WO2025197125A1 - Pseudo blood vessel pattern generation device and pseudo blood vessel pattern generation method - Google Patents
Pseudo blood vessel pattern generation device and pseudo blood vessel pattern generation methodInfo
- Publication number
- WO2025197125A1 WO2025197125A1 PCT/JP2024/011520 JP2024011520W WO2025197125A1 WO 2025197125 A1 WO2025197125 A1 WO 2025197125A1 JP 2024011520 W JP2024011520 W JP 2024011520W WO 2025197125 A1 WO2025197125 A1 WO 2025197125A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- blood vessel
- random number
- pseudo
- vessel pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/14—Vascular patterns
Definitions
- This disclosure relates to a pseudo-vascular pattern generation device and a pseudo-vascular pattern generation method.
- biometric authentication algorithms and systems based on vascular patterns requires large amounts of vascular pattern data.
- biometric authentication algorithms and systems have been developed using vascular patterns (hereinafter sometimes referred to as "real vascular patterns") extracted from images of actual living bodies (hereinafter sometimes referred to as "photographed images").
- real vascular patterns extracted from images of actual living bodies
- photographed images images of actual living bodies
- pseudo-vascular patterns generated based on mathematical models is far from that of real vascular patterns. Furthermore, since it is difficult to generate diverse patterns when generating pseudo-vascular patterns based on mathematical models, it is not practical to use pseudo-vascular patterns generated based on mathematical models to evaluate biometric authentication algorithms.
- This disclosure therefore proposes a technology that can generate pseudo-vascular patterns with correlations of various strengths.
- the pseudo-vascular pattern generating device of the present disclosure includes a processor.
- the processor generates a first random number based on a first random number seed, generates a second random number based on a second random number seed different from the first random number seed, generates a first image by adding first noise based on the first random number to a gray image, generates a second image by adding second noise based on the second random number to the gray image, generates a third image by combining the first image and the second image, and generates a pseudo-vascular pattern image using the third image, which is an image including a pseudo-vascular pattern.
- the first random number seed is associated with an administration ID
- the second random number seed is associated with a personal ID.
- the processor generates the third image by combining the first image and the second image, both of which are based on a normal distribution.
- the processor sets a weight for the normal distribution and generates a plurality of clusters, each defined by a combination of the administration ID and the weight, each including a plurality of the pseudo-vascular pattern images generated under a plurality of different personal IDs.
- FIG. 7 is a diagram showing an example of an image in the process of generating a pseudo blood vessel pattern according to the present disclosure.
- FIG. 8 is a diagram showing an example of an image in the process of generating a pseudo blood vessel pattern according to the present disclosure.
- FIG. 9 is a diagram showing an example of an image in the process of generating a pseudo blood vessel pattern according to the present disclosure.
- FIG. 10 is a diagram showing an example of an image in the process of generating a pseudo blood vessel pattern according to the present disclosure.
- FIG. 11 is a diagram showing an example of an image in the process of generating a pseudo blood vessel pattern according to the present disclosure.
- FIG. 12 is a diagram showing an example of an image in the process of generating a pseudo blood vessel pattern according to the present disclosure.
- FIG. 1 is a diagram showing an example of the configuration of a pseudo blood vessel pattern generation system according to the present disclosure.
- the pseudo vascular pattern generation system 1 includes a pseudo vascular pattern generation device 10, an input device 20, and a display 30.
- the input device 20 and the display 30 are connected to the pseudo vascular pattern generation device 10.
- Examples of the input device 20 include a pointing device such as a mouse, and a keyboard.
- An example of the display 30 is an LCD (Liquid Crystal Display).
- the pseudo-vascular pattern generating device 10 has a processor 11 and a memory unit 12.
- the processor 11 include a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), and an ASIC (Application Specific Integrated Circuit).
- the memory unit 12 include memory and storage.
- the pseudo-vascular pattern generating device 10 is realized, for example, by a computer.
- FIGS. 3 to 12 are diagrams showing examples of images in the pseudo blood vessel pattern generating process of the present disclosure.
- step S100 the processor 11 obtains a management ID (hereinafter sometimes referred to as "MID") from the storage unit 12.
- MID management ID
- the management ID is input by the operator to the pseudo-vascular pattern generation device 10 using the input device 20 and is pre-stored in the storage unit 12.
- step S105 the processor 11 initializes the value of the personal ID (hereinafter sometimes referred to as "PID") to "1".
- PID personal ID
- step S110 the processor 11 retrieves from the storage unit 12 a gray image Ia ( Figure 3) that has been previously stored in the storage unit 12.
- a gray image Ia Figure 3
- the processor 11 retrieves from the storage unit 12 a gray image Ia ( Figure 3) that has been previously stored in the storage unit 12.
- step S115 the processor 11 sets a first random number seed and a second random number seed.
- the first random number seed and the second random number seed are different from each other, and the first random number seed is associated with the management ID, and the second random number seed is associated with the personal ID.
- a plurality of mutually different first random number seeds corresponding one-to-one to each of a plurality of mutually different management IDs and a plurality of mutually different second random number seeds corresponding one-to-one to each of a plurality of mutually different personal IDs are pre-stored in the memory unit 12, and the processor 11 acquires from the memory unit 12 the first random number seed corresponding to the management ID acquired in step S100 and the second random number seed corresponding to the current value of the personal ID.
- the processor 11 may use the management ID acquired in step S100 as the first random number seed, and the current value of the personal ID as the second random number seed.
- step S120 the processor 11 generates random numbers that follow a first normal distribution N( ⁇ 1 , ⁇ 1 2 ) based on the first random number seed, and generates random numbers that follow a second normal distribution N( ⁇ 2 , ⁇ 2 2 ) based on the second random number seed.
- random numbers generated based on the first random number seed may be referred to as “first random numbers,” and random numbers generated based on the second random number seed may be referred to as “second random numbers.”
- the processor 11 adds white noise based on the first random number (hereinafter may be referred to as “first noise”) to all pixels of the grayscale image Ia, and adds white noise based on the second random number (hereinafter may be referred to as "second noise") to all pixels of the grayscale image Ia. Because the first random number seed and the second random number seed are different random number seeds, the first noise and the second noise are white noises with different noise states.
- step S125 the processor 11 combines the first noise image Ib1 and the second noise image Ib2.
- an image Ic (FIG. 6) in which the first noise image Ib1 and the second noise image Ib2 are combined (hereinafter, may be referred to as the "composite noise image") is generated.
- the composite noise image Ic is an image that follows a normal distribution N( ⁇ , ⁇ 2 ).
- step S130 the processor 11 diffuses the noise in the composite noise image Ic.
- the processor 11 applies a Gaussian filter to the composite noise image Ic to generate an image Id (FIG. 7) in which the noise in the composite noise image Ic has been diffused (hereinafter, sometimes referred to as a "noise-diffused image").
- step S135 the processor 11 emphasizes blood vessels in the noise diffusion image Id.
- the processor 11 applies a blood vessel emphasis filter, such as a Frangi filter, to the noise diffusion image Id to generate an image Ie ( Figure 8) in which blood vessels are emphasized in the noise diffusion image Id (hereinafter sometimes referred to as a "blood vessel emphasis image").
- a blood vessel emphasis filter such as a Frangi filter
- step S140 processor 11 smooths vessel-enhanced image Ie.
- processor 11 smooths vessel-enhanced image Ie using a Gaussian filter to generate an image If ( Figure 9) in which vessel-enhanced image Ie has been smoothed (hereinafter, sometimes referred to as a "smoothed image"). Note that it is possible to omit the processing of step S140.
- step S145 the processor 11 inverts the color of the smoothed image If. This generates an image Ig ( Figure 10) in which the smoothed image If is inverted from negative to positive (hereinafter sometimes referred to as a "color-inverted image"). Note that if the processing of step S140 is omitted, in step S145 the processor 11 inverts the color of the blood vessel-enhanced image Ie to generate a color-inverted image Ig. Note that the processing of step S145 can also be omitted.
- step S150 processor 11 sets a region of interest (ROI) in the color-inverted image Ig.
- ROI region of interest
- This generates an image Ih ( Figure 11) in which a region of interest has been set in the color-inverted image Ig (hereinafter sometimes referred to as the "image after region of interest setting").
- processor 11 sets a region of interest in the smoothed image If in step S150. Also, if the processing of steps S140 and S145 is omitted, processor 11 sets a region of interest in the blood vessel-enhanced image Ie in step S150.
- step S155 the processor 11 performs a geometric transformation on the post-region-of-interest setting image Ih.
- This generates an image Ii ( Figure 12) in which the post-region-of-interest setting image Ih has been geometrically transformed (hereinafter may be referred to as the "post-geometric transformation image").
- the post-geometric transformation image Ii the image within the region of interest becomes an image BV containing a pseudo blood vessel pattern (hereinafter may be referred to as the "pseudo blood vessel pattern image”).
- Examples of geometric transformations performed on the post-region-of-interest setting image Ih include affine transformation and projective transformation. Note that the processing of step S155 can be omitted. If the processing of step S155 is omitted, the image within the region of interest in the post-region-of-interest setting image Ih becomes the pseudo blood vessel pattern image BV.
- step S160 the processor 11 stores the geometrically transformed image Ii generated in step S155 in the storage unit 12.
- step S165 processor 11 determines whether the PID value has reached a predetermined value N. If the PID value has not reached the predetermined value N (step S165: No), processing proceeds to step S170; if the PID value has reached the predetermined value N (step S165: Yes), the processing procedure ends.
- step S170 processor 11 increments the PID value by "1". After processing step S170, processing returns to step S110.
- the operator can set the predetermined value N using the input device 20.
- the operator can also visually recognize the pseudo blood vessel pattern image BV using the display 30.
- the processor 11 changes the values of the first random number seed and second random number seed set in step S115 depending on the values of the MID and PID.
