信息的情况下,所述第一输出数据包括压缩的信道状态信息或码本信息;Optionally, when the first input data includes the channel state information or codebook information, the first output data includes compressed channel state information or codebook information;

或,在所述第一输入数据包括原始信道信息的情况下,所述第一输出数据包括压缩的原始信道信息;Or, in a case where the first input data includes original channel information, the first output data includes compressed original channel information;

或,在所述第一输入数据包括所述信道状态信息或码本信息的情况下,所述第一输出数据包括解压缩的所述信道状态信息或码本信息;Or, in a case where the first input data includes the channel state information or codebook information, the first output data includes decompressed channel state information or codebook information;

或,在所述第一输入数据包括原始信道信息的情况下,所述第一输出数据包括解压缩的所述原始信道信息;Or, in a case where the first input data includes original channel information, the first output data includes decompressed original channel information;

或,在所述第一输入数据包括时延谱DP,功率时延谱PDP,信道冲激响应CIR中的至少一项的情况下,所述第一输出数据包括终端的位置信息,终端与其他设备之间的距离信息,往返时延RTT,参考信号时差RSTD,收发信号时间差中的至少一项;Or, when the first input data includes at least one of a delay profile DP, a power delay profile PDP, and a channel impulse response CIR, the first output data includes at least one of the location information of the terminal, the distance information between the terminal and other devices, the round-trip delay RTT, the reference signal time difference RSTD, and the time difference between transmitting and receiving signals;

或,在所述第一输入数据包括波束set B对应的波束信息的情况下,所述第一输出数据包括波束set A对应的波束信息。Alternatively, when the first input data includes beam information corresponding to beam set B, the first output data includes beam information corresponding to beam set A.

如前述实施例所述,本申请实施例不限制第一AI模型的应用场景,但是可以理解的是,对应具体的第一AI模型而言,第一输入数据和第一输出数据之间具备预设映射关系。本申请实施例,对于上述预设映射关系进行了示例性的说明。As described in the aforementioned embodiments, the embodiments of this application do not limit the application scenarios of the first AI model. However, it is understood that, for a specific first AI model, a preset mapping relationship exists between the first input data and the first output data. The embodiments of this application provide an exemplary description of the preset mapping relationship.

例如,当第一通信设备作为信道压缩设备时,对应的第一AI模型用于信道压缩,第一输入数据可以是信道状态信息、码本信息和原始信道信息中的至少一项,其对应的输出数据可以是压缩的信道状态信息、压缩的码本信息、压缩的原始信道信息中的至少一项;当第一通信设备作为信道压缩-解压设备时,对应的第一AI模型用于信道压缩-解压,第一输入数据可以是信道状态信息、码本信息和原始信道信息中的至少一项,其对应的输出数据可以是解压的信道状态信息、解压的码本信息、解压的原始信道信息中的至少一项。For example, when the first communication device serves as a channel compression device, the corresponding first AI model is used for channel compression, and the first input data may be at least one of channel state information, codebook information, and original channel information, and the corresponding output data may be at least one of compressed channel state information, compressed codebook information, and compressed original channel information; when the first communication device serves as a channel compression-decompression device, the corresponding first AI model is used for channel compression-decompression, and the first input data may be at least one of channel state information, codebook information, and original channel information, and the corresponding output data may be at least one of decompressed channel state information, decompressed codebook information, and decompressed original channel information.

本申请实施例中,上述波束set B为波束set A的子集;或者,set B相对于set A为历史时间。In an embodiment of the present application, the above-mentioned beam set B is a subset of beam set A; or, set B is a historical time relative to set A.

本申请实施例中,上述第一AI模型的测试结果和/或监控结果可以是在第一通信设备侧确定的,也可以是在第二通信设备侧确定的,第二通信设备侧获取上述测试结果和/或监控结果,可以是基于第一通信设备发送的第一信息确定的。In an embodiment of the present application, the test results and/or monitoring results of the above-mentioned first AI model can be determined on the first communication device side, or on the second communication device side. The second communication device side obtains the above-mentioned test results and/or monitoring results based on the first information sent by the first communication device.

可以理解的是,上述第一测试结果可以是所述第一AI模型的测试结果的中间参数,也可以就是所述第一AI模型的测试结果本身;上述第一监控信息可以是所述第一AI模型的监控结果的中间参数(如,第一AI模型的误差信息),也可以就是所述第一AI模型的监控结果本身,即上述第一通信设备可以是将上述测试结果和/或监控结果的中间参数上报给第二通信设备,由第二通信设备判断测试结果和/或监控结果(如测试结果的好坏,第一AI模型的状态信息,是否需要切换第一AI模型等),也可以是直接将测试结果和/或监控结果上报给第二通信设备。It can be understood that the above-mentioned first test result can be an intermediate parameter of the test result of the first AI model, or it can be the test result of the first AI model itself; the above-mentioned first monitoring information can be an intermediate parameter of the monitoring result of the first AI model (such as the error information of the first AI model), or it can be the monitoring result of the first AI model itself, that is, the above-mentioned first communication device can report the intermediate parameters of the above-mentioned test results and/or monitoring results to the second communication device, and the second communication device can judge the test results and/or monitoring results (such as the quality of the test results, the status information of the first AI model, whether the first AI model needs to be switched, etc.), or it can directly report the test results and/or monitoring results to the second communication device.

可选的,所述第一AI模型包括第一模型和第二模型中的至少一项,所述第一模型为参考模型,所述第二模型为根据所述第一模型确定的、且不同于所述第一模型的模型。Optionally, the first AI model includes at least one of a first model and a second model, the first model is a reference model, and the second model is a model determined based on the first model and different from the first model.

示例性的,如图6的(a)部分所示,第一AI模型包括参考模型(reference model)和优化模型(self optimization),不同的第一AI模型可以包括相同的参考模型或不同的参考模型,不同的第一AI模型中的参考模型和优化模型至少部分不同。通常,一个第一AI模型中可以不包括参考模型,也可以包括一个参考模型;一个第一AI模型可以不包括优化模型,也可以包括一个或多个优化模型,如图6的(b)部分所示。Exemplarily, as shown in part (a) of Figure 6 , a first AI model includes a reference model and an optimization model (self-optimization). Different first AI models may include the same reference model or different reference models, and the reference model and optimization model in different first AI models may differ at least in part. Generally, a first AI model may include no reference model or one reference model; a first AI model may include no optimization model or one or more optimization models, as shown in part (b) of Figure 6 .

优化模型和参考模型是不同的AI模型,优化模型是以参考模型为基础生成的。The optimization model and the reference model are different AI models. The optimization model is generated based on the reference model.

可选的,所述参考模型包括如下至少一项:Optionally, the reference model includes at least one of the following:

协议约定的参考模型;Reference model agreed upon in the agreement;

结合目标模型参数确定的参考模型,所述目标模型参数包括所述第二通信设备发送的模型参数;a reference model determined in conjunction with target model parameters, the target model parameters including model parameters sent by the second communication device;

基于协议约定的参考模型和目标模型参数确定的参考模型;A reference model determined based on the reference model agreed upon in the protocol and the parameters of the target model;

基于第二数据集训练得到的参考模型;A reference model trained based on a second data set;

基于协议约定的参考模型和第二数据集确定的参考模型;A reference model based on the protocol agreement and a reference model determined by the second data set;

所述第二通信设备发送的参考模型。The reference model sent by the second communication device.

可选的,所述参考模型可以是全连接模型,卷积模型,或者transformer模型中的一种或者多种构成,也可以是后续演进的模型。Optionally, the reference model may be one or more of a fully connected model, a convolutional model, or a transformer model, or a subsequently evolved model.

可选的,协议约定的参考模型,至少包括以下信息至少之一:Optionally, the reference model agreed upon in the protocol includes at least one of the following information:

全连接的层数;The number of fully connected layers;

全连接的层深度;The depth of the fully connected layers;

全连接的连接方式;Fully connected connection mode;

卷积核的参数,如核大小,特征图填充方式,输出通道;Convolution kernel parameters, such as kernel size, feature map filling method, and output channels;

卷积核的数目;The number of convolution kernels;

卷积核的类型;The type of convolution kernel;

卷积核的连接方式;How the convolution kernels are connected;

激活函数;Activation function;

多头注意力模块的参数,如多头注意力的头数、每个注意力头的维数、注意力得分的计算方法、是否有输出投影矩阵;Parameters of the multi-head attention module, such as the number of multi-head attention heads, the dimension of each attention head, the calculation method of the attention score, and whether there is an output projection matrix;

前馈模块的参数,如维度扩张倍数以及激活函数;Parameters of the feedforward module, such as dimension expansion multiples and activation functions;

多头注意力模块的数目;The number of multi-head attention modules;

多头注意力模块的连接方式;How to connect the multi-head attention modules;

可选的,所述目标模型参数包括以下至少之一:Optionally, the target model parameters include at least one of the following:

全连接的权重;Fully connected weights;

注意力模块的映射方法;Mapping method of attention module;

损失函数;Loss function;

量化方法;Quantitative methods;

第一输出的有效载荷(payload)等;The payload of the first output, etc.

超参数,如学习率,批大小(batch size),优化算法等。Hyperparameters such as learning rate, batch size, optimization algorithm, etc.

本申请实施例中,所述第一AI模型包括以下至少之一:In an embodiment of the present application, the first AI model includes at least one of the following:

1)参考模型,所述参考模型为以下任一项:1) A reference model, wherein the reference model is any one of the following:

协议标准化(模型结构和/或模型参数和/或(用于训练模型的)数据集)至少之一生成的模型,A model generated by at least one of protocol standardization (model structure and/or model parameters and/or dataset (for training the model)),

或者,基于标准化模型结构和所述第一通信设备接收到的模型参数确定的参考模型;Alternatively, a reference model determined based on a standardized model structure and model parameters received by the first communication device;

或者,所述第一通信设备接收到的模型(包括至少部分模型结构,和或部分模型参数);Alternatively, the model (including at least part of the model structure and/or part of the model parameters) received by the first communication device;

或者,所述第一通信设备基于第三数据集(可选的为标准化的,或者所述对端设备发送给第一通信设备)生成或确定的参考模型;Alternatively, the first communication device generates or determines a reference model based on a third data set (optionally standardized, or sent by the opposite device to the first communication device);

或者,所述第一通信设备基于第三数据集(可选的为标准化的,或者所述对端设备发送给第一通信设备)和标准化模型结构生成或确定的参考模型;Alternatively, the first communication device generates or determines a reference model based on a third data set (optionally standardized, or sent by the opposite device to the first communication device) and a standardized model structure;

2)基于参考模型的优化模型(还可以理解为非完美实现参考模型的模型,但是能实现类似参考模型的功能,或者所述优化模型的输入和输出之间的映射关系与所述参考模型相同或者一定误差范围内相同,或者可以理解为参考模型和优化模型之间具有一定的一致性);2) An optimization model based on a reference model (this can also be understood as a model that does not perfectly implement the reference model, but can achieve functions similar to the reference model, or the mapping relationship between the input and output of the optimization model is the same as that of the reference model or is the same within a certain error range, or it can be understood that there is a certain consistency between the reference model and the optimization model);

可以理解的是,所述第一通信设备可以维护X个(X为正整数)基于参考模型的优化模型,X个基于参考模型的优化模型可以分别适用于不同的情况,例如,根据场景,条件或者数据分布等。或者可以通过X个基于参考模型的优化模型获取类似参考模型的性能,其中,每个优化模型的规模远小于参考模型,即优化模型可以是对参考模型的简化(例如将神经网络层数由20层简化为10层)。It is understandable that the first communication device may maintain X (X is a positive integer) optimization models based on the reference model, and the X optimization models based on the reference model may be respectively applicable to different situations, for example, according to scenarios, conditions, or data distribution. Alternatively, performance similar to that of the reference model may be obtained through X optimization models based on the reference model, wherein the scale of each optimization model is much smaller than the reference model, that is, the optimization model may be a simplification of the reference model (for example, the number of neural network layers is reduced from 20 to 10).

示例性的,如图6的(b)部分所示,第一通信设备侧包括多个第一AI模型,分别为以下至少之二:参考模型,优化模型1,优化模型i……;Exemplarily, as shown in part (b) of FIG6 , the first communication device side includes multiple first AI models, which are at least two of the following: a reference model, an optimization model 1, an optimization model i, etc.;

第一通信设备上报关联不同第一AI模型的output,并且所述上报信息中包括与第一AI模型关联的关联信息。The first communication device reports output associated with different first AI models, and the reported information includes association information associated with the first AI model.

比如,关联信息或者output中包括,模型标识(model ID),数据集ID,参考模型识别信息;For example, the associated information or output includes model ID, dataset ID, and reference model identification information;

多个第一AI模型可以关联不同的以下至少之一:The multiple first AI models may be associated with different at least one of the following:

不同的第一数据集,用于训练第一AI模型的数据集,A different first data set, a data set for training a first AI model,

不同的reference model,Different reference models,

不同的硬件能力,Different hardware capabilities,

不同的量化方法,Different quantification methods,

不同的第一输出数据(output)上报比特(bit)。Different first output data (output) reporting bits (bit).

可选的,第一通信设备接收第四信息,指示(或请求)所述第一通信设备使用的第一数据集和/或第一AI模型相关的信息;Optionally, the first communication device receives fourth information indicating (or requesting) information related to the first data set and/or the first AI model used by the first communication device;

如指示第一AI模型的识别信息(指示使用哪个第一AI模型获取output),Such as indicating the identification information of the first AI model (indicating which first AI model is used to obtain the output),

如,指示第一AI模型的参考模型的识别信息,For example, identification information indicating a reference model of the first AI model,

如,指示获取第一AI模型的第一数据集相关的信息,For example, instructing to obtain information related to the first data set of the first AI model,

如,指示使用几个第一AI模型获取output,即指示第一AI模型数量。For example, indicating how many first AI models are used to obtain output, that is, indicating the number of first AI models.

示例性的,当标准化数据集中不包括上述第二输出数据的情况下,可选的,所述第一通信设备上报经过第一AI模型后的“第一AI模型压缩的码本信息或者raw channel信息”(第一输出数据),所述第二通信设备基于自身的模型和测试用例确定所述“预期的压缩的码本信息或者raw channel信息”(第一预期信息),所述第二通信设备对比所述“第一AI模型压缩的码本信息或者raw channel信息”和所述“预期的压缩的码本信息或者raw channel信息”来确定所述第一通信设备是否通过测试用例的测试;Exemplarily, when the standardized data set does not include the second output data, optionally, the first communication device reports the “codebook information or raw channel information compressed by the first AI model” (first output data) after passing through the first AI model, and the second communication device determines the “expected compressed codebook information or raw channel information” (first expected information) based on its own model and test case. The second communication device compares the “codebook information or raw channel information compressed by the first AI model” with the “expected compressed codebook information or raw channel information” to determine whether the first communication device passes the test case test;

当标准化数据集中包括上述第二输出数据的情况下,可选的,所述第一通信设备经过不同的第一AI模型获得不同的“第一AI模型压缩的码本信息或者raw channel信息”,如,通过参考模型(reference model)获得的压缩的码本信息或者raw channel信息,如,通过第一优化方法和reference model获得的第一优化模型,通过第一优化模型获得的压缩的码本信息或者raw channel信息;第一通信设备通过对比数据集中的预期的压缩的码本信息或者raw channel信息和所述第一通信设备经过不同的第一AI模型获得不同的“第一AI模型压缩的码本信息或者raw channel信息”确定所述第一AI模型中的所述参考模型和/或者优化模型是否通过测试用例的测试。When the standardized data set includes the above-mentioned second output data, optionally, the first communication device obtains different "first AI model compressed codebook information or raw channel information" through different first AI models, such as, compressed codebook information or raw channel information obtained through a reference model, such as, a first optimization model obtained through a first optimization method and a reference model, and compressed codebook information or raw channel information obtained through the first optimization model; the first communication device determines whether the reference model and/or optimization model in the first AI model passes the test of the test case by comparing the expected compressed codebook information or raw channel information in the data set with the different "first AI model compressed codebook information or raw channel information" obtained by the first communication device through different first AI models.

本申请实施例,第一通信设备获取第一数据集,所述第一数据集包括第一输入数据;所述第一通信设备根据所述第一数据集和第一人工智能AI模型,确定第一信息;其中,第一信息包括以下至少之一:第一输出数据,所述第一输出数据为根据所述第一输入数据输入和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果,即通过第一数据集和第一AI模型获取第一AI模型的测试结果和监控结果中的至少一项,能够对AI功能模型在所述通信设备或系统中的部署效果进行评价,从而有利于提高通信AI功能模型的应用效果。In an embodiment of the present application, a first communication device obtains a first data set, which includes first input data; the first communication device determines first information based on the first data set and a first artificial intelligence (AI) model; wherein the first information includes at least one of the following: first output data, which is output data obtained based on the first input data and the first AI model, and the first output data is used to determine or assist in determining at least one of the test results and monitoring results of the first AI model; a first test result, which is used to determine the test result of the first AI model; and first monitoring information, which is used to determine the monitoring result of the first AI model, that is, by obtaining at least one of the test results and monitoring results of the first AI model through the first data set and the first AI model, the deployment effect of the AI functional model in the communication device or system can be evaluated, thereby helping to improve the application effect of the communication AI functional model.

可以理解的是,本申请实施例,通过第一数据集和第一AI模型获取第一AI模型的测试结果和监控结果中的至少一项,能够对AI功能模型在所述通信设备或系统中的部署效果进行评价,在AI功能模型的性能损失的情况下,能够根据AI模型的测试结果和监控结果对应定位具体的AI功能模型的性能损失节点,例如,是参考模型导致的性能损失,或其他模型或原因导致的性能损失。It can be understood that in the embodiment of the present application, at least one of the test results and monitoring results of the first AI model is obtained through the first data set and the first AI model, so that the deployment effect of the AI functional model in the communication equipment or system can be evaluated. In the case of performance loss of the AI functional model, the performance loss node of the specific AI functional model can be located according to the test results and monitoring results of the AI model, for example, whether it is the performance loss caused by the reference model, or the performance loss caused by other models or reasons.

可选的,所述第一测试结果包括如下至少一项:Optionally, the first test result includes at least one of the following:

第一输出数据与第二输出数据之间的第一差异信息;first difference information between the first output data and the second output data;

第一输出数据与第二输出数据之间的第一差异信息的统计信息;statistical information of first difference information between the first output data and the second output data;

第一输出数据与第二输出数据之间的第一比值信息;first ratio information between the first output data and the second output data;

第一输出数据与第二输出数据之间的第一比值信息的统计信息;statistical information of first ratio information between the first output data and the second output data;

所述第一差异信息与参考模型误差的第一差值信息;first difference information between the first difference information and a reference model error;

所述第一差异信息与参考模型误差的第一差值信息的统计信息;Statistical information of first difference information between the first difference information and the reference model error;

所述第一AI模型满足测试需求的指示;an indication that the first AI model meets the test requirements;

所述第一AI模型不满足测试需求的指示;an indication that the first AI model does not meet the test requirements;

所述第一AI模型中满足测试需求的模型的相关信息;Relevant information about the model that meets the test requirements in the first AI model;

满足测试需求的第一AI模型的数量。The number of first AI models that meet testing requirements.

本申请实施例中,第一数据集包括第二输出数据,即包括与第一输出数据进行比较的参考对象,第一通信设备可以直接确定第一AI模型的测试结果,例如,所述第一AI模型满足测试需求的指示;所述第一AI模型不满足测试需求的指示;所述第一AI模型中满足测试需求的模型的相关信息;满足测试需求的第一AI模型的数量;也可以是,确定第一输出数据与第二输出数据之间的差异性比较结果,例如,第一输出数据与第二输出数据之间的第一差异信息;第一输出数据与第二输出数据之间的第一差异信息的统计信息;第一输出数据与第二输出数据之间的第一比值信息、第一比值信息的统计信息,上述比较结果可以发送给第二通信设备,由第二通信设备执行第一AI模型的测试结果的判断。In an embodiment of the present application, the first data set includes second output data, that is, includes a reference object for comparison with the first output data. The first communication device can directly determine the test result of the first AI model, for example, an indication that the first AI model meets the test requirements; an indication that the first AI model does not meet the test requirements; relevant information of the model in the first AI model that meets the test requirements; the number of first AI models that meet the test requirements; it can also be to determine the difference comparison result between the first output data and the second output data, for example, the first difference information between the first output data and the second output data; statistical information of the first difference information between the first output data and the second output data; first ratio information between the first output data and the second output data, and statistical information of the first ratio information. The above comparison results can be sent to the second communication device, and the second communication device executes the judgment of the test result of the first AI model.

本申请实施例中的差异信息可以理解为两个对象之间的差别信息,也可以描述为误差信息。The difference information in the embodiment of the present application can be understood as the difference information between two objects, and can also be described as error information.

本申请实施例中,还可以参考上述参考模型的误差,判断当前第一AI模型的测试结果或测试结果的中间值,参考模型误差可以是指参考模型输出与标签之间的差值,参考模型的误差可以是预设的,也可以是第二通信设备发送给第一通信设备的。In an embodiment of the present application, the error of the above-mentioned reference model can also be used to determine the test result of the current first AI model or the intermediate value of the test result. The reference model error can refer to the difference between the reference model output and the label. The error of the reference model can be preset or sent by the second communication device to the first communication device.

本申请实施例中,满足测试需求可以是执行了或成功部署了预设的模型,还可以是所执行或部署的预设模型满足预设的性能需求。In the embodiment of the present application, meeting the test requirements may mean that a preset model is executed or successfully deployed, or that the executed or deployed preset model meets the preset performance requirements.

本申请实施例中,模型的相关信息可以是模型标识(或识别信息,或ID)、模型类型(参考模型或优化模型),第一AI模型对应的参考模型标识等。In an embodiment of the present application, the relevant information of the model may be a model identifier (or identification information, or ID), a model type (reference model or optimized model), a reference model identifier corresponding to the first AI model, etc.

以CSI场景为例,示例性的,第一通信设备的输出(output)的第一信息可以包括如下至少之一:Taking the CSI scenario as an example, illustratively, the first information output by the first communication device may include at least one of the following:

1)第一AI模型压缩的码本信息或者raw channel信息(第一输出数据);1) Codebook information or raw channel information compressed by the first AI model (first output data);

根据所述第一AI模型所包括的模型类型(参考模型和/或优化模型),上述第一输出数据可以包括如下至少一项:Depending on the model type (reference model and/or optimization model) included in the first AI model, the first output data may include at least one of the following:

所述与参考模型关联的第一AI模型压缩的码本信息或者raw channel信息;The compressed codebook information or raw channel information of the first AI model associated with the reference model;

所述与优化模型关联的第一AI模型压缩的码本信息或者raw channel信息。The codebook information or raw channel information compressed by the first AI model associated with the optimization model.

可选的,所述压缩的码本信息或者raw channel信息与所述模型的识别信息(例如,模型ID)关联;Optionally, the compressed codebook information or raw channel information is associated with identification information of the model (e.g., model ID);

可选的,所述压缩的码本信息或者raw channel信息与所述模型的类型(如是否为参考模型,如优化模型的方式)关联;Optionally, the compressed codebook information or raw channel information is associated with the type of the model (such as whether it is a reference model, such as a method of optimizing the model);

其中,在一个可选的实施例中,所述output包括多个不同的优化模型对应的“第一AI模型压缩的码本信息或者raw channel信息”,用于对端设备选择合适的优化模型;In an optional embodiment, the output includes "first AI model compressed codebook information or raw channel information" corresponding to multiple different optimization models, which is used by the peer device to select an appropriate optimization model;

2)第一AI模型压缩的码本信息或者raw channel信息(第一输出数据)与所述预期的压缩的码本信息或者raw channel信息(第二输出数据)的差值信息。2) Difference information between the codebook information or raw channel information compressed by the first AI model (first output data) and the expected compressed codebook information or raw channel information (second output data).

可选的,所述差值信息与所述模型的识别信息关联;Optionally, the difference information is associated with identification information of the model;

可选的,所述差值信息与所述模型的类型(如是否为参考模型,如优化模型的方式)关联;Optionally, the difference information is associated with the type of the model (such as whether it is a reference model, such as a method of optimizing the model);

3)第一AI模型压缩的码本信息或者raw channel信息与所述预期的压缩的码本信息或者raw channel信息的差值信息的统计信息。3) Statistical information about the difference between the codebook information or raw channel information compressed by the first AI model and the expected compressed codebook information or raw channel information.

