WO2025134284A1 - Receiver and wireless communication program - Google Patents
Receiver and wireless communication program Download PDFInfo
- Publication number
- WO2025134284A1 WO2025134284A1 PCT/JP2023/045760 JP2023045760W WO2025134284A1 WO 2025134284 A1 WO2025134284 A1 WO 2025134284A1 JP 2023045760 W JP2023045760 W JP 2023045760W WO 2025134284 A1 WO2025134284 A1 WO 2025134284A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- learning
- data
- compensation factor
- signal
- receiver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
Definitions
- This disclosure relates to a receiver and a wireless communication program.
- Non-Patent Document 1 discloses a method of outputting the original signal based on a pilot signal that has been affected by amplifier distortion and a multiple regression model obtained by pre-learning. In this method, the input/output characteristics of the amplifier are derived, and a reference signal to be used for demodulation is generated based on the derived characteristics, thereby improving communication quality.
- the above method uses pilot signals, which increases the amount of shared information and reduces communication speed. Furthermore, there is an issue that compensation performance can be significantly degraded if the training data used in pre-learning and the received signal differ significantly due to changes in the type or performance of the wireless equipment used in communication.
- the primary objective of this disclosure is to provide a receiver that can provide appropriate compensation and improve communication speed even when the type or performance of the wireless device used in communication changes.
- a second objective of this disclosure is to provide a wireless communication program that can provide appropriate compensation and improve communication speeds even when the type or performance of the wireless device used in communication changes.
- the first aspect of the present disclosure is a receiver that receives data from a transmitter, comprising a processor and a memory that stores a program to be executed by the processor, and configured to execute a process of performing multiple types of learning using an autoencoder (AE) based on multiple types of learning data, a process of storing the multiple types of learning results, a process of determining a compensation factor required by a received data signal using multiple types of learning models generated based on the learning results, and a process of compensating the received data signal according to the determined compensation factor, and the learning data is preferably teacher data corresponding to the received data and learning data corresponding to the received data, and the receiver is linked to the corresponding compensation factor.
- AE autoencoder
- a second aspect of the present disclosure is a wireless communication program to be executed by a receiver having a processor and a memory, the program being stored in the memory and computer-readable, and including a program for causing the processor to execute a process of performing multiple types of learning using an autoencoder (AE) based on multiple types of learning data, a process of storing the multiple types of learning results, a process of determining the compensation factor required by the received data signal using multiple types of learning models generated based on the learning results, and a process of compensating the received data signal according to the determined compensation factor, and the learning data is preferably teacher data corresponding to the received data and learning data corresponding to the received data, and the wireless communication program is linked to the corresponding compensation factor.
- AE autoencoder
- the first and second aspects of the present disclosure make it possible to provide appropriate compensation and improve communication speed even when the type or performance of the wireless device used in communication changes.
- First embodiment 1 is a diagram illustrating a configuration example of a wireless communication system according to a first embodiment of the present disclosure.
- the wireless communication system 100 includes a transmitter 20.
- the transmitter 20 transmits a signal to a receiver 40.
- the transmitter 20 has an information generating unit 21.
- the information generating unit 21 generates information bits for the information to be transmitted to the receiver 40.
- the information generating unit 21 may also have a function of adding an error correction code or an interleaving function.
- the generated information bits are transmitted to the data signal modulation unit 22.
- the data signal modulation unit 22 modulates the information bits into a data signal.
- the modulation method used here is, for example, quadrature amplitude modulation (QAM).
- the data signal obtained by the modulation is transmitted to the D/A conversion unit 23.
- the D/A conversion unit 23 converts the digitally modulated data signal into an analog signal. At this time, an I signal and a Q signal are generated.
- the analog data signal is transmitted to the IQ signal modulation unit 24.
- the IQ signal modulation unit 24 performs quadrature modulation on the I and Q signals.
- the quadrature modulated data signal is transmitted to the amplifier 25.
- the amplifier 25 amplifies the data signal and transmits it to the receiver 40.
- the receiver 40 includes an amplifier unit 41.
- the amplifier unit 41 amplifies the data signal received from the transmitter 20.
- the amplified data signal is transmitted to the IQ signal demodulation unit 42.
- the IQ signal demodulation unit 42 demodulates the received data signal into an I signal and a Q signal.
- the demodulated data signal is transmitted to the A/D conversion unit 43.
- the A/D conversion unit 43 digitizes the analog data signal for digital demodulation.
- the digitized data signal is transmitted to the channel equalization unit 44.
- the channel equalization unit 44 obtains an estimate of the originally transmitted signal by inversely calculating the amplitude and phase information of the channel response based on the data signal.
- the data signal from which the estimated value has been obtained is transmitted to the determination unit 45.
- the determination unit 45 generates multiple learning models based on the learning results of multiple AEs (Autoencoders) obtained in pre-processing.