- processor 11 sets the value of the first random number seed to "SA"
- the value of the first random number seed to "SB”
- the MID value is "C”
- the value of the first random number seed to "SC”.
- processor 11 sets the value of the second random number seed to "S1”
- the value of the second random number seed to "S2
- the value of the first random number seed changes depending on the value of MID
- the value of the second random number seed changes depending on the value of PID.
- the processor 11 sets weights for the mean and variance of the normal distributions that can be generated from each of the first random number seed and the second random number seed as follows:
- a method for setting a weight for the mean of the normal distribution hereinafter sometimes referred to as the "mean weight” wa (where 0 ⁇ wa ⁇ 1) and a method for setting a weight for the variance of the normal distribution (hereinafter sometimes referred to as the "variance weight”) wb (where 0 ⁇ wb ⁇ 1) will be explained separately.
- processor 11 sets the average weight wa taking into account the influence of the first normal distribution N( ⁇ 1 , ⁇ 12 ) and the second normal distribution N( ⁇ 2 , ⁇ 22 ) generated from each of the first random number seed and the second random number seed .
- processor 11 resets either ⁇ 1 or ⁇ 2 to a value that satisfies the conditions ⁇ 1 ⁇ ⁇ and ⁇ ⁇ 2 .
- the processor 11 sets the variance weight w b taking into account the influence of the first normal distribution N( ⁇ 1 , ⁇ 1 2 ) and the second normal distribution N( ⁇ 2 , ⁇ 2 2 ) generated from the first random number seed and the second random number seed , respectively.
- the mean weight w a and the variance weight w b may be collectively referred to as the "normal distribution weight w.”
- FIG. 13 is a diagram showing an example of a pseudo blood vessel pattern image according to the present disclosure.
- the pattern image similarity between the fifth pseudo blood vessel pattern image BV5 and the tenth pseudo blood vessel pattern image BV10 is greater than the pattern image similarity between the fourth pseudo blood vessel pattern image BV4 and the ninth pseudo blood vessel pattern image BV9; the pattern image similarity between the fourth pseudo blood vessel pattern image BV4 and the ninth pseudo blood vessel pattern image BV9 is greater than the pattern image similarity between the third pseudo blood vessel pattern image BV3 and the eighth pseudo blood vessel pattern image BV8; the pattern image similarity between the third pseudo blood vessel pattern image BV3 and the eighth pseudo blood vessel pattern image BV8 is greater than the pattern image similarity between the second pseudo blood vessel pattern image BV2 and the seventh pseudo blood vessel pattern image BV7; and the pattern image similarity between the second pseudo blood vessel pattern image BV2 and the seventh pseudo blood vessel pattern image BV7 is greater than the pattern image similarity between the first pseudo blood vessel pattern image BV1 and the sixth pseudo blood vessel pattern image BV6.
- FIG. 14 is a diagram illustrating an example of a cluster according to the present disclosure.
- the pseudo blood vessel pattern image belonging to the first cluster CL1 and the pseudo blood vessel pattern image belonging to the second cluster CL2 are generated from the same MID. Therefore, the first cluster CL1 and the second cluster CL2 have similar properties, resulting in a strong correlation between the first cluster CL1 and the second cluster CL2.
- the pseudo blood vessel pattern image belonging to the first cluster CL1 and the pseudo blood vessel pattern image belonging to the second cluster CL2 are generated from normal distribution weights w of different magnitudes, and therefore, as described above, the similarity between the pseudo blood vessel pattern images belonging to the first cluster CL1 differs from the similarity between the pseudo blood vessel pattern images belonging to the second cluster CL2. Therefore, by forming the first cluster CL1 and the second cluster CL2, it is possible to generate a wide variety of pseudo blood vessel patterns, including pseudo blood vessel patterns that are highly correlated with each other.
- the pseudo blood vessel pattern image belonging to the first cluster CL1 and the pseudo blood vessel pattern image belonging to the third cluster CL3 are generated from different MIDs.
- the first cluster CL1 and the third cluster CL3 have different properties, and the correlation between the first cluster CL1 and the third cluster CL3 is weak. Therefore, by forming the third cluster CL3 in addition to the first cluster CL1 and the second cluster CL2, it is possible to generate even more diverse pseudo blood vessel patterns.
- Fig. 15 is a diagram showing the measurement results of FRR and FAR for a pseudo blood vessel pattern generated by the pseudo blood vessel pattern generation device of the present disclosure
- Fig. 16 is a diagram showing the measurement results of FRR for a pseudo blood vessel pattern generated by the pseudo blood vessel pattern generation device of the present disclosure
- Fig. 17 is a diagram showing the measurement results of FAR for a pseudo blood vessel pattern generated by the pseudo blood vessel pattern generation device of the present disclosure.
- the MID value was set to one value
- the predetermined value N was set to "1000”
- the PID value was changed in 1000 ways to generate 1000 pseudo blood vessel pattern images BV using the pseudo blood vessel pattern generating device 10.
- Three different geometric transformations were then performed on each pseudo blood vessel pattern image BV.
- Two sets of data (hereinafter sometimes referred to as “registration data”) were used to register the pseudo blood vessel pattern images BV generated from each pseudo blood vessel pattern image BV after the three geometric transformations in a database, and one set of data (hereinafter sometimes referred to as "matching data”) was used to compare the data registered in the database. This total of three data sets was used to generate 1000 pairs of pseudo blood vessel pattern images BV after the geometric transformations.
- Figure 15 shows the FRR measurement results for 1,000 pseudo-vascular pattern image BV pairs after geometric transformation, where the registered data and matching data have the same MID and PID (i.e., 1,000 pairs without rearrangement), and the FAR measurement results for 999,000 pairs of 1,000 pseudo-vascular pattern image BV pairs after geometric transformation, where the registered data and matching data have the same MID and different PID.
- Figure 15 also shows the FRR and FAR measurement results when the normal distribution weight w is changed to 0.00, 0.20, 0.40, 0.60, and 0.80. In the measurement results shown in Figure 15, the FRR is 0% at or below approximately -0.18, regardless of the magnitude of the normal distribution weight w.
- the FAR is 0% at approximately -0.28 or greater
- the normal distribution weight w when the normal distribution weight w is 0.40, it is 0% at approximately -0.27 or greater
- the measurement results shown in Figure 15 show that while the FRR distribution hardly changes when the normal distribution weight w is changed, the FAR distribution shifts to the right in the figure as the normal distribution weight w is increased.
- Figure 16 shows the measurement results of the mean and median of each FRR distribution when the normal distribution weight w is changed in increments of 0.02 from 0.00 to 0.96 under the same conditions as Figure 15.
- Figure 17 shows the measurement results of the mean and median of each FAR distribution when the normal distribution weight w is changed in increments of 0.02 from 0.00 to 0.96 under the same conditions as Figure 15.
- the measurement results shown in Figure 16 show that the mean and median of FRR change very little even when the normal distribution weight w is changed.
- the measurement results shown in Figure 17 show that the mean and median of FAR increase as the normal distribution weight w is increased.
- the pseudo vascular pattern generation device (pseudo vascular pattern generation device 10 in the embodiment) of the present disclosure includes a processor (processor 11 in the embodiment).
- the processor generates a first random number based on a first random number seed, generates a second random number based on a second random number seed different from the first random number seed, generates a first image (first noise image Ib1 in the embodiment) by adding first noise based on the first random number to a gray image (gray image Ia in the embodiment), and generates a second image (second noise image Ib2 in the embodiment) by adding second noise based on the second random number to the gray image.
- the processor also generates a third image (composite noise image Ic in the embodiment) by combining the first and second images, and generates a pseudo vascular pattern image (pseudo vascular pattern image BV in the embodiment) using the third image.
- the first random number seed is associated with the management ID
- the second random number seed is associated with the personal ID.
- the processor also generates a third image by combining the first image and the second image, both of which are based on normal distributions.
- the processor also sets the weight of the normal distribution when generating the third image.
- the processor then generates a plurality of clusters, each defined by a combination of the management ID and the weight, each containing a plurality of pseudo blood vessel pattern images generated under a plurality of mutually different personal IDs.
- each cluster can contain multiple pseudo blood vessel patterns that are highly correlated with each other. Furthermore, while the correlation between pseudo blood vessel patterns can be strengthened between clusters with the same management ID but different weights, the correlation between pseudo blood vessel patterns can be weakened between clusters with different management IDs. Therefore, by generating multiple clusters like this, pseudo blood vessel patterns with correlations of various strengths can be generated.
- pseudo-vascular pattern generation system 10 pseudo-vascular pattern generation device 11 processor 12 storage unit
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
Abstract
Description
本開示は、疑似血管パターン生成装置及び疑似血管パターン生成方法に関する。 This disclosure relates to a pseudo-vascular pattern generation device and a pseudo-vascular pattern generation method.
血管パターンに基づく生体認証アルゴリズムや生体認証システムの開発には大量の血管パターンのデータが必要とされる。従来、実際の生体が撮影された画像(以下では「撮影画像」と呼ぶことがある)から抽出された血管パターン(以下では「実血管パターン」と呼ぶことがある)を用いて生体認証アルゴリズムや生体認証システムの開発が行われてきた。しかし、大量の実血管パターンを得るために実際に生体を撮影するのでは、実血管パターンの収集に多大な時間と費用を要する。また、実際に生体を撮影するのでは、撮影画像から抽出された実血管パターンは個人を特定するデータとなるため、撮影対象者との契約や各国の法制上、実血管パターンをストレージに保存しておくことが難しい。そこで、実血管パターンを代替する疑似血管パターンが必要とされている。 The development of biometric authentication algorithms and systems based on vascular patterns requires large amounts of vascular pattern data. Traditionally, biometric authentication algorithms and systems have been developed using vascular patterns (hereinafter sometimes referred to as "real vascular patterns") extracted from images of actual living bodies (hereinafter sometimes referred to as "photographed images"). However, actually photographing living bodies to obtain a large number of real vascular patterns requires a great deal of time and expense to collect real vascular patterns. Furthermore, when photographing actual living bodies, the real vascular patterns extracted from the photographed images become data that identifies individuals, making it difficult to store real vascular patterns in storage due to contracts with the subjects and the laws of each country. Therefore, there is a need for pseudo-vascular patterns that can replace real vascular patterns.