可选的,所述差值信息与所述模型的识别信息关联;Optionally, the difference information is associated with identification information of the model;

可选的,所述差值信息与所述模型的类型(如是否为参考模型,如优化模型的方式)关联;Optionally, the difference information is associated with the type of the model (such as whether it is a reference model, such as a method of optimizing the model);

4)所述第一AI模型压缩的码本信息或者raw channel信息与所述预期的压缩的码本信息或者raw channel信息的比值信息。4) The ratio of the codebook information or raw channel information compressed by the first AI model to the expected compressed codebook information or raw channel information.

可选的,上述output可以分为两种类型:Optionally, the above output can be divided into two types:

在所述第一数据集不包括所述label信息的情况下,则向第二通信设备发送上述输出(output)中的1);In the case where the first data set does not include the label information, sending 1) of the output (output) to the second communication device;

在所述第一数据集包括所述label信息的情况下,则向第二通信设备发送上述输出(output)中的2)-4)中的至少一项。可选的,所述第一通信设备根据所述第一数据集和第一人工智能AI模型,确定第一信息,包括如下至少一项:If the first data set includes the label information, at least one of 2)-4) in the output (output) is sent to the second communication device. Optionally, the first communication device determines the first information based on the first data set and the first artificial intelligence (AI) model, including at least one of the following:

在满足第一条件的情况下,确定所述第一AI模型满足测试需求;If the first condition is met, determining that the first AI model meets the test requirements;

在不满足第一条件的情况下,确定所述第一AI模型不满足测试需求;If the first condition is not met, determining that the first AI model does not meet the test requirement;

其中,所述第一条件包括如下至少一项:The first condition includes at least one of the following:

第一输出数据的有效载荷与第二输出数据的有效载荷相同;The payload of the first output data is the same as the payload of the second output data;

第一输出数据与第二输出数据之间的第一差异信息小于或等于第一阈值;First difference information between the first output data and the second output data is less than or equal to a first threshold;

第一输出数据与第二输出数据之间的第一差异信息的统计信息小于或等于第二阈值。Statistical information of the first difference information between the first output data and the second output data is less than or equal to a second threshold.

本申请实施例中,第一通信设备通过将第一输出数据与第二输出数据进行比较,可以直接确定第一AI模型的测试结果。上述第一阈值和第二阈值可以预设的,也可以是第二通信设备或第三通信设备发送给第一通信设备的。In an embodiment of the present application, the first communication device can directly determine the test result of the first AI model by comparing the first output data with the second output data. The first threshold and the second threshold can be preset or sent to the first communication device by the second communication device or the third communication device.

可选的,所述第一输出数据包括解压的码本信息和压缩的原始信道信息中的至少一项,所述第一信息包括第一测试结果的情况下,所述第一通信设备根据所述第一数据集和第一人工智能AI模型,确定第一信息,包括如下至少一项:Optionally, the first output data includes at least one of decompressed codebook information and compressed original channel information, and when the first information includes a first test result, the first communications device determines, based on the first data set and the first artificial intelligence (AI) model, the first information, including at least one of the following:

根据所述第一输出数据与所述第一输入数据的第二差异信息和所述的第二差异信息的统计值中的至少一项,确定所述第一测试结果;determining the first test result according to at least one of second difference information between the first output data and the first input data and a statistical value of the second difference information;

根据所述第一输出数据与所述第一输入数据的第二比值信息和所述的第二比值信息的统计值中的至少一项,确定所述第一测试结果。The first test result is determined according to at least one of second ratio information of the first output data and the first input data and a statistical value of the second ratio information.

本申请实施例中,在CSI压缩场景下,还可以将压缩前的输入信息(第一输入数据),与最终的解压输出数据进行比较,进而判断压缩-解压的性能。例如,第二差异信息和所述的第二差异信息的统计值中的至少一项小于或等于预设阈值的情况下认为第一AI模型的压缩-解压的性能合格,或者,所述第一输出数据与所述第一输入数据的第二比值信息和所述的第二比值信息的统计值中的至少一项满足预设阈值区间的情况下,认为第一AI模型的压缩-解压的性能合格。In an embodiment of the present application, in a CSI compression scenario, the pre-compression input information (first input data) may be compared with the final decompressed output data to determine the compression-decompression performance. For example, if at least one of the second difference information and the statistical value of the second difference information is less than or equal to a preset threshold, the compression-decompression performance of the first AI model is considered to be qualified. Alternatively, if at least one of the second ratio information of the first output data to the first input data and the statistical value of the second ratio information satisfies a preset threshold, the compression-decompression performance of the first AI model is considered to be qualified.

可选的,所述方法还包括:所述第一通信设备接收第二通信设备或者第三通信设备发送的第一辅助信息,所述第二通信设备包括第四通信设备和监控设备中至少一项;Optionally, the method further includes: the first communication device receiving first auxiliary information sent by a second communication device or a third communication device, where the second communication device includes at least one of a fourth communication device and a monitoring device;

其中,第一辅助信息包括以下至少之一:The first auxiliary information includes at least one of the following:

第一阈值;first threshold;

第二阈值;second threshold;

第一统计信息;First statistics;

其中,所述第一阈值包括以下至少之一:The first threshold value includes at least one of the following:

所述第一输出数据与所述第二输出数据的差异阈值信息;difference threshold information between the first output data and the second output data;

所述第一输出数据与所述第二输出数据的比值阈值信息;threshold information of a ratio between the first output data and the second output data;

其中,所述第二阈值包括以下至少之一:The second threshold value includes at least one of the following:

所述第一输出数据与所述第二输出数据的差异统计信息的阈值信息;threshold information of statistical information of differences between the first output data and the second output data;

所述第一输出数据与所述第二输出数据的比值统计信息的阈值信息;threshold information of statistical information of the ratio of the first output data to the second output data;

其中,所述第一统计信息为第二数据集的统计信息,所述第二数据集为所述第一AI模型的训练数据;The first statistical information is statistical information of a second data set, and the second data set is training data of the first AI model;

所述第一通信设备根据所述第一数据集和第一人工智能AI模型,确定第一信息,包括:The first communication device determines first information based on the first data set and the first artificial intelligence (AI) model, including:

所述第一通信设备根据所述第一数据集、所述第一AI模型和所述第一辅助信息,确定所述第一信息。The first communication device determines the first information based on the first data set, the first AI model and the first auxiliary information.

本申请实施例中,第二通信设备或者第三通信设备可以向第一通信设备提供辅助信息,用于确定第一信息,例如,用于确定第一测试结果和第一监控信息。In an embodiment of the present application, the second communication device or the third communication device may provide auxiliary information to the first communication device for determining the first information, for example, for determining the first test result and the first monitoring information.

可选的,所述第一监控信息包括如下至少一项:Optionally, the first monitoring information includes at least one of the following:

第一输出数据与第二输出数据之间的第一差异信息;first difference information between the first output data and the second output data;

第一输出数据与第二输出数据之间的第一差异信息的统计信息;statistical information of first difference information between the first output data and the second output data;

第一输出数据与第二输出数据之间的第一比值信息;first ratio information between the first output data and the second output data;

第一输出数据与第二输出数据之间的第一比值信息的统计信息;statistical information of first ratio information between the first output data and the second output data;

所述第一差异信息与参考模型误差的第一差值信息;first difference information between the first difference information and a reference model error;

所述第一差异信息与参考模型误差的第一差值信息的统计信息;Statistical information of first difference information between the first difference information and the reference model error;

所述第一AI模型监控结果,如第一AI模型的状态信息,或者所述第一AI模型的好坏,或者好坏的程度;Monitoring results of the first AI model, such as status information of the first AI model, or the quality of the first AI model, or the degree of quality;

所述切换第一AI模型的指示;The instruction to switch the first AI model;

所述第一AI模型中监控良好的模型的相关信息;Information about well-monitored models in the first AI model;

满足监控指标的第一AI模型的数量;The number of first AI models that meet monitoring indicators;

所述第一通信设备上报所述第一监控结果,如监控结果中间的信息,如第一差异信息,第一差异信息的统计信息,第一比值信息,第一比值信息的统计信息;The first communication device reports the first monitoring result, such as information in the monitoring result, such as first difference information, statistical information of the first difference information, first ratio information, and statistical information of the first ratio information;

所述第一通信设备获取所述第一监控结果,如监控结果信息,如所述第一AI模型监控结果,如第一AI模型的状态信息,或者所述第一AI模型的好坏,或者好坏的程度;The first communication device obtains the first monitoring result, such as monitoring result information, such as the first AI model monitoring result, such as status information of the first AI model, or the quality of the first AI model, or the degree of quality;

可选的,所述第一通信设备根据所述第一监控结果来判断所述终端的第一AI模型的测试结果。Optionally, the first communication device determines the test result of the first AI model of the terminal based on the first monitoring result.

本申请实施例中,可以将训练数据集的统计信息提供给第一通信设备作为参考信息,用于确定第一信息,例如,用于确定第一测试结果和/或第一监控信息。In an embodiment of the present application, statistical information of the training data set may be provided to the first communication device as reference information for determining first information, for example, for determining a first test result and/or first monitoring information.

可选的,所述第一信息包括第一监控信息,所述方法还包括:Optionally, the first information includes first monitoring information, and the method further includes:

所述第一通信设备接收第二通信设备发送的第二信息;The first communication device receives second information sent by the second communication device;

其中,所述第二信息包括以下至少之一:The second information includes at least one of the following:

所述第二通信设备获取的所述解压缩的码本信息;The decompressed codebook information acquired by the second communication device;

所述第二通信设备确定的吞吐量;a throughput determined by the second communication device;

所述第二通信设备确定的终端的位置信息;location information of the terminal determined by the second communication device;

波束set A的波束信息;Beam information of beam set A;

所述第一通信设备根据所述第一数据集和第一人工智能AI模型,确定第一信息,包括:The first communication device determines first information based on the first data set and the first artificial intelligence (AI) model, including:

所述第一通信设备根据所述第一数据集、所述第一输出数据和所述第二信息,确定所述第一监控信息。The first communication device determines the first monitoring information according to the first data set, the first output data and the second information.

本申请实施例中,由第一通信设备确定第一监控信息的情况下,可以是通过接收第二通信设备发送的第二信息,作为确定第一监控信息的参考信息。In the embodiment of the present application, when the first monitoring information is determined by the first communication device, the second information sent by the second communication device may be received as reference information for determining the first monitoring information.

可选的,可以是通过将第一输出数据与第二信息,确定第一AI模型的监控结果。例如,将第一输出数据中的吞吐量与所述第二通信设备确定的吞吐量进行比较,确定当前的第一AI模型是否满足通信的性能需求。Optionally, the monitoring result of the first AI model may be determined by comparing the first output data with the second information. For example, the throughput in the first output data may be compared with the throughput determined by the second communication device to determine whether the current first AI model meets the communication performance requirements.

可选的,在所述第一AI模型的测试结果和监控结果中至少一项不通过的情况下,执行如下操作中的至少一项:Optionally, if at least one of the test result and the monitoring result of the first AI model fails, perform at least one of the following operations:

切换至第二AI模型;Switch to the second AI model;

切换至非AI功能;Switch to non-AI function;

回退至参考模型;Fall back to the reference model;

回退至非AI功能;Fall back to non-AI functionality;

更新参考模型;Update reference models;

更新参考模型参数;Update reference model parameters;

接收所述第二通信设备或第三通信设备重复发送的参考模型;receiving a reference model repeatedly sent by the second communication device or the third communication device;

接收所述第二通信设备或第三通信设备重复发送的参考模型参数;receiving a reference model parameter repeatedly sent by the second communication device or the third communication device;

接收所述第二通信设备或第三通信设备发送的更新的参考模型;receiving an updated reference model sent by the second communication device or the third communication device;

接收所述第二通信设备或第三通信设备发送的更新的参考模型参数。receiving updated reference model parameters sent by the second communication device or the third communication device.

本申请实施例中,第一通信设备在第一AI模型的测试结果和监控结果中至少一项不通过的情况下,执行切换、回退、重新部署等操作。上述不通过的判断可以是第一通信设备确定的,也可以是第二通信设备确定之后指示给第一通信设备的。In an embodiment of the present application, the first communication device performs operations such as switching, rollback, and redeployment when at least one of the test results and monitoring results of the first AI model fails. The above-mentioned failure judgment can be determined by the first communication device or indicated to the first communication device after the second communication device determines it.

所述第一AI模型的测试结果和监控结果中至少一项不通过,可以理解为,第一AI模型部署不成功,可以通过重新接收相同的参考模型和/或参考模型参数(参考模型和/或参考模型参数还可以对应生成优化模型),进行再次部署。也可以理解为第一AI模型的性能无法满足当前的业务需求,可以通过接收更新的参考模型和/或参考模型参数,用于后续的测试和/或应用。If at least one of the test results and monitoring results of the first AI model fails, it can be understood that the first AI model deployment was unsuccessful, and the model can be redeployed by re-receiving the same reference model and/or reference model parameters (the reference model and/or reference model parameters can also generate an optimized model). It can also be understood that the performance of the first AI model cannot meet current business needs, and an updated reference model and/or reference model parameters can be received for subsequent testing and/or application.

示例性的,本申请实施例可以包括如下步骤:For example, the embodiment of the present application may include the following steps:

所述第一通信设备根据所述第一数据集(测试用例(test case))和所述第一AI模型确定所述output,和/或执行第一监控;所执行第一监控,用于确定所述第一AI模型是否通过测试用例或是否正常工作;The first communication device determines the output and/or performs first monitoring based on the first data set (test case) and the first AI model; the performed first monitoring is used to determine whether the first AI model passes the test case or operates normally;

所述output包括所述第一监控的结果,即结合第一数据集(测试用例(test case))和第一AI模型直接确定第一监控的结果;The output includes the result of the first monitoring, i.e., the result of the first monitoring is directly determined by combining the first data set (test case) and the first AI model;

或者,所述第一监控包括以下至少之一:Alternatively, the first monitoring includes at least one of the following:

所述第一监控基于所述output(第一AI模型压缩的码本)和第一数据集(测试用例(test case))对应的预期的压缩的码本,确定所述监控结果;The first monitoring determines the monitoring result based on the output (the compressed codebook of the first AI model) and the expected compressed codebook corresponding to the first data set (the test case);

若所述监控结果为指示为“0“或者”不通过“或者‘无效’,则所述第一AI模型未通过测试用例或未正常工作;If the monitoring result indicates “0” or “fail” or “invalid”, the first AI model fails the test case or does not work properly;

切换至其它AI模型,或切换至非AI算法或功能或特性,或回退(fallback),或回退至非AI算法或功能或特性;Switching to another AI model, or switching to a non-AI algorithm, function, or feature, or falling back to a non-AI algorithm, function, or feature;

若所述监控结果为指示为“0“或者”不通过“或者‘无效’,则更新或者重复发送所述参考模型或者参考模型的参数;If the monitoring result indicates "0" or "fail" or "invalid", updating or repeatedly sending the reference model or the parameters of the reference model;

若所述监控结果为指示为“0“或者”不通过“或者‘无效’,则更新或者重复发送所述参考数据。If the monitoring result indicates "0" or "fail" or "invalid", the reference data is updated or sent repeatedly.

所述第一监控结果包括以下至少之一:The first monitoring result includes at least one of the following:

有效性指示信息;Validity indication information;

误差信息;Error information;

误差统计信息。Error statistics.

根据所述第一监控结果,所述第一通信设备至少上报以下至少之一给监控实体:According to the first monitoring result, the first communications device reports at least one of the following to a monitoring entity:

Output;Output;

与第一数据集(测试用例(test case))的码本信息一一对应的output;The output that corresponds one-to-one to the codebook information of the first dataset (test case);

第一数据集(测试用例(test case));The first data set (test case);

第一数据集(测试用例(test case))的识别信息;Identification information of the first dataset (test case);

所述第一监控包括以下至少之一:The first monitoring includes at least one of the following:

所述第一监控基于所述output解压缩后的码本和第一数据集(测试用例(test case))对应的码本,确定所述监控结果;The first monitoring determines the monitoring result based on the codebook after the output is decompressed and the codebook corresponding to the first data set (test case);

若所述监控结果为指示为“0“或者”不通过“或者‘无效’,则所述第一AI模型未通过测试用例或未正常工作;If the monitoring result indicates “0” or “fail” or “invalid”, the first AI model fails the test case or does not work properly;

切换至其它AI模型,或切换至非AI算法或功能或特性,或回退(fallback),或回退至非AI算法或功能或特性;Switching to another AI model, or switching to a non-AI algorithm, function, or feature, or falling back to a non-AI algorithm, function, or feature;

若所述监控结果为指示为“0“或者”不通过“或者‘无效’,则更新或者重复发送所述参考模型或者参考模型的参数;If the monitoring result indicates "0" or "fail" or "invalid", updating or repeatedly sending the reference model or the parameters of the reference model;

若所述监控结果为指示为“0“或者”不通过“或者‘无效’,则更新或者重复发送所述参考数据。If the monitoring result indicates "0" or "fail" or "invalid", the reference data is updated or sent repeatedly.

所述第一监控结果包括以下至少之一:The first monitoring result includes at least one of the following:

有效性指示信息;Validity indication information;

误差信息,如Error information, such as

第一AI模型的误差信息(测试用例的码本(第一输入数据)与Output解压缩后恢复的码本)的差值信息;Error information of the first AI model (difference between the codebook of the test case (first input data) and the codebook restored after output decompression);

参考模型的解压缩后恢复的码本与第一AI模型的解压缩后恢复的码本的差值信息;Difference information between the codebook recovered after decompression of the reference model and the codebook recovered after decompression of the first AI model;

参考模型的误差信息与所述第一AI模型误差信息的差值信息;Difference information between the error information of the reference model and the error information of the first AI model;

误差统计信息,上述三个差值信息分别对应的误差信息的统计信息。Error statistical information, which is statistical information of the error information corresponding to the three difference information mentioned above.

比值信息,如所述第一AI模型的获取的吞吐量与吞吐量阈值的比值,或者所述第一AI模型的吞吐量与所述随机选择的吞吐量的比值。Ratio information, such as a ratio of the acquired throughput of the first AI model to a throughput threshold, or a ratio of the throughput of the first AI model to the randomly selected throughput.

根据2.2所述第一监控结果,所述第一通信设备或者第四通信设备至少上报以下至少之一给监控实体:According to 2.2, the first monitoring result, the first communications device or the fourth communications device reports at least one of the following to the monitoring entity:

Output解压缩后恢复的码本;Output the recovered codebook after decompression;

与测试用例一一对应的解压缩后恢复的码本;The decompressed and recovered codebook corresponding to each test case;

参考模型的label解压缩后的码本;The codebook after label decompression of the reference model;

测试用例;Test cases;

测试用例的识别信息。Identification information of the test case.

所述第一通信设备上报所述第一信息,所述第一信息包括以下至少之一:The first communication device reports the first information, where the first information includes at least one of the following:

上报基于第一数据集中的多个样本(测试例,或者数据)的输入确定的输出信息,如Report output information determined based on the input of multiple samples (test cases, or data) in the first data set, such as

所述输出信息:经过第一AI模型后的输出信息(如:PMI信息,即经过第一AI模型压缩后的码本信息),或者,The output information: output information after the first AI model (such as PMI information, i.e., codebook information compressed by the first AI model), or

所述输出信息为经过第一AI模型后的输出信息与第一数据集中的label信息的差值或者比值信息;The output information is the difference or ratio between the output information after passing through the first AI model and the label information in the first data set;

所述输出信息为多个输出信息相比于第一数据中label的准确率的统计信息;The output information is statistical information of the accuracy of the multiple output information compared to the label in the first data;

所述输出信息与第一数据集关联;The output information is associated with the first data set;

可选的,所述第二通信设备发送的配置或请求上报信息中携带第一数据集相关的信息;Optionally, the configuration or reporting request information sent by the second communication device carries information related to the first data set;

可选的,所述第一通信设备上报的信息中携带第一数据集相关的信息。Optionally, the information reported by the first communication device carries information related to the first data set.

所述第一信息与第一数据集中的样本相关联;The first information is associated with a sample in a first data set;

可选的,第一信息与所述第一数据集中的样本一一对应;Optionally, the first information corresponds one-to-one to the samples in the first data set;

可选的,第一信息与指定的第一数据集中的样本一一对应(如,网络侧设备指定的第一数据集中的样本,或者满足一定规则的第一数据集样本);可选的,所述第二通信设备发送给所述第一数据集中包括样本的指示信息。Optionally, the first information corresponds one-to-one to samples in a specified first data set (e.g., samples in the first data set specified by a network-side device, or samples in the first data set that satisfy certain rules); optionally, the second communication device sends indication information including samples to the first data set.

所述第一信息与第一AI模型相关联,如为参考模型,还是优化模型。The first information is associated with a first AI model, such as a reference model or an optimization model.

所述第一信息与模型的功能(functionality)/模型的特征(feature)、模型的标识(Identifier,ID)关联。The first information is associated with the functionality (functionality)/feature (feature) of the model and the identifier (ID) of the model.

可选的,所述方法还包括:Optionally, the method further includes:

所述第一通信设备向第二通信设备发送所述第一信息,其中,所述第二通信设备包括第四通信设备和监控设备中至少一项。The first communication device sends the first information to a second communication device, wherein the second communication device includes at least one of a fourth communication device and a monitoring device.

本申请实施例中,第一通信设备可以向第二通信设备发送第一信息,可以是将所述第一AI模型的测试结果和监控结果发送给第二通信设备,也可以通过将第一信息发送给第二通信设备由所述第二通信设备确定所述第一AI模型的测试结果和监控结果。In an embodiment of the present application, the first communication device can send the first information to the second communication device, which can be to send the test results and monitoring results of the first AI model to the second communication device, or the test results and monitoring results of the first AI model can be determined by the second communication device by sending the first information to the second communication device.

所述通信设备在引入新功能时需要进行测试,当所述需要两端配合的AI模型,则需要两侧设备或者至少一侧设备对另一侧的输出有一定的理解。本申请实施例,通过第一数据集在第一通信设备中确定第一信息,并与第二通信设备进行交互,用于判断第一通信设备的AI部署是否符合预期。The communication device needs to be tested when introducing new functions. When the AI model requires cooperation between both ends, the devices on both sides or at least one side need to have a certain understanding of the output of the other side. In this embodiment of the application, the first information is determined in the first communication device through the first data set, and interacted with the second communication device to determine whether the AI deployment of the first communication device meets expectations.

可选的,所述第一信息还包括以下至少之一:Optionally, the first information further includes at least one of the following:

所述第一数据集的识别信息;identification information of the first data set;

所述第二数据集的识别信息,其中,所述第二数据集为所述第一AI模型的训练数据;Identification information of the second data set, wherein the second data set is training data for the first AI model;

所述第一AI模型的识别信息;identification information of the first AI model;

所述第一AI模型的类型信息;Type information of the first AI model;

所述第一AI模型的功能信息。Functional information of the first AI model.

本申请实施例中,在发送第一输出数据、第一测试结果和第一监控信息的至少一项的情况下,还可以对应发送相关数据集的标识、第一AI模型的标识、类型或功能信息。In an embodiment of the present application, when sending at least one of the first output data, the first test result and the first monitoring information, the identifier of the relevant data set, the identifier, type or function information of the first AI model may also be sent accordingly.

可选的,所述第一通信设备向第二通信设备发送所述第一信息,包括如下至少一项:Optionally, the first communication device sending the first information to the second communication device includes at least one of the following:

所述第一通信设备向第二通信设备发送所述第一输出数据;The first communication device sends the first output data to the second communication device;

所述第一通信设备向第二通信设备发送多个第一输入数据对应的第一输出数据;The first communication device sends first output data corresponding to the plurality of first input data to the second communication device;

所述第一通信设备向第二通信设备发送未关联第二输出数据的第一输入数据对应的第一输出数据;The first communication device sends, to the second communication device, first output data corresponding to first input data not associated with second output data;

所述第一通信设备向第二通信设备发送所述第一输入数据;The first communication device sends the first input data to the second communication device;

所述第一通信设备向第二通信设备发送一个第一输入数据对应的多个第一信息,其中所述多个第一信息中不同的第一信息关联不同的第一AI模型;The first communication device sends multiple first information corresponding to a first input data to the second communication device, where different first information in the multiple first information is associated with different first AI models;

其中,所述第二输出数据包括以下至少之一:The second output data includes at least one of the following:

第一预期信息,所述第一预期信息为所述第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息;first expected information, where the first expected information is expected output information corresponding to the first input data, determined by the second communication device or protocol based on the first input data and a reference model;

第一标签数据,所述第一标签数据为与所述第一输入数据对应的标签数据。First label data, where the first label data is label data corresponding to the first input data.