- the determination unit 45 uses the multiple learning models to determine the compensation factor required by the received data signal.
- Compensation factors are factors that cause imperfections in the RF circuit, for example, and specifically, nonlinear distortion of the amplifier, IQ imbalance, phase noise, and combinations of these. Furthermore, compensation factors may include "no compensation required" which is used when compensation is not required. Details of the pre-processing and determination method will be described later.
- the data signal is transmitted to compensation unit 46a or 46b depending on the determined compensation factor.
- Compensation units 46a and 46b compensate the received data signal.
- Compensation units 46a and 46b differ in compensation target and calculation capability. Also, while an embodiment in which there are two types of compensation units, compensation units 46a and 46b, is shown here, there may be three or more types.
- the compensated data signal is transmitted to the information detection unit 47.
- the information detection unit 47 detects information bits from the data signal. Depending on the function of the information generation unit 21, the information detection unit 47 may also have a function of decoding error correction codes or a deinterleaving function.
- the wireless communication system 100 includes a pre-processing unit 60.
- the pre-processing unit 60 may be included in each receiver 40. Alternatively, the pre-processing unit 60 may be connected to multiple receivers 40 to perform pre-processing collectively.
- the pre-processing unit 60 has a learning data generation unit 61.
- the learning data generation unit 61 generates learning data to be used in AE. Here, multiple types of learning data are generated depending on the compensation factor.
- the generated multiple types of learning data are transmitted to the AE learning unit 62.
- the AE learning unit 62 performs multiple learning operations using the AE based on the multiple types of learning data.
- the multiple learning results are transmitted to the learning result storage unit 48 of the receiver 40.
- the learning result storage unit 48 stores the multiple types of learning results obtained by the pre-processing unit 60.
- the aforementioned determination unit 45 generates multiple types of learning models based on the multiple learning results.
- FIG. 2 is a diagram showing the hardware configuration of a receiver according to the first embodiment of the present disclosure.
- Each function of the receiver 40 may be configured in whole or in part by hardware such as a PLD (Programmable Logic Device) or an FPGA (Field Programmable Gate Array), or may be configured as a program executed by a processor such as a CPU.
- PLD Processable Logic Device
- FPGA Field Programmable Gate Array
- the receiver 40 can be realized using a computer and a program, and the program can be recorded on a storage medium or provided over a network.
- the receiver 40 has an input unit 400, an output unit 401, a communication unit 402, a CPU 403, a memory 404, and a HDD 405 connected via a bus 406, and functions as a computer.
- the receiver 40 is also capable of inputting and outputting data to and from a computer-readable storage medium 407.
- the input unit 400 is, for example, a keyboard and a mouse.
- the output unit 401 is, for example, a display device such as a display.
- the communication unit 402 is, for example, a communication interface that communicates with the wireless device to be controlled.
- the CPU 403 controls each component of the receiver 40 and performs predetermined processing.
- the memory 404 and HDD 405 store data, etc.
- the storage medium 407 is capable of storing programs and the like that cause the receiver 40 to execute the functions of the receiver 40. Note that the architecture that constitutes the receiver 40 is not limited to the example shown in FIG. 2.
- FIG. 3 is a diagram showing pre-processing according to the first embodiment of the present disclosure.
- the learning data generation unit 61 generates learning data.
- the learning data is, for example, a pair of learning data 2 and teacher data 4.
- the learning data 2 corresponds to received data, and is, for example, a complex signal that has changed due to a specific compensation factor.
- the teacher data 4 corresponds to received data, and is, for example, a complex signal that has changed due to the same compensation factor as the learning data 2.
- the learning data 2 and teacher data 4 in this disclosure are the same signal.
- the learning data generation unit 61 links the corresponding compensation factors to the learning data. As described above, the learning data generation unit 61 generates multiple types of learning data that are each linked to multiple types of compensation factors.
- the AE learning unit 62 performs multiple types of learning by the AE based on multiple types of learning data.
- the AE learning unit 62 performs a first learning by a learning network using the AE 10 based on the learning data, and generates a learning model.
- This learning network is, for example, a network with a machine learning layer configuration.
- This learning model makes it possible to extract feature quantities 16 that arise between the encoder process 12 and the decoder process 14 when the AE 10 outputs teacher data 4 from the learning data 2.
- the AE learning unit 62 performs a second learning process using the extracted feature quantities 16. Specifically, learning is performed using the extracted feature quantities 16 as learning data, and compensation factors and compensation programs corresponding to the corresponding compensation factors as teacher data. This learning is performed for multiple types of compensation factors, so multiple types of learning results are obtained.
- the multiple types of learning results are transmitted to the learning result storage unit 48.
- the learning result storage unit 48 stores the multiple types of learning results.
- the judgment unit 45 generates multiple types of learning models based on the multiple types of learning results acquired from the learning result storage unit 48.