これに対し、例えば、ショウジョウバエの翅パターンやチューリングパターン等を用いた反応拡散方程式等の数学モデルに基づいて疑似血管パターンを生成する方法が知られている。 In response to this, methods are known for generating pseudo-vascular patterns based on mathematical models such as reaction-diffusion equations that use, for example, Drosophila wing patterns or Turing patterns.
しかし、数学モデルに基づいて生成された疑似血管パターンの形状は、実血管パターンの形状とはほど遠い。また、数学モデルに基づく疑似血管パターンの生成では多様性に富んだパターンが生成され難いため、数学モデルに基づいて生成された疑似血管パターンを生体認証アルゴリズムの評価に用いることは現実的でない。 However, the shape of the pseudo-vascular patterns generated based on mathematical models is far from that of real vascular patterns. Furthermore, since it is difficult to generate diverse patterns when generating pseudo-vascular patterns based on mathematical models, it is not practical to use pseudo-vascular patterns generated based on mathematical models to evaluate biometric authentication algorithms.
これに対し、グレー画像にホワイトノイズを付加した第一画像を生成し、第一画像におけるホワイトノイズを拡散した第二画像を生成し、第二画像に血管強調フィルタをかけた第三画像を生成し、第三画像に関心領域を設定した第四画像を生成し、第四画像に基づいて疑似血管パターンを含む第五画像を生成する先行技術がある。 In contrast, there is prior art that generates a first image by adding white noise to a gray image, generates a second image by diffusing the white noise in the first image, generates a third image by applying a blood vessel enhancement filter to the second image, generates a fourth image by setting a region of interest in the third image, and generates a fifth image containing a pseudo-vascular pattern based on the fourth image.
しかし、上記の先行技術では、疑似血管パターン間での相関を弱めることは容易でも強めることは困難であるため、上記の先行技術を用いても、比較的強い相関を有するような実際の生体の血管パターンの分布に疑似血管パターンの分布を近似させることが困難であった。 However, with the above prior art, it is easy to weaken the correlation between pseudo-vascular patterns but difficult to strengthen them, so even with the above prior art, it is difficult to approximate the distribution of pseudo-vascular patterns to the distribution of actual biological vascular patterns, which have a relatively strong correlation.
そこで、本開示は、様々な強さの相関を有する疑似血管パターンを生成できる技術を提案する。 This disclosure therefore proposes a technology that can generate pseudo-vascular patterns with correlations of various strengths.
本開示の疑似血管パターン生成装置は、プロセッサを有する。前記プロセッサは、第一乱数シードに基づいて第一乱数を生成し、前記第一乱数シードと異なる第二乱数シードに基づいて第二乱数を生成し、前記第一乱数に基づいた第一ノイズをグレー画像に付加することにより第一画像を生成し、前記第二乱数に基づいた第二ノイズを前記グレー画像に付加することにより第二画像を生成し、前記第一画像と前記第二画像とを合成することにより第三画像を生成し、前記第三画像を用いて、疑似血管パターンを含む画像である疑似血管パターン画像を生成する。また、前記第一乱数シードは管理IDに対応付けられており、前記第二乱数シードは個人IDに対応付けられている。また、前記プロセッサは、共に正規分布に基づく前記第一画像及び前記第二画像を合成することにより前記第三画像を生成し、前記第三画像を生成する際に、前記正規分布の重みを設定し、前記管理IDと前記重みとの組合せによってそれぞれが規定される複数のクラスタであって、互いに異なる複数の前記個人IDの下で生成される複数の前記疑似血管パターン画像をそれぞれが含む前記複数のクラスタを生成する。 The pseudo-vascular pattern generating device of the present disclosure includes a processor. The processor generates a first random number based on a first random number seed, generates a second random number based on a second random number seed different from the first random number seed, generates a first image by adding first noise based on the first random number to a gray image, generates a second image by adding second noise based on the second random number to the gray image, generates a third image by combining the first image and the second image, and generates a pseudo-vascular pattern image using the third image, which is an image including a pseudo-vascular pattern. The first random number seed is associated with an administration ID, and the second random number seed is associated with a personal ID. The processor generates the third image by combining the first image and the second image, both of which are based on a normal distribution. When generating the third image, the processor sets a weight for the normal distribution and generates a plurality of clusters, each defined by a combination of the administration ID and the weight, each including a plurality of the pseudo-vascular pattern images generated under a plurality of different personal IDs.
開示の技術によれば、様々な強さの相関を有する疑似血管パターンを生成できる。 The disclosed technology makes it possible to generate pseudo-vascular patterns with correlations of various strengths.
以下、本開示の実施例を図面に基づいて説明する。以下の実施例において同一の構成には同一の符号を付す。 Embodiments of the present disclosure will be described below with reference to the drawings. In the following embodiments, identical components will be designated by the same reference numerals.
[実施例]
<疑似血管パターン生成システムの構成>
図1は、本開示の疑似血管パターン生成システムの構成例を示す図である。
[Example]
<Configuration of pseudo-vascular pattern generation system>
FIG. 1 is a diagram showing an example of the configuration of a pseudo blood vessel pattern generation system according to the present disclosure.
図1において、疑似血管パターン生成システム1は、疑似血管パターン生成装置10と、入力装置20と、ディスプレイ30とを有する。入力装置20及びディスプレイ30は、疑似血管パターン生成装置10に接続される。入力装置20の一例として、マウス等のポインティングデバイス、及び、キーボードが挙げられる。ディスプレイ30の一例として、LCD(Liquid Crystal Display)が挙げられる。 In FIG. 1, the pseudo vascular pattern generation system 1 includes a pseudo vascular pattern generation device 10, an input device 20, and a display 30. The input device 20 and the display 30 are connected to the pseudo vascular pattern generation device 10. Examples of the input device 20 include a pointing device such as a mouse, and a keyboard. An example of the display 30 is an LCD (Liquid Crystal Display).
疑似血管パターン生成装置10は、プロセッサ11と、記憶部12とを有する。プロセッサ11の一例として、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)等が挙げられる。記憶部12の一例として、メモリ、ストレージ等が挙げられる。疑似血管パターン生成装置10は、例えばコンピュータにより実現される。 The pseudo-vascular pattern generating device 10 has a processor 11 and a memory unit 12. Examples of the processor 11 include a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), and an ASIC (Application Specific Integrated Circuit). Examples of the memory unit 12 include memory and storage. The pseudo-vascular pattern generating device 10 is realized, for example, by a computer.
<疑似血管パターン生成装置の処理>
図2は、本開示の疑似血管パターン生成装置における処理手順の一例を示す図である。図3~図12は、本開示の疑似血管パターンの生成過程における画像の一例を示す図である。
<Processing of the pseudo blood vessel pattern generating device>
2 is a diagram showing an example of a processing procedure in the pseudo blood vessel pattern generating device of the present disclosure, and FIGS. 3 to 12 are diagrams showing examples of images in the pseudo blood vessel pattern generating process of the present disclosure.
図2において、ステップS100では、プロセッサ11は、管理ID(以下では「MID」と呼ぶことがある)を記憶部12から取得する。管理IDは、オペレータによって入力装置20を用いて疑似血管パターン生成装置10に入力され、記憶部12に予め記憶されている In FIG. 2, in step S100, the processor 11 obtains a management ID (hereinafter sometimes referred to as "MID") from the storage unit 12. The management ID is input by the operator to the pseudo-vascular pattern generation device 10 using the input device 20 and is pre-stored in the storage unit 12.
次いで、ステップS105では、プロセッサ11は、個人ID(以下では「PID」と呼ぶことがある)の値を“1”に初期化する。 Next, in step S105, the processor 11 initializes the value of the personal ID (hereinafter sometimes referred to as "PID") to "1".
次いで、ステップS110では、プロセッサ11は、記憶部12に予め記憶されているグレー画像Ia(図3)を記憶部12から取得する。画像を形成する各画素の階調値が0~255の何れかの値をとる場合、全画素の階調値が例えば0~255の中間値の128である画像がグレー画像Iaとして記憶部12に予め記憶されている。 Next, in step S110, the processor 11 retrieves from the storage unit 12 a gray image Ia (Figure 3) that has been previously stored in the storage unit 12. When the gradation value of each pixel forming the image is any value between 0 and 255, an image in which the gradation values of all pixels are, for example, 128, the intermediate value between 0 and 255, is previously stored in the storage unit 12 as the gray image Ia.
次いで、ステップS115では、プロセッサ11は、第一乱数シード及び第二乱数シードを設定する。第一乱数シードと第二乱数シードとは互いに異なる乱数シードであり、第一乱数シードは管理IDに対応付けられており、第二乱数シードは個人IDに対応付けられている。 Next, in step S115, the processor 11 sets a first random number seed and a second random number seed. The first random number seed and the second random number seed are different from each other, and the first random number seed is associated with the management ID, and the second random number seed is associated with the personal ID.
例えば、複数の互いに異なる管理IDのそれぞれに一対一で対応する複数の互いに異なる第一乱数シードと、複数の互いに異なる個人IDのそれぞれに一対一で対応する複数の互いに異なる第二乱数シードとが記憶部12に予め記憶されており、プロセッサ11は、ステップS100で取得した管理IDに対応する第一乱数シードと、個人IDの現在の値に対応する第二乱数シードとを記憶部12から取得する。 For example, a plurality of mutually different first random number seeds corresponding one-to-one to each of a plurality of mutually different management IDs and a plurality of mutually different second random number seeds corresponding one-to-one to each of a plurality of mutually different personal IDs are pre-stored in the memory unit 12, and the processor 11 acquires from the memory unit 12 the first random number seed corresponding to the management ID acquired in step S100 and the second random number seed corresponding to the current value of the personal ID.