本申请实施例中,发送第一输出数据,可以是将多个第一输入数据对应的第一输出数据一起发送,可以理解为图4所示打包式发送。In the embodiment of the present application, sending the first output data may be sending the first output data corresponding to multiple first input data together, which can be understood as the packaged sending shown in FIG4 .

如前述实施例所述,所述第一数据集的第一输入数据包括如下至少一项:N个关联所述第二输出数据的第一输入数据,M个不关联所述第二输出数据的第一输入数据,N和M均为自然数,即第一数据集中的第一输入数据可以是有label的也可以是没有label的,其中有label的第一输入数据对应的第一输出数据可以直接在第一通信设备侧获取所述第一AI模型的测试结果和监控结果,例如,可以基于N个关联所述第二输出数据的第一输入数据和对应的第二输出数据从第一AI模型中筛选出目标第一AI模型,将M个不关联所述第二输出数据的第一输入数据输入所述目标第一AI模型得到对应的第一输出数据,可以上所述目标第一AI模型得到对应的第一输出数据(没有对应的第二输出数据)提供给第二通信设备,以使得所述第二通信设备判断所述第一AI模型的测试结果和监控结果。As described in the above embodiment, the first input data of the first data set includes at least one of the following items: N first input data associated with the second output data, and M first input data not associated with the second output data, where N and M are both natural numbers, that is, the first input data in the first data set can be labeled or unlabeled, and the first output data corresponding to the labeled first input data can directly obtain the test results and monitoring results of the first AI model on the first communication device side. For example, the target first AI model can be screened out from the first AI model based on the N first input data associated with the second output data and the corresponding second output data, and the M first input data not associated with the second output data are input into the target first AI model to obtain the corresponding first output data. The corresponding first output data (without the corresponding second output data) obtained from the target first AI model can be provided to the second communication device, so that the second communication device can judge the test results and monitoring results of the first AI model.

本申请实施例中,发送第一输出数据,也是同一个第一输入数据输入不同的第一AI模型后的第一输出数据集和。In an embodiment of the present application, the first output data sent is also the sum of the first output data sets after the same first input data is input into different first AI models.

可以理解的,对应第一通信设备测量的第一输入数据,第二通信设备无法获得,可选的,第一通信设备向第二通信设备提供第一通信设备测量的第一输入数据。It can be understood that the second communication device cannot obtain the first input data measured by the first communication device. Optionally, the first communication device provides the first input data measured by the first communication device to the second communication device.

本申请实施例中,还可以向第二通信设备提供第一输入数据,以使得第二通信设备根据所述第一输入数据和第一信息来确定所述第一AI模型的测试结果和监控结果。In an embodiment of the present application, first input data can also be provided to the second communication device so that the second communication device determines the test results and monitoring results of the first AI model based on the first input data and the first information.

可选的,所述第一AI模型关联如下参数中的至少一项:Optionally, the first AI model is associated with at least one of the following parameters:

第一数据集,第二数据集,参考模型,硬件能力,量化方法,所述第一信息的上报比特数,模型的识别信息,模型的类型信息,模型的功能信息,模型的等级信息,模型的复杂度信息;The first data set, the second data set, the reference model, the hardware capability, the quantization method, the number of bits reported for the first information, the identification information of the model, the type information of the model, the function information of the model, the level information of the model, and the complexity information of the model;

其中,所述第二数据集为第一AI模型的训练数据集。Among them, the second data set is the training data set of the first AI model.

本申请实施例,可以基于上述第一数据集,第二数据集,参考模型,硬件能力,量化方法,所述第一信息的上报比特数,模型的识别信息,模型的类型信息,模型的功能信息,模型的等级信息,模型的复杂度信息中至少一项,确定对应的第一AI模型。其中,上述量化方法包括定长量化,变长量化、矢量量化(Vector Quantization)等。In an embodiment of the present application, a corresponding first AI model may be determined based on at least one of the first data set, the second data set, the reference model, the hardware capabilities, the quantization method, the number of bits reported in the first information, the identification information of the model, the type information of the model, the function information of the model, the level information of the model, and the complexity information of the model. The quantization method includes fixed-length quantization, variable-length quantization, vector quantization, and the like.

参见图7,图7是本申请实施例提供的另一种通信方法的流程图,用于第二通信设备,如图7的(a)部分所示,所述方法包括以下步骤:Referring to FIG. 7 , FIG. 7 is a flowchart of another communication method provided in an embodiment of the present application, which is used for a second communication device. As shown in part (a) of FIG. 7 , the method includes the following steps:

步骤701a、第二通信设备接收第一通信设备发送的第一信息。Step 701a: The second communication device receives the first information sent by the first communication device.

可选的,所述第二通信设备包括第四通信设备和监控设备中至少一项。Optionally, the second communication device includes at least one of a fourth communication device and a monitoring device.

步骤702a、第二通信设备根据所述第一信息确定第一人工智能AI模型的测试结果和监控结果中的至少一项;Step 702a: The second communication device determines at least one of a test result and a monitoring result of the first artificial intelligence (AI) model based on the first information.

其中,所述第一信息包括以下至少之一:The first information includes at least one of the following:

第一输出数据,所述第一输出数据为根据第一数据集的第一输入数和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;First output data, where the first output data is output data obtained based on the first input data of the first data set and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;

第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;a first test result, where the first test result is used to determine a test result of the first AI model;

第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果。First monitoring information, where the first monitoring information is used to determine a monitoring result of the first AI model.

另一种可选的实施例中,如图7的(b)部分所示,所述方法包括以下步骤:In another optional embodiment, as shown in part (b) of FIG7 , the method includes the following steps:

步骤701b、第二通信设备向第一通信设备发送第一数据集,用于第一通信设备确定第一信息;Step 701b: The second communication device sends a first data set to the first communication device, for the first communication device to determine the first information;

其中,所述第一信息包括以下至少之一:The first information includes at least one of the following:

第一输出数据,所述第一输出数据为根据第一数据集的第一输入数和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;First output data, where the first output data is output data obtained based on the first input data of the first data set and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;

第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;a first test result, where the first test result is used to determine a test result of the first AI model;

第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果。First monitoring information, where the first monitoring information is used to determine a monitoring result of the first AI model.

可选的,所述第一AI模型包括第一模型和第二模型中的至少一项,所述第一模型为参考模型,所述第二模型为根据所述第一模型确定的、且不同于所述第一模型的模型。Optionally, the first AI model includes at least one of a first model and a second model, the first model is a reference model, and the second model is a model determined based on the first model and different from the first model.

可选的,所述参考模型包括如下至少一项:Optionally, the reference model includes at least one of the following:

协议约定的参考模型;Reference model agreed upon in the agreement;

结合目标模型参数确定的参考模型,所述目标模型参数包括所述第二通信设备发送的模型参数;a reference model determined in conjunction with target model parameters, the target model parameters including model parameters sent by the second communication device;

基于协议约定的参考模型和目标模型参数确定的参考模型;A reference model determined based on the reference model agreed upon in the protocol and the parameters of the target model;

基于第二数据集训练得到的参考模型;A reference model trained based on a second data set;

基于协议约定的参考模型和第二数据集确定的参考模型;A reference model based on the protocol agreement and a reference model determined by the second data set;

所述第二通信设备发送的参考模型。The reference model sent by the second communication device.

可选的,所述第一数据集还包括第二输出数据,所述第二输出数据包括以下至少之一:Optionally, the first data set further includes second output data, and the second output data includes at least one of the following:

第一预期信息,First expected information,

第一标签数据;First label data;

其中,第一预期信息为所述第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息;The first expected information is expected output information corresponding to the first input data determined by the second communication device or protocol based on the first input data and a reference model;

第一标签数据为与所述第一输入数据对应的标签数据。The first label data is label data corresponding to the first input data.

可选的,所述第一测试结果包括如下至少一项:Optionally, the first test result includes at least one of the following:

第一输出数据与第二输出数据之间的第一差异信息;first difference information between the first output data and the second output data;

第一输出数据与第二输出数据之间的第一差异信息的统计信息;statistical information of first difference information between the first output data and the second output data;

第一输出数据与第二输出数据之间的第一比值信息;first ratio information between the first output data and the second output data;

第一输出数据与第二输出数据之间的第一比值信息的统计信息;statistical information of first ratio information between the first output data and the second output data;

所述第一差异信息与参考模型误差的第一差值信息;first difference information between the first difference information and a reference model error;

所述第一差异信息与参考模型误差的第一差值信息的统计信息;Statistical information of first difference information between the first difference information and the reference model error;

所述第一AI模型满足测试需求的指示;an indication that the first AI model meets the test requirements;

所述第一AI模型不满足测试需求的指示;an indication that the first AI model does not meet the test requirements;

所述第一AI模型中满足测试需求的模型的相关信息;Relevant information about the model that meets the test requirements in the first AI model;

满足测试需求的第一AI模型的数量。The number of first AI models that meet testing requirements.

可选的,所述方法还包括如下至少一项:Optionally, the method further includes at least one of the following:

所述第二通信设备向所述第一通信设备发送第一辅助信息;The second communication device sends first auxiliary information to the first communication device;

所述第二通信设备向所述第一通信设备发送第二信息;The second communication device sends second information to the first communication device;

所述第二通信设备向所述第一通信设备发送第三信息;The second communication device sends third information to the first communication device;

其中,第一辅助信息包括以下至少之一:The first auxiliary information includes at least one of the following:

第一阈值;first threshold;

第二阈值;second threshold;

第一统计信息;First statistics;

所述第一阈值包括以下至少之一:The first threshold includes at least one of the following:

所述第一输出数据与所述第二输出数据的差异阈值信息;difference threshold information between the first output data and the second output data;

所述第一输出数据与所述第二输出数据的比值阈值信息;threshold information of a ratio between the first output data and the second output data;

所述第二阈值包括以下至少之一:The second threshold includes at least one of the following:

所述第一输出数据与所述第二输出数据的差异统计信息的阈值信息;threshold information of statistical information of differences between the first output data and the second output data;

所述第一输出数据与所述第二输出数据的比值统计信息的阈值信息;threshold information of statistical information of the ratio of the first output data to the second output data;

所述第一统计信息为第二数据集的统计信息,所述第二数据集为所述第一AI模型的训练数据;The first statistical information is statistical information of a second data set, and the second data set is training data of the first AI model;

其中,所述第二信息包括以下至少之一:The second information includes at least one of the following:

所述第二通信设备获取的所述解压缩的码本信息;The decompressed codebook information acquired by the second communication device;

所述第二通信设备确定的吞吐量;a throughput determined by the second communication device;

所述第二通信设备确定的终端的位置信息;location information of the terminal determined by the second communication device;

波束set A的波束信息;Beam information of beam set A;

其中,所述第三信息包括以下至少之一:The third information includes at least one of the following:

第二数据集;Second dataset;

参考模型;Reference model;

与参考模型关联的目标模型参数。Target model parameters associated with the reference model.

可选的,所述第一数据集与所述第三信息关联。Optionally, the first data set is associated with the third information.

可选的,所述第一信息还包括以下至少之一:Optionally, the first information further includes at least one of the following:

所述第一数据集的识别信息;identification information of the first data set;

所述第二数据集的识别信息,其中,所述第二数据集为所述第一AI模型的训练数据;Identification information of the second data set, wherein the second data set is training data for the first AI model;

所述第一AI模型的识别信息;identification information of the first AI model;

所述第一AI模型的类型信息;Type information of the first AI model;

所述第一AI模型的功能信息。Functional information of the first AI model.

示例性的,如图8所示,监控设备可以通过比较所述第一输出数据(第一AI模型的压缩码本)与所述第二输出数据(预期的压缩码本),从而确定第一监控结果。Exemplarily, as shown in FIG8 , the monitoring device may determine the first monitoring result by comparing the first output data (the compressed codebook of the first AI model) with the second output data (the expected compressed codebook).

可选的,所述第二通信设备接收第一通信设备发送的第一信息,包括:Optionally, the second communication device receiving the first information sent by the first communication device includes:

所述第二通信设备接收所述第一通信设备发送的所述第一输出数据;The second communication device receives the first output data sent by the first communication device;

所述第二通信设备接收所述第一通信设备发送的多个第一输入数据对应的第一输出数据;The second communication device receives first output data corresponding to the plurality of first input data sent by the first communication device;

所述第二通信设备接收所述第一通信设备发送的未关联第二输出数据的第一输入数据对应的第一输出数据;The second communication device receives first output data corresponding to first input data not associated with second output data sent by the first communication device;

所述第二通信设备接收所述第一通信设备发送的所述第一输入数据;The second communication device receives the first input data sent by the first communication device;

所述第二通信设备接收所述第一通信设备发送的一个第一输入数据对应的多个第一信息,其中所述多个第一信息中不同的第一信息关联不同的第一AI模型;The second communication device receives multiple first information corresponding to a first input data sent by the first communication device, wherein different first information in the multiple first information is associated with different first AI models;

其中,所述第二输出数据包括以下至少之一:The second output data includes at least one of the following:

第一预期信息,所述第一预期信息为所述第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息;first expected information, where the first expected information is expected output information corresponding to the first input data, determined by the second communication device or protocol based on the first input data and a reference model;

第一标签数据,所述第一标签数据为与所述第一输入数据对应的标签数据。First label data, where the first label data is label data corresponding to the first input data.

可选的,所述第二通信设备根据所述第一信息确定所述第一通信设备中的第一人工智能AI模型的测试结果和监控结果中的至少一项,包括如下至少一项:Optionally, the second communication device determines, based on the first information, at least one of a test result and a monitoring result of the first artificial intelligence (AI) model in the first communication device, including at least one of the following:

在满足第二条件的情况下,确定所述第一AI模型满足测试需求;If the second condition is met, determining that the first AI model meets the test requirements;

在不满足第二条件的情况下,确定所述第一AI模型不满足测试需求;If the second condition is not met, determining that the first AI model does not meet the test requirement;

其中,所述第二条件包括如下至少一项:The second condition includes at least one of the following:

第一输出数据的有效载荷与第一预期信息的有效载荷相同;The payload of the first output data is the same as the payload of the first expected information;

第一输出数据与第一预期信息之间的第三差异信息小于或等于第三阈值;The third difference information between the first output data and the first expected information is less than or equal to a third threshold;

第一输出数据与第一预期信息之间的第三差异信息的统计信息小于或等于第四阈值;Statistical information of the third difference information between the first output data and the first expected information is less than or equal to a fourth threshold;

所述第三差异信息与参考模型误差的第二差值信息小于或等于第五阈值;The second difference information between the third difference information and the reference model error is less than or equal to a fifth threshold;

所述第三差异信息与参考模型误差的第二差值信息的统计信息小于或等于第六阈值;Statistical information of the third difference information and the second difference information of the reference model error is less than or equal to a sixth threshold;

其中,第一预期信息为所述第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息。The first expected information is expected output information corresponding to the first input data determined by the second communication device or protocol based on the first input data and a reference model.

本申请实施例中,第一人工智能AI模型的测试结果和监控结果中的至少一项是有第二通信设备侧来确定的。第二通信设备可以基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息(第一预期信息),或者由协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息(第一预期信息),第二通信设备可以获取上述第一预期信息,并用于第一人工智能AI模型的测试结果和监控结果的判断。In an embodiment of the present application, at least one of the test results and monitoring results of the first artificial intelligence (AI) model is determined by the second communication device. The second communication device may determine the expected output information (first expected information) corresponding to the first input data based on the first input data and the reference model, or the expected output information (first expected information) corresponding to the first input data determined by the protocol based on the first input data and the reference model. The second communication device may obtain the above-mentioned first expected information and use it to determine the test results and monitoring results of the first artificial intelligence (AI) model.

与第一通信设备判断第一人工智能AI模型的测试结果和监控结果类似,第二通信设备也可以进一步与参考模型误差进行比较,确定第一人工智能AI模型的测试结果和监控结果。关于参考模型误差的含义,前述实施例中已说明,为避免重复说明,本实施例不再赘述。Similar to how the first communication device determines the test results and monitoring results of the first artificial intelligence (AI) model, the second communication device can also further compare the test results and monitoring results with the reference model error to determine the test results and monitoring results of the first artificial intelligence (AI) model. The meaning of the reference model error has been explained in the previous embodiment and will not be repeated in this embodiment to avoid repetition.

可选的,在所述第一输入数据包括所述信道状态信息或码本信息的情况下,所述第一预期信息为根据参考模型压缩的信道状态信息或码本信息;Optionally, when the first input data includes the channel state information or codebook information, the first expected information is the channel state information or codebook information compressed according to a reference model;

或,在所述第一输入数据包括原始信道信息的情况下,所述第一预期信息包括根据参考模型压缩的原始信道信息;Or, in a case where the first input data includes original channel information, the first expected information includes original channel information compressed according to a reference model;

或,在所述第一输入数据包括所述信道状态信息或码本信息的情况下,所述第一预期信息为根据参考模型获取的解压缩的信道状态信息或码本信息;Or, in a case where the first input data includes the channel state information or codebook information, the first expected information is decompressed channel state information or codebook information obtained according to a reference model;

或,在所述第一输入数据包括原始信道信息的情况下,所述第一预期信息包括根据参考模型解压缩的原始信道信息。Alternatively, in a case where the first input data includes original channel information, the first expected information includes original channel information decompressed according to a reference model.

可选的,所述第二通信设为第四通信设备,所述第一输入数据包括信道状态信息、码本信息和原始信道信息中至少一项,所述第一输出数据包括压缩的码本信息和压缩的原始信道信息中的至少一项的情况下,所述第二通信设备根据所述第一信息确定所述第一通信设备中的第一人工智能AI模型的测试结果和监控结果,包括:Optionally, the second communication is set to a fourth communication device, and the first input data includes at least one of channel state information, codebook information, and original channel information, and the first output data includes at least one of compressed codebook information and compressed original channel information. When the second communication device determines the test result and monitoring result of the first artificial intelligence AI model in the first communication device based on the first information, the method includes:

所述第二通信设备解压缩所述第一输出数据,得到第三输出数据;The second communication device decompresses the first output data to obtain third output data;

在满足第三条件的情况下,确定所述第一AI模型满足测试需求,或,在不满足第三条件的情况下,确定所述第一AI模型不满足测试需求;If the third condition is met, determining that the first AI model meets the test requirement, or, if the third condition is not met, determining that the first AI model does not meet the test requirement;

所述第三条件包括如下至少一项:The third condition includes at least one of the following:

所述第三输出数据相对于所述第一输入数据的精度损失小于等于第七阈值;The precision loss of the third output data relative to the first input data is less than or equal to a seventh threshold;

所述第三输出数据相对于所述第一输入数据的精度损失统计小于等于第八阈值;The accuracy loss statistics of the third output data relative to the first input data is less than or equal to an eighth threshold;

所述第三输出数据的精度大于或等于所述第一输入数据的精度;The precision of the third output data is greater than or equal to the precision of the first input data;

所述第三输出数据相对于解压后的所述第一标签数据的精度损失小于等于第九阈值;The precision loss of the third output data relative to the decompressed first tag data is less than or equal to a ninth threshold;

所述第三输出数据相对于解压后的所述第一标签数据的精度损失统计小于等于第十阈值;The accuracy loss statistics of the third output data relative to the decompressed first label data is less than or equal to a tenth threshold;

所述第三输出数据的精度大于或等于解压后的所述第一标签数据的精度;The precision of the third output data is greater than or equal to the precision of the decompressed first tag data;

所述第三输出数据与解压后的所述第一标签数据的第四差异信息小于等于第十一阈值;Fourth difference information between the third output data and the decompressed first tag data is less than or equal to an eleventh threshold;

所述第三输出数据与解压后的所述第一标签数据的第四差异信息的统计信息小于等于第十二阈值。Statistical information of fourth difference information between the third output data and the decompressed first tag data is less than or equal to a twelfth threshold.

本申请实施例中,对于CSI压缩的场景而言,第四通信设备可以是第一输出数据的解压设备,第四通信设备通过对第一输出数据进行解压得到第三输出数据的情况下,将第三输出数据与第一输入数据比较,或将第三输出数据与第一标签数据的解压数据进行比较,确定第一人工智能AI模型的测试结果和监控结果中至少一项。第一标签数据的解压过程也可以是第四通信设备执行的,也可以是第一通信设备执行的。In an embodiment of the present application, for a CSI compression scenario, the fourth communication device may be a decompression device for the first output data. When the fourth communication device decompresses the first output data to obtain third output data, the fourth communication device compares the third output data with the first input data, or compares the third output data with the decompressed data of the first label data, to determine at least one of a test result and a monitoring result of the first artificial intelligence (AI) model. The decompression process of the first label data may also be performed by the fourth communication device or by the first communication device.

示例性的,图9所示,将第一输入数据(Test case-码本)或解压后的所述第一标签数据(参考模型的label解压缩的码本)与第三输出数据(解压缩后回复的码本)进行比较,确定监控结果。Exemplarily, as shown in FIG9 , the first input data (Test case-codebook) or the first label data after decompression (the decompressed codebook of the reference model label) is compared with the third output data (the restored codebook after decompression) to determine the monitoring result.

可选的,所述方法还包括:Optionally, the method further includes:

所述第二通信设备向所述第一通信设备发送反馈信息;The second communication device sends feedback information to the first communication device;

所述反馈信息包括如下至少一项:The feedback information includes at least one of the following:

所述第一AI模型满足测试需求的指示;an indication that the first AI model meets the test requirements;

所述第一AI模型不满足测试需求的指示;an indication that the first AI model does not meet the test requirements;

所述第一AI模型中满足测试需求的模型的相关信息;Relevant information about the model that meets the test requirements in the first AI model;

训练得到所述第一AI模型的第二数据集的相关信息;Training to obtain relevant information of a second data set of the first AI model;

满足测试需求的第一AI模型的数量。The number of first AI models that meet testing requirements.

本申请实施例中,第二通信设备在确定第一人工智能AI模型的测试结果和监控结果中至少一项的情况下,还可以向第一通信设备提供相关结果,当第二通信设备为第四通信设备的情况下,上述相关结果还可以由第四通信设备发送给监控设备。In an embodiment of the present application, the second communication device can also provide relevant results to the first communication device when determining at least one of the test results and monitoring results of the first artificial intelligence AI model. When the second communication device is a fourth communication device, the above-mentioned relevant results can also be sent by the fourth communication device to the monitoring device.

例如,第二通信设备指示所述第一通信设备使用的所述第一AI模型中的参考模型或优化模型,或者指示具体使用的优化模型,可以理解是,当所述第一通信设备上报优化模型的output,对端设备可以基于所述output确定第一通信设备应当使用的模型。For example, the second communication device indicates the reference model or optimization model in the first AI model used by the first communication device, or indicates the specific optimization model used. It can be understood that when the first communication device reports the output of the optimization model, the opposite device can determine the model that the first communication device should use based on the output.

在一个实施例中,所述第二通信设备指示信息可以指示是否使用参考模型;In one embodiment, the second communication device indication information may indicate whether to use a reference model;

在一个可选的实施例中,若所述终端(第一通信设备)经过第一AI模型获得的output无法通过第一数据集(测试用例(test case))测试,所述第二通信设备指示所述第一通信设备回退(fallback)到参考模型。In an optional embodiment, if the output obtained by the terminal (first communication device) through the first AI model fails to pass the test of the first data set (test case), the second communication device instructs the first communication device to fallback to the reference model.

在又一个实施例中,所述第二通信设备指示所述模型的识别信息(例如,模型ID)。In yet another embodiment, the second communication device indicates identification information of the model (eg, model ID).

在一个可选的实施例中,若所述第二通信设备获取不同的第一AI模型获得的第一信息,所述第二对端设备指示所述第一通信设备后续应用的模型。In an optional embodiment, if the second communication device obtains the first information obtained by a different first AI model, the second peer device instructs the first communication device on the model to be subsequently applied.

在另一个实施例中,所述第二对端设备指示所述模型的类别信息。In another embodiment, the second peer device indicates category information of the model.

可选的,所述第一AI模型关联如下参数中的至少一项:Optionally, the first AI model is associated with at least one of the following parameters:

第一数据集,第二数据集,参考模型,硬件能力,量化方法,所述第一信息的上报比特数,模型的识别信息,模型的类型信息,模型的功能信息,模型的等级信息,模型的复杂度信息;The first data set, the second data set, the reference model, the hardware capability, the quantization method, the number of bits reported for the first information, the identification information of the model, the type information of the model, the function information of the model, the level information of the model, and the complexity information of the model;

其中,所述第二数据集为第一AI模型的训练数据集。Among them, the second data set is the training data set of the first AI model.