- This learning model is a model that generates the same signal from a signal that has changed due to the associated compensation factor. This learning model is generated for each anticipated compensation factor.
- AE is used to generate the learning model.
- imperfections in multiple RF circuits affect a signal, the effects of each are superimposed, resulting in complex changes in the signal. For this reason, even when machine learning is used for compensation, it becomes necessary to extract fine features. Therefore, in this embodiment, an autoencoder is used, which is less susceptible to overlearning and is suitable for extracting fine features.
- AE is used to determine the compensation factor required for a received data signal. For example, consider a method of determining whether an input signal is equal to any of the known signals before degradation. This method requires storing a large number of signals in order to prepare the signal points required for the determination. On the other hand, in this embodiment, information in the form of restoration results can be obtained using the AE learning model. Therefore, it is possible to determine whether compensation is required without having to store a large number of signals.
- FIG. 4 is a diagram showing the process during communication according to the first embodiment of the present disclosure.
- information bits generated by the information generating unit 21 of the transmitter 20 are transmitted as a data signal 6.
- the data signal 6 changes due to the influence of imperfections in the RF circuit. Therefore, what the determining unit 45 receives is the changed data signal 8.
- the determination unit 45 converts the data signal 8 using a learning model generated in advance. Specifically, the determination unit 45 inputs the received data signal 8 to an AE based on multiple types of learning models generated in advance.
- the determination unit 45 inputs the received data signal 8 to an AE based on a learning model linked to the compensation factor to be determined.
- the learning model used here is a learning model that generates the same signal from a signal that has changed due to the linked compensation factor.
- the characteristics required for restoration will be the same. As a result, a data signal identical to the input data signal will be output. On the other hand, if the input data signal is not a signal that has changed due to the associated compensation factor, the characteristics required for restoration will be different. As a result, a data signal different from the input data signal will be output.
- the determination unit 45 determines that the compensation factor linked to the learning model used for the conversion is the compensation factor required by the received data signal.
- the determination unit 45 determines that the compensation factor linked to the learning model used for the conversion is not the compensation factor required by the received data signal.
- the determination unit 45 then inputs the received data signal 8 to an AE based on the learning model linked to the undetermined compensation factor. By repeating this process, the determination unit 45 can determine the compensation factor required by the received data signal 8 from among the possible compensation factors.
- the determination unit 45 transmits the data signal to the compensation unit according to the determined compensation factor.
- three types of compensation units, compensation units 46a, 46b, and 46c, are shown.
- the compensation units 46a, 46b, and 46c compensate for the received data signal.
- the compensated data signal is transmitted to the information detection unit 47.
- the information detection unit 47 detects information bits from the data signal.
- the required compensation factor can be determined from the received data signal, eliminating the need to use a pilot signal and improving communication speed.
- the compensation factor is determined in advance, only the necessary compensation can be performed, reducing processing. In other words, it is possible to reduce power consumption.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
本開示は受信機及び無線通信プログラムに関する。 This disclosure relates to a receiver and a wireless communication program.
通信品質を向上させるため、通信の過程で変化した信号に基づき、元の信号を出力する技術がある。例えば非特許文献1には、増幅器歪みの影響を受けたパイロット信号と、事前学習で得た重回帰モデルに基づき、元の信号を出力する方法が開示されている。この方法では、増幅器の入出力特性を導出し、導出した特性に基づいて復調に用いる参照信号を生成することで、通信品質を向上させている。 In order to improve communication quality, there is a technology that outputs the original signal based on the signal that has changed during the communication process. For example, Non-Patent Document 1 discloses a method of outputting the original signal based on a pilot signal that has been affected by amplifier distortion and a multiple regression model obtained by pre-learning. In this method, the input/output characteristics of the amplifier are derived, and a reference signal to be used for demodulation is generated based on the derived characteristics, thereby improving communication quality.
しかし上述の方法では、パイロット信号を用いるため、共有情報が増加し、通信速度が低下する。さらに、通信で用いる無線機器の種類あるいは性能の変化によって、事前学習で用いた学習データと受信した信号が大きく異なる場合、補償性能が大きく劣化する課題があった。 However, the above method uses pilot signals, which increases the amount of shared information and reduces communication speed. Furthermore, there is an issue that compensation performance can be significantly degraded if the training data used in pre-learning and the received signal differ significantly due to changes in the type or performance of the wireless equipment used in communication.
本開示は上述の問題を解決するため、通信で用いる無線機器の種類あるいは性能が変化した場合でも適切な補償ができ、かつ通信速度を向上できる受信機を提供することを第一の目的とする。 In order to solve the above problems, the primary objective of this disclosure is to provide a receiver that can provide appropriate compensation and improve communication speed even when the type or performance of the wireless device used in communication changes.
また本開示は、通信で用いる無線機器の種類あるいは性能が変化した場合でも適切な補償ができ、かつ通信速度を向上できる無線通信プログラムを提供することを第二の目的とする。 A second objective of this disclosure is to provide a wireless communication program that can provide appropriate compensation and improve communication speeds even when the type or performance of the wireless device used in communication changes.