また例えば、プロセッサ11は、ステップS100で取得した管理IDをそのまま第一乱数シードとして使用し、個人IDの現在の値をそのまま第二乱数シードとして使用しても良い。 Also, for example, the processor 11 may use the management ID acquired in step S100 as the first random number seed, and the current value of the personal ID as the second random number seed.
次いで、ステップS120では、プロセッサ11は、第一正規分布N(μ1,σ1 2)に従う乱数を第一乱数シードに基づいて生成するとともに、第二正規分布N(μ2,σ2 2)に従う乱数を第二乱数シードに基づいて生成する。以下では、第一乱数シードに基づいて生成された乱数を「第一乱数」と呼び、第二乱数シードに基づいて生成された乱数を「第二乱数」と呼ぶことがある。また、ステップS120では、プロセッサ11は、第一乱数に基づいたホワイトノイズ(以下では「第一ノイズ」と呼ぶことがある)をグレー画像Iaの全画素に対して付加するとともに、第二乱数に基づいたホワイトノイズ(以下では「第二ノイズ」と呼ぶことがある)をグレー画像Iaの全画素に対して付加する。第一乱数シードと第二乱数シードとは互いに異なる乱数シードであるため、第一ノイズと第二ノイズとは、ノイズの状態が互いに異なるホワイトノイズとなる。これにより、グレー画像Iaに第一ノイズが付加された画像(以下では「第一ノイズ画像」と呼ぶことがある)Ib1(図4)と、グレー画像Iaに第二ノイズが付加された画像(以下では「第二ノイズ画像」と呼ぶことがある)Ib2(図5)とが生成される。 Next, in step S120, the processor 11 generates random numbers that follow a first normal distribution N(μ 1 , σ 1 2 ) based on the first random number seed, and generates random numbers that follow a second normal distribution N(μ 2 , σ 2 2 ) based on the second random number seed. Hereinafter, random numbers generated based on the first random number seed may be referred to as "first random numbers," and random numbers generated based on the second random number seed may be referred to as "second random numbers." Also, in step S120, the processor 11 adds white noise based on the first random number (hereinafter may be referred to as "first noise") to all pixels of the grayscale image Ia, and adds white noise based on the second random number (hereinafter may be referred to as "second noise") to all pixels of the grayscale image Ia. Because the first random number seed and the second random number seed are different random number seeds, the first noise and the second noise are white noises with different noise states. This generates an image Ib1 (Figure 4) in which the first noise has been added to the gray image Ia (hereinafter referred to as the "first noise image"), and an image Ib2 (Figure 5) in which the second noise has been added to the gray image Ia (hereinafter referred to as the "second noise image").
次いで、ステップS125では、プロセッサ11は、第一ノイズ画像Ib1と第二ノイズ画像Ib2とを合成する。これにより、第一ノイズ画像Ib1と第二ノイズ画像Ib2とが合成された画像(以下では「合成ノイズ画像」と呼ぶことがある)Ic(図6)が生成される。合成ノイズ画像Icは正規分布N(μ,σ2)に従う画像である。 Next, in step S125, the processor 11 combines the first noise image Ib1 and the second noise image Ib2. As a result, an image Ic (FIG. 6) in which the first noise image Ib1 and the second noise image Ib2 are combined (hereinafter, may be referred to as the "composite noise image") is generated. The composite noise image Ic is an image that follows a normal distribution N(μ,σ 2 ).
次いで、ステップS130では、プロセッサ11は、合成ノイズ画像Icにおけるノイズを拡散させる。プロセッサ11は、例えばガウシアンフィルタを合成ノイズ画像Icにかけることにより、合成ノイズ画像Icにおいてノイズが拡散された画像(以下では「ノイズ拡散画像」と呼ぶことがある)Id(図7)を生成する。 Next, in step S130, the processor 11 diffuses the noise in the composite noise image Ic. For example, the processor 11 applies a Gaussian filter to the composite noise image Ic to generate an image Id (FIG. 7) in which the noise in the composite noise image Ic has been diffused (hereinafter, sometimes referred to as a "noise-diffused image").
次いで、ステップS135では、プロセッサ11は、ノイズ拡散画像Idにおいて血管を強調する。プロセッサ11は、例えばFrangiフィルタ等の血管強調フィルタをノイズ拡散画像Idにかけることにより、ノイズ拡散画像Idにおいて血管が強調された画像(以下では「血管強調画像」と呼ぶことがある)Ie(図8)を生成する。 Next, in step S135, the processor 11 emphasizes blood vessels in the noise diffusion image Id. The processor 11 applies a blood vessel emphasis filter, such as a Frangi filter, to the noise diffusion image Id to generate an image Ie (Figure 8) in which blood vessels are emphasized in the noise diffusion image Id (hereinafter sometimes referred to as a "blood vessel emphasis image").
次いで、ステップS140では、プロセッサ11は、血管強調画像Ieを平滑化する。プロセッサ11は、例えばガウシアンフィルタを用いて血管強調画像Ieを平滑化することにより、血管強調画像Ieに対して平滑化が為された画像(以下では「平滑化画像」と呼ぶことがある)If(図9)を生成する。なお、ステップS140の処理を省くことも可能である。 Next, in step S140, processor 11 smooths vessel-enhanced image Ie. For example, processor 11 smooths vessel-enhanced image Ie using a Gaussian filter to generate an image If (Figure 9) in which vessel-enhanced image Ie has been smoothed (hereinafter, sometimes referred to as a "smoothed image"). Note that it is possible to omit the processing of step S140.
次いで、ステップS145では、プロセッサ11は、平滑化画像Ifの色を反転させる。これにより、平滑化画像Ifが所謂ネガポジ反転された画像(以下では「色反転画像」と呼ぶことがある)Ig(図10)が生成される。なお、ステップS140の処理が省かれる場合は、ステップS145では、プロセッサ11は、血管強調画像Ieの色を反転させることにより色反転画像Igを生成する。なお、ステップS145の処理を省くことも可能である。 Next, in step S145, the processor 11 inverts the color of the smoothed image If. This generates an image Ig (Figure 10) in which the smoothed image If is inverted from negative to positive (hereinafter sometimes referred to as a "color-inverted image"). Note that if the processing of step S140 is omitted, in step S145 the processor 11 inverts the color of the blood vessel-enhanced image Ie to generate a color-inverted image Ig. Note that the processing of step S145 can also be omitted.
次いで、ステップS150では、プロセッサ11は、色反転画像Igに関心領域(Region of Interest:ROI)を設定する。これにより、色反転画像Igに対して関心領域が設定された画像(以下では「関心領域設定後画像」と呼ぶことがある)Ih(図11)が生成される。なお、ステップS145の処理が省かれる場合は、ステップS150では、プロセッサ11は、平滑化画像Ifに関心領域を設定する。また、ステップS140及びステップS145の処理が省かれる場合は、ステップS150では、プロセッサ11は、血管強調画像Ieに関心領域を設定する。 Next, in step S150, processor 11 sets a region of interest (ROI) in the color-inverted image Ig. This generates an image Ih (Figure 11) in which a region of interest has been set in the color-inverted image Ig (hereinafter sometimes referred to as the "image after region of interest setting"). Note that if the processing of step S145 is omitted, processor 11 sets a region of interest in the smoothed image If in step S150. Also, if the processing of steps S140 and S145 is omitted, processor 11 sets a region of interest in the blood vessel-enhanced image Ie in step S150.
次いで、ステップS155では、プロセッサ11は、関心領域設定後画像Ihに対して幾何変換を行う。これにより、関心領域設定後画像Ihに対して幾何変換が為された画像(以下では「幾何変換後画像」と呼ぶことがある)Ii(図12)が生成される。幾何変換後画像Iiにおいて、関心領域内の画像は、疑似血管パターンを含む画像(以下では「疑似血管パターン画像」と呼ぶことがある)BVとなる。関心領域設定後画像Ihに対して行われる幾何変換の一例として、アフィン変換、射影変換等が挙げられる。なお、ステップS155の処理を省くことも可能である。ステップS155の処理が省かれた場合、関心領域設定後画像Ihにおける関心領域内の画像が疑似血管パターン画像BVとなる。 Next, in step S155, the processor 11 performs a geometric transformation on the post-region-of-interest setting image Ih. This generates an image Ii (Figure 12) in which the post-region-of-interest setting image Ih has been geometrically transformed (hereinafter may be referred to as the "post-geometric transformation image"). In the post-geometric transformation image Ii, the image within the region of interest becomes an image BV containing a pseudo blood vessel pattern (hereinafter may be referred to as the "pseudo blood vessel pattern image"). Examples of geometric transformations performed on the post-region-of-interest setting image Ih include affine transformation and projective transformation. Note that the processing of step S155 can be omitted. If the processing of step S155 is omitted, the image within the region of interest in the post-region-of-interest setting image Ih becomes the pseudo blood vessel pattern image BV.
次いで、ステップS160では、プロセッサ11は、ステップS155で生成した幾何変換後画像Iiを記憶部12に記憶させる。 Next, in step S160, the processor 11 stores the geometrically transformed image Ii generated in step S155 in the storage unit 12.
次いで、ステップS165では、プロセッサ11は、PIDの値が所定値Nに達したか否かを判定する。PIDの値が所定値Nに達していないときは(ステップS165:No)、処理はステップS170へ進み、PIDの値が所定値Nに達しているときは(ステップS165:Yes)、処理手順は終了する。 Next, in step S165, processor 11 determines whether the PID value has reached a predetermined value N. If the PID value has not reached the predetermined value N (step S165: No), processing proceeds to step S170; if the PID value has reached the predetermined value N (step S165: Yes), the processing procedure ends.