需要说明的是,本实施例作为与图5-6所示的实施例中对应的第二通信设备的实施方式,其具体的实施方式可以参见图5-6所示的实施例中的相关说明,且均能达到相同或相似的有益效果,为避免重复说明,本实施例不再赘述。It should be noted that this embodiment is an implementation method of the second communication device corresponding to the embodiment shown in Figures 5-6. Its specific implementation method can refer to the relevant descriptions in the embodiment shown in Figures 5-6, and both can achieve the same or similar beneficial effects. To avoid repetitive description, this embodiment will not be repeated.

参见图10,图10是本申请实施例提供的另一种通信方法的流程图,用于监控设备,如图10的(a)部分所示,所述方法包括以下步骤:Referring to FIG. 10 , FIG. 10 is a flow chart of another communication method provided in an embodiment of the present application, which is used for monitoring a device. As shown in part (a) of FIG. 10 , the method includes the following steps:

步骤1001a、监控设备接收第四通信设备发送的第四输出数据,所述第四输出数据为所述第一输出数据的解压缩数据;Step 1001a: The monitoring device receives fourth output data sent by the fourth communication device, where the fourth output data is decompressed data of the first output data;

步骤1002a、所述监控设备根据所述第四输出数据,确定第一人工智能AI模型的测试结果和监控结果中的至少一项;Step 1002a: The monitoring device determines at least one of a test result and a monitoring result of the first artificial intelligence (AI) model based on the fourth output data.

其中,所述第四通信设备用于接收所述第一通信设备发送的第一输出数据,并对所述第一输出数据进行解压缩,所述第一输出数据为根据第一数据集的第一输入数和所述第一AI模型得到的输出数据。Among them, the fourth communication device is used to receive the first output data sent by the first communication device and decompress the first output data, where the first output data is output data obtained based on the first input number of the first data set and the first AI model.

另一实施例中,如图10的(b)部分所示,所述方法包括以下步骤:In another embodiment, as shown in part (b) of FIG10 , the method includes the following steps:

步骤1001b、监控设备接收所述第一通信设备或者第四通信设备发送的所述第一人工智能AI模型的测试结果和监控结果中的至少一项;Step 1001b: The monitoring device receives at least one of the test result and the monitoring result of the first artificial intelligence AI model sent by the first communication device or the fourth communication device;

步骤1002b、所述监控设备基于所述第一人工智能AI模型的测试结果和监控结果中的至少一项,确定如下至少一项:Step 1002b: The monitoring device determines at least one of the following based on at least one of the test result and the monitoring result of the first artificial intelligence (AI) model:

目标第一AI模型;Target-first AI model;

所述第一AI模型的状态信息;Status information of the first AI model;

其中,所述目标第一AI模型是所述第一AI模型的中的至少一个;wherein the target first AI model is at least one of the first AI models;

其中,所述第四通信设备用于接收所述第一通信设备发送的第一输出数据,并对所述第一输出数据进行解压缩,所述第一输出数据为根据第一数据集的第一输入数和所述第一AI模型得到的输出数据。Among them, the fourth communication device is used to receive the first output data sent by the first communication device and decompress the first output data, where the first output data is output data obtained based on the first input number of the first data set and the first AI model.

本申请实施例中,第四通信设备接收第一通信设备发送的第一输出数据,并对所述第一输出数据进行解压缩,第四通信设备将解压数据发送给监控设备,由监控设备执行第一人工智能AI模型的测试结果和监控结果中的至少一项的判断;或者,第四通信设备将第一人工智能AI模型的测试结果和监控结果中的至少一项发送给监控设备,由监控设备进一步确定目标第一AI模型和/或所述第一AI模型的状态信息,例如,第四通信设备可以向监控设备发送第四输出数据与第一输入数据之间的差异信息,由监控设备具体判断第一AI模型的状态信息,或者从多个第一AI模型中选择目标第一AI模型。In an embodiment of the present application, the fourth communication device receives the first output data sent by the first communication device and decompresses the first output data. The fourth communication device sends the decompressed data to the monitoring device, and the monitoring device performs a judgment on at least one of the test results and the monitoring results of the first artificial intelligence (AI) model; or, the fourth communication device sends at least one of the test results and the monitoring results of the first artificial intelligence (AI) model to the monitoring device, and the monitoring device further determines the status information of the target first AI model and/or the first AI model. For example, the fourth communication device can send the difference information between the fourth output data and the first input data to the monitoring device, and the monitoring device specifically judges the status information of the first AI model, or selects the target first AI model from multiple first AI models.

可选的,述第一输入数据包括信道状态信息、码本信息和原始信道信息中至少一项,所述第一输出数据包括压缩的码本信息和压缩的原始信道信息中的至少一项的情况下,所述监控设备根据所述第四输出数据,确定所述第一通信设备中的第一人工智能AI模型的测试结果和监控结果,包括:Optionally, when the first input data includes at least one of channel state information, codebook information, and original channel information, and the first output data includes at least one of compressed codebook information and compressed original channel information, the monitoring device determines the test result and monitoring result of the first artificial intelligence AI model in the first communication device based on the fourth output data, including:

在满足第四条件的情况下,确定所述第一AI模型满足测试需求,或,在不满足第四条件的情况下,确定所述第一AI模型不满足测试需求;If the fourth condition is met, determining that the first AI model meets the test requirements, or, if the fourth condition is not met, determining that the first AI model does not meet the test requirements;

所述第四条件包括如下至少一项:The fourth condition includes at least one of the following:

所述第四输出数据相对于所述第一输入数据的精度损失小于等于第十三阈值;The precision loss of the fourth output data relative to the first input data is less than or equal to a thirteenth threshold;

所述第四输出数据相对于所述第一输入数据的精度损失统计小于等于第十四阈值;The accuracy loss statistics of the fourth output data relative to the first input data is less than or equal to a fourteenth threshold;

所述第四输出数据的精度大于或等于所述第一输入数据的精度;The precision of the fourth output data is greater than or equal to the precision of the first input data;

所述第四输出数据相对于解压后的所述第一标签数据的精度损失小于等于第十五阈值;The precision loss of the fourth output data relative to the decompressed first tag data is less than or equal to a fifteenth threshold;

所述第四输出数据相对于解压后的所述第一标签数据的精度损失统计小于等于第十六阈值;The accuracy loss statistics of the fourth output data relative to the decompressed first label data is less than or equal to a sixteenth threshold;

所述第四输出数据的精度大于或等于解压后的所述第一标签数据的精度;The precision of the fourth output data is greater than or equal to the precision of the decompressed first tag data;

所述第四输出数据与解压后的所述第一标签数据的第三差异信息小于等于第十七阈值;A third difference information between the fourth output data and the decompressed first tag data is less than or equal to a seventeenth threshold;

所述第四输出数据与解压后的所述第一标签数据的第三差异信息的统计信息小于等于第十八阈值。Statistical information of third difference information between the fourth output data and the decompressed first label data is less than or equal to an eighteenth threshold.

本申请实施例中,所述第一人工智能AI模型的测试结果和监控结果的判断逻辑与第二通信设备的判断逻辑类似,在此不再赘述。In the embodiment of the present application, the judgment logic of the test results and monitoring results of the first artificial intelligence AI model is similar to the judgment logic of the second communication device, and will not be repeated here.

本申请实施例以第一数据集在第一AI模型的第一输出数据为基础,判断所述第一人工智能AI模型的测试结果和监控结果,上述判断过程可以是在第一通信设备、第二通信设备(包括第四通信设备和/或监控设置)中执行。以CSI压缩场景,终端部署第一AI模型执行压缩为例,所述第一数据集(测试用例(test case))用来确定所述终端的第一AI模型是否满足第一要求(在一个可选的实施例中,满足第一要求可以理解为通过第一数据集(测试用例(test case))测试),其中所述第一要求包括以下至少之一:In an embodiment of the present application, the test results and monitoring results of the first artificial intelligence (AI) model are determined based on the first output data of the first data set in the first AI model. The above-mentioned determination process can be performed in the first communication device and the second communication device (including the fourth communication device and/or the monitoring setting). Taking the CSI compression scenario, in which the terminal deploys the first AI model to perform compression as an example, the first data set (test case) is used to determine whether the first AI model of the terminal meets the first requirement (in an optional embodiment, meeting the first requirement can be understood as passing the first data set (test case) test), wherein the first requirement includes at least one of the following:

a)所述第一AI模型输出的output或者所述第一通信设备上报的压缩的码本信息或者raw channel信息与预期的压缩的码本信息或者raw channel信息有效载荷(payload)相同;a) the output of the first AI model or the compressed codebook information or raw channel information reported by the first communication device is the same as the expected compressed codebook information or raw channel information payload;

b)所述第一AI模型输出的output或者所述第一通信设备上报的压缩的码本信息或者raw channel信息与预期的压缩的码本信息或者raw channel信息误差小于第一预设阈值;b) the error between the output of the first AI model or the compressed codebook information or raw channel information reported by the first communication device and the expected compressed codebook information or raw channel information is less than a first preset threshold;

c)所述第一AI模型输出的output或者所述第一通信设备上报的压缩的码本信息或者raw channel信息与预期的压缩的码本信息或者raw channel信息误差统计信息的方差小于第二预设阈值;c) the variance between the output of the first AI model or the compressed codebook information or raw channel information reported by the first communication device and expected statistical information on the error between the compressed codebook information or raw channel information is less than a second preset threshold;

d)所述经过第四通信设备恢复的码本信息或者raw channel信息与第一数据集(测试用例(test case))中的码本信息或者raw channel信息的精度类似或者更高;d) the codebook information or raw channel information recovered by the fourth communication device has similar or higher accuracy than the codebook information or raw channel information in the first data set (test case);

e)所述经过第四通信设备恢复的码本信息或者raw channel信息与第一数据集(测试用例(test case))中的码本信息或者raw channel信息的精度损失小于第三预设阈值;e) a loss in accuracy between the codebook information or raw channel information recovered by the fourth communication device and the codebook information or raw channel information in the first data set (test case) is less than a third preset threshold;

f)所述经过第四通信设备恢复的码本信息或者raw channel信息与第一数据集(测试用例(test case))中的码本信息或者raw channel信息的统计精度损失小于第四预设阈值。f) The statistical accuracy loss between the codebook information or raw channel information recovered by the fourth communication device and the codebook information or raw channel information in the first data set (test case) is less than a fourth preset threshold.

本申请实施例中,判断所述第一人工智能AI模型的测试结果和监控结果过程在不同通信设备(第一通信设备、第四通信设备或监控设置)中执行时,上述第一预设阈值、第二预设阈值、第三预设阈值、第四预设阈值的取值可以不同。In an embodiment of the present application, when the process of determining the test results and monitoring results of the first artificial intelligence AI model is executed in different communication devices (first communication device, fourth communication device or monitoring setting), the values of the above-mentioned first preset threshold, second preset threshold, third preset threshold, and fourth preset threshold may be different.

本申请实施例中,第一数据集(测试用例(test case))可以辅助所述第一通信设备确定合适的AI模型,从而在后续应用中帮助非测试用例优化的输出结果,或者,所述第一数据集(测试用例(test case))可以辅助所述第一通信设备确定所述第一通信设备的监控结果,或者,所述第一数据集(测试用例(test case))可以辅助所述第一通信设备确定所述第一通信设备的需求(requirement),例如,精度下限。In an embodiment of the present application, the first data set (test case) can assist the first communication device in determining a suitable AI model, thereby helping to optimize the output results of non-test cases in subsequent applications, or, the first data set (test case) can assist the first communication device in determining the monitoring results of the first communication device, or, the first data set (test case) can assist the first communication device in determining the requirement of the first communication device, for example, the lower limit of accuracy.

本申请实施例中,第一数据集(测试用例(test case))为一种特殊的数据集,所述不同的第一通信设备需要根据所述测试用例来确认所述参考模型和/或优化模型的性能。In an embodiment of the present application, the first data set (test case) is a special data set, and the different first communication devices need to confirm the performance of the reference model and/or optimization model based on the test case.

本申请实施例中,在测试或者实际使用的过程中(或者模型性能监控中),第二通信设备为了确定所述第一通信设备按照规定或者发生的参考模型(reference model)实现了第一AI模型,对所述第一通信设备部署的第一AI模型进行测试或者验证,也或者在实际使用中,也或者为了引导所述第一通信设备输出类似测试用例的结果,所述获取基于AI的output前,提供一些测试用例。In an embodiment of the present application, during testing or actual use (or model performance monitoring), the second communication device tests or verifies the first AI model deployed by the first communication device in order to determine that the first communication device has implemented the first AI model in accordance with a prescribed or occurring reference model. Alternatively, during actual use, or in order to guide the first communication device to output results similar to test cases, some test cases are provided before obtaining the AI-based output.

需要说明的是,本实施例作为与图5-7所示的实施例中对应的第四通信设备的实施方式,其具体的实施方式可以参见图5-7所示的实施例中的相关说明,且均能达到相同或相似的有益效果,为避免重复说明,本实施例不再赘述。It should be noted that this embodiment is an implementation method of the fourth communication device corresponding to the embodiment shown in Figures 5-7. Its specific implementation method can refer to the relevant descriptions in the embodiments shown in Figures 5-7, and both can achieve the same or similar beneficial effects. To avoid repetitive descriptions, this embodiment will not be repeated.

本申请实施例提供的通信装,执行主体可以为通信装置。本申请实施例中以通信装执行通信装为例,如图11所示,说明本申请实施例提供的通信装置1100。The communication device provided in the embodiment of the present application can be executed by a communication device. In the embodiment of the present application, the communication device 1100 provided in the embodiment of the present application is illustrated in FIG11 by taking the communication device executing the communication device as an example.

第一获取模块1101,用于获取第一数据集,所述第一数据集包括第一输入数据;A first acquisition module 1101 is configured to acquire a first data set, where the first data set includes first input data;

第一确定模块1102,用于根据所述第一数据集和第一人工智能AI模型,确定第一信息;A first determining module 1102 is configured to determine first information based on the first data set and a first artificial intelligence (AI) model;

其中,第一信息包括以下至少之一:The first information includes at least one of the following:

第一输出数据,所述第一输出数据为根据所述第一输入数据输入和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;first output data, where the first output data is output data obtained based on the first input data and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;

第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;a first test result, where the first test result is used to determine a test result of the first AI model;

第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果。First monitoring information, where the first monitoring information is used to determine a monitoring result of the first AI model.

可选的,所述第一数据集还包括第二输出数据,所述第二输出数据包括以下至少之一:Optionally, the first data set further includes second output data, and the second output data includes at least one of the following:

第一预期信息;First expected information;

第一标签数据;First label data;

其中,第一预期信息为第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息;The first expected information is expected output information corresponding to the first input data determined by the second communication device or protocol based on the first input data and a reference model;

第一标签数据为与所述第一输入数据对应的标签数据。The first label data is label data corresponding to the first input data.

可选的,所述第一确定模块,包括如下至少一项:Optionally, the first determining module includes at least one of the following:

第一确定子模块,用于在满足第一条件的情况下,确定所述第一AI模型满足测试需求;A first determination submodule, configured to determine that the first AI model meets the test requirement when a first condition is met;

第二确定子模块,用于在不满足第一条件的情况下,确定所述第一AI模型不满足测试需求;A second determining submodule, configured to determine that the first AI model does not meet the test requirement when the first condition is not met;

其中,所述第一条件包括如下至少一项:The first condition includes at least one of the following:

第一输出数据的有效载荷与第二输出数据的有效载荷相同;The payload of the first output data is the same as the payload of the second output data;

第一输出数据与第二输出数据之间的第一差异信息小于或等于第一阈值;First difference information between the first output data and the second output data is less than or equal to a first threshold;

第一输出数据与第二输出数据之间的第一差异信息的统计信息小于或等于第二阈值。Statistical information of the first difference information between the first output data and the second output data is less than or equal to a second threshold.

可选的,所述装置还包括:Optionally, the device further includes:

第一接收模块,用于接收第二通信设备或者第三通信设备发送的第一辅助信息,所述第二通信设备包括第四通信设备和监控设备中至少一项;a first receiving module, configured to receive first auxiliary information sent by a second communication device or a third communication device, where the second communication device includes at least one of a fourth communication device and a monitoring device;

其中,第一辅助信息包括以下至少之一:The first auxiliary information includes at least one of the following:

第一阈值;first threshold;

第二阈值;second threshold;

第一统计信息;First statistics;

其中,所述第一阈值包括以下至少之一:The first threshold value includes at least one of the following:

所述第一输出数据与所述第二输出数据的差异阈值信息;difference threshold information between the first output data and the second output data;

所述第一输出数据与所述第二输出数据的比值阈值信息;threshold information of a ratio between the first output data and the second output data;

其中,所述第二阈值包括以下至少之一:The second threshold value includes at least one of the following:

所述第一输出数据与所述第二输出数据的差异统计信息的阈值信息;threshold information of statistical information of differences between the first output data and the second output data;

所述第一输出数据与所述第二输出数据的比值统计信息的阈值信息;threshold information of statistical information of the ratio of the first output data to the second output data;

其中,所述第一统计信息为第二数据集的统计信息,所述第二数据集为所述第一AI模型的训练数据;The first statistical information is statistical information of a second data set, and the second data set is training data of the first AI model;

所述第一确定模块包括:The first determining module includes:

第三确定子模块,用于根据所述第一数据集、所述第一AI模型和所述第一辅助信息,确定所述第一信息。The third determination submodule is used to determine the first information based on the first data set, the first AI model and the first auxiliary information.

可选的,所述第一信息包括第一监控信息,所述装置还包括:Optionally, the first information includes first monitoring information, and the apparatus further includes:

第二接收模块,用于接收第二通信设备发送的第二信息;A second receiving module, configured to receive second information sent by a second communication device;

其中,所述第二信息包括以下至少之一:The second information includes at least one of the following:

所述第二通信设备获取的解压缩的码本信息;decompressed codebook information acquired by the second communication device;

所述第二通信设备确定的吞吐量;a throughput determined by the second communication device;

所述第二通信设备确定的终端的位置信息;location information of the terminal determined by the second communication device;

波束set A的波束信息;Beam information of beam set A;

所述第一确定模块包括:The first determining module includes:

第四确定子模块,用于根据所述第一数据集、所述第一输出数据和所述第二信息,确定所述第一监控信息。The fourth determining submodule is configured to determine the first monitoring information according to the first data set, the first output data and the second information.

可选的,所述装置还包括:Optionally, the device further includes:

第三接收模块,用于接收第二通信设备或者第三通信设备发送的第三信息,第二通信设备包括第四通信设备和监控设备中至少一项;a third receiving module, configured to receive third information sent by a second communication device or a third communication device, where the second communication device includes at least one of a fourth communication device and a monitoring device;

其中,所述第三信息包括以下至少之一:The third information includes at least one of the following:

第二数据集;Second dataset;

参考模型;Reference model;

与参考模型关联的目标模型参数。Target model parameters associated with the reference model.

可选的,所述第一输出数据包括解压的码本信息和压缩的原始信道信息中的至少一项,所述第一信息包括第一测试结果的情况下,所述第一确定模块包括如下至少一项:Optionally, when the first output data includes at least one of decompressed codebook information and compressed original channel information, and the first information includes a first test result, the first determining module includes at least one of the following:

第五确定子模块,用于根据所述第一输出数据与所述第一输入数据的第二差异信息和所述的第二差异信息的统计值中的至少一项,确定所述第一测试结果;a fifth determining submodule, configured to determine the first test result according to at least one of second difference information between the first output data and the first input data and a statistical value of the second difference information;

第六确定子模块,用于根据所述第一输出数据与所述第一输入数据的第二比值信息和所述的第二比值信息的统计值中的至少一项,确定所述第一测试结果。The sixth determining submodule is configured to determine the first test result based on at least one of second ratio information of the first output data to the first input data and a statistical value of the second ratio information.

可选的,所述装置还包括:Optionally, the device further includes:

执行模块,用于在所述第一AI模型的测试结果和监控结果中至少一项不通过的情况下,执行如下操作中的至少一项:an execution module, configured to, when at least one of the test result and the monitoring result of the first AI model fails, perform at least one of the following operations:

切换至第二AI模型;Switch to the second AI model;

切换至非AI功能;Switch to non-AI function;

回退至参考模型;Fall back to the reference model;

回退至非AI功能;Fall back to non-AI functionality;

更新参考模型;Update reference models;

更新参考模型参数;Update reference model parameters;

接收第二通信设备或第三通信设备重复发送的参考模型;receiving a reference pattern repeatedly sent by a second communication device or a third communication device;

接收所述第二通信设备或第三通信设备重复发送的参考模型参数;receiving a reference model parameter repeatedly sent by the second communication device or the third communication device;

接收所述第二通信设备或第三通信设备发送的更新的参考模型;receiving an updated reference model sent by the second communication device or the third communication device;

接收所述第二通信设备或第三通信设备发送的更新的参考模型参数。receiving updated reference model parameters sent by the second communication device or the third communication device.

可选的,所述装置还包括:Optionally, the device further includes:

第一发送模块,用于向第二通信设备发送所述第一信息,其中,所述第二通信设备包括第四通信设备和监控设备中至少一项。The first sending module is configured to send the first information to a second communication device, wherein the second communication device includes at least one of a fourth communication device and a monitoring device.

可选的,所述第一发送模块,包括:Optionally, the first sending module includes:

第一发送子模块,用于向第二通信设备发送所述第一输出数据;A first sending submodule, configured to send the first output data to a second communication device;

第二发送子模块,用于向第二通信设备发送多个第一输入数据对应的第一输出数据;A second sending submodule, configured to send first output data corresponding to the plurality of first input data to a second communication device;

第三发送子模块,用于向第二通信设备发送未关联第二输出数据的第一输入数据对应的第一输出数据;a third sending submodule, configured to send, to the second communication device, first output data corresponding to the first input data not associated with the second output data;

第四发送子模块,用于向第二通信设备发送所述第一输入数据;a fourth sending submodule, configured to send the first input data to a second communication device;

第五发送子模块,用于向第二通信设备发送一个第一输入数据对应的多个第一信息,其中所述多个第一信息中不同的第一信息关联不同的第一AI模型;A fifth sending submodule, configured to send a plurality of first information corresponding to a first input data to the second communication device, wherein different first information in the plurality of first information are associated with different first AI models;

其中,所述第二输出数据包括以下至少之一:The second output data includes at least one of the following:

第一预期信息,所述第一预期信息为所述第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息;first expected information, where the first expected information is expected output information corresponding to the first input data, determined by the second communication device or protocol based on the first input data and a reference model;

需要说明的是,本申请实施例提供的通信装置是能够执行上述通信方法的装置,则上述通信方法实施例中的所有实现方式均适用于该通信装置,且均能达到相同或相似的有益效果。为避免重复说明,本实施例不再赘述。It should be noted that the communication device provided in the embodiment of the present application is a device capable of executing the above-mentioned communication method. Therefore, all implementation methods in the above-mentioned communication method embodiment are applicable to the communication device and can achieve the same or similar beneficial effects. To avoid repetition, this embodiment will not be described in detail.

本申请实施例提供的通信装,执行主体可以为通信装置。本申请实施例中以通信装执行通信装为例,如图12所示,说明本申请实施例提供的通信装置1200a和1200b。The communication device provided in the embodiment of the present application can be executed by a communication device. In the embodiment of the present application, the communication device executing the communication device is taken as an example, as shown in Figure 12, which illustrates the communication devices 1200a and 1200b provided in the embodiment of the present application.

所述装置1200a包括:The apparatus 1200a includes:

第四接收模块1201a,用于接收第一通信设备发送的第一信息;The fourth receiving module 1201a is configured to receive first information sent by the first communication device;

第二确定模块1202a,用于根据所述第一信息确定第一人工智能AI模型的测试结果和监控结果中的至少一项;A second determining module 1202a is configured to determine at least one of a test result and a monitoring result of a first artificial intelligence (AI) model based on the first information;

或者,所述装置1200b包括:Alternatively, the apparatus 1200b includes:

第二发送模块1201b,用于向第一通信设备发送第一数据集,以使得所述第一通信设备确定第一信息;A second sending module 1201b is configured to send a first data set to a first communication device, so that the first communication device determines first information;

其中,所述第一信息包括以下至少之一:The first information includes at least one of the following:

第一输出数据,所述第一输出数据为根据第一数据集的第一输入数和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;First output data, where the first output data is output data obtained based on the first input data of the first data set and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;

第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;a first test result, where the first test result is used to determine a test result of the first AI model;

第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果。First monitoring information, where the first monitoring information is used to determine a monitoring result of the first AI model.