本開示の第一の態様は、送信機からデータを受信する受信機であって、プロセッサと、プロセッサに実施させるプログラムを格納したメモリを備え、プロセッサが、複数種の学習用データに基づき、Autoencoder(AE)による複数種の学習を行う処理と、複数種の学習結果を記憶する処理と、学習結果に基づいて生成した複数種の学習モデルを用いて、受信したデータ信号が必要とする補償要因を判定する処理と、判定された補償要因に応じて、受信したデータ信号を補償する処理とを実施するよう構成され、学習用データが、受信データに該当する教師データと、受信データに該当する学習データであり、該当する補償要因が紐づけられている受信機であることが好ましい。 The first aspect of the present disclosure is a receiver that receives data from a transmitter, comprising a processor and a memory that stores a program to be executed by the processor, and configured to execute a process of performing multiple types of learning using an autoencoder (AE) based on multiple types of learning data, a process of storing the multiple types of learning results, a process of determining a compensation factor required by a received data signal using multiple types of learning models generated based on the learning results, and a process of compensating the received data signal according to the determined compensation factor, and the learning data is preferably teacher data corresponding to the received data and learning data corresponding to the received data, and the receiver is linked to the corresponding compensation factor.
本開示の第二の態様は、プロセッサとメモリを備える受信機に実施させる無線通信プログラムであって、メモリに格納され、コンピュータ読み取り可能であり、プロセッサに、複数種の学習用データに基づき、Autoencoder(AE)による複数種の学習を行う処理と、複数種の学習結果を記憶する処理と、学習結果に基づいて生成した複数種の学習モデルを用いて、受信したデータ信号が必要とする補償要因を判定する処理と、判定された補償要因に応じて、受信したデータ信号を補償する処理とを実施させるためのプログラムを含み、学習用データが、受信データに該当する教師データと、受信データに該当する学習データであり、該当する補償要因が紐づけられている無線通信プログラムであることが好ましい。 A second aspect of the present disclosure is a wireless communication program to be executed by a receiver having a processor and a memory, the program being stored in the memory and computer-readable, and including a program for causing the processor to execute a process of performing multiple types of learning using an autoencoder (AE) based on multiple types of learning data, a process of storing the multiple types of learning results, a process of determining the compensation factor required by the received data signal using multiple types of learning models generated based on the learning results, and a process of compensating the received data signal according to the determined compensation factor, and the learning data is preferably teacher data corresponding to the received data and learning data corresponding to the received data, and the wireless communication program is linked to the corresponding compensation factor.
本開示の第一及び第二の態様によれば、通信で用いる無線機器の種類あるいは性能が変化した場合でも適切な補償ができ、かつ通信速度を向上できる。 The first and second aspects of the present disclosure make it possible to provide appropriate compensation and improve communication speed even when the type or performance of the wireless device used in communication changes.
実施の形態1
図1は、本開示の実施の形態1にかかる無線通信システムの構成例を示す図である。無線通信システム100は、送信機20を備える。送信機20は、受信機40に信号を伝送する。
First embodiment
1 is a diagram illustrating a configuration example of a wireless communication system according to a first embodiment of the present disclosure. The wireless communication system 100 includes a transmitter 20. The transmitter 20 transmits a signal to a
送信機20は情報生成部21を有する。情報生成部21は、受信機40に伝送したい情報について、情報ビットを生成する。また情報生成部21は、誤り訂正符号を付加する機能、あるいはインターリーブ機能を有しても良い。
The transmitter 20 has an
生成された情報ビットは、データ信号変調部22に伝送される。データ信号変調部22は、情報ビットをデータ信号に変調する。ここで用いられる変調方式としては、例えば直交振幅変調(QAM)が挙げられる。
The generated information bits are transmitted to the data
変調で得られたデータ信号は、D/A変換部23に伝送される。D/A変換部23は、デジタル変調されているデータ信号をアナログ化する。この際、I信号及びQ信号が生成される。
The data signal obtained by the modulation is transmitted to the D/
アナログ化されたデータ信号は、IQ信号変調部24に伝送される。IQ信号変調部24は、I信号及びQ信号を直交変調する。
The analog data signal is transmitted to the IQ
直交変調されたデータ信号は、増幅部25に伝送される。増幅部25は、データ信号を増幅し、受信機40に伝送する。
The quadrature modulated data signal is transmitted to the
受信機40は増幅部41を備える。増幅部41は、送信機20から受信したデータ信号を増幅する。
The
増幅されたデータ信号は、IQ信号復調部42に伝送される。IQ信号復調部42は、受信したデータ信号をI信号及びQ信号に復調する。
The amplified data signal is transmitted to the IQ
復調されたデータ信号は、A/D変換部43に伝送される。A/D変換部43は、アナログ化されているデータ信号をデジタル復調するためにデジタル化する。
The demodulated data signal is transmitted to the A/
デジタル化されたデータ信号は、チャネル等価部44に伝送される。チャネル等価部44は、データ信号に基づき、通信路応答の振幅及び位相情報を逆算することで、最初に送信された信号の推定値を得る。
The digitized data signal is transmitted to the
推定値が得られたデータ信号は、判定部45に伝送される。判定部45は、事前処理で得た複数のAE(Autoencoder)の学習結果に基づき、複数の学習モデルを生成する。そして判定部45は、複数の学習モデルを用いて、受信したデータ信号が必要とする補償要因を判定する。
The data signal from which the estimated value has been obtained is transmitted to the
補償要因は、例えばRF回路の不完全性を引き起こす要因であり、具体的には増幅器の非線形性歪み、IQインバランス、位相雑音、及びこれらの組合せである。さらに補償要因には、補償が不要な場合に用いる「補償不要」を含んでもよい。なお、事前処理及び判定方法の詳細については後述する。 Compensation factors are factors that cause imperfections in the RF circuit, for example, and specifically, nonlinear distortion of the amplifier, IQ imbalance, phase noise, and combinations of these. Furthermore, compensation factors may include "no compensation required" which is used when compensation is not required. Details of the pre-processing and determination method will be described later.