ステップS170では、プロセッサ11は、PIDの値を“1”だけインクリメントする。ステップS170の処理後、処理はステップS110に戻る。 In step S170, processor 11 increments the PID value by "1". After processing step S170, processing returns to step S110.
なお、オペレータは、入力装置20を用いて所定値Nを設定することが可能である。また、オペレータは、ディスプレイ30を用いて、疑似血管パターン画像BVを視認することが可能である。 The operator can set the predetermined value N using the input device 20. The operator can also visually recognize the pseudo blood vessel pattern image BV using the display 30.
ここで、プロセッサ11は、ステップS115で設定する第一乱数シード及び第二乱数シードの値を、MID及びPIDの値に応じて変化させる。 Here, the processor 11 changes the values of the first random number seed and second random number seed set in step S115 depending on the values of the MID and PID.
例えば、プロセッサ11は、MIDの値が“A”(MID=A)であるときは第一乱数シードの値を“SA”に設定し、MIDの値が“B”(MID=B)であるときは第一乱数シードの値を“SB”に設定し、MIDの値が“C”(MID=C)であるときは第一乱数シードの値を“SC”に設定する。一方で、プロセッサ11は、PIDの値が“1”(PID=1)であるときは第二乱数シードの値を“S1”に設定し、PIDの値が“2”(PID=2)であるときは第二乱数シードの値を“S2”に設定し、PIDの値が“3”(PID=3)であるときは第二乱数シードの値を“S3”に設定する。 For example, when the MID value is "A" (MID=A), processor 11 sets the value of the first random number seed to "SA", when the MID value is "B" (MID=B), the value of the first random number seed to "SB", and when the MID value is "C" (MID=C), the value of the first random number seed to "SC". On the other hand, when the PID value is "1" (PID=1), processor 11 sets the value of the second random number seed to "S1", when the PID value is "2" (PID=2), the value of the second random number seed to "S2", and when the PID value is "3" (PID=3), the value of the second random number seed to "S3".
このように、第一乱数シードの値はMIDの値に応じて変化し、第二乱数シードの値はPIDの値に応じて変化する。 In this way, the value of the first random number seed changes depending on the value of MID, and the value of the second random number seed changes depending on the value of PID.
<第一ノイズ画像と第二ノイズ画像との合成>
プロセッサ11は、第一正規分布N(μ1,σ1
2)に基づいて生成される第一ノイズ画像Ib1と、第二正規分布N(μ2,σ2
2)(但し、μ1≦μ2かつσ1
2≦σ2
2)に基づいて生成される第二ノイズ画像Ib2とを合成することにより正規分布N(μ, σ2)に従う合成ノイズ画像Icを生成するために、第一乱数シード及び第二乱数シードの各乱数シードから生成可能な正規分布の平均及び分散に対する重みを以下のようにして設定する。以下、正規分布の平均に対する重み(以下では「平均重み」と呼ぶことがある)wa(但し、0≦wa≦1)の設定方法と、正規分布の分散に対する重み(以下では「分散重み」と呼ぶことがある)wb(但し、0≦wb≦1)の設定方法とに分けて説明する。
<Combining First Noise Image and Second Noise Image>
In order to generate a composite noise image Ic conforming to the normal distribution N( μ , σ2 ) by combining a first noise image Ib1 generated based on a first normal distribution N( μ1 , σ12 ) with a second noise image Ib2 generated based on a second normal distribution N(μ2, σ22 ) (where μ1 ≦ μ2 and σ12 ≦ σ22 ), the processor 11 sets weights for the mean and variance of the normal distributions that can be generated from each of the first random number seed and the second random number seed as follows: Below, a method for setting a weight for the mean of the normal distribution (hereinafter sometimes referred to as the "mean weight") wa (where 0≦ wa ≦1) and a method for setting a weight for the variance of the normal distribution (hereinafter sometimes referred to as the "variance weight") wb (where 0≦ wb ≦1) will be explained separately.
<平均重みの設定方法>
μ1=0、μ2=0、かつ、μ≠0の場合、プロセッサ11は、平均重みwaを設定することが困難であるため、μ1またはμ2の何れかを再設定する。
<How to set the average weight>
If μ 1 =0, μ 2 =0, and μ≠0, it is difficult for the processor 11 to set the average weight w a , so the processor 11 resets either μ 1 or μ 2 .
また、μ1≦μ≦μ2の場合、プロセッサ11は、μ1及びμ2に対して、加重平均(waμ1+(1-wa)μ2=μ)を満たす平均重みwaを設定する。特に、μ1=μ=μ2となる場合は、任意の平均重みwaの下で加重平均(waμ1+(1-wa)μ2=μ)が成立するため、プロセッサ11は、第一乱数シード及び第二乱数シードの各乱数シードから生成される第一正規分布N(μ1,σ1 2)及び第二正規分布N(μ2,σ2 2)の影響度を加味して、平均重みwaを設定する。 Furthermore, if μ1 ≦μ≦ μ2 , processor 11 sets an average weight wa for μ1 and μ2 that satisfies the weighted average ( wa μ1 + (1- wa ) μ2 = μ). In particular, if μ1 = μ = μ2 , the weighted average ( wa μ1 + (1- wa ) μ2 = μ) holds for any average weight wa , so processor 11 sets the average weight wa taking into account the influence of the first normal distribution N( μ1 , σ12 ) and the second normal distribution N( μ2 , σ22 ) generated from each of the first random number seed and the second random number seed .
また、μ<μ1またはμ2<μの場合は、平均重みwaの定義域内で加重平均(waμ1+(1-wa)μ2=μ)を満たす値が存在しないため、プロセッサ11は、μ1またはμ2の何れかをμ1≦μかつμ≦μ2の条件を満たす値に再設定する。 Furthermore, if μ< μ1 or μ2 <μ, there is no value within the domain of the average weight wa that satisfies the weighted average ( wa μ1 + (1- wa ) μ2 = μ), so processor 11 resets either μ1 or μ2 to a value that satisfies the conditions μ1 ≦ μ and μ≦ μ2 .
<分散重みの設定方法>
σ1
2≦σ2≦σ2
2の場合、プロセッサ11は、σ1
2及びσ2
2に対して、加重平均(wbσ1
2+(1-wb)σ2
2=σ2)を満たす分散重みwbを設定する。特に、σ1
2=σ2=σ2
2となる場合は、任意の分散重みwbの下で加重平均(wbσ1
2+(1-wb)σ2
2=σ2)が成立するため、プロセッサ11は、第一乱数シード及び第二乱数シードの各乱数シードから生成される第一正規分布N(μ1,σ1
2)及び第二正規分布N(μ2,σ2
2)の影響度を加味して、分散重みwbを設定する。
<How to set the distribution weight>
If σ 1 2 ≦σ 2 ≦σ 2 2 , the processor 11 sets a variance weight w b that satisfies the weighted average (w b σ 1 2 + ( 1 − w b )σ 2 2 =σ 2 ) for σ 1 2 and σ 2 2. In particular, if σ 1 2 =σ 2 =σ 2 2 , the weighted average (w b σ 1 2 +(1−w b )σ 2 2 =σ 2 ) holds for any variance weight w b , so the processor 11 sets the variance weight w b taking into account the influence of the first normal distribution N(μ 1 ,σ 1 2 ) and the second normal distribution N(μ 2 ,σ 2 2 ) generated from the first random number seed and the second random number seed , respectively.
また、σ2<σ1 2またはσ2 2<σ2の場合は、分散重みwbの定義域内で加重平均(wbσ1 2+(1-wb)σ2 2=σ2)を満たす値が存在しないため、プロセッサ11は、σ1 2またはσ2 2の何れかをσ1 2≦σ2かつσ2≦σ2 2の条件を満たす値に再設定する。 Furthermore, if σ 2 < σ 1 2 or σ 2 2 < σ 2 , there is no value within the domain of the variance weight w b that satisfies the weighted average (w b σ 1 2 + (1 - w b )σ 2 2 = σ 2 ), so the processor 11 resets either σ 1 2 or σ 2 2 to a value that satisfies the conditions σ 1 2 ≦ σ 2 and σ 2 ≦ σ 2 2 .
なお、以下では、平均重みwa及び分散重みwbを「正規分布重みw」と総称することがある。 In the following, the mean weight w a and the variance weight w b may be collectively referred to as the "normal distribution weight w."
<疑似血管パターン画像>
図13は、本開示の疑似血管パターン画像の一例を示す図である。
<Pseudo-vascular pattern image>
FIG. 13 is a diagram showing an example of a pseudo blood vessel pattern image according to the present disclosure.