可选的,所述第一数据集还包括第二输出数据,所述第二输出数据包括以下至少之一:Optionally, the first data set further includes second output data, and the second output data includes at least one of the following:

第一预期信息;First expected information;

第一标签数据;First label data;

其中,第一预期信息为第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息;The first expected information is expected output information corresponding to the first input data determined by the second communication device or protocol based on the first input data and a reference model;

第一标签数据为与所述第一输入数据对应的标签数据。The first label data is label data corresponding to the first input data.

可选的,所述装置还包括:Optionally, the device further includes:

第三发送模块,用于向所述第一通信设备发送第一辅助信息;A third sending module, configured to send first auxiliary information to the first communication device;

第四发送模块,用于向所述第一通信设备发送第二信息;a fourth sending module, configured to send second information to the first communication device;

第五发送模块,用于向所述第一通信设备发送第三信息;a fifth sending module, configured to send third information to the first communication device;

其中,第一辅助信息包括以下至少之一:The first auxiliary information includes at least one of the following:

第一阈值;first threshold;

第二阈值;second threshold;

第一统计信息;First statistics;

所述第一阈值包括以下至少之一:The first threshold includes at least one of the following:

所述第一输出数据与所述第二输出数据的差异阈值信息;difference threshold information between the first output data and the second output data;

所述第一输出数据与所述第二输出数据的比值阈值信息;threshold information of a ratio between the first output data and the second output data;

所述第二阈值包括以下至少之一:The second threshold includes at least one of the following:

所述第一输出数据与所述第二输出数据的差异统计信息的阈值信息;threshold information of statistical information of differences between the first output data and the second output data;

所述第一输出数据与所述第二输出数据的比值统计信息的阈值信息;threshold information of statistical information of the ratio of the first output data to the second output data;

所述第一统计信息为第二数据集的统计信息,所述第二数据集为所述第一AI模型的训练数据;The first statistical information is statistical information of a second data set, and the second data set is training data of the first AI model;

其中,所述第二信息包括以下至少之一:The second information includes at least one of the following:

所述第二通信设备获取的解压缩的码本信息;decompressed codebook information acquired by the second communication device;

所述第二通信设备确定的吞吐量;a throughput determined by the second communication device;

所述第二通信设备确定的终端的位置信息;location information of the terminal determined by the second communication device;

波束set A的波束信息;Beam information of beam set A;

其中,所述第三信息包括以下至少之一:The third information includes at least one of the following:

第二数据集;Second dataset;

参考模型;Reference model;

与参考模型关联的目标模型参数。Target model parameters associated with the reference model.

可选的,所述第四接收模块,包括:Optionally, the fourth receiving module includes:

第一接收子模块,用于接收所述第一通信设备发送的所述第一输出数据;a first receiving submodule, configured to receive the first output data sent by the first communication device;

第二接收子模块,用于接收所述第一通信设备发送的多个第一输入数据对应的第一输出数据;a second receiving submodule, configured to receive first output data corresponding to a plurality of first input data sent by the first communication device;

第三接收子模块,用于接收所述第一通信设备发送的未关联第二输出数据的第一输入数据对应的第一输出数据;a third receiving submodule, configured to receive first output data corresponding to first input data not associated with second output data and sent by the first communication device;

第四接收子模块,用于接收所述第一通信设备发送的所述第一输入数据;a fourth receiving submodule, configured to receive the first input data sent by the first communication device;

第五接收子模块,用于接收所述第一通信设备发送的一个第一输入数据对应的多个第一信息,其中所述多个第一信息中不同的第一信息关联不同的第一AI模型;A fifth receiving submodule, configured to receive multiple first information corresponding to a first input data sent by the first communication device, wherein different first information in the multiple first information are associated with different first AI models;

其中,所述第二输出数据包括以下至少之一:The second output data includes at least one of the following:

第一预期信息,所述第一预期信息为第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息;first expected information, where the first expected information is expected output information corresponding to the first input data, determined by a second communication device or protocol based on the first input data and a reference model;

第一标签数据,所述第一标签数据为与所述第一输入数据对应的标签数据。First label data, where the first label data is label data corresponding to the first input data.

可选的,所述第二确定模块,包括如下至少一项:Optionally, the second determining module includes at least one of the following:

第七确定子模块,用于在满足第二条件的情况下,确定所述第一AI模型满足测试需求;a seventh determination submodule, configured to determine that the first AI model meets the test requirement when the second condition is met;

第八确定子模块,用于在不满足第二条件的情况下,确定所述第一AI模型不满足测试需求;an eighth determining submodule, configured to determine that the first AI model does not meet the test requirement if the second condition is not met;

其中,所述第二条件包括如下至少一项:The second condition includes at least one of the following:

第一输出数据的有效载荷与第一预期信息的有效载荷相同;The payload of the first output data is the same as the payload of the first expected information;

第一输出数据与第一预期信息之间的第三差异信息小于或等于第三阈值;The third difference information between the first output data and the first expected information is less than or equal to a third threshold;

第一输出数据与第一预期信息之间的第三差异信息的统计信息小于或等于第四阈值;Statistical information of the third difference information between the first output data and the first expected information is less than or equal to a fourth threshold;

所述第三差异信息与参考模型误差的第二差值信息小于或等于第五阈值;The second difference information between the third difference information and the reference model error is less than or equal to a fifth threshold;

所述第三差异信息与参考模型误差的第二差值信息的统计信息小于或等于第六阈值;Statistical information of the third difference information and the second difference information of the reference model error is less than or equal to a sixth threshold;

其中,第一预期信息为第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息。The first expected information is expected output information corresponding to the first input data, determined by the second communication device or protocol based on the first input data and a reference model.

可选的,所述通信装置为第四通信设备,所述第一输入数据包括信道状态信息、码本信息和原始信道信息中至少一项,所述第一输出数据包括压缩的码本信息和压缩的原始信道信息中的至少一项的情况下,所述第二确定模块,包括:Optionally, the communication apparatus is a fourth communication device, and when the first input data includes at least one of channel state information, codebook information, and original channel information, and the first output data includes at least one of compressed codebook information and compressed original channel information, the second determination module includes:

第一解压模块,用于解压缩所述第一输出数据,得到第三输出数据;a first decompression module, configured to decompress the first output data to obtain third output data;

第九确定子模块,用于在满足第三条件的情况下,确定所述第一AI模型满足测试需求,或,在不满足第三条件的情况下,确定所述第一AI模型不满足测试需求;a ninth determining submodule, configured to determine that the first AI model meets the test requirement if a third condition is met, or to determine that the first AI model does not meet the test requirement if the third condition is not met;

所述第三条件包括如下至少一项:The third condition includes at least one of the following:

所述第三输出数据相对于所述第一输入数据的精度损失小于等于第七阈值;The precision loss of the third output data relative to the first input data is less than or equal to a seventh threshold;

所述第三输出数据相对于所述第一输入数据的精度损失统计小于等于第八阈值;The accuracy loss statistics of the third output data relative to the first input data is less than or equal to an eighth threshold;

所述第三输出数据的精度大于或等于所述第一输入数据的精度;The precision of the third output data is greater than or equal to the precision of the first input data;

所述第三输出数据相对于解压后的第一标签数据的精度损失小于等于第九阈值;The precision loss of the third output data relative to the decompressed first label data is less than or equal to a ninth threshold;

所述第三输出数据相对于解压后的第一标签数据的精度损失统计小于等于第十阈值;The accuracy loss statistics of the third output data relative to the decompressed first label data is less than or equal to a tenth threshold;

所述第三输出数据的精度大于或等于解压后的第一标签数据的精度;The precision of the third output data is greater than or equal to the precision of the decompressed first tag data;

所述第三输出数据与解压后的第一标签数据的第四差异信息小于等于第十一阈值;The fourth difference information between the third output data and the decompressed first label data is less than or equal to an eleventh threshold;

所述第三输出数据与解压后的第一标签数据的第四差异信息的统计信息小于等于第十二阈值。Statistical information of fourth difference information between the third output data and the decompressed first label data is less than or equal to a twelfth threshold.

可选的,所述装置还包括:Optionally, the device further includes:

第六发送模块,用于向所述第一通信设备发送反馈信息;a sixth sending module, configured to send feedback information to the first communication device;

所述反馈信息包括如下至少一项:The feedback information includes at least one of the following:

所述第一AI模型满足测试需求的指示;an indication that the first AI model meets the test requirements;

所述第一AI模型不满足测试需求的指示;an indication that the first AI model does not meet the test requirements;

所述第一AI模型中满足测试需求的模型的相关信息;Relevant information about the model that meets the test requirements in the first AI model;

训练得到所述第一AI模型的第二数据集的相关信息;Training to obtain relevant information of a second data set of the first AI model;

满足测试需求的第一AI模型的数量。The number of first AI models that meet testing requirements.

需要说明的是,本申请实施例提供的通信装置是能够执行上述通信方法的装置,则上述通信方法实施例中的所有实现方式均适用于该通信装置,且均能达到相同或相似的有益效果。为避免重复说明,本实施例不再赘述。It should be noted that the communication device provided in the embodiment of the present application is a device capable of executing the above-mentioned communication method. Therefore, all implementation methods in the above-mentioned communication method embodiment are applicable to the communication device and can achieve the same or similar beneficial effects. To avoid repetition, this embodiment will not be described in detail.

本申请实施例提供的通信装,执行主体可以为通信装置。本申请实施例中以通信装执行通信装为例,如图13所示,说明本申请实施例提供的通信装置1300a和1300b。The communication device provided in the embodiment of the present application can be executed by a communication device. In the embodiment of the present application, the communication device executing the communication device is taken as an example, as shown in Figure 13, which illustrates the communication devices 1300a and 1300b provided in the embodiment of the present application.

所述装置1300a包括:The apparatus 1300a includes:

第五接收模块1301a,用于接收第四通信设备发送的第四输出数据,所述第四输出数据为第一输出数据的解压缩数据;a fifth receiving module 1301a, configured to receive fourth output data sent by a fourth communication device, where the fourth output data is decompressed data of the first output data;

第三确定模块1302a,用于根据所述第四输出数据,确定第一人工智能AI模型的测试结果和监控结果中的至少一项;A third determining module 1302a is configured to determine at least one of a test result and a monitoring result of the first artificial intelligence (AI) model based on the fourth output data;

或者,所述装置1300b包括:Alternatively, the apparatus 1300b includes:

第六接收模块1301b,用于接收第一通信设备或者第四通信设备发送的所述第一人工智能AI模型的测试结果和监控结果中的至少一项;a sixth receiving module 1301b, configured to receive at least one of a test result and a monitoring result of the first artificial intelligence AI model sent by the first communication device or the fourth communication device;

第四确定模块1302b,用于基于所述第一人工智能AI模型的测试结果和监控结果中的至少一项,确定如下至少一项:The fourth determining module 1302b is configured to determine at least one of the following based on at least one of the test result and the monitoring result of the first artificial intelligence (AI) model:

目标第一AI模型;Target-first AI model;

所述第一AI模型的状态信息;Status information of the first AI model;

其中,所述目标第一AI模型是所述第一AI模型的中的至少一个;wherein the target first AI model is at least one of the first AI models;

其中,所述第四通信设备用于接收第一通信设备发送的第一输出数据,并对所述第一输出数据进行解压缩,所述第一输出数据为根据第一数据集的第一输入数和所述第一AI模型得到的输出数据。Among them, the fourth communication device is used to receive the first output data sent by the first communication device and decompress the first output data, where the first output data is output data obtained based on the first input number of the first data set and the first AI model.

可选的,所述第一输入数据包括信道状态信息、码本信息和原始信道信息中至少一项,所述第一输出数据包括压缩的码本信息和压缩的原始信道信息中的至少一项的情况下,所述第三确定模块,用于,包括如下至少一项:Optionally, when the first input data includes at least one of channel state information, codebook information, and original channel information, and the first output data includes at least one of compressed codebook information and compressed original channel information, the third determination module is configured to include at least one of the following:

第五确定模块,用于在满足第四条件的情况下,确定所述第一AI模型满足测试需求;A fifth determination module, configured to determine whether the first AI model meets the test requirement when the fourth condition is met;

第六确定模块,用于在不满足第四条件的情况下,确定所述第一AI模型不满足测试需求;a sixth determining module, configured to determine that the first AI model does not meet the test requirement if the fourth condition is not met;

所述第四条件包括如下至少一项:The fourth condition includes at least one of the following:

所述第四输出数据相对于所述第一输入数据的精度损失小于等于第十三阈值;The precision loss of the fourth output data relative to the first input data is less than or equal to a thirteenth threshold;

所述第四输出数据相对于所述第一输入数据的精度损失统计小于等于第十四阈值;The accuracy loss statistics of the fourth output data relative to the first input data is less than or equal to a fourteenth threshold;

所述第四输出数据的精度大于或等于所述第一输入数据的精度;The precision of the fourth output data is greater than or equal to the precision of the first input data;

所述第四输出数据相对于解压后的第一标签数据的精度损失小于等于第十五阈值;The precision loss of the fourth output data relative to the decompressed first label data is less than or equal to a fifteenth threshold;

所述第四输出数据相对于解压后的第一标签数据的精度损失统计小于等于第十六阈值;The accuracy loss statistics of the fourth output data relative to the decompressed first label data is less than or equal to a sixteenth threshold;

所述第四输出数据的精度大于或等于解压后的第一标签数据的精度;The precision of the fourth output data is greater than or equal to the precision of the decompressed first tag data;

所述第四输出数据与解压后的第一标签数据的第三差异信息小于等于第十七阈值;The third difference information between the fourth output data and the decompressed first label data is less than or equal to a seventeenth threshold;

所述第四输出数据与解压后的第一标签数据的第三差异信息的统计信息小于等于第十八阈值。Statistical information of the third difference information between the fourth output data and the decompressed first label data is less than or equal to an eighteenth threshold.

需要说明的是,本申请实施例提供的通信装置是能够执行上述通信方法的装置,则上述通信方法实施例中的所有实现方式均适用于该通信装置,且均能达到相同或相似的有益效果。为避免重复说明,本实施例不再赘述。It should be noted that the communication device provided in the embodiment of the present application is a device capable of executing the above-mentioned communication method. Therefore, all implementation methods in the above-mentioned communication method embodiment are applicable to the communication device and can achieve the same or similar beneficial effects. To avoid repetition, this embodiment will not be described in detail.

本申请实施例中的通信装置1100、通信装置1200a、通信装置1200b、通信装置1300a或通信装置1300b可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。The communication device 1100, communication device 1200a, communication device 1200b, communication device 1300a or communication device 1300b in the embodiments of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip. The electronic device can be a terminal, or it can be other devices other than a terminal. For example, the terminal can include but is not limited to the types of terminal 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiments of the present application.

本申请实施例提供的通信装置1100、通信装置1200a、通信装置1200b、通信装置1300a或通信装置1300b能够实现图2至图10的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。The communication device 1100, communication device 1200a, communication device 1200b, communication device 1300a or communication device 1300b provided in the embodiments of the present application can implement the various processes implemented by the method embodiments of Figures 2 to 10 and achieve the same technical effects. To avoid repetition, they will not be repeated here.

如图14所示,本申请实施例还提供一种通信设备1400,包括处理器1401和存储器1402,存储器1402上存储有可在所述处理器1401上运行的程序或指令,例如,该通信设备1400为终端时,该程序或指令被处理器1401执行时实现上述图5或图7或图10所示通信方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1400为网络侧设备时,该程序或指令被处理器1401执行时实现上述图5或图7或图10所示通信方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。As shown in Figure 14, an embodiment of the present application further provides a communication device 1400, including a processor 1401 and a memory 1402, wherein the memory 1402 stores a program or instruction that can be run on the processor 1401. For example, when the communication device 1400 is a terminal, the program or instruction, when executed by the processor 1401, implements the various steps of the communication method embodiment shown in Figure 5, Figure 7, or Figure 10, and can achieve the same technical effect. When the communication device 1400 is a network-side device, the program or instruction, when executed by the processor 1401, implements the various steps of the communication method embodiment shown in Figure 5, Figure 7, or Figure 10, and can achieve the same technical effect. To avoid repetition, they are not described here.

本申请实施例还提供一种终端,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如图5或图7所示方法实施例中的步骤。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图15为实现本申请实施例的一种终端的硬件结构示意图。The present application also provides a terminal including a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is configured to execute a program or instruction to implement the steps of the method embodiment shown in Figure 5 or Figure 7. This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to this terminal embodiment and can achieve the same technical effect. Specifically, Figure 15 is a schematic diagram of the hardware structure of a terminal implementing an embodiment of the present application.

该终端1500包括但不限于:射频单元1501、网络模块1502、音频输出单元1503、输入单元1504、传感器1505、显示单元1506、用户输入单元1507、接口单元1508、存储器1509以及处理器1510等中的至少部分部件。The terminal 1500 includes but is not limited to: a radio frequency unit 1501, a network module 1502, an audio output unit 1503, an input unit 1504, a sensor 1505, a display unit 1506, a user input unit 1507, an interface unit 1508, a memory 1509 and at least some of the components of the processor 1510.

本领域技术人员可以理解,终端1500还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1510逻辑相连,从而通过电源管理系统实现管理充电、放电以及功耗管理等功能。图15中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。Those skilled in the art will appreciate that the terminal 1500 may also include a power supply (such as a battery) to power various components. The power supply may be logically connected to the processor 1510 via a power management system, thereby enabling the power management system to manage charging, discharging, and power consumption. The terminal structure shown in FIG15 does not limit the terminal. The terminal may include more or fewer components than shown, or may combine certain components, or have different component arrangements, which will not be described in detail here.

应理解的是,本申请实施例中,输入单元1504可以包括图形处理器(Graphics Processing Unit,GPU)15041和麦克风15042,图形处理器15041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1506可包括显示面板15061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板15061。用户输入单元1507包括触控面板15071以及其他输入设备15072中的至少一种。触控面板15071,也称为触摸屏。触控面板15071可包括触摸检测装置和触摸控制器两个部分。其他输入设备15072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。It should be understood that in the embodiment of the present application, the input unit 1504 may include a graphics processing unit (GPU) 15041 and a microphone 15042, and the graphics processor 15041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode. The display unit 1506 may include a display panel 15061, and the display panel 15061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc. The user input unit 1507 includes a touch panel 15071 and at least one of the other input devices 15072. The touch panel 15071 is also called a touch screen. The touch panel 15071 may include two parts: a touch detection device and a touch controller. Other input devices 15072 may include but are not limited to a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.

本申请实施例中,射频单元1501接收来自网络侧设备的下行数据后,可以传输给处理器1510进行处理;另外,射频单元1501可以向网络侧设备发送上行数据。通常,射频单元1501包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。In the embodiment of the present application, after receiving downlink data from a network-side device, the radio frequency unit 1501 may transmit the data to the processor 1510 for processing. Furthermore, the radio frequency unit 1501 may send uplink data to the network-side device. Typically, the radio frequency unit 1501 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low-noise amplifier, a duplexer, and the like.

存储器1509可用于存储软件程序或指令以及各种数据。存储器1509可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1509可以包括易失性存储器或非易失性存储器。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1509包括但不限于这些和任意其它适合类型的存储器。Memory 1509 can be used to store software programs or instructions and various data. Memory 1509 may primarily include a first storage area for storing programs or instructions and a second storage area for storing data. The first storage area may store an operating system, applications or instructions required for at least one function (such as a sound playback function, an image playback function, etc.). Furthermore, memory 1509 may include volatile memory or non-volatile memory. The non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory. The volatile memory may be random access memory (RAM), static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate synchronous DRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous link DRAM (SLDRAM), and direct RAM (DRRAM). The memory 1509 in the embodiments of the present application includes, but is not limited to, these and any other suitable types of memory.

处理器1510可包括一个或多个处理单元;可选的,处理器1510集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1510中。Processor 1510 may include one or more processing units. Optionally, processor 1510 integrates an application processor and a modem processor. The application processor primarily handles operations related to the operating system, user interface, and application programs, while the modem processor primarily processes wireless communication signals, such as a baseband processor. It is understood that the modem processor may not be integrated into processor 1510.

其中,射频单元1501,用于获取第一数据集,所述第一数据集包括第一输入数据;The radio frequency unit 1501 is configured to obtain a first data set, where the first data set includes first input data;

处理器1510,用于根据所述第一数据集和第一人工智能AI模型,确定第一信息;Processor 1510, configured to determine first information based on the first data set and a first artificial intelligence (AI) model;

或者,射频单元1501用于接收第一通信设备发送的第一信息;Alternatively, the radio frequency unit 1501 is configured to receive first information sent by a first communication device;

所述处理器1510用于根据所述第一信息确定第一人工智能AI模型的测试结果和监控结果中的至少一项;The processor 1510 is configured to determine at least one of a test result and a monitoring result of a first artificial intelligence AI model based on the first information;

或者,射频单元1501用于向第一通信设备发送第一数据集,用于第一通信设备确定第一信息;Alternatively, the radio frequency unit 1501 is configured to send a first data set to the first communication device, for the first communication device to determine the first information;

其中,第一信息包括以下至少之一:The first information includes at least one of the following:

第一输出数据,所述第一输出数据为根据所述第一输入数据输入和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;first output data, where the first output data is output data obtained based on the first input data and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model;

第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;a first test result, where the first test result is used to determine a test result of the first AI model;

第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果。First monitoring information, where the first monitoring information is used to determine a monitoring result of the first AI model.

可以理解,本实施例中提及的各实现方式的实现过程可以参照方法实施例图5或图7的相关描述,并达到相同或相应的技术效果,为避免重复,在此不再赘述。It can be understood that the implementation process of each implementation method mentioned in this embodiment can refer to the relevant description of the method embodiment Figure 5 or Figure 7, and achieve the same or corresponding technical effects. To avoid repetition, it will not be repeated here.

本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如图5或图7所示的方法实施例的步骤。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。The present application also provides a network-side device, including a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is configured to execute a program or instruction to implement the steps of the method embodiment shown in Figure 5 or Figure 7. This network-side device embodiment corresponds to the aforementioned network-side device method embodiment, and each implementation process and implementation method of the aforementioned method embodiment is applicable to this network-side device embodiment and can achieve the same technical effects.

具体地,本申请实施例还提供了一种网络侧设备。如图16所示,该网络侧设备1600包括:天线161、射频装置162、基带装置163、处理器164和存储器165。天线161与射频装置162连接。在上行方向上,射频装置162通过天线161接收信息,将接收的信息发送给基带装置163进行处理。在下行方向上,基带装置163对要发送的信息进行处理,并发送给射频装置162,射频装置162对收到的信息进行处理后经过天线161发送出去。Specifically, embodiments of the present application also provide a network-side device. As shown in Figure 16, network-side device 1600 includes an antenna 161, a radio frequency device 162, a baseband device 163, a processor 164, and a memory 165. Antenna 161 is connected to radio frequency device 162. In the uplink direction, radio frequency device 162 receives information via antenna 161 and sends the received information to baseband device 163 for processing. In the downlink direction, baseband device 163 processes the information to be transmitted and sends it to radio frequency device 162. Radio frequency device 162 processes the received information and then sends it through antenna 161.

以上实施例中网络侧设备执行的方法可以在基带装置163中实现,该基带装置163包括基带处理器。The method executed by the network-side device in the above embodiment may be implemented in the baseband device 163 , which includes a baseband processor.

基带装置163例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图16所示,其中一个芯片例如为基带处理器,通过总线接口与存储器165连接,以调用存储器165中的程序,执行以上方法实施例中所示的网络设备操作。The baseband device 163 may include, for example, at least one baseband board, on which multiple chips are arranged, as shown in Figure 16, one of the chips is, for example, a baseband processor, which is connected to the memory 165 through a bus interface to call the program in the memory 165 and execute the network device operations shown in the above method embodiment.

该网络侧设备还可以包括网络接口166,该接口例如为通用公共无线接口(Common Public Radio Interface,CPRI)。The network side device may also include a network interface 166, which is, for example, a Common Public Radio Interface (CPRI).

具体地,本申请实施例的网络侧设备1600还包括:存储在存储器165上并可在处理器164上运行的指令或程序,处理器164调用存储器165中的指令或程序执行图11或图12或图13所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。Specifically, the network side device 1600 of the embodiment of the present application also includes: instructions or programs stored in the memory 165 and executable on the processor 164. The processor 164 calls the instructions or programs in the memory 165 to execute the methods executed by the modules shown in FIG. 11 , FIG. 12 , or FIG. 13 , and achieves the same technical effect. To avoid repetition, it will not be elaborated here.