データ信号は、判定された補償要因に応じて、補償部46aあるいは46bに伝送される。補償部46a及び46bは、受信したデータ信号を補償する。補償部46aと補償部46bは、補償対象及び計算能力が異なる。また、ここでは補償部が補償部46aおよび46bの2種類ある態様を示したが、3種類以上あってもよい。
The data signal is transmitted to
補償されたデータ信号は、情報検出部47に伝送される。情報検出部47は、データ信号から情報ビットを検出する。また情報検出部47は、情報生成部21の機能に応じて、誤り訂正符号を復号する機能、あるいはデインターリーブ機能を有しても良い。
The compensated data signal is transmitted to the
続けて事前処理について述べる。無線通信システム100は、事前処理部60を備える。事前処理部60は、それぞれの受信機40に内包される態様でもよい。また事前処理部60は、複数の受信機40に対して1台が接続されることで、事前処理を一括で行う態様でもよい。
Next, the pre-processing will be described. The wireless communication system 100 includes a
事前処理部60は、学習用データ生成部61を有する。学習用データ生成部61は、AEに用いる学習用データを生成する。ここでは、補償要因に応じて複数種の学習用データを生成する。
The
生成された複数種の学習用データは、AE学習部62に伝送される。AE学習部62は、複数種の学習用データに基づき、AEによる複数の学習を行う。
The generated multiple types of learning data are transmitted to the AE
複数の学習結果は、受信機40が有する学習結果記憶部48に伝送される。学習結果記憶部48は、事前処理部60で得られた複数種の学習結果を記憶する。前述した判定部45は、この複数の学習結果に基づき、複数種の学習モデルを生成する。
The multiple learning results are transmitted to the learning
図2は、本開示の実施の形態1に係る受信機のハードウェア構成を示す図である。受信機40が有する各機能は、それぞれ一部又は全部がPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアによって構成されてもよいし、CPU等のプロセッサが実行するプログラムとして構成されてもよい。
FIG. 2 is a diagram showing the hardware configuration of a receiver according to the first embodiment of the present disclosure. Each function of the
例えば、受信機40は、コンピュータとプログラムを用いて実現することができ、プログラムを記憶媒体に記録することも、ネットワークを通して提供することも可能である。
For example, the
図2に示すように、受信機40は、入力部400、出力部401、通信部402、CPU403、メモリ404及びHDD405がバス406を介して接続され、コンピュータとしての機能を備える。また、受信機40は、コンピュータ読み取り可能な記憶媒体407との間でデータを入出力することができるようにされている。
As shown in FIG. 2, the
入力部400は、例えばキーボード及びマウス等である。出力部401は、例えばディスプレイなどの表示装置である。
The
通信部402は、例えば制御対象の無線装置との通信を行う通信インターフェースである。
The
CPU403は、受信機40を構成する各部を制御し、所定の処理等を行う。メモリ404及びHDD405は、データ等を記憶する。
The
記憶媒体407は、受信機40が有する機能を実行させるプログラム等を記憶可能にされている。なお、受信機40を構成するアーキテクチャは図2に示した例に限定されない。
The
図3は、本開示の実施の形態1に係る事前処理を示す図である。まず学習用データ生成部61が、学習用データを生成する。学習用データとは、例えば一対の学習データ2と教師データ4である。学習データ2は受信データに該当し、例えば特定の補償要因によって変化した複素信号である。教師データ4は受信データに該当し、例えば学習データ2と同様の補償要因によって変化した複素信号である。すなわち、本開示における学習データ2と教師データ4は同じ信号である。
FIG. 3 is a diagram showing pre-processing according to the first embodiment of the present disclosure. First, the learning
さらに学習用データ生成部61は、学習用データに該当する補償要因を紐づける。以上のように学習用データ生成部61は、複数種の補償要因のそれぞれに紐づけられた、複数種の学習用データを生成する。
Furthermore, the learning
次にAE学習部62が、複数種の学習用データに基づき、AEによる複数種の学習を行う。まずAE学習部62は、学習用データに基づいて、AE10を用いた学習ネットワークによる第一の学習を行い、学習モデルを生成する。この学習ネットワークとは、例えば機械学習のレイヤー構成のネットワークである。この学習モデルにより、AE10によって学習データ2から教師データ4を出力する際、エンコーダ処理12とデコーダ処理14の間で生じる特徴量16を抽出できる。
Next, the
次にAE学習部62は、抽出した特徴量16を用いて第二の学習を行う。具体的には、抽出した特徴量16を学習データ、補償要因及び該当する補償要因に対応した補償プログラムを教師データとした学習を行う。この学習は複数種の補償要因について行うため、学習結果は複数種得られる。
Then, the
複数種の学習結果は学習結果記憶部48に伝送される。学習結果記憶部48は、複数種の学習結果を記憶する。判定部45は、学習結果記憶部48から取得した複数種の学習結果に基づき、複数種の学習モデルを生成する。
The multiple types of learning results are transmitted to the learning