ステップS100で取得されたMIDの値が“A”(MID=A)で、かつ、ステップS165における所定値Nが“2”(N=2)に設定されているときは、図13に示すように、正規分布重みwの大きさ(w=0.0,0.2,0.4,0.6,0.8)に応じて、第一疑似血管パターン画像BV1~第十疑似血管パターン画像BV10が生成される。第一疑似血管パターン画像BV1~第十疑似血管パターン画像BV10は、MID=Aの下で生成される。また、第一疑似血管パターン画像BV1~第五疑似血管パターン画像BV5は、PID=1の下で生成され、第六疑似血管パターン画像BV6~第十疑似血管パターン画像BV10は、PID=2の下で生成される。また、第一疑似血管パターン画像BV1及び第六疑似血管パターン画像BV6はw=0.0の下で生成され、第二疑似血管パターン画像BV2及び第七疑似血管パターン画像BV7はw=0.2の下で生成され、第三疑似血管パターン画像BV3及び第八疑似血管パターン画像BV8はw=0.4の下で生成され、第四疑似血管パターン画像BV4及び第九疑似血管パターン画像BV9はw=0.6の下で生成され、第五疑似血管パターン画像BV5及び第十疑似血管パターン画像BV10はw=0.8の下で生成される。 When the MID value obtained in step S100 is "A" (MID=A) and the predetermined value N in step S165 is set to "2" (N=2), as shown in FIG. 13, the first pseudo blood vessel pattern image BV1 to the tenth pseudo blood vessel pattern image BV10 are generated according to the magnitude of the normal distribution weight w (w=0.0, 0.2, 0.4, 0.6, 0.8). The first pseudo blood vessel pattern image BV1 to the tenth pseudo blood vessel pattern image BV10 are generated under MID=A. Furthermore, the first pseudo blood vessel pattern image BV1 to the fifth pseudo blood vessel pattern image BV5 are generated under PID=1, and the sixth pseudo blood vessel pattern image BV6 to the tenth pseudo blood vessel pattern image BV10 are generated under PID=2. Furthermore, the first pseudo blood vessel pattern image BV1 and the sixth pseudo blood vessel pattern image BV6 are generated under w = 0.0, the second pseudo blood vessel pattern image BV2 and the seventh pseudo blood vessel pattern image BV7 are generated under w = 0.2, the third pseudo blood vessel pattern image BV3 and the eighth pseudo blood vessel pattern image BV8 are generated under w = 0.4, the fourth pseudo blood vessel pattern image BV4 and the ninth pseudo blood vessel pattern image BV9 are generated under w = 0.6, and the fifth pseudo blood vessel pattern image BV5 and the tenth pseudo blood vessel pattern image BV10 are generated under w = 0.8.
図13に示す第一疑似血管パターン画像BV1~第十疑似血管パターン画像BV10によれば、正規分布重みwが大きくなるほど、PID=1とPID=2との間で疑似血管パターン画像BVがより似通ったものになっていること、つまり、PID=1とPID=2との間での疑似血管パターン画像BVの類似度(以下では「パターン画像類似度」と呼ぶことがある)が大きくなっていることが分かる。例えば、第五疑似血管パターン画像BV5と第十疑似血管パターン画像BV10との間のパターン画像類似度は第四疑似血管パターン画像BV4と第九疑似血管パターン画像BV9との間のパターン画像類似度よりも大きく、第四疑似血管パターン画像BV4と第九疑似血管パターン画像BV9との間のパターン画像類似度は第三疑似血管パターン画像BV3と第八疑似血管パターン画像BV8との間のパターン画像類似度よりも大きく、第三疑似血管パターン画像BV3と第八疑似血管パターン画像BV8との間のパターン画像類似度は第二疑似血管パターン画像BV2と第七疑似血管パターン画像BV7との間のパターン画像類似度よりも大きく、第二疑似血管パターン画像BV2と第七疑似血管パターン画像BV7との間のパターン画像類似度は第一疑似血管パターン画像BV1と第六疑似血管パターン画像BV6との間のパターン画像類似度よりも大きいことが分かる。 According to the first pseudo blood vessel pattern image BV1 to the tenth pseudo blood vessel pattern image BV10 shown in Figure 13, the larger the normal distribution weight w, the more similar the pseudo blood vessel pattern images BV become between PID=1 and PID=2, that is, the greater the similarity (hereinafter sometimes referred to as "pattern image similarity") of the pseudo blood vessel pattern images BV between PID=1 and PID=2. For example, it can be seen that the pattern image similarity between the fifth pseudo blood vessel pattern image BV5 and the tenth pseudo blood vessel pattern image BV10 is greater than the pattern image similarity between the fourth pseudo blood vessel pattern image BV4 and the ninth pseudo blood vessel pattern image BV9; the pattern image similarity between the fourth pseudo blood vessel pattern image BV4 and the ninth pseudo blood vessel pattern image BV9 is greater than the pattern image similarity between the third pseudo blood vessel pattern image BV3 and the eighth pseudo blood vessel pattern image BV8; the pattern image similarity between the third pseudo blood vessel pattern image BV3 and the eighth pseudo blood vessel pattern image BV8 is greater than the pattern image similarity between the second pseudo blood vessel pattern image BV2 and the seventh pseudo blood vessel pattern image BV7; and the pattern image similarity between the second pseudo blood vessel pattern image BV2 and the seventh pseudo blood vessel pattern image BV7 is greater than the pattern image similarity between the first pseudo blood vessel pattern image BV1 and the sixth pseudo blood vessel pattern image BV6.
<クラスタの生成>
図14は、本開示のクラスタの一例を示す図である。
<Cluster generation>
FIG. 14 is a diagram illustrating an example of a cluster according to the present disclosure.
例えば、プロセッサ11は、MID=Aの下で、正規分布重みwをw1(w=w1)と、w1より大きいw2(w=w2)とに設定し、かつ、w=w1の下でPIDを“1”,“2”,“3”と変化させるとともに、w=w2の下でPIDを“4”,“5”,“6”と変化させることにより6個の疑似血管パターン画像BVを生成する。これにより、MID=Aとw=w1との組合せによって規定される第一クラスタCL1が生成され、MID=Aとw=w2との組合せによって規定される第二クラスタCL2が生成される。第一クラスタCL1には、MID=A、w=w1、かつ、PID=1,2,3の下で生成される3個の疑似血管パターン画像BVが属し、第二クラスタCL2には、MID=A、w=w2、かつ、PID=4,5,6の下で生成される3個の疑似血管パターン画像BVが属する。w2>w1であるため、第二クラスタCL2に属する3個の疑似血管パターン画像BV間でのパターン画像類似度は、第一クラスタCL1に属する3個の疑似血管パターン画像BV間でのパターン画像類似度よりも大きくなる。 For example, when MID=A, the processor 11 sets the normal distribution weight w to w1 (w=w1) and w2 (w=w2) greater than w1, and generates six pseudo blood vessel pattern images BV by changing the PID to "1", "2", and "3" when w=w1 and changing the PID to "4", "5", and "6" when w=w2. This generates a first cluster CL1 defined by the combination of MID=A and w=w1, and a second cluster CL2 defined by the combination of MID=A and w=w2. The first cluster CL1 includes three pseudo blood vessel pattern images BV generated when MID=A, w=w1, and PID=1, 2, and 3, and the second cluster CL2 includes three pseudo blood vessel pattern images BV generated when MID=A, w=w2, and PID=4, 5, and 6. Because w2 > w1, the pattern image similarity between the three pseudo blood vessel pattern images BV belonging to the second cluster CL2 is greater than the pattern image similarity between the three pseudo blood vessel pattern images BV belonging to the first cluster CL1.
また例えば、プロセッサ11は、MID=Bの下で、正規分布重みwをw1(w=w1)に設定し、かつ、w=w1の下でPIDを“7”,“8”,“9”と変化させることにより3個の疑似血管パターン画像BVを生成する。これにより、MID=Bとw=w1との組合せによって規定される第三クラスタCL3が生成される。第三クラスタCL3には、MID=B、w=w1、かつ、PID=7,8,9の下で生成される3個の疑似血管パターン画像BVが属する。 Furthermore, for example, the processor 11 generates three pseudo blood vessel pattern images BV by setting the normal distribution weight w to w1 (w=w1) when MID=B and changing the PID to "7", "8", and "9" when w=w1. This generates a third cluster CL3 defined by the combination of MID=B and w=w1. The three pseudo blood vessel pattern images BV generated when MID=B, w=w1, and PID=7, 8, and 9 belong to the third cluster CL3.
ここで、第一クラスタCL1に属する疑似血管パターン画像と、第二クラスタCL2に属する疑似血管パターン画像とは、互いに同一のMIDから生成される。このため、第一クラスタCL1と第二クラスタCL2とは互いに同様な性質を有するので、第一クラスタCL1と第二クラスタCL2との間の相関は強くなる。一方で、第一クラスタCL1に属する疑似血管パターン画像と、第二クラスタCL2に属する疑似血管パターン画像とは、互いに異なる大きさの正規分布重みwから生成されるため、上記のように、第一クラスタCL1に属する疑似血管パターン画像間での類似度と、第二クラスタCL2に属する疑似血管パターン画像間での類似度とは相違する。よって、第一クラスタCL1と第二クラスタCL2とを形成することで、互いに相関が強い疑似血管パターンを含みつつ、多様性に富んだ疑似血管パターンを生成できる。 Here, the pseudo blood vessel pattern image belonging to the first cluster CL1 and the pseudo blood vessel pattern image belonging to the second cluster CL2 are generated from the same MID. Therefore, the first cluster CL1 and the second cluster CL2 have similar properties, resulting in a strong correlation between the first cluster CL1 and the second cluster CL2. On the other hand, the pseudo blood vessel pattern image belonging to the first cluster CL1 and the pseudo blood vessel pattern image belonging to the second cluster CL2 are generated from normal distribution weights w of different magnitudes, and therefore, as described above, the similarity between the pseudo blood vessel pattern images belonging to the first cluster CL1 differs from the similarity between the pseudo blood vessel pattern images belonging to the second cluster CL2. Therefore, by forming the first cluster CL1 and the second cluster CL2, it is possible to generate a wide variety of pseudo blood vessel patterns, including pseudo blood vessel patterns that are highly correlated with each other.
また、第一クラスタCL1に属する疑似血管パターン画像と、第三クラスタCL3に属する疑似血管パターン画像とは、互いに異なるMIDから生成される。このため、第一クラスタCL1と第三クラスタCL3とは互いに異なる性質を有するので、第一クラスタCL1と第三クラスタCL3との間の相関は弱くなる。よって、第一クラスタCL1及び第二クラスタCL2に加えて第三クラスタCL3を形成することで、さらに多様性に富んだ疑似血管パターンを生成できる。 Furthermore, the pseudo blood vessel pattern image belonging to the first cluster CL1 and the pseudo blood vessel pattern image belonging to the third cluster CL3 are generated from different MIDs. As a result, the first cluster CL1 and the third cluster CL3 have different properties, and the correlation between the first cluster CL1 and the third cluster CL3 is weak. Therefore, by forming the third cluster CL3 in addition to the first cluster CL1 and the second cluster CL2, it is possible to generate even more diverse pseudo blood vessel patterns.