具体地,本申请实施例还提供了一种网络侧设备。如图17所示,该网络侧设备1700包括:处理器1701、网络接口1702和存储器1703。其中,网络接口1702例如为通用公共无线接口(common public radio interface,CPRI)。Specifically, an embodiment of the present application further provides a network-side device. As shown in FIG17 , the network-side device 1700 includes a processor 1701, a network interface 1702, and a memory 1703. The network interface 1702 is, for example, a common public radio interface (CPRI).

具体地,本申请实施例的网络侧设备1700还包括:存储在存储器1703上并可在处理器1701上运行的指令或程序,处理器1701调用存储器1703中的指令或程序执行图11或图12或图13所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。Specifically, the network side device 1700 of the embodiment of the present application also includes: instructions or programs stored in the memory 1703 and can be run on the processor 1701. The processor 1701 calls the instructions or programs in the memory 1703 to execute the methods executed by each module shown in Figure 11 or Figure 12 or Figure 13, and achieves the same technical effect. To avoid repetition, it will not be repeated here.

本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述图5或图7或图10所示通信方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored. When the program or instruction is executed by a processor, the various processes of the communication method embodiment shown in Figure 5, Figure 7, or Figure 10 above are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.

其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。在一些示例中,可读存储介质可以是非瞬态的可读存储介质。The processor is the processor in the terminal described in the above embodiment. The readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk. In some examples, the readable storage medium may be a non-transitory readable storage medium.

本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述图5或图7或图10所示通信方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the communication method embodiments shown in Figures 5, 7, or 10 above, and can achieve the same technical effects. To avoid repetition, they will not be repeated here.

应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。It should be understood that the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.

本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述图5或图7或图10所示通信实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。An embodiment of the present application further provides a computer program/program product, which is stored in a storage medium and is executed by at least one processor to implement the various processes of the communication embodiment shown in Figures 5, 7, or 10 above, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.

本申请实施例还提供了一种通信系统,包括终端及网络侧设备,所述终端可用于执行如图5所述的方法的步骤,所述网络侧设备可用于执行如图7所述的方法的步骤;或,所述终端可用于执行如图7所述的方法的步骤,所述网络侧设备可用于执行如图5所述的方法的步骤;An embodiment of the present application further provides a communication system, including a terminal and a network-side device, wherein the terminal may be configured to perform the steps of the method shown in FIG5 , and the network-side device may be configured to perform the steps of the method shown in FIG7 ; or, the terminal may be configured to perform the steps of the method shown in FIG7 , and the network-side device may be configured to perform the steps of the method shown in FIG5 ;

或者,包括:终端、网络侧设备和监控设备;Or, including: terminals, network side equipment and monitoring equipment;

所述终端可用于执行如图5所述的方法的步骤,网络侧设备用于执行如图7所述的方法的步骤,监控设备用于执行如图10所述的方法的步骤。The terminal may be used to execute the steps of the method described in FIG. 5 , the network-side device may be used to execute the steps of the method described in FIG. 7 , and the monitoring device may be used to execute the steps of the method described in FIG. 10 .

需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。It should be noted that, in this article, the terms "comprise", "include" or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device comprising a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, article or device. In the absence of further restrictions, an element defined by the sentence "comprises a ..." does not exclude the presence of other identical elements in the process, method, article or device comprising the element. In addition, it should be pointed out that the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in the opposite order according to the functions involved. For example, the described method may be performed in an order different from that described, and various steps may also be added, omitted or combined. In addition, the features described with reference to certain examples may be combined in other examples.

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助计算机软件产品加必需的通用硬件平台的方式来实现,当然也可以通过硬件。该计算机软件产品存储在存储介质(如ROM、RAM、磁碟、光盘等)中,包括若干指令,用以使得终端或者网络侧设备执行本申请各个实施例所述的方法。Through the description of the above embodiments, those skilled in the art can clearly understand that the above-mentioned embodiment methods can be implemented by means of a computer software product plus a necessary general-purpose hardware platform, or of course, by hardware. The computer software product is stored in a storage medium (such as ROM, RAM, magnetic disk, optical disk, etc.) and includes a number of instructions for enabling a terminal or network-side device to execute the methods described in each embodiment of the present application.

上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式的实施方式,这些实施方式均属于本申请的保护之内。The embodiments of the present application are described above in conjunction with the accompanying drawings, but the present application is not limited to the above-mentioned specific implementation methods. The above-mentioned specific implementation methods are merely illustrative and not restrictive. Under the guidance of this application, ordinary technicians in this field can also make many forms of implementation methods without departing from the purpose of this application and the scope of protection of the claims. These implementation methods are all within the protection of this application.

Claims (63)