この学習モデルは、紐づけられた補償要因によって変化した信号から、同じ信号を生成する学習モデルとなる。この学習モデルが、想定される補償要因の数だけ生成される。 This learning model is a model that generates the same signal from a signal that has changed due to the associated compensation factor. This learning model is generated for each anticipated compensation factor.
本実施形態における学習モデルの生成には、AEを用いている。複数のRF回路の不完全性が信号に影響を与える場合、それぞれの影響が重ね掛けされるため、信号の変化が複雑となる。そのため、補償のために機械学習を用いる場合でも、細かい特徴の抽出を行う必要が生じる。そこで本実施形態では、過学習が生じにくく、細かな特徴量の抽出に適しているオートエンコーダを採用している。 In this embodiment, AE is used to generate the learning model. When imperfections in multiple RF circuits affect a signal, the effects of each are superimposed, resulting in complex changes in the signal. For this reason, even when machine learning is used for compensation, it becomes necessary to extract fine features. Therefore, in this embodiment, an autoencoder is used, which is less susceptible to overlearning and is suitable for extracting fine features.
本実施形態では、AEを用いることで、受信したデータ信号が必要とする補償要因を判定する。例えば、入力された信号が、既知の劣化前の信号のいずれかに等しいか否かを判定する方法について考える。この方法では、判定に必要な信号点を用意するため、数多くの信号を保持する必要がある。一方本実施形態では、AEの学習モデルによって復元結果という情報を獲得できる。そのため、数多くの信号を保持する必要なく、補償の要否を判定することができる。 In this embodiment, AE is used to determine the compensation factor required for a received data signal. For example, consider a method of determining whether an input signal is equal to any of the known signals before degradation. This method requires storing a large number of signals in order to prepare the signal points required for the determination. On the other hand, in this embodiment, information in the form of restoration results can be obtained using the AE learning model. Therefore, it is possible to determine whether compensation is required without having to store a large number of signals.
図4は、本開示の実施の形態1に係る通信時の処理を示す図である。通信時は、まず送信機20の情報生成部21で生成された情報ビットが、データ信号6として伝送される。データ信号6は、判定部45に到達するまでの間に、RF回路の不完全性の影響によって変化する。そのため判定部45が受信するのは、変化後のデータ信号8となる。
FIG. 4 is a diagram showing the process during communication according to the first embodiment of the present disclosure. During communication, first, information bits generated by the
そこで判定部45が、事前に生成した学習モデルを用いて、データ信号8を変換する。具体的には、判定部45において、受信したデータ信号8を、事前に生成した複数種の学習モデルに基づくAEに入力する。
Then, the
まず判定部45は、判定したい補償要因に紐づけられた学習モデルに基づくAEに、受信したデータ信号8を入力する。ここで用いる学習モデルは、紐づけられた補償要因によって変化した信号から、同じ信号を生成する学習モデルである。
First, the
そのため、入力されたデータ信号が、紐づけられた補償要因によって変化した信号であった場合、復元に必要な特徴は同じになる。その結果、入力されたデータ信号と同じデータ信号が出力される。一方、入力されたデータ信号が、紐づけられた補償要因によって変化した信号でなかった場合、復元に必要な特徴は異なる。その結果、入力されたデータ信号と異なるデータ信号が出力される。 Therefore, if the input data signal is a signal that has changed due to the associated compensation factor, the characteristics required for restoration will be the same. As a result, a data signal identical to the input data signal will be output. On the other hand, if the input data signal is not a signal that has changed due to the associated compensation factor, the characteristics required for restoration will be different. As a result, a data signal different from the input data signal will be output.