<他人受入率(False Acceptance Rate:FAR)及び本人拒否率(False Rejection Rate:FRR)>
図15は、本開示の疑似血管パターン生成装置により生成された疑似血管パターンに対するFRR及びFARの測定結果を示す図である。また、図16は、本開示の疑似血管パターン生成装置により生成された疑似血管パターンに対するFRRの測定結果を示す図である。また、図17は、本開示の疑似血管パターン生成装置により生成された疑似血管パターンに対するFARの測定結果を示す図である。
<False Acceptance Rate (FAR) and False Rejection Rate (FRR)>
Fig. 15 is a diagram showing the measurement results of FRR and FAR for a pseudo blood vessel pattern generated by the pseudo blood vessel pattern generation device of the present disclosure, Fig. 16 is a diagram showing the measurement results of FRR for a pseudo blood vessel pattern generated by the pseudo blood vessel pattern generation device of the present disclosure, and Fig. 17 is a diagram showing the measurement results of FAR for a pseudo blood vessel pattern generated by the pseudo blood vessel pattern generation device of the present disclosure.
図15、図16及び図17に示すFRR及びFARの測定にあたっては、MIDの値を1通りとし、所定値Nを“1000”に設定してPIDの値を1000通りに変化させることにより、疑似血管パターン生成装置10によって1,000個の疑似血管パターン画像BVを生成し、それぞれの疑似血管パターン画像BVに対して、互いに異なる3通りの幾何学的変換を実施し、それぞれの疑似血管パターン画像BVから生成した3個の幾何学的変換実施後の疑似血管パターン画像BVをデータベースに登録するためのデータ(以下では「登録データ」と呼ぶことがある)2個、及び、データベースに登録したデータと照合するためのデータ(以下では「照合データ」と呼ぶことがある)1個の合計3個のデータを1組とし、幾何学的変換実施後の1,000組の疑似血管パターン画像BVペアを生成した。 When measuring the FRR and FAR shown in Figures 15, 16, and 17, the MID value was set to one value, the predetermined value N was set to "1000," and the PID value was changed in 1000 ways to generate 1000 pseudo blood vessel pattern images BV using the pseudo blood vessel pattern generating device 10. Three different geometric transformations were then performed on each pseudo blood vessel pattern image BV. Two sets of data (hereinafter sometimes referred to as "registration data") were used to register the pseudo blood vessel pattern images BV generated from each pseudo blood vessel pattern image BV after the three geometric transformations in a database, and one set of data (hereinafter sometimes referred to as "matching data") was used to compare the data registered in the database. This total of three data sets was used to generate 1000 pairs of pseudo blood vessel pattern images BV after the geometric transformations.
図15には、幾何学的変換実施後の1,000組の疑似血管パターン画像BVペアに対して、登録データと照合データとの間で互いに同一のMID及び互いに同一のPID(つまり、組み換え未実施の1,000組)に対するFRRの測定結果、及び、幾何学的変換実施後の1,000組の疑似血管パターン画像BVペアに対して、登録データと照合データとの間で互いに同一のMID及び互いに異なるPIDとなるように組み替えた999,000組に対するFARの測定結果を示す。また、図15には、正規分布重みwを0.00,0.20,0.40,0.60,0.80と変化させたときのFRR及びFARの測定結果を示す。図15に示す測定結果では、FRRは、正規分布重みwの大きさに依らず、約-0.18以下で0%になっている。一方で、FARは、正規分布重みwが0.00及び0.20のときは約-0.28以上で0%になり、正規分布重みwが0.40のときは約-0.27以上で0%になり、正規分布重みwが0.60のときは約-0.22以上で0%になり、正規分布重みwが0.80のときは約-0.16以上で0%になっている。このように、図15に示す測定結果からは、正規分布重みwを変化させてもFRRの分布はほとんど変化しない一方で、正規分布重みwを大きくするほどFARの分布は図中の右方向へ移動していることが分かる。 Figure 15 shows the FRR measurement results for 1,000 pseudo-vascular pattern image BV pairs after geometric transformation, where the registered data and matching data have the same MID and PID (i.e., 1,000 pairs without rearrangement), and the FAR measurement results for 999,000 pairs of 1,000 pseudo-vascular pattern image BV pairs after geometric transformation, where the registered data and matching data have the same MID and different PID. Figure 15 also shows the FRR and FAR measurement results when the normal distribution weight w is changed to 0.00, 0.20, 0.40, 0.60, and 0.80. In the measurement results shown in Figure 15, the FRR is 0% at or below approximately -0.18, regardless of the magnitude of the normal distribution weight w. On the other hand, when the normal distribution weight w is 0.00 or 0.20, the FAR is 0% at approximately -0.28 or greater, when the normal distribution weight w is 0.40, it is 0% at approximately -0.27 or greater, when the normal distribution weight w is 0.60, it is 0% at approximately -0.22 or greater, and when the normal distribution weight w is 0.80, it is 0% at approximately -0.16 or greater. Thus, the measurement results shown in Figure 15 show that while the FRR distribution hardly changes when the normal distribution weight w is changed, the FAR distribution shifts to the right in the figure as the normal distribution weight w is increased.
また、図16には、図15と同一条件の下で正規分布重みwを0.00から0.96まで0.02刻みで変化させたときのFRRの各分布の平均値及び中央値の測定結果を示す。また、図17には、図15と同一条件の下で正規分布重みwを0.00から0.96まで0.02刻みで変化させたときのFARの各分布の平均値及び中央値の測定結果を示す。図16に示す測定結果では、正規分布重みwを変化させてもFRRの平均値及び中央値はほとんど変化しないことが分かる。一方で、図17に示す測定結果では、正規分布重みwを大きくするほどFARの平均値及び中央値は増加することが分かる。 Furthermore, Figure 16 shows the measurement results of the mean and median of each FRR distribution when the normal distribution weight w is changed in increments of 0.02 from 0.00 to 0.96 under the same conditions as Figure 15. Furthermore, Figure 17 shows the measurement results of the mean and median of each FAR distribution when the normal distribution weight w is changed in increments of 0.02 from 0.00 to 0.96 under the same conditions as Figure 15. The measurement results shown in Figure 16 show that the mean and median of FRR change very little even when the normal distribution weight w is changed. On the other hand, the measurement results shown in Figure 17 show that the mean and median of FAR increase as the normal distribution weight w is increased.
図15、図16及び図17に示す測定結果から、疑似血管パターン生成装置10によって生成された疑似血管パターン画像に含まれる疑似血管パターンは、多様性を有し、生体認証アルゴリズムの評価に用いられる主要な指標であるFAR及びFRRの理想的な状態を満たすことが分かる。 The measurement results shown in Figures 15, 16, and 17 show that the pseudo blood vessel patterns contained in the pseudo blood vessel pattern image generated by the pseudo blood vessel pattern generation device 10 are diverse and meet the ideal conditions for FAR and FRR, which are key indices used in evaluating biometric authentication algorithms.
また、図15、図16及び図17に示す測定結果から、疑似血管パターン生成装置10によって生成された疑似血管パターン画像に含まれる疑似血管パターンでは、正規分布重みwを変化させることによりFARを容易に調節できることが分かる。 Furthermore, the measurement results shown in Figures 15, 16, and 17 show that the FAR of the pseudo blood vessel patterns contained in the pseudo blood vessel pattern image generated by the pseudo blood vessel pattern generation device 10 can be easily adjusted by changing the normal distribution weight w.
以上、実施例について説明した。 The above explains the examples.
以上のように、本開示の疑似血管パターン生成装置(実施例の疑似血管パターン生成装置10)は、プロセッサ(実施例のプロセッサ11)を有する。プロセッサは、第一乱数シードに基づいて第一乱数を生成し、第一乱数シードと異なる第二乱数シードに基づいて第二乱数を生成し、第一乱数に基づいた第一ノイズをグレー画像(実施例のグレー画像Ia)に付加することにより第一画像(実施例の第一ノイズ画像Ib1)を生成し、第二乱数に基づいた第二ノイズをグレー画像に付加することにより第二画像(実施例の第二ノイズ画像Ib2)を生成する。また、プロセッサは、第一画像と第二画像とを合成することにより第三画像(実施例の合成ノイズ画像Ic)を生成し、第三画像を用いて疑似血管パターン画像(実施例の疑似血管パターン画像BV)を生成する。 As described above, the pseudo vascular pattern generation device (pseudo vascular pattern generation device 10 in the embodiment) of the present disclosure includes a processor (processor 11 in the embodiment). The processor generates a first random number based on a first random number seed, generates a second random number based on a second random number seed different from the first random number seed, generates a first image (first noise image Ib1 in the embodiment) by adding first noise based on the first random number to a gray image (gray image Ia in the embodiment), and generates a second image (second noise image Ib2 in the embodiment) by adding second noise based on the second random number to the gray image. The processor also generates a third image (composite noise image Ic in the embodiment) by combining the first and second images, and generates a pseudo vascular pattern image (pseudo vascular pattern image BV in the embodiment) using the third image.