一种通信方法,包括:A communication method, comprising: 第一通信设备获取第一数据集,所述第一数据集包括第一输入数据;A first communication device acquires a first data set, where the first data set includes first input data; 所述第一通信设备根据所述第一数据集和第一人工智能AI模型,确定第一信息;The first communication device determines first information based on the first data set and a first artificial intelligence (AI) model; 其中,第一信息包括以下至少之一:The first information includes at least one of the following: 第一输出数据,所述第一输出数据为根据所述第一输入数据输入和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;first output data, where the first output data is output data obtained based on the first input data and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model; 第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;a first test result, where the first test result is used to determine a test result of the first AI model; 第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果。First monitoring information, where the first monitoring information is used to determine a monitoring result of the first AI model. 根据权利要求1所述的方法,其中,所述第一通信设备根据所述第一数据集和第一人工智能AI模型,确定第一信息,包括如下至少一项:The method according to claim 1, wherein the first communication device determines, based on the first data set and the first artificial intelligence (AI) model, first information including at least one of the following: 所述第一通信设备将所述第一输入数据输入所述第一AI模型,得到所述第一输出数据;The first communication device inputs the first input data into the first AI model to obtain the first output data; 所述第一通信设备根据所述第一数据集和所述第一输出数据,确定所述第一测试结果和所述第一监控信息中的至少一项。The first communication device determines at least one of the first test result and the first monitoring information according to the first data set and the first output data. 根据权利要求1或2所述的方法,其中,所述第一数据集包括如下至少一项:The method according to claim 1 or 2, wherein the first data set includes at least one of the following: 标准数据集,第二通信设备发送的数据集和所述第一通信设备测量的第一输入数据。A standard data set, a data set sent by the second communication device, and first input data measured by the first communication device. 根据权利要求1-3中任一项所述的方法,其中,所述第一AI模型包括第一模型和第二模型中的至少一项,所述第一模型为参考模型,所述第二模型为根据所述第一模型确定的、且不同于所述第一模型的模型。The method according to any one of claims 1 to 3, wherein the first AI model includes at least one of a first model and a second model, the first model is a reference model, and the second model is a model determined based on the first model and different from the first model. 根据权利要求4所述的方法,其中,所述参考模型包括如下至少一项:The method according to claim 4, wherein the reference model includes at least one of the following: 协议约定的参考模型;Reference model agreed upon in the agreement; 结合目标模型参数确定的参考模型,所述目标模型参数包括第二通信设备发送的模型参数;a reference model determined in conjunction with target model parameters, the target model parameters including model parameters sent by the second communication device; 基于协议约定的参考模型和目标模型参数确定的参考模型;A reference model determined based on the reference model agreed upon in the protocol and the parameters of the target model; 基于第二数据集训练得到的参考模型;A reference model trained based on a second data set; 基于协议约定的参考模型和第二数据集确定的参考模型;A reference model based on the protocol agreement and a reference model determined by the second data set; 所述第二通信设备发送的参考模型。The reference model sent by the second communication device. 根据权利要求1-5中任一项所述的方法,其中,所述第一数据集还包括第二输出数据,所述第二输出数据包括以下至少之一:The method according to any one of claims 1 to 5, wherein the first data set further includes second output data, and the second output data includes at least one of the following: 第一预期信息;First expected information; 第一标签数据;First label data; 其中,第一预期信息为第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息;The first expected information is expected output information corresponding to the first input data determined by the second communication device or protocol based on the first input data and a reference model; 第一标签数据为与所述第一输入数据对应的标签数据。The first label data is label data corresponding to the first input data. 根据权利要求6所述的方法,其中,所述第一数据集的第一输入数据包括如下至少一项:N个关联所述第二输出数据的第一输入数据,M个不关联所述第二输出数据的第一输入数据,N和M均为自然数。The method according to claim 6, wherein the first input data of the first data set includes at least one of the following: N first input data associated with the second output data, and M first input data not associated with the second output data, where N and M are both natural numbers. 根据权利要求6-7中任一项所述的方法,其中,所述第一测试结果包括如下至少一项:The method according to any one of claims 6-7, wherein the first test result includes at least one of the following: 第一输出数据与第二输出数据之间的第一差异信息;first difference information between the first output data and the second output data; 第一输出数据与第二输出数据之间的第一差异信息的统计信息;statistical information of first difference information between the first output data and the second output data; 第一输出数据与第二输出数据之间的第一比值信息;first ratio information between the first output data and the second output data; 第一输出数据与第二输出数据之间的第一比值信息的统计信息;statistical information of first ratio information between the first output data and the second output data; 所述第一差异信息与参考模型误差的第一差值信息;first difference information between the first difference information and a reference model error; 所述第一差异信息与参考模型误差的第一差值信息的统计信息;Statistical information of first difference information between the first difference information and the reference model error; 所述第一AI模型满足测试需求的指示;an indication that the first AI model meets the test requirements; 所述第一AI模型不满足测试需求的指示;an indication that the first AI model does not meet the test requirements; 所述第一AI模型中满足测试需求的模型的相关信息;Relevant information about the model that meets the test requirements in the first AI model; 满足测试需求的第一AI模型的数量。The number of first AI models that meet testing requirements. 根据权利要求8所述的方法,其中,所述第一通信设备根据所述第一数据集和第一人工智能AI模型,确定第一信息,包括如下至少一项:The method according to claim 8, wherein the first communication device determines, based on the first data set and the first artificial intelligence (AI) model, the first information, including at least one of the following: 在满足第一条件的情况下,确定所述第一AI模型满足测试需求;If the first condition is met, determining that the first AI model meets the test requirements; 在不满足第一条件的情况下,确定所述第一AI模型不满足测试需求;If the first condition is not met, determining that the first AI model does not meet the test requirement; 其中,所述第一条件包括如下至少一项:The first condition includes at least one of the following: 第一输出数据的有效载荷与第二输出数据的有效载荷相同;The payload of the first output data is the same as the payload of the second output data; 第一输出数据与第二输出数据之间的第一差异信息小于或等于第一阈值;First difference information between the first output data and the second output data is less than or equal to a first threshold; 第一输出数据与第二输出数据之间的第一差异信息的统计信息小于或等于第二阈值。Statistical information of the first difference information between the first output data and the second output data is less than or equal to a second threshold. 根据权利要求6-9中任一项所述的方法,还包括:The method according to any one of claims 6 to 9, further comprising: 所述第一通信设备接收第二通信设备或者第三通信设备发送的第一辅助信息,所述第二通信设备包括第四通信设备和监控设备中至少一项;The first communication device receives first auxiliary information sent by a second communication device or a third communication device, where the second communication device includes at least one of a fourth communication device and a monitoring device; 其中,第一辅助信息包括以下至少之一:The first auxiliary information includes at least one of the following: 第一阈值;first threshold; 第二阈值;second threshold; 第一统计信息;First statistics; 其中,所述第一阈值包括以下至少之一:The first threshold value includes at least one of the following: 所述第一输出数据与所述第二输出数据的差异阈值信息;difference threshold information between the first output data and the second output data; 所述第一输出数据与所述第二输出数据的比值阈值信息;threshold information of a ratio between the first output data and the second output data; 其中,所述第二阈值包括以下至少之一:The second threshold value includes at least one of the following: 所述第一输出数据与所述第二输出数据的差异统计信息的阈值信息;threshold information of statistical information of differences between the first output data and the second output data; 所述第一输出数据与所述第二输出数据的比值统计信息的阈值信息;threshold information of statistical information of the ratio of the first output data to the second output data; 其中,所述第一统计信息为第二数据集的统计信息,所述第二数据集为所述第一AI模型的训练数据;The first statistical information is statistical information of a second data set, and the second data set is training data of the first AI model; 所述第一通信设备根据所述第一数据集和第一人工智能AI模型,确定第一信息,包括:The first communication device determines first information based on the first data set and the first artificial intelligence (AI) model, including: 所述第一通信设备根据所述第一数据集、所述第一AI模型和所述第一辅助信息,确定所述第一信息。The first communication device determines the first information based on the first data set, the first AI model and the first auxiliary information. 根据权利要求1-10中任一项所述的方法,其中,所述第一信息包括第一监控信息,所述方法还包括:The method according to any one of claims 1 to 10, wherein the first information includes first monitoring information, and the method further comprises: 所述第一通信设备接收第二通信设备发送的第二信息;The first communication device receives second information sent by the second communication device; 其中,所述第二信息包括以下至少之一:The second information includes at least one of the following: 所述第二通信设备获取的解压缩的码本信息;decompressed codebook information acquired by the second communication device; 所述第二通信设备确定的吞吐量;a throughput determined by the second communication device; 所述第二通信设备确定的终端的位置信息;location information of the terminal determined by the second communication device; 波束set A的波束信息;Beam information of beam set A; 所述第一通信设备根据所述第一数据集和第一人工智能AI模型,确定第一信息,包括:The first communication device determines first information based on the first data set and the first artificial intelligence (AI) model, including: 所述第一通信设备根据所述第一数据集、所述第一输出数据和所述第二信息,确定所述第一监控信息。The first communication device determines the first monitoring information according to the first data set, the first output data and the second information. 根据权利要求1-11中任一项所述的方法,还包括:The method according to any one of claims 1 to 11, further comprising: 所述第一通信设备接收第二通信设备或者第三通信设备发送的第三信息,第二通信设备包括第四通信设备和监控设备中至少一项;The first communication device receives third information sent by the second communication device or the third communication device, where the second communication device includes at least one of a fourth communication device and a monitoring device; 其中,所述第三信息包括以下至少之一:The third information includes at least one of the following: 第二数据集;Second dataset; 参考模型;Reference model; 与参考模型关联的目标模型参数。Target model parameters associated with the reference model. 根据权利要求12所述的方法,其中,所述第一数据集与所述第三信息关联。The method of claim 12, wherein the first data set is associated with the third information. 根据权利要求1-13中任一项所述的方法,其中,所述第一输入数据包括如下至少一项:The method according to any one of claims 1 to 13, wherein the first input data includes at least one of the following: 信道状态信息;Channel state information; 码本信息;Codebook information; 原始信道信息;Original channel information; 时延谱DP;Delay profile DP; 功率时延谱PDP;Power delay profile PDP; 信道冲激响应CIR;Channel impulse response CIR; 多径对应的时延信息;Delay information corresponding to multipath; 多径对应的时延功率信息;Delay power information corresponding to multipath; 波束信息。Beam information. 根据权利要求14所述的方法,其中,The method according to claim 14, wherein 在所述第一输入数据包括所述信道状态信息或码本信息的情况下,所述第一输出数据包括压缩的信道状态信息或码本信息;In a case where the first input data includes the channel state information or codebook information, the first output data includes compressed channel state information or codebook information; 或,在所述第一输入数据包括原始信道信息的情况下,所述第一输出数据包括压缩的原始信道信息;Or, in a case where the first input data includes original channel information, the first output data includes compressed original channel information; 或,在所述第一输入数据包括所述信道状态信息或码本信息的情况下,所述第一输出数据包括解压缩的所述信道状态信息或码本信息;Or, in a case where the first input data includes the channel state information or codebook information, the first output data includes decompressed channel state information or codebook information; 或,在所述第一输入数据包括原始信道信息的情况下,所述第一输出数据包括解压缩的所述原始信道信息;Or, in a case where the first input data includes original channel information, the first output data includes decompressed original channel information; 或,在所述第一输入数据包括时延谱DP,功率时延谱PDP,信道冲激响应CIR中的至少一项的情况下,所述第一输出数据包括终端的位置信息,终端与其他设备之间的距离信息,往返时延RTT,参考信号时差RSTD,收发信号时间差中的至少一项;Or, when the first input data includes at least one of a delay profile DP, a power delay profile PDP, and a channel impulse response CIR, the first output data includes at least one of the location information of the terminal, the distance information between the terminal and other devices, the round-trip delay RTT, the reference signal time difference RSTD, and the time difference between transmitting and receiving signals; 或,在所述第一输入数据包括波束set B对应的波束信息的情况下,所述第一输出数据包括波束set A对应的波束信息。Alternatively, when the first input data includes beam information corresponding to beam set B, the first output data includes beam information corresponding to beam set A. 根据权利要求15所述的方法,其中,所述第一输出数据包括解压的码本信息和压缩的原始信道信息中的至少一项,所述第一信息包括第一测试结果的情况下,所述第一通信设备根据所述第一数据集和第一人工智能AI模型,确定第一信息,包括如下至少一项:The method according to claim 15, wherein the first output data includes at least one of decompressed codebook information and compressed original channel information, and when the first information includes a first test result, the first communications device determines, based on the first data set and the first artificial intelligence (AI) model, the first information, including at least one of the following: 根据所述第一输出数据与所述第一输入数据的第二差异信息和所述的第二差异信息的统计值中的至少一项,确定所述第一测试结果;determining the first test result according to at least one of second difference information between the first output data and the first input data and a statistical value of the second difference information; 根据所述第一输出数据与所述第一输入数据的第二比值信息和所述的第二比值信息的统计值中的至少一项,确定所述第一测试结果。The first test result is determined according to at least one of second ratio information of the first output data and the first input data and a statistical value of the second ratio information. 根据权利要求14-16中任一项所述的方法,其中,所述第一数据集还包括第一预期信息;The method according to any one of claims 14 to 16, wherein the first data set further includes first expected information; 在所述第一输入数据包括所述信道状态信息或码本信息的情况下,所述第一预期信息为根据参考模型压缩的信道状态信息或码本信息;In a case where the first input data includes the channel state information or codebook information, the first expected information is the channel state information or codebook information compressed according to a reference model; 或,在所述第一输入数据包括原始信道信息的情况下,所述第一预期信息包括根据参考模型压缩的原始信道信息;Or, in a case where the first input data includes original channel information, the first expected information includes original channel information compressed according to a reference model; 或,在所述第一输入数据包括所述信道状态信息或码本信息的情况下,所述第一预期信息为根据参考模型获取的解压缩的信道状态信息或码本信息;Or, in a case where the first input data includes the channel state information or codebook information, the first expected information is decompressed channel state information or codebook information obtained according to a reference model; 或,在所述第一输入数据包括原始信道信息的情况下,所述第一预期信息包括根据参考模型解压缩的原始信道信息。Alternatively, in a case where the first input data includes original channel information, the first expected information includes original channel information decompressed according to a reference model. 根据权利要求14-17中任一项所述的方法,其中,所述第一数据集还包括与所述第一输入数据对应的第一标签数据;The method according to any one of claims 14 to 17, wherein the first data set further includes first label data corresponding to the first input data; 在所述第一输入数据包括所述信道状态信息或码本信息的情况下,所述第一标签数据为压缩的信道状态信息或码本信息;In a case where the first input data includes the channel state information or codebook information, the first label data is compressed channel state information or codebook information; 或,在所述第一输入数据包括原始信道信息的情况下,所述第一标签数据为压缩的原始信道信息;Or, in a case where the first input data includes original channel information, the first label data is compressed original channel information; 或,在所述第一输入数据包括所述信道状态信息或码本信息的情况下,所述第一标签数据为解压缩的信道状态信息或码本信息;Or, when the first input data includes the channel state information or codebook information, the first tag data is decompressed channel state information or codebook information; 或,在所述第一输入数据包括原始信道信息的情况下,所述第一标签数据为解压缩的原始信道信息;Or, in a case where the first input data includes original channel information, the first tag data is decompressed original channel information; 或,在所述第一输入数据包括时延谱DP,功率时延谱PDP,信道冲激响应CIR中的至少一项的情况下,所述第一标签数据包括终端的位置标签,终端与其他设备之间的距离标签,往返时延RTT,参考信号时差RSTD标签,收发信号时间差标签中的至少一项;Or, when the first input data includes at least one of a delay profile DP, a power delay profile PDP, and a channel impulse response CIR, the first label data includes at least one of a location label of the terminal, a distance label between the terminal and other devices, a round-trip delay RTT, a reference signal time difference RSTD label, and a time difference label of a transmitting and receiving signal; 或,在所述第一输入数据包括set B对应的波束信息的情况下,所述第一标签数据包括set A对应的波束标签。Alternatively, when the first input data includes beam information corresponding to set B, the first label data includes beam labels corresponding to set A. 根据权利要求1-18中任一项所述的方法,其中,所述第一数据集还包括与所述第一输入数据对应的第一标签数据;所述第一标签数据关联如下信息中的至少一项:The method according to any one of claims 1 to 18, wherein the first data set further includes first label data corresponding to the first input data; the first label data is associated with at least one of the following information: 第二数据集的标签数据类型,所述第一输入数据对应的统计信息,所述第一数据集对应的特征信息;The label data type of the second data set, the statistical information corresponding to the first input data, and the feature information corresponding to the first data set; 其中,所述第二数据集为所述第一AI模型的训练数据。Among them, the second data set is the training data of the first AI model. 根据权利要求1-19中任一项所述的方法,还包括:The method according to any one of claims 1 to 19, further comprising: 在所述第一AI模型的测试结果和监控结果中至少一项不通过的情况下,执行如下操作中的至少一项:If at least one of the test result and the monitoring result of the first AI model fails, perform at least one of the following operations: 切换至第二AI模型;Switch to the second AI model; 切换至非AI功能;Switch to non-AI function; 回退至参考模型;Fall back to the reference model; 回退至非AI功能;Fall back to non-AI functionality; 更新参考模型;Update reference models; 更新参考模型参数;Update reference model parameters; 接收第二通信设备或第三通信设备重复发送的参考模型;receiving a reference pattern repeatedly sent by a second communication device or a third communication device; 接收第二通信设备或第三通信设备重复发送的参考模型参数;receiving a reference model parameter repeatedly sent by the second communication device or the third communication device; 接收第二通信设备或第三通信设备发送的更新的参考模型;receiving an updated reference model sent by the second communication device or the third communication device; 接收第二通信设备或第三通信设备发送的更新的参考模型参数。Receive updated reference model parameters sent by the second communication device or the third communication device. 根据权利要求1-20中任一项所述的方法,还包括:The method according to any one of claims 1 to 20, further comprising: 所述第一通信设备向第二通信设备发送所述第一信息,其中,所述第二通信设备包括第四通信设备和监控设备中至少一项。The first communication device sends the first information to a second communication device, wherein the second communication device includes at least one of a fourth communication device and a monitoring device. 根据权利要求21所述的方法,其中,所述第一信息还包括以下至少之一:The method according to claim 21, wherein the first information further includes at least one of the following: 所述第一数据集的识别信息;identification information of the first data set; 第二数据集的识别信息,其中,所述第二数据集为所述第一AI模型的训练数据;Identification information of a second data set, wherein the second data set is training data for the first AI model; 所述第一AI模型的识别信息;identification information of the first AI model; 所述第一AI模型的类型信息;Type information of the first AI model; 所述第一AI模型的功能信息。Functional information of the first AI model. 根据权利要求21-22中任一项所述的方法,其中,所述第一通信设备向第二通信设备发送所述第一信息,包括如下至少一项:The method according to any one of claims 21-22, wherein the first communication device sends the first information to the second communication device, including at least one of the following: 所述第一通信设备向第二通信设备发送所述第一输出数据;The first communication device sends the first output data to the second communication device; 所述第一通信设备向第二通信设备发送多个第一输入数据对应的第一输出数据;The first communication device sends first output data corresponding to the plurality of first input data to the second communication device; 所述第一通信设备向第二通信设备发送未关联第二输出数据的第一输入数据对应的第一输出数据;The first communication device sends, to the second communication device, first output data corresponding to first input data not associated with second output data; 所述第一通信设备向第二通信设备发送所述第一输入数据;The first communication device sends the first input data to the second communication device; 所述第一通信设备向第二通信设备发送一个第一输入数据对应的多个第一信息,其中所述多个第一信息中不同的第一信息关联不同的第一AI模型;The first communication device sends multiple first information corresponding to a first input data to the second communication device, where different first information in the multiple first information is associated with different first AI models; 其中,所述第二输出数据包括以下至少之一:The second output data includes at least one of the following: 第一预期信息,所述第一预期信息为所述第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息;first expected information, where the first expected information is expected output information corresponding to the first input data, determined by the second communication device or protocol based on the first input data and a reference model; 第一标签数据,所述第一标签数据为与所述第一输入数据对应的标签数据。First label data, where the first label data is label data corresponding to the first input data. 根据权利要求1-23中任一项所述的方法,其中,所述第一AI模型关联如下参数中的至少一项:The method according to any one of claims 1 to 23, wherein the first AI model is associated with at least one of the following parameters: 第一数据集,第二数据集,参考模型,硬件能力,量化方法,所述第一信息的上报比特数,模型的识别信息,模型的类型信息,模型的功能信息,模型的等级信息,模型的复杂度信息;The first data set, the second data set, the reference model, the hardware capability, the quantization method, the number of bits reported for the first information, the identification information of the model, the type information of the model, the function information of the model, the level information of the model, and the complexity information of the model; 其中,所述第二数据集为第一AI模型的训练数据集。Among them, the second data set is the training data set of the first AI model. 一种通信方法,包括:A communication method, comprising: 第二通信设备接收第一通信设备发送的第一信息;The second communication device receives the first information sent by the first communication device; 第二通信设备根据所述第一信息确定第一人工智能AI模型的测试结果和监控结果中的至少一项;The second communication device determines at least one of a test result and a monitoring result of the first artificial intelligence AI model based on the first information; 或者,第二通信设备向第一通信设备发送第一数据集,用于第一通信设备确定第一信息;Alternatively, the second communication device sends the first data set to the first communication device for the first communication device to determine the first information; 其中,所述第一信息包括以下至少之一:The first information includes at least one of the following: 第一输出数据,所述第一输出数据为根据第一数据集的第一输入数和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;First output data, where the first output data is output data obtained based on the first input data of the first data set and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model; 第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;a first test result, where the first test result is used to determine a test result of the first AI model; 第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果。First monitoring information, where the first monitoring information is used to determine a monitoring result of the first AI model. 根据权利要求25所述的方法,其中,所述第一AI模型包括第一模型和第二模型中的至少一项,所述第一模型为参考模型,所述第二模型为根据所述第一模型确定的、且不同于所述第一模型的模型。The method according to claim 25, wherein the first AI model includes at least one of a first model and a second model, the first model is a reference model, and the second model is a model determined based on the first model and different from the first model. 根据权利要求26所述的方法,其中,所述参考模型包括如下至少一项:The method of claim 26, wherein the reference model comprises at least one of the following: 协议约定的参考模型;Reference model agreed upon in the agreement; 结合目标模型参数确定的参考模型,所述目标模型参数包括所述第二通信设备发送的模型参数;a reference model determined in conjunction with target model parameters, the target model parameters including model parameters sent by the second communication device; 基于协议约定的参考模型和目标模型参数确定的参考模型;A reference model determined based on the reference model agreed upon in the protocol and the parameters of the target model; 基于第二数据集训练得到的参考模型;A reference model trained based on a second data set; 基于协议约定的参考模型和第二数据集确定的参考模型;A reference model based on the protocol agreement and a reference model determined by the second data set; 所述第二通信设备发送的参考模型。The reference model sent by the second communication device. 根据权利要求25-27中任一项所述的方法,其中,所述第一数据集还包括第二输出数据,所述第二输出数据包括以下至少之一:The method according to any one of claims 25 to 27, wherein the first data set further includes second output data, and the second output data includes at least one of the following: 第一预期信息;First expected information; 第一标签数据;First label data; 其中,第一预期信息为所述第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息;The first expected information is expected output information corresponding to the first input data determined by the second communication device or protocol based on the first input data and a reference model; 第一标签数据为与所述第一输入数据对应的标签数据。The first label data is label data corresponding to the first input data. 根据权利要求28所述的方法,其中,所述第一测试结果包括如下至少一项:The method according to claim 28, wherein the first test result includes at least one of the following: 第一输出数据与第二输出数据之间的第一差异信息;first difference information between the first output data and the second output data; 第一输出数据与第二输出数据之间的第一差异信息的统计信息;statistical information of first difference information between the first output data and the second output data; 第一输出数据与第二输出数据之间的第一比值信息;first ratio information between the first output data and the second output data; 第一输出数据与第二输出数据之间的第一比值信息的统计信息;statistical information of first ratio information between the first output data and the second output data; 所述第一差异信息与参考模型误差的第一差值信息;first difference information between the first difference information and a reference model error; 所述第一差异信息与参考模型误差的第一差值信息的统计信息;Statistical information of first difference information between the first difference information and the reference model error; 所述第一AI模型满足测试需求的指示;an indication that the first AI model meets the test requirements; 所述第一AI模型不满足测试需求的指示;an indication that the first AI model does not meet the test requirements; 所述第一AI模型中满足测试需求的模型的相关信息;Relevant information about the model that meets the test requirements in the first AI model; 满足测试需求的第一AI模型的数量。The number of first AI models that meet testing requirements. 根据权利要求28-29中任一项所述的方法,其中,所述方法还包括如下至少一项:The method according to any one of claims 28-29, wherein the method further comprises at least one of the following: 所述第二通信设备向所述第一通信设备发送第一辅助信息;The second communication device sends first auxiliary information to the first communication device; 所述第二通信设备向所述第一通信设备发送第二信息;The second communication device sends second information to the first communication device; 所述第二通信设备向所述第一通信设备发送第三信息;The second communication device sends third information to the first communication device; 其中,第一辅助信息包括以下至少之一:The first auxiliary information includes at least one of the following: 第一阈值;first threshold; 第二阈值;second threshold; 第一统计信息;First statistics; 所述第一阈值包括以下至少之一:The first threshold includes at least one of the following: 所述第一输出数据与所述第二输出数据的差异阈值信息;difference threshold information between the first output data and the second output data; 所述第一输出数据与所述第二输出数据的比值阈值信息;threshold information of a ratio between the first output data and the second output data; 所述第二阈值包括以下至少之一:The second threshold includes at least one of the following: 所述第一输出数据与所述第二输出数据的差异统计信息的阈值信息;threshold information of statistical information of differences between the first output data and the second output data; 所述第一输出数据与所述第二输出数据的比值统计信息的阈值信息;threshold information of statistical information of the ratio of the first output data to the second output data; 所述第一统计信息为第二数据集的统计信息,所述第二数据集为所述第一AI模型的训练数据;The first statistical information is statistical information of a second data set, and the second data set is training data of the first AI model; 其中,所述第二信息包括以下至少之一:The second information includes at least one of the following: 所述第二通信设备获取的解压缩的码本信息;decompressed codebook information acquired by the second communication device; 所述第二通信设备确定的吞吐量;a throughput determined by the second communication device; 所述第二通信设备确定的终端的位置信息;location information of the terminal determined by the second communication device; 波束set A的波束信息;Beam information of beam set A; 其中,所述第三信息包括以下至少之一:The third information includes at least one of the following: 第二数据集;Second dataset; 参考模型;Reference model; 与参考模型关联的目标模型参数。Target model parameters associated with the reference model. 根据权利要求30所述的方法,其中,所述第一数据集与所述第三信息关联。The method of claim 30, wherein the first data set is associated with the third information. 根据权利要求25-31中任一项所述的方法,其中,所述第一信息还包括以下至少之一:The method according to any one of claims 25 to 31, wherein the first information further includes at least one of the following: 所述第一数据集的识别信息;identification information of the first data set; 第二数据集的识别信息,其中,所述第二数据集为所述第一AI模型的训练数据;Identification information of a second data set, wherein the second data set is training data for the first AI model; 所述第一AI模型的识别信息;identification information of the first AI model; 所述第一AI模型的类型信息;Type information of the first AI model; 所述第一AI模型的功能信息。Functional information of the first AI model. 根据权利要求25-32中任一项所述的方法,其中,所述第二通信设备接收第一通信设备发送的第一信息,包括:The method according to any one of claims 25 to 32, wherein the second communication device receives the first information sent by the first communication device, comprising: 所述第二通信设备接收所述第一通信设备发送的所述第一输出数据;The second communication device receives the first output data sent by the first communication device; 所述第二通信设备接收所述第一通信设备发送的多个第一输入数据对应的第一输出数据;The second communication device receives first output data corresponding to the plurality of first input data sent by the first communication device; 所述第二通信设备接收所述第一通信设备发送的未关联第二输出数据的第一输入数据对应的第一输出数据;The second communication device receives first output data corresponding to first input data not associated with second output data sent by the first communication device; 所述第二通信设备接收所述第一通信设备发送的所述第一输入数据;The second communication device receives the first input data sent by the first communication device; 所述第二通信设备接收所述第一通信设备发送的一个第一输入数据对应的多个第一信息,其中所述多个第一信息中不同的第一信息关联不同的第一AI模型;The second communication device receives multiple first information corresponding to a first input data sent by the first communication device, wherein different first information in the multiple first information is associated with different first AI models; 其中,所述第二输出数据包括以下至少之一:The second output data includes at least one of the following: 第一预期信息,所述第一预期信息为所述第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息;first expected information, where the first expected information is expected output information corresponding to the first input data, determined by the second communication device or protocol based on the first input data and a reference model; 第一标签数据,所述第一标签数据为与所述第一输入数据对应的标签数据。First label data, where the first label data is label data corresponding to the first input data. 根据权利要求28-33中任一项所述的方法,其中,所述第二通信设备根据所述第一信息确定所述第一通信设备中的第一人工智能AI模型的测试结果和监控结果中的至少一项,包括如下至少一项:The method according to any one of claims 28 to 33, wherein the second communication device determines, based on the first information, at least one of a test result and a monitoring result of the first artificial intelligence (AI) model in the first communication device, including at least one of the following: 在满足第二条件的情况下,确定所述第一AI模型满足测试需求;If the second condition is met, determining that the first AI model meets the test requirements; 在不满足第二条件的情况下,确定所述第一AI模型不满足测试需求;If the second condition is not met, determining that the first AI model does not meet the test requirement; 其中,所述第二条件包括如下至少一项:The second condition includes at least one of the following: 第一输出数据的有效载荷与第一预期信息的有效载荷相同;The payload of the first output data is the same as the payload of the first expected information; 第一输出数据与第一预期信息之间的第三差异信息小于或等于第三阈值;The third difference information between the first output data and the first expected information is less than or equal to a third threshold; 第一输出数据与第一预期信息之间的第三差异信息的统计信息小于或等于第四阈值;Statistical information of the third difference information between the first output data and the first expected information is less than or equal to a fourth threshold; 所述第三差异信息与参考模型误差的第二差值信息小于或等于第五阈值;The second difference information between the third difference information and the reference model error is less than or equal to a fifth threshold; 所述第三差异信息与参考模型误差的第二差值信息的统计信息小于或等于第六阈值;Statistical information of the third difference information and the second difference information of the reference model error is less than or equal to a sixth threshold; 其中,第一预期信息为所述第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息。The first expected information is expected output information corresponding to the first input data determined by the second communication device or protocol based on the first input data and a reference model. 根据权利要求34所述的方法,其中,在所述第一输入数据包括信道状态信息或码本信息的情况下,所述第一预期信息为根据参考模型压缩的信道状态信息或码本信息;The method according to claim 34, wherein, when the first input data includes channel state information or codebook information, the first expected information is channel state information or codebook information compressed according to a reference model; 或,在所述第一输入数据包括原始信道信息的情况下,所述第一预期信息包括根据参考模型压缩的原始信道信息;Or, in a case where the first input data includes original channel information, the first expected information includes original channel information compressed according to a reference model; 或,在所述第一输入数据包括所述信道状态信息或码本信息的情况下,所述第一预期信息为根据参考模型获取的解压缩的信道状态信息或码本信息;Or, in a case where the first input data includes the channel state information or codebook information, the first expected information is decompressed channel state information or codebook information obtained according to a reference model; 或,在所述第一输入数据包括原始信道信息的情况下,所述第一预期信息包括根据参考模型解压缩的原始信道信息。Alternatively, in a case where the first input data includes original channel information, the first expected information includes original channel information decompressed according to a reference model. 根据权利要求34或35所述的方法,其中,所述第二通信设备为第四通信设备,所述第一输入数据包括信道状态信息、码本信息和原始信道信息中至少一项,所述第一输出数据包括压缩的码本信息和压缩的原始信道信息中的至少一项的情况下,所述第二通信设备根据所述第一信息确定所述第一通信设备中的第一人工智能AI模型的测试结果和监控结果,包括:The method according to claim 34 or 35, wherein the second communication device is a fourth communication device, and the first input data includes at least one of channel state information, codebook information, and original channel information, and the first output data includes at least one of compressed codebook information and compressed original channel information, the second communication device determining the test result and monitoring result of the first artificial intelligence (AI) model in the first communication device based on the first information, comprising: 所述第二通信设备解压缩所述第一输出数据,得到第三输出数据;The second communication device decompresses the first output data to obtain third output data; 在满足第三条件的情况下,确定所述第一AI模型满足测试需求,或,在不满足第三条件的情况下,确定所述第一AI模型不满足测试需求;If the third condition is met, determining that the first AI model meets the test requirement, or, if the third condition is not met, determining that the first AI model does not meet the test requirement; 所述第三条件包括如下至少一项:The third condition includes at least one of the following: 所述第三输出数据相对于所述第一输入数据的精度损失小于等于第七阈值;The precision loss of the third output data relative to the first input data is less than or equal to a seventh threshold; 所述第三输出数据相对于所述第一输入数据的精度损失统计小于等于第八阈值;The accuracy loss statistics of the third output data relative to the first input data is less than or equal to an eighth threshold; 所述第三输出数据的精度大于或等于所述第一输入数据的精度;The precision of the third output data is greater than or equal to the precision of the first input data; 所述第三输出数据相对于解压后的第一标签数据的精度损失小于等于第九阈值;The precision loss of the third output data relative to the decompressed first label data is less than or equal to a ninth threshold; 所述第三输出数据相对于解压后的第一标签数据的精度损失统计小于等于第十阈值;The accuracy loss statistics of the third output data relative to the decompressed first label data is less than or equal to a tenth threshold; 所述第三输出数据的精度大于或等于解压后的第一标签数据的精度;The precision of the third output data is greater than or equal to the precision of the decompressed first tag data; 所述第三输出数据与解压后的第一标签数据的第四差异信息小于等于第十一阈值;The fourth difference information between the third output data and the decompressed first label data is less than or equal to an eleventh threshold; 所述第三输出数据与解压后的第一标签数据的第四差异信息的统计信息小于等于第十二阈值。Statistical information of fourth difference information between the third output data and the decompressed first label data is less than or equal to a twelfth threshold. 根据权利要求25-36中任一项所述的方法,还包括:The method according to any one of claims 25 to 36, further comprising: 所述第二通信设备向所述第一通信设备发送反馈信息;The second communication device sends feedback information to the first communication device; 所述反馈信息包括如下至少一项:The feedback information includes at least one of the following: 所述第一AI模型满足测试需求的指示;an indication that the first AI model meets the test requirements; 所述第一AI模型不满足测试需求的指示;an indication that the first AI model does not meet the test requirements; 所述第一AI模型中满足测试需求的模型的相关信息;Relevant information about the model that meets the test requirements in the first AI model; 训练得到所述第一AI模型的第二数据集的相关信息;Training to obtain relevant information of a second data set of the first AI model; 满足测试需求的第一AI模型的数量。The number of first AI models that meet testing requirements. 根据权利要求25-37中任一项所述的方法,其中,所述第一AI模型关联如下参数中的至少一项:The method according to any one of claims 25 to 37, wherein the first AI model is associated with at least one of the following parameters: 第一数据集,第二数据集,参考模型,硬件能力,量化方法,所述第一信息的上报比特数,模型的识别信息,模型的类型信息,模型的功能信息,模型的等级信息,模型的复杂度信息;The first data set, the second data set, the reference model, the hardware capability, the quantization method, the number of bits reported for the first information, the identification information of the model, the type information of the model, the function information of the model, the level information of the model, and the complexity information of the model; 其中,所述第二数据集为第一AI模型的训练数据集。Among them, the second data set is the training data set of the first AI model. 根据权利要求25-38中任一项所述的方法,其中,所述第二通信设备包括第四通信设备和监控设备中至少一项。The method according to any one of claims 25 to 38, wherein the second communication device comprises at least one of a fourth communication device and a monitoring device. 一种通信方法,包括:A communication method, comprising: 监控设备接收第四通信设备发送的第四输出数据,所述第四输出数据为第一输出数据的解压缩数据;The monitoring device receives fourth output data sent by the fourth communication device, where the fourth output data is decompressed data of the first output data; 所述监控设备根据所述第四输出数据,确定第一人工智能AI模型的测试结果和监控结果中的至少一项;The monitoring device determines at least one of a test result and a monitoring result of the first artificial intelligence (AI) model based on the fourth output data; 或者,监控设备接收第一通信设备或者第四通信设备发送的所述第一人工智能AI模型的测试结果和监控结果中的至少一项;Alternatively, the monitoring device receives at least one of a test result and a monitoring result of the first artificial intelligence AI model sent by the first communication device or the fourth communication device; 所述监控设备基于所述第一人工智能AI模型的测试结果和监控结果中的至少一项,确定如下至少一项:The monitoring device determines at least one of the following based on at least one of the test result and the monitoring result of the first artificial intelligence (AI) model: 目标第一AI模型;Target-first AI model; 所述第一AI模型的状态信息;Status information of the first AI model; 其中,所述目标第一AI模型是所述第一AI模型的中的至少一个;wherein the target first AI model is at least one of the first AI models; 其中,所述第四通信设备用于接收所述第一通信设备发送的第一输出数据,并对所述第一输出数据进行解压缩,所述第一输出数据为根据第一数据集的第一输入数和所述第一AI模型得到的输出数据。Among them, the fourth communication device is used to receive the first output data sent by the first communication device and decompress the first output data, where the first output data is output data obtained based on the first input number of the first data set and the first AI model. 根据权利要求40所述的方法,其中,所述第一输入数据包括信道状态信息、码本信息和原始信道信息中至少一项,所述第一输出数据包括压缩的码本信息和压缩的原始信道信息中的至少一项的情况下,所述监控设备根据所述第四输出数据,确定所述第一通信设备中的第一人工智能AI模型的测试结果和监控结果,包括如下至少一项:The method according to claim 40, wherein the first input data includes at least one of channel state information, codebook information, and original channel information, and the first output data includes at least one of compressed codebook information and compressed original channel information, and the monitoring device determines, based on the fourth output data, a test result and a monitoring result of the first artificial intelligence (AI) model in the first communication device, including at least one of the following: 在满足第四条件的情况下,确定所述第一AI模型满足测试需求;If the fourth condition is met, determining that the first AI model meets the test requirements; 在不满足第四条件的情况下,确定所述第一AI模型不满足测试需求;If the fourth condition is not met, determining that the first AI model does not meet the test requirements; 所述第四条件包括如下至少一项:The fourth condition includes at least one of the following: 所述第四输出数据相对于所述第一输入数据的精度损失小于等于第十三阈值;The precision loss of the fourth output data relative to the first input data is less than or equal to a thirteenth threshold; 所述第四输出数据相对于所述第一输入数据的精度损失统计小于等于第十四阈值;The accuracy loss statistics of the fourth output data relative to the first input data is less than or equal to a fourteenth threshold; 所述第四输出数据的精度大于或等于所述第一输入数据的精度;The precision of the fourth output data is greater than or equal to the precision of the first input data; 所述第四输出数据相对于解压后的第一标签数据的精度损失小于等于第十五阈值;The precision loss of the fourth output data relative to the decompressed first label data is less than or equal to a fifteenth threshold; 所述第四输出数据相对于解压后的第一标签数据的精度损失统计小于等于第十六阈值;The accuracy loss statistics of the fourth output data relative to the decompressed first label data is less than or equal to a sixteenth threshold; 所述第四输出数据的精度大于或等于解压后的第一标签数据的精度;The precision of the fourth output data is greater than or equal to the precision of the decompressed first tag data; 所述第四输出数据与解压后的第一标签数据的第三差异信息小于等于第十七阈值;The third difference information between the fourth output data and the decompressed first label data is less than or equal to a seventeenth threshold; 所述第四输出数据与解压后的第一标签数据的第三差异信息的统计信息小于等于第十八阈值。Statistical information of the third difference information between the fourth output data and the decompressed first label data is less than or equal to an eighteenth threshold. 一种通信装置,包括:A communication device, comprising: 第一获取模块,用于获取第一数据集,所述第一数据集包括第一输入数据;A first acquisition module is configured to acquire a first data set, where the first data set includes first input data; 第一确定模块,用于根据所述第一数据集和第一人工智能AI模型,确定第一信息;A first determination module, configured to determine first information based on the first data set and a first artificial intelligence (AI) model; 其中,第一信息包括以下至少之一:The first information includes at least one of the following: 第一输出数据,所述第一输出数据为根据所述第一输入数据输入和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;first output data, where the first output data is output data obtained based on the first input data and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model; 第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;a first test result, where the first test result is used to determine a test result of the first AI model; 第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果。First monitoring information, where the first monitoring information is used to determine a monitoring result of the first AI model. 根据权利要求42所述的装置,其中,所述第一数据集还包括第二输出数据,所述第二输出数据包括以下至少之一:The apparatus of claim 42, wherein the first data set further comprises second output data, the second output data comprising at least one of the following: 第一预期信息;First expected information; 第一标签数据;First label data; 其中,第一预期信息为第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息;The first expected information is expected output information corresponding to the first input data determined by the second communication device or protocol based on the first input data and a reference model; 第一标签数据为与所述第一输入数据对应的标签数据。The first label data is label data corresponding to the first input data. 根据权利要求43所述的装置,其中,所述第一确定模块,包括如下至少一项:The apparatus according to claim 43, wherein the first determining module comprises at least one of the following: 第一确定子模块,用于在满足第一条件的情况下,确定所述第一AI模型满足测试需求;A first determination submodule, configured to determine that the first AI model meets the test requirement when a first condition is met; 第二确定子模块,用于在不满足第一条件的情况下,确定所述第一AI模型不满足测试需求;A second determining submodule, configured to determine that the first AI model does not meet the test requirement when the first condition is not met; 其中,所述第一条件包括如下至少一项:The first condition includes at least one of the following: 第一输出数据的有效载荷与第二输出数据的有效载荷相同;The payload of the first output data is the same as the payload of the second output data; 第一输出数据与第二输出数据之间的第一差异信息小于或等于第一阈值;First difference information between the first output data and the second output data is less than or equal to a first threshold; 第一输出数据与第二输出数据之间的第一差异信息的统计信息小于或等于第二阈值。Statistical information of the first difference information between the first output data and the second output data is less than or equal to a second threshold. 根据权利要求43或44所述的装置,还包括:The apparatus according to claim 43 or 44, further comprising: 第一接收模块,用于接收第二通信设备或者第三通信设备发送的第一辅助信息,所述第二通信设备包括第四通信设备和监控设备中至少一项;a first receiving module, configured to receive first auxiliary information sent by a second communication device or a third communication device, where the second communication device includes at least one of a fourth communication device and a monitoring device; 其中,第一辅助信息包括以下至少之一:The first auxiliary information includes at least one of the following: 第一阈值;first threshold; 第二阈值;second threshold; 第一统计信息;First statistics; 其中,所述第一阈值包括以下至少之一:The first threshold value includes at least one of the following: 所述第一输出数据与所述第二输出数据的差异阈值信息;difference threshold information between the first output data and the second output data; 所述第一输出数据与所述第二输出数据的比值阈值信息;threshold information of a ratio between the first output data and the second output data; 其中,所述第二阈值包括以下至少之一:The second threshold value includes at least one of the following: 所述第一输出数据与所述第二输出数据的差异统计信息的阈值信息;threshold information of statistical information of differences between the first output data and the second output data; 所述第一输出数据与所述第二输出数据的比值统计信息的阈值信息;threshold information of statistical information of the ratio of the first output data to the second output data; 其中,所述第一统计信息为第二数据集的统计信息,所述第二数据集为所述第一AI模型的训练数据;The first statistical information is statistical information of a second data set, and the second data set is training data of the first AI model; 所述第一确定模块包括:The first determining module includes: 第三确定子模块,用于根据所述第一数据集、所述第一AI模型和所述第一辅助信息,确定所述第一信息。The third determination submodule is used to determine the first information based on the first data set, the first AI model and the first auxiliary information. 根据权利要求42-45中任一项所述的装置,其中,所述第一信息包括第一监控信息,所述装置还包括:The apparatus according to any one of claims 42 to 45, wherein the first information includes first monitoring information, and the apparatus further comprises: 第二接收模块,用于接收第二通信设备发送的第二信息;A second receiving module, configured to receive second information sent by a second communication device; 其中,所述第二信息包括以下至少之一:The second information includes at least one of the following: 所述第二通信设备获取的解压缩的码本信息;decompressed codebook information acquired by the second communication device; 所述第二通信设备确定的吞吐量;a throughput determined by the second communication device; 所述第二通信设备确定的终端的位置信息;location information of the terminal determined by the second communication device; 波束set A的波束信息;Beam information of beam set A; 所述第一确定模块包括:The first determining module includes: 第四确定子模块,用于根据所述第一数据集、所述第一输出数据和所述第二信息,确定所述第一监控信息。The fourth determining submodule is configured to determine the first monitoring information according to the first data set, the first output data and the second information. 根据权利要求42-46中任一项所述的装置,还包括:The apparatus according to any one of claims 42 to 46, further comprising: 第三接收模块,用于接收第二通信设备或者第三通信设备发送的第三信息,第二通信设备包括第四通信设备和监控设备中至少一项;a third receiving module, configured to receive third information sent by a second communication device or a third communication device, where the second communication device includes at least one of a fourth communication device and a monitoring device; 其中,所述第三信息包括以下至少之一:The third information includes at least one of the following: 第二数据集;Second dataset; 参考模型;Reference model; 与参考模型关联的目标模型参数。Target model parameters associated with the reference model. 根据权利要求42-47中任一项所述的装置,其中,所述第一输出数据包括解压的码本信息和压缩的原始信道信息中的至少一项,所述第一信息包括第一测试结果的情况下,所述第一确定模块包括如下至少一项:The apparatus according to any one of claims 42 to 47, wherein the first output data includes at least one of decompressed codebook information and compressed original channel information, and when the first information includes a first test result, the first determining module includes at least one of the following: 第五确定子模块,用于根据所述第一输出数据与所述第一输入数据的第二差异信息和所述的第二差异信息的统计值中的至少一项,确定所述第一测试结果;a fifth determining submodule, configured to determine the first test result according to at least one of second difference information between the first output data and the first input data and a statistical value of the second difference information; 第六确定子模块,用于根据所述第一输出数据与所述第一输入数据的第二比值信息和所述的第二比值信息的统计值中的至少一项,确定所述第一测试结果。The sixth determination submodule is configured to determine the first test result based on at least one of second ratio information of the first output data to the first input data and a statistical value of the second ratio information. 根据权利要求42-48中任一项所述的装置,还包括:The apparatus according to any one of claims 42 to 48, further comprising: 执行模块,用于在所述第一AI模型的测试结果和监控结果中至少一项不通过的情况下,执行如下操作中的至少一项:an execution module, configured to, when at least one of the test result and the monitoring result of the first AI model fails, perform at least one of the following operations: 切换至第二AI模型;Switch to the second AI model; 切换至非AI功能;Switch to non-AI function; 回退至参考模型;Fall back to the reference model; 回退至非AI功能;Fall back to non-AI functionality; 更新参考模型;Update reference models; 更新参考模型参数;Update reference model parameters; 接收第二通信设备或第三通信设备重复发送的参考模型;receiving a reference pattern repeatedly sent by a second communication device or a third communication device; 接收所述第二通信设备或第三通信设备重复发送的参考模型参数;receiving a reference model parameter repeatedly sent by the second communication device or the third communication device; 接收所述第二通信设备或第三通信设备发送的更新的参考模型;receiving an updated reference model sent by the second communication device or the third communication device; 接收所述第二通信设备或第三通信设备发送的更新的参考模型参数。receiving updated reference model parameters sent by the second communication device or the third communication device. 根据权利要求42-49中任一项所述的装置,还包括:The apparatus according to any one of claims 42 to 49, further comprising: 第一发送模块,用于向第二通信设备发送所述第一信息,其中,所述第二通信设备包括第四通信设备和监控设备中至少一项。The first sending module is configured to send the first information to a second communication device, wherein the second communication device includes at least one of a fourth communication device and a monitoring device. 根据权利要求50所述的装置,其中,所述第一发送模块,包括:The apparatus according to claim 50, wherein the first sending module comprises: 第一发送子模块,用于向第二通信设备发送所述第一输出数据;A first sending submodule, configured to send the first output data to a second communication device; 第二发送子模块,用于向第二通信设备发送多个第一输入数据对应的第一输出数据;A second sending submodule, configured to send first output data corresponding to the plurality of first input data to a second communication device; 第三发送子模块,用于向第二通信设备发送未关联第二输出数据的第一输入数据对应的第一输出数据;a third sending submodule, configured to send, to the second communication device, first output data corresponding to the first input data not associated with the second output data; 第四发送子模块,用于向第二通信设备发送所述第一输入数据;a fourth sending submodule, configured to send the first input data to a second communication device; 第五发送子模块,用于向第二通信设备发送一个第一输入数据对应的多个第一信息,其中所述多个第一信息中不同的第一信息关联不同的第一AI模型;A fifth sending submodule, configured to send a plurality of first information corresponding to a first input data to the second communication device, wherein different first information in the plurality of first information are associated with different first AI models; 其中,所述第二输出数据包括以下至少之一:The second output data includes at least one of the following: 第一预期信息,所述第一预期信息为所述第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息;first expected information, where the first expected information is expected output information corresponding to the first input data, determined by the second communication device or protocol based on the first input data and a reference model; 第一标签数据,所述第一标签数据为与所述第一输入数据对应的标签数据。First label data, where the first label data is label data corresponding to the first input data. 一种通信装置,包括:A communication device, comprising: 第四接收模块,用于接收第一通信设备发送的第一信息;A fourth receiving module, configured to receive first information sent by the first communication device; 第二确定模块,用于根据所述第一信息确定第一人工智能AI模型的测试结果和监控结果中的至少一项;A second determination module is configured to determine at least one of a test result and a monitoring result of the first artificial intelligence AI model based on the first information; 或者,所述装置包括:Alternatively, the device comprises: 第二发送模块,用于向第一通信设备发送第一数据集,以使得所述第一通信设备确定第一信息;a second sending module, configured to send a first data set to a first communication device, so that the first communication device determines first information; 其中,所述第一信息包括以下至少之一:The first information includes at least one of the following: 第一输出数据,所述第一输出数据为根据第一数据集的第一输入数和所述第一AI模型得到的输出数据,所述第一输出数据用于确定或辅助确定所述第一AI模型的测试结果和监控结果中的至少一项;First output data, where the first output data is output data obtained based on the first input data of the first data set and the first AI model, and the first output data is used to determine or assist in determining at least one of a test result and a monitoring result of the first AI model; 第一测试结果,所述第一测试结果用于确定所述第一AI模型的测试结果;a first test result, where the first test result is used to determine a test result of the first AI model; 第一监控信息,所述第一监控信息用于确定所述第一AI模型的监控结果。First monitoring information, where the first monitoring information is used to determine a monitoring result of the first AI model. 根据权利要求52所述的装置,其中,所述第一数据集还包括第二输出数据,所述第二输出数据包括以下至少之一:The apparatus of claim 52, wherein the first data set further comprises second output data, the second output data comprising at least one of the following: 第一预期信息;First expected information; 第一标签数据;First label data; 其中,第一预期信息为第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息;The first expected information is expected output information corresponding to the first input data determined by the second communication device or protocol based on the first input data and a reference model; 第一标签数据为与所述第一输入数据对应的标签数据;The first label data is label data corresponding to the first input data; 所述装置还包括:The device further comprises: 第三发送模块,用于向所述第一通信设备发送第一辅助信息;A third sending module, configured to send first auxiliary information to the first communication device; 第四发送模块,用于向所述第一通信设备发送第二信息;a fourth sending module, configured to send second information to the first communication device; 第五发送模块,用于向所述第一通信设备发送第三信息;a fifth sending module, configured to send third information to the first communication device; 其中,第一辅助信息包括以下至少之一:The first auxiliary information includes at least one of the following: 第一阈值;first threshold; 第二阈值;second threshold; 第一统计信息;First statistics; 所述第一阈值包括以下至少之一:The first threshold includes at least one of the following: 所述第一输出数据与所述第二输出数据的差异阈值信息;difference threshold information between the first output data and the second output data; 所述第一输出数据与所述第二输出数据的比值阈值信息;threshold information of a ratio between the first output data and the second output data; 所述第二阈值包括以下至少之一:The second threshold includes at least one of the following: 所述第一输出数据与所述第二输出数据的差异统计信息的阈值信息;threshold information of statistical information of differences between the first output data and the second output data; 所述第一输出数据与所述第二输出数据的比值统计信息的阈值信息;threshold information of statistical information of the ratio of the first output data to the second output data; 所述第一统计信息为第二数据集的统计信息,所述第二数据集为所述第一AI模型的训练数据;The first statistical information is statistical information of a second data set, and the second data set is training data of the first AI model; 其中,所述第二信息包括以下至少之一:The second information includes at least one of the following: 所述第二通信设备获取的解压缩的码本信息;decompressed codebook information acquired by the second communication device; 所述第二通信设备确定的吞吐量;a throughput determined by the second communication device; 所述第二通信设备确定的终端的位置信息;location information of the terminal determined by the second communication device; 波束set A的波束信息;Beam information of beam set A; 其中,所述第三信息包括以下至少之一:The third information includes at least one of the following: 第二数据集;Second dataset; 参考模型;Reference model; 与参考模型关联的目标模型参数。Target model parameters associated with the reference model. 根据权利要求52或53所述的装置,其中,所述第四接收模块,包括:The apparatus according to claim 52 or 53, wherein the fourth receiving module comprises: 第一接收子模块,用于接收所述第一通信设备发送的所述第一输出数据;a first receiving submodule, configured to receive the first output data sent by the first communication device; 第二接收子模块,用于接收所述第一通信设备发送的多个第一输入数据对应的第一输出数据;a second receiving submodule, configured to receive first output data corresponding to a plurality of first input data sent by the first communication device; 第三接收子模块,用于接收所述第一通信设备发送的未关联第二输出数据的第一输入数据对应的第一输出数据;a third receiving submodule, configured to receive first output data corresponding to first input data not associated with second output data and sent by the first communication device; 第四接收子模块,用于接收所述第一通信设备发送的所述第一输入数据;a fourth receiving submodule, configured to receive the first input data sent by the first communication device; 第五接收子模块,用于接收所述第一通信设备发送的一个第一输入数据对应的多个第一信息,其中所述多个第一信息中不同的第一信息关联不同的第一AI模型;A fifth receiving submodule, configured to receive multiple first information corresponding to a first input data sent by the first communication device, wherein different first information in the multiple first information are associated with different first AI models; 其中,所述第二输出数据包括以下至少之一:The second output data includes at least one of the following: 第一预期信息,所述第一预期信息为第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息;first expected information, where the first expected information is expected output information corresponding to the first input data, determined by a second communication device or protocol based on the first input data and a reference model; 第一标签数据,所述第一标签数据为与所述第一输入数据对应的标签数据。First label data, where the first label data is label data corresponding to the first input data. 根据权利要求52-54中任一项所述的装置,其中,所述第二确定模块,包括如下至少一项:The apparatus according to any one of claims 52 to 54, wherein the second determining module comprises at least one of the following: 第七确定子模块,用于在满足第二条件的情况下,确定所述第一AI模型满足测试需求;a seventh determination submodule, configured to determine that the first AI model meets the test requirement when the second condition is met; 第八确定子模块,用于在不满足第二条件的情况下,确定所述第一AI模型不满足测试需求;an eighth determining submodule, configured to determine that the first AI model does not meet the test requirement if the second condition is not met; 其中,所述第二条件包括如下至少一项:The second condition includes at least one of the following: 第一输出数据的有效载荷与第一预期信息的有效载荷相同;The payload of the first output data is the same as the payload of the first expected information; 第一输出数据与第一预期信息之间的第三差异信息小于或等于第三阈值;The third difference information between the first output data and the first expected information is less than or equal to a third threshold; 第一输出数据与第一预期信息之间的第三差异信息的统计信息小于或等于第四阈值;Statistical information of the third difference information between the first output data and the first expected information is less than or equal to a fourth threshold; 所述第三差异信息与参考模型误差的第二差值信息小于或等于第五阈值;The second difference information between the third difference information and the reference model error is less than or equal to a fifth threshold; 所述第三差异信息与参考模型误差的第二差值信息的统计信息小于或等于第六阈值;Statistical information of the third difference information and the second difference information of the reference model error is less than or equal to a sixth threshold; 其中,第一预期信息为第二通信设备或者协议基于所述第一输入数据和参考模型确定的与所述第一输入数据对应的预期输出信息。The first expected information is expected output information corresponding to the first input data, determined by the second communication device or protocol based on the first input data and a reference model. 根据权利要求52-55中任一项所述的装置,其中,所述通信装置为第四通信设备,所述第一输入数据包括信道状态信息、码本信息和原始信道信息中至少一项,所述第一输出数据包括压缩的码本信息和压缩的原始信道信息中的至少一项的情况下,所述第二确定模块,包括:The apparatus according to any one of claims 52 to 55, wherein the communication apparatus is a fourth communication device, and when the first input data includes at least one of channel state information, codebook information, and original channel information, and the first output data includes at least one of compressed codebook information and compressed original channel information, the second determining module includes: 第一解压模块,用于解压缩所述第一输出数据,得到第三输出数据;a first decompression module, configured to decompress the first output data to obtain third output data; 第九确定子模块,用于在满足第三条件的情况下,确定所述第一AI模型满足测试需求,或,在不满足第三条件的情况下,确定所述第一AI模型不满足测试需求;a ninth determining submodule, configured to determine that the first AI model meets the test requirement if a third condition is met, or to determine that the first AI model does not meet the test requirement if the third condition is not met; 所述第三条件包括如下至少一项:The third condition includes at least one of the following: 所述第三输出数据相对于所述第一输入数据的精度损失小于等于第七阈值;The precision loss of the third output data relative to the first input data is less than or equal to a seventh threshold; 所述第三输出数据相对于所述第一输入数据的精度损失统计小于等于第八阈值;The accuracy loss statistics of the third output data relative to the first input data is less than or equal to an eighth threshold; 所述第三输出数据的精度大于或等于所述第一输入数据的精度;The precision of the third output data is greater than or equal to the precision of the first input data; 所述第三输出数据相对于解压后的第一标签数据的精度损失小于等于第九阈值;The precision loss of the third output data relative to the decompressed first label data is less than or equal to a ninth threshold; 所述第三输出数据相对于解压后的第一标签数据的精度损失统计小于等于第十阈值;The accuracy loss statistics of the third output data relative to the decompressed first label data is less than or equal to a tenth threshold; 所述第三输出数据的精度大于或等于解压后的第一标签数据的精度;The precision of the third output data is greater than or equal to the precision of the decompressed first tag data; 所述第三输出数据与解压后的第一标签数据的第四差异信息小于等于第十一阈值;The fourth difference information between the third output data and the decompressed first label data is less than or equal to an eleventh threshold; 所述第三输出数据与解压后的第一标签数据的第四差异信息的统计信息小于等于第十二阈值。Statistical information of fourth difference information between the third output data and the decompressed first label data is less than or equal to a twelfth threshold. 根据权利要求52-56中任一项所述的装置,还包括:The apparatus according to any one of claims 52 to 56, further comprising: 第六发送模块,用于向所述第一通信设备发送反馈信息;a sixth sending module, configured to send feedback information to the first communication device; 所述反馈信息包括如下至少一项:The feedback information includes at least one of the following: 所述第一AI模型满足测试需求的指示;an indication that the first AI model meets the test requirements; 所述第一AI模型不满足测试需求的指示;an indication that the first AI model does not meet the test requirements; 所述第一AI模型中满足测试需求的模型的相关信息;Relevant information about the model that meets the test requirements in the first AI model; 训练得到所述第一AI模型的第二数据集的相关信息;Training to obtain relevant information of a second data set of the first AI model; 满足测试需求的第一AI模型的数量。The number of first AI models that meet testing requirements. 一种通信装置,包括:A communication device, comprising: 第五接收模块,用于接收第四通信设备发送的第四输出数据,所述第四输出数据为第一输出数据的解压缩数据;a fifth receiving module, configured to receive fourth output data sent by a fourth communication device, wherein the fourth output data is decompressed data of the first output data; 第三确定模块,用于根据所述第四输出数据,确定第一人工智能AI模型的测试结果和监控结果中的至少一项;a third determining module, configured to determine at least one of a test result and a monitoring result of the first artificial intelligence (AI) model based on the fourth output data; 或者,第六接收模块,用于接收第一通信设备或者第四通信设备发送的所述第一人工智能AI模型的测试结果和监控结果中的至少一项;Alternatively, a sixth receiving module is configured to receive at least one of a test result and a monitoring result of the first artificial intelligence AI model sent by the first communication device or the fourth communication device; 第四确定模块,用于基于所述第一人工智能AI模型的测试结果和监控结果中的至少一项,确定如下至少一项:A fourth determination module is configured to determine at least one of the following based on at least one of the test result and the monitoring result of the first artificial intelligence (AI) model: 目标第一AI模型;Target-first AI model; 所述第一AI模型的状态信息;Status information of the first AI model; 其中,所述目标第一AI模型是所述第一AI模型的中的至少一个;wherein the target first AI model is at least one of the first AI models; 其中,所述第四通信设备用于接收第一通信设备发送的第一输出数据,并对所述第一输出数据进行解压缩,所述第一输出数据为根据第一数据集的第一输入数和所述第一AI模型得到的输出数据。Among them, the fourth communication device is used to receive the first output data sent by the first communication device and decompress the first output data, where the first output data is output data obtained based on the first input number of the first data set and the first AI model. 根据权利要求58所述的装置,其中,所述第一输入数据包括信道状态信息、码本信息和原始信道信息中至少一项,所述第一输出数据包括压缩的码本信息和压缩的原始信道信息中的至少一项的情况下,所述第三确定模块,用于,包括如下至少一项:The apparatus according to claim 58, wherein the first input data includes at least one of channel state information, codebook information, and original channel information, and the first output data includes at least one of compressed codebook information and compressed original channel information, the third determining module is configured to include at least one of the following: 第五确定模块,用于在满足第四条件的情况下,确定所述第一AI模型满足测试需求;A fifth determination module, configured to determine whether the first AI model meets the test requirement when the fourth condition is met; 第六确定模块,用于在不满足第四条件的情况下,确定所述第一AI模型不满足测试需求;a sixth determining module, configured to determine that the first AI model does not meet the test requirement if the fourth condition is not met; 所述第四条件包括如下至少一项:The fourth condition includes at least one of the following: 所述第四输出数据相对于所述第一输入数据的精度损失小于等于第十三阈值;The precision loss of the fourth output data relative to the first input data is less than or equal to a thirteenth threshold; 所述第四输出数据相对于所述第一输入数据的精度损失统计小于等于第十四阈值;The accuracy loss statistics of the fourth output data relative to the first input data is less than or equal to a fourteenth threshold; 所述第四输出数据的精度大于或等于所述第一输入数据的精度;The precision of the fourth output data is greater than or equal to the precision of the first input data; 所述第四输出数据相对于解压后的第一标签数据的精度损失小于等于第十五阈值;The precision loss of the fourth output data relative to the decompressed first label data is less than or equal to a fifteenth threshold; 所述第四输出数据相对于解压后的第一标签数据的精度损失统计小于等于第十六阈值;The accuracy loss statistics of the fourth output data relative to the decompressed first label data is less than or equal to a sixteenth threshold; 所述第四输出数据的精度大于或等于解压后的第一标签数据的精度;The precision of the fourth output data is greater than or equal to the precision of the decompressed first tag data; 所述第四输出数据与解压后的第一标签数据的第三差异信息小于等于第十七阈值;The third difference information between the fourth output data and the decompressed first label data is less than or equal to a seventeenth threshold; 所述第四输出数据与解压后的第一标签数据的第三差异信息的统计信息小于等于第十八阈值。Statistical information of the third difference information between the fourth output data and the decompressed first label data is less than or equal to an eighteenth threshold. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至24任一项所述的通信方法的步骤,或,所述程序或指令被所述处理器执行时实现如权利要求25至39任一项所述的通信方法的步骤。A terminal comprises a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the communication method according to any one of claims 1 to 24 are implemented, or when the program or instruction is executed by the processor, the steps of the communication method according to any one of claims 25 to 39 are implemented. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至24任一项所述的通信方法的步骤,或,所述程序或指令被所述处理器执行时实现如权利要求25至39任一项所述的通信方法的步骤,或,所述程序或指令被所述处理器执行时实现如权利要求40至41任一项所述的通信方法的步骤。A network-side device comprises a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, wherein the program or instruction, when executed by the processor, implements the steps of the communication method according to any one of claims 1 to 24, or, when executed by the processor, implements the steps of the communication method according to any one of claims 25 to 39, or, when executed by the processor, implements the steps of the communication method according to any one of claims 40 to 41. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-24任一项所述的通信方法,或者实现如权利要求25至39任一项所述的通信方法的步骤,或者,实现如权利要求40至41任一项所述的通信方法的步骤。A readable storage medium storing a program or instruction, wherein the program or instruction, when executed by a processor, implements the communication method according to any one of claims 1 to 24, or implements the steps of the communication method according to any one of claims 25 to 39, or implements the steps of the communication method according to any one of claims 40 to 41. 一种计算机程序产品,包括计算机指令,所述计算机指令被处理器执行时实现如权利要求1至24中任一项所述的方法的步骤,或所述计算机指令被处理器执行时实现如权利要求25至39中任一项所述的方法的步骤,或所述计算机指令被处理器执行时实现如权利要求40至41中任一项所述的方法的步骤。A computer program product comprising computer instructions, wherein when the computer instructions are executed by a processor, the steps of the method according to any one of claims 1 to 24 are implemented, or when the computer instructions are executed by a processor, the steps of the method according to any one of claims 25 to 39 are implemented, or when the computer instructions are executed by a processor, the steps of the method according to any one of claims 40 to 41 are implemented.
PCT/CN2025/086551 2024-04-03 2025-04-01 Communication method and apparatus, terminal, network side device, medium, and product Pending WO2025209453A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202410403747.5A CN120786392A (en) 2024-04-03 2024-04-03 Communication method, device, terminal, network equipment, medium and product
CN202410403747.5 2024-04-03

