[go: up one dir, main page]

WO2025191739A1 - Elevation analysis device and elevation analysis method - Google Patents

Elevation analysis device and elevation analysis method

Info

Publication number
WO2025191739A1
WO2025191739A1 PCT/JP2024/009808 JP2024009808W WO2025191739A1 WO 2025191739 A1 WO2025191739 A1 WO 2025191739A1 JP 2024009808 W JP2024009808 W JP 2024009808W WO 2025191739 A1 WO2025191739 A1 WO 2025191739A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
elevation
satellite
differential
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2024/009808
Other languages
French (fr)
Japanese (ja)
Inventor
遊 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Synspective
Synspective Inc
Original Assignee
Synspective
Synspective Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synspective, Synspective Inc filed Critical Synspective
Priority to PCT/JP2024/009808 priority Critical patent/WO2025191739A1/en
Publication of WO2025191739A1 publication Critical patent/WO2025191739A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques

Definitions

  • the present invention relates to an elevation analysis device and an elevation analysis method, and is particularly suitable for use in technology that uses interferometric SAR to measure elevation differences on the Earth's surface.
  • Elevation monitoring is the process of monitoring changes in the terrain using Geographic Information Systems (GIS) and remote sensing technology, and is used in a wide range of fields, including the following: Elevation monitoring helps to understand terrain changes in real time or collect data periodically, allowing appropriate measures to be taken. ⁇ River basin flood control (understanding sediment movement and deposition volume, monitoring the status of sabo dams and sabo dams, etc.) Measurement of the amount and extent of sediment movement during landslides Monitoring of embankments Measurement of topographical deformation during large-scale collapses of dams, slopes, mines, etc.
  • GIS Geographic Information Systems
  • Technologies for monitoring elevation include terrestrial surveying, airborne laser surveying, differential measurements using digital elevation models (DEMs), and change measurement using interferometric SAR (InSAR) using satellite-based SAR (Synthetic Aperture Radar).
  • Terrestrial surveying and airborne laser surveying are relatively accurate, but have the disadvantages of difficulty in surveying wide areas and limited survey frequency due to their high cost.
  • Measurements using DEM differentials are low-cost and can cover wide areas if using existing DEMs that have already been measured and published, but timely data acquisition is difficult and they are not suitable for real-time measurements.
  • Non-Patent Document 1 discloses a method for analyzing data captured by SAR to calculate the elevation of the target area on a surface-by-surface basis, then analyzing the image data after sediment movement to calculate the surface height, and then calculating the amount of sediment movement by performing a differential analysis of these two surface height data.
  • time-series differential interferometry analysis requires a large amount of SAR image data, and it takes a long time to gather all the data. Furthermore, during the period covered by the time-series analysis, there must be no changes in the ground surface due to phenomena other than those mentioned above, making it difficult to accurately calculate sediment movement in areas where changes are likely to occur.
  • Patent Document 1 discloses that for N (N>20) images acquired using SAR that can be used over many years, N-1 differential interferograms are formed in relation to the main image with a vertical accuracy of better than 50 meters. The differential interferograms are created using an existing DEM, subtracting the influence of the terrain from the phase difference of each pixel.
  • Patent Document 1 also explains that when a satellite is equipped with two radar antennas, one for transmitting and one for receiving, which irradiate the same surface area, and are located at distances ⁇ and ⁇ + ⁇ from a point on the ground, respectively, the measured value of the phase difference ⁇ q relative to the altitude q of that point on the ground can be extrapolated with an accuracy of a few meters using the following equation (a): where ⁇ is the wavelength of the radar wave, B is the baseline length, which is the distance between two satellites projected perpendicular to the line of sight, and ⁇ is the angle of incidence of the radar wave irradiated from the satellite that is offset from the perpendicular to the ground surface.
  • the terrain change extraction device described in Patent Document 2 generates an interference fringe image by processing two sets of SAR reconstructed images acquired from a single satellite, while also generating a DTM from the interference fringe image and two sets of orbital data, and generating a pseudo interference fringe image for the same area using the DTM and two sets of orbital data, assuming no terrain change.
  • the interference fringe image and pseudo interference fringe image generated in this way are then processed to calculate the amount of terrain change, and the amount of geometric distortion is then calculated from the amount of terrain change and DTM, and a geometric transformation is performed.
  • Patent Document 1 discloses that it is possible to calculate the elevation difference ⁇ q as shown in equation (b), but does not disclose how to reduce the effects of atmospheric errors, surface movement, and reduced coherence when using repeat-pass observation technology. As a result, it is difficult to accurately measure elevation difference using the technology described in Patent Document 1.
  • the present invention was developed to solve these problems, and aims to use interferometric SAR data obtained through repeat-pass observation technology to enable accurate measurement of elevation differences related to phenomena in which the earth's surface undergoes significant changes over a relatively short period of time.
  • the present invention calculates the difference between interferometric SAR data generated by a specified interferometric processing of data observed by a synthetic aperture radar mounted on a satellite and elevation data obtained from a digital elevation model, thereby obtaining differential interferometric SAR data in which displacement components due to surface movement and uncorrelated noise have been reduced. Then, by performing high-pass filtering on the differential interferometric SAR data, phase difference data is obtained from the differential interferometric SAR data in which atmospheric errors and satellite orbital fringe errors have been further reduced. Then, from the phase difference data obtained in this way, data on changes in the elevation of the earth's surface are calculated using known information regarding earth's surface observations by synthetic aperture radar.
  • interferometric SAR data generated based on observation data from synthetic aperture radar it is possible to calculate topography from interferometric SAR data generated based on observation data from synthetic aperture radar, but when interferometric SAR data is generated using repeat-pass observation technology, various types of noise, such as atmospheric errors, surface movements, satellite orbital fringe errors, and uncorrelated noise, are included in the interferometric SAR data due to changes in conditions between the two observations of the same location.
  • phase difference data is generated from the interferometric SAR data in which the various types of noise mentioned above have been reduced, and elevation change data is calculated from this phase difference data using known information. Therefore, interferometric SAR data generated using repeat-pass observation technology can be used to accurately measure elevation differences related to phenomena in which the earth's surface changes significantly over a relatively short period of time.
  • FIG. 1 is a diagram illustrating an example of a network configuration of an analysis system according to an embodiment of the present invention.
  • 1 is a block diagram showing an example of the functional configuration of an elevation analysis device according to an embodiment of the present invention
  • FIG. 10 is a diagram schematically illustrating the relationship between the baseline length and altitude changes that can be detected within a dynamic range of the phase difference of 2 ⁇ or less.
  • FIG. 10 is a diagram showing a partially enlarged view of the sensitivity of CSK.
  • FIG. 1 is a diagram showing a schematic diagram of the baseline length for multiple SAR images obtained when multiple observations are performed using the TSX.
  • FIG. 1 is a diagram showing an example of the network configuration of an analysis system 100 according to this embodiment.
  • the analysis system 100 of this embodiment comprises a satellite base station 50 that receives satellite data from a single satellite S flying in a satellite orbit in space, a satellite database 51 that records the satellite data, a DEM database 52 that stores elevation data (e.g., DEM data) based on a digital elevation model, and an elevation analysis device 10 that analyzes the satellite data recorded in the satellite database 51.
  • a satellite base station 50 that receives satellite data from a single satellite S flying in a satellite orbit in space
  • a satellite database 51 that records the satellite data
  • DEM database 52 that stores elevation data (e.g., DEM