ここで、第一乱数シードは管理IDに対応付けられており、第二乱数シードは個人IDに対応付けられている。また、プロセッサは、共に正規分布に基づく第一画像及び第二画像を合成することにより第三画像を生成する。また、プロセッサは、第三画像を生成する際に正規分布の重みを設定する。そして、プロセッサは、管理IDと重みとの組合せによってそれぞれが規定される複数のクラスタであって、互いに異なる複数の個人IDの下で生成される複数の疑似血管パターン画像をそれぞれが含む複数のクラスタを生成する。 Here, the first random number seed is associated with the management ID, and the second random number seed is associated with the personal ID. The processor also generates a third image by combining the first image and the second image, both of which are based on normal distributions. The processor also sets the weight of the normal distribution when generating the third image. The processor then generates a plurality of clusters, each defined by a combination of the management ID and the weight, each containing a plurality of pseudo blood vessel pattern images generated under a plurality of mutually different personal IDs.
このような複数のクラスタを生成することで、各クラスタ内には互いに相関が強い複数の疑似血管パターンを含めることができる。また、管理IDが同一で重みが異なるクラスタ間では疑似血管パターンの相関を強めることができる一方で、管理IDが異なるクラスタ間では疑似血管パターンの相関を弱めることができる。よって、このような複数のクラスタを生成することで、様々な強さの相関を有する疑似血管パターンを生成できる。 By generating multiple clusters like this, each cluster can contain multiple pseudo blood vessel patterns that are highly correlated with each other. Furthermore, while the correlation between pseudo blood vessel patterns can be strengthened between clusters with the same management ID but different weights, the correlation between pseudo blood vessel patterns can be weakened between clusters with different management IDs. Therefore, by generating multiple clusters like this, pseudo blood vessel patterns with correlations of various strengths can be generated.
1 疑似血管パターン生成システム
10 疑似血管パターン生成装置
11 プロセッサ
12 記憶部
1 pseudo-vascular pattern generation system 10 pseudo-vascular pattern generation device 11 processor 12 storage unit
Claims (4)
を具備し、
前記第一乱数シードは管理IDに対応付けられており、前記第二乱数シードは個人IDに対応付けられており、
前記プロセッサは、
共に正規分布に基づく前記第一画像及び前記第二画像を合成することにより前記第三画像を生成し、
前記第三画像を生成する際に、前記正規分布の重みを設定し、
前記管理IDと前記重みとの組合せによってそれぞれが規定される複数のクラスタであって、互いに異なる複数の前記個人IDの下で生成される複数の前記疑似血管パターン画像をそれぞれが含む前記複数のクラスタを生成する、
疑似血管パターン生成装置。 a processor that generates a first random number based on a first random number seed, generates a second random number based on a second random number seed different from the first random number seed, generates a first image by adding a first noise based on the first random number to a gray image, generates a second image by adding a second noise based on the second random number to the gray image, generates a third image by combining the first image and the second image, and generates a pseudo blood vessel pattern image that is an image including a pseudo blood vessel pattern using the third image;
Equipped with
the first random number seed is associated with an administration ID, and the second random number seed is associated with a personal ID;
The processor:
generating the third image by combining the first image and the second image, both of which are based on a normal distribution;
When generating the third image, a weight of the normal distribution is set;
generating a plurality of clusters each defined by a combination of the management ID and the weight, the plurality of clusters including a plurality of the pseudo blood vessel pattern images generated under a plurality of personal IDs different from one another;
A pseudo-vascular pattern generator.
前記第三画像に含まれるノイズを拡散した第四画像を生成し、
前記第四画像に血管強調フィルタをかけた第五画像を生成し、
前記第五画像に関心領域を設定することにより前記疑似血管パターン画像を生成する、
請求項1に記載の疑似血管パターン生成装置。 The processor:
generating a fourth image by diffusing noise contained in the third image;
generating a fifth image by applying a vessel enhancement filter to the fourth image;
generating the pseudo blood vessel pattern image by setting a region of interest in the fifth image;
The pseudo-vascular pattern generating device according to claim 1 .
請求項1に記載の疑似血管パターン生成装置。 the processor, when generating the third image, sets a first weight for the mean of the normal distribution and a second weight for the variance of the normal distribution.
The pseudo-vascular pattern generating device according to claim 1 .
前記第一乱数シードと異なる第二乱数シードに基づいて第二乱数を生成し、
前記第一乱数に基づいた第一ノイズをグレー画像に付加することにより第一画像を生成し、
前記第二乱数に基づいた第二ノイズを前記グレー画像に付加することにより第二画像を生成し、
前記第一画像と前記第二画像とを合成することにより第三画像を生成し、
前記第三画像を用いて、疑似血管パターンを含む画像である疑似血管パターン画像を生成し、
前記第一乱数シードは管理IDに対応付けられており、前記第二乱数シードは個人IDに対応付けられており、
共に正規分布に基づく前記第一画像及び前記第二画像を合成することにより前記第三画像を生成し、
前記第三画像を生成する際に、前記正規分布の重みを設定し、
前記管理IDと前記重みとの組合せによってそれぞれが規定される複数のクラスタであって、互いに異なる複数の前記個人IDの下で生成される複数の前記疑似血管パターン画像をそれぞれが含む前記複数のクラスタを生成する、
疑似血管パターン生成方法。
generating a first random number based on a first random number seed;
generating a second random number based on a second random number seed different from the first random number seed;
generating a first image by adding a first noise based on the first random number to a gray image;
generating a second image by adding second noise based on the second random number to the gray image;
generating a third image by combining the first image and the second image;
generating a pseudo blood vessel pattern image, which is an image including a pseudo blood vessel pattern, using the third image;
the first random number seed is associated with an administration ID, and the second random number seed is associated with a personal ID;
generating the third image by combining the first image and the second image, both of which are based on a normal distribution;
When generating the third image, a weight of the normal distribution is set;
generating a plurality of clusters each defined by a combination of the management ID and the weight, the plurality of clusters including a plurality of the pseudo blood vessel pattern images generated under a plurality of personal IDs different from one another;
A method for generating pseudo-vascular patterns.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2024/011520 WO2025197125A1 (en) | 2024-03-22 | 2024-03-22 | Pseudo blood vessel pattern generation device and pseudo blood vessel pattern generation method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2024/011520 WO2025197125A1 (en) | 2024-03-22 | 2024-03-22 | Pseudo blood vessel pattern generation device and pseudo blood vessel pattern generation method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025197125A1 true WO2025197125A1 (en) | 2025-09-25 |
Family
ID=97138505
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2024/011520 Pending WO2025197125A1 (en) | 2024-03-22 | 2024-03-22 | Pseudo blood vessel pattern generation device and pseudo blood vessel pattern generation method |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025197125A1 (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006309417A (en) * | 2005-04-27 | 2006-11-09 | Sony Corp | Pseudorandom number generation device, pseudorandom number generation method, and program |
| CN110942001A (en) * | 2019-11-14 | 2020-03-31 | 五邑大学 | Method, device, device and storage medium for re-identification after finger vein data expansion |
| WO2023119653A1 (en) * | 2021-12-24 | 2023-06-29 | 富士通フロンテック株式会社 | Pseudo blood vessel pattern generation device and pseudo blood vessel pattern generation method |
-
2024
- 2024-03-22 WO PCT/JP2024/011520 patent/WO2025197125A1/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006309417A (en) * | 2005-04-27 | 2006-11-09 | Sony Corp | Pseudorandom number generation device, pseudorandom number generation method, and program |
| CN110942001A (en) * | 2019-11-14 | 2020-03-31 | 五邑大学 | Method, device, device and storage medium for re-identification after finger vein data expansion |
| WO2023119653A1 (en) * | 2021-12-24 | 2023-06-29 | 富士通フロンテック株式会社 | Pseudo blood vessel pattern generation device and pseudo blood vessel pattern generation method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110782421B (en) | Image processing method, device, computer equipment and storage medium | |
| Li et al. | Fast multi-scale structural patch decomposition for multi-exposure image fusion | |
| Zhang et al. | Brain tumor segmentation based on hybrid clustering and morphological operations | |
| Huang et al. | Image contrast enhancement for preserving mean brightness without losing image features | |
| CN108876733A (en) | A kind of image enchancing method, device, equipment and storage medium | |
| Yue et al. | Perceptual quality assessment of enhanced colonoscopy images: A benchmark dataset and an objective method | |
| US20240296597A1 (en) | Pseudo vascular pattern generation device and method of generating pseudo vascular pattern | |
| CN111966219B (en) | Eye movement tracking method, device, equipment and storage medium | |
| CN118334036B (en) | Multi-mode medical image quality inspection system based on deep learning | |
| El-Zaart | Images thresholding using ISODATA technique with gamma distribution | |
| CN112862712A (en) | Beautifying processing method, system, storage medium and terminal equipment | |
| Gupta et al. | Low contrast image enhancement technique by using fuzzy method | |
| Al-Ameen | Contrast Enhancement of Digital Images Using an Improved Type-II Fuzzy Set-Based Algorithm. | |
| CN111311531B (en) | Image enhancement method, device, console device and medical imaging system | |
| WO2025197125A1 (en) | Pseudo blood vessel pattern generation device and pseudo blood vessel pattern generation method | |
| CN117541570A (en) | Breast nodule image processing methods, devices, computer equipment, and media | |
| JP7752262B2 (en) | Pseudo-vascular pattern generating device and pseudo-vascular pattern generating method | |
| CN110570355A (en) | Multi-scale automatic focusing super-resolution processing system and method | |
| CN114240774B (en) | Method, device, electronic device and readable storage medium for fundus image processing | |
| Thamizhvani et al. | Enhancement of MRI images of hamstring avulsion injury using histogram based techniques | |
| KR102438659B1 (en) | The method for classifying diabetic macular edema and the device thereof | |
| CN115880176A (en) | Multi-scale non-paired underwater image enhancement method | |
| CN115796264A (en) | A method for structure-protected generative adversarial networks based on fuzzy self-guiding | |
| CN115797186A (en) | Image restoration method and device, electronic equipment and storage medium | |
| CN113706416A (en) | Astronomical image restoration method, electronic device, medium, and program product |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24930728 Country of ref document: EP Kind code of ref document: A1 |