そこで判定部45は、出力された信号が入力された信号と同じである場合、その変換に用いられた学習モデルに紐づけられた補償要因が、受信したデータ信号が必要とする補償要因であると判定する。
Then, if the output signal is the same as the input signal, the
同様に判定部45は、出力された信号が入力された信号と異なる場合、その変換に用いられた学習モデルに紐づけられた補償要因が、受信したデータ信号が必要とする補償要因ではないと判定する。そこで判定部45は、判定していない補償要因に紐づけられた学習モデルに基づくAEに、受信したデータ信号8を入力する。判定部45は、この処理を繰り返すことで、受信したデータ信号8が必要とする補償要因を、想定される補償要因の中から判定することができる。
Similarly, if the output signal differs from the input signal, the
続けて判定部45は、判定された補償要因に応じて、データ信号を補償部に伝送する。ここでは、補償部が補償部46a、46b及び46cの3種類ある態様を示す。補償部46a、46b及び46cは、受信したデータ信号を補償する。補償されたデータ信号は、情報検出部47に伝送される。情報検出部47は、データ信号から情報ビットを検出する。
Then, the
以上のように本開示では、受信したデータ信号から必要とする補償要因を判定できるため、パイロット信号を用いる必要がなくなり、通信速度を向上できる。また、事前に補償要因を判定するため、必要な補償のみを行うことができ、処理を削減できる。すなわち、消費電力の削減が可能となる。 As described above, with this disclosure, the required compensation factor can be determined from the received data signal, eliminating the need to use a pilot signal and improving communication speed. In addition, because the compensation factor is determined in advance, only the necessary compensation can be performed, reducing processing. In other words, it is possible to reduce power consumption.
なお本実施形態では、RF回路の不完全性の影響を例として説明したが、フェージング等、信号を変化させる原因全般に対して有効である。 In this embodiment, the effect of imperfections in the RF circuit has been described as an example, but this is effective for all causes of signal changes, such as fading.
また、本実施形態で示す学習モデルは一例であり、ネットワーク構成あるいは学習データなどは限定されない。さらに、無線通信システムの構成等の形態も限定されない。 The learning model shown in this embodiment is just an example, and the network configuration or learning data is not limited. Furthermore, the configuration of the wireless communication system is not limited.
2 学習データ
4 教師データ
6 データ信号
8 データ信号
20 送信機
40 受信機
2
Claims (4)
プロセッサと、前記プロセッサに実施させるプログラムを格納したメモリを備え、
前記プロセッサが、
複数種の学習用データに基づき、Autoencoder(AE)による複数種の学習を行う処理と、
複数種の学習結果を記憶する処理と、
前記学習結果に基づいて生成した複数種の学習モデルを用いて、受信したデータ信号が必要とする補償要因を判定する処理と、
判定された補償要因に応じて、前記受信したデータ信号を補償する処理と
を実施するよう構成され、
前記学習用データが、
受信データに該当する教師データと、受信データに該当する学習データであり、
該当する補償要因が紐づけられている
受信機。 A receiver for receiving data from a transmitter, comprising:
A processor and a memory storing a program to be executed by the processor,
The processor,
A process of performing multiple types of learning by an autoencoder (AE) based on multiple types of learning data;
A process of storing a plurality of types of learning results;
A process of determining a compensation factor required for a received data signal using a plurality of types of learning models generated based on the learning results;
and compensating the received data signal in response to the determined compensation factor;
The learning data is
The received data is training data corresponding to the received data,
The receiver to which the corresponding compensation factor is associated.
請求項1に記載の受信機。 The receiver according to claim 1 , wherein the compensation factor includes “no compensation required” that is used when no compensation is required.
前記RF回路の不完全性が、増幅器の非線形性歪み、IQインバランス及び位相雑音の少なくとも一つである
請求項1または2に記載の受信機。 the compensation factor is a factor causing imperfections in the RF circuit;
3. The receiver according to claim 1, wherein the imperfections in the RF circuit are at least one of a nonlinear distortion, an IQ imbalance, and a phase noise of an amplifier.