Publications (1)

Publication Number Publication Date
WO2025209453A1 true WO2025209453A1 (en) 2025-10-09

Family

ID=97266330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2025/086551 Pending WO2025209453A1 (en) 2024-04-03 2025-04-01 Communication method and apparatus, terminal, network side device, medium, and product

Country Status (2)

Country Link
CN (1) CN120786392A (en)
WO (1) WO2025209453A1 (en)

Also Published As

Publication number Publication date
CN120786392A (en) 2025-10-14

Similar Documents

Publication Publication Date Title
US20230412430A1 (en) Inforamtion reporting method and apparatus, first device, and second device
WO2023179476A1 (en) Channel feature information reporting and recovery methods, terminal and network side device
US20240154675A1 (en) Communication method and apparatus
WO2023246618A1 (en) Channel matrix processing method and apparatus, and terminal and network side device
CN116939650B (en) Channel characteristic information transmission method and device, terminal and network side equipment
CN117715075A (en) CQI transmission method, CQI transmission device, terminal and network side equipment
WO2024055974A1 (en) Cqi transmission method and apparatus, terminal and network side device
WO2025209453A1 (en) Communication method and apparatus, terminal, network side device, medium, and product
WO2024002003A1 (en) Channel feedback model determination method, terminal, and network side device
WO2023179473A1 (en) Channel feature information reporting method, channel feature information recovery method, terminal and network side device
WO2023185978A1 (en) Channel feature information reporting method, channel feature information recovery method, terminal and network side device
CN117978218A (en) Information transmission method, information processing method, device and communication equipment
CN118381535A (en) Information sending method, receiving method, communication device and storage medium
US20250343585A1 (en) Csi transmission method and apparatus, terminal, and network side device
US20250184772A1 (en) Information transmission method and apparatus, device, system, and storage medium
WO2024217495A1 (en) Information processing method, information processing apparatus, terminal, and network-side device
WO2025176073A1 (en) Csi processing method and apparatus, device, and medium
WO2024140422A1 (en) Ai unit performance monitoring method, terminal and network side device
WO2025232707A1 (en) Csi data processing method and apparatus, terminal, network side device, medium, and product
CN120389768A (en) Precoding matrix feedback method, terminal and network side equipment
CN119449106A (en) Channel state information reporting method, acquisition method, terminal and network side device
WO2024222573A1 (en) Information processing method, information processing apparatus, terminal and network side device
WO2025031426A1 (en) Csi feedback method and apparatus, and device and readable storage medium
WO2024037380A1 (en) Channel information processing methods and apparatus, communication device, and storage medium
WO2025146034A1 (en) Ai-based csi compression method and apparatus, and terminal and network-side device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 25781847

Country of ref document: EP

Kind code of ref document: A1