前記メモリに格納され、
コンピュータ読み取り可能であり、
前記プロセッサに、
複数種の学習用データに基づき、Autoencoder(AE)による複数種の学習を行う処理と、
複数種の学習結果を記憶する処理と、
前記学習結果に基づいて生成した複数種の学習モデルを用いて、受信したデータ信号が必要とする補償要因を判定する処理と、
判定された補償要因に応じて、前記受信したデータ信号を補償する処理と
を実施させるためのプログラムを含み、
前記学習用データが、
受信データに該当する教師データと、受信データに該当する学習データであり、
該当する補償要因が紐づけられている
無線通信プログラム。 A wireless communication program to be executed by a receiver having a processor and a memory,
stored in the memory,
It is computer readable;
The processor,
A process of performing multiple types of learning by an autoencoder (AE) based on multiple types of learning data;
A process of storing a plurality of types of learning results;
A process of determining a compensation factor required for a received data signal using a plurality of types of learning models generated based on the learning results;
and a process of compensating the received data signal in response to the determined compensation factor,
The learning data is
The received data is training data corresponding to the received data,
The wireless communication program to which the applicable compensation factor is associated.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/045760 WO2025134284A1 (en) | 2023-12-20 | 2023-12-20 | Receiver and wireless communication program |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2023/045760 WO2025134284A1 (en) | 2023-12-20 | 2023-12-20 | Receiver and wireless communication program |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025134284A1 true WO2025134284A1 (en) | 2025-06-26 |
Family
ID=96137742
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2023/045760 Pending WO2025134284A1 (en) | 2023-12-20 | 2023-12-20 | Receiver and wireless communication program |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025134284A1 (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20120017927A (en) * | 2010-08-20 | 2012-02-29 | 현대중공업 주식회사 | Receive data compensation method |
| JP2020520497A (en) * | 2017-05-03 | 2020-07-09 | ヴァージニア テック インテレクチュアル プロパティーズ,インコーポレーテッド | Adaptive wireless communication learning and deployment |
| US20230082536A1 (en) * | 2021-08-30 | 2023-03-16 | Nvidia Corporation | Fast retraining of fully fused neural transceiver components |
-
2023
- 2023-12-20 WO PCT/JP2023/045760 patent/WO2025134284A1/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20120017927A (en) * | 2010-08-20 | 2012-02-29 | 현대중공업 주식회사 | Receive data compensation method |
| JP2020520497A (en) * | 2017-05-03 | 2020-07-09 | ヴァージニア テック インテレクチュアル プロパティーズ,インコーポレーテッド | Adaptive wireless communication learning and deployment |
| US20230082536A1 (en) * | 2021-08-30 | 2023-03-16 | Nvidia Corporation | Fast retraining of fully fused neural transceiver components |
Non-Patent Citations (1)
| Title |
|---|
| 栗山 圭太他, 高周波数帯SC-FDE伝送におけるRF回路不完全性に対するDNNを用いた補償法の一検討, 2023年電子情報通信学会通信ソサイエティ大会 通信講演論文集1, September 2023, B-5-47, p. 277, (KURIYAMA, Keita et al., A Study of Compensation for RF Impairments Based on DNN in SC-FDE Transmission with Higher Frequency Band), non-official translation (The 2023 IEICE Society Conference, Communications Proceedings Collection 1) * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3910586B2 (en) | Apparatus and method for calculating input softness decision value of channel decoder in data communication system | |
| US9178825B2 (en) | Data processing method and apparatus | |
| KR20140096559A (en) | Apparatus and method for generating decoding metric for frequency-quadrature amplitude modulated signals in wireless communication system | |
| JPH0750701A (en) | Method and apparatus for simultaneous transmission of aural signal and data signal | |
| WO2025134284A1 (en) | Receiver and wireless communication program | |
| KR100758306B1 (en) | Apparatus for Generating Soft Bit Metric and its method, and M-ary QAM receive system using it | |
| WO2025134282A1 (en) | Receiver and radio communication program | |
| CN101610230B (en) | Signal imbalance compensation apparatus and method | |
| WO2025134283A1 (en) | Receiver and radio communication program | |
| US20040096007A1 (en) | Method for generating soft bit information from gray coded signals | |
| JP2015005803A (en) | Digital signal processor | |
| KR20150069747A (en) | Method and apparatus for soft demapping in rotated qam based communication system | |
| JP2010147962A (en) | Mimo receiving apparatus, demodulation circuit and signal processing program | |
| Fernandes | Linear programming applied to blind signal equalization | |
| CN108781129A (en) | Log-likelihood calculations circuit, reception device and log-likelihood calculations method | |
| WO2016143863A1 (en) | Communication device, demodulation method, and program | |
| JP4452716B2 (en) | Demodulation method and demodulator using soft decision of quadrature amplitude modulation | |
| WO2025262922A1 (en) | Reception device | |
| CN110212997B (en) | Method and device for acquiring modulation error rate | |
| US9432128B2 (en) | Receiver for optical transmission system | |
| WO2026003924A1 (en) | Reception device | |
| WO2025262923A1 (en) | Reception device | |
| JP5419146B2 (en) | Demodulator and demodulation processing method | |
| JP2015133536A (en) | Log-likelihood ratio calculation device, log-likelihood ratio calculation method and log-likelihood ratio calculation program | |
| KR20030065866A (en) | The appartus for correcting error of data using channel state information |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23962205 Country of ref document: EP Kind code of ref document: A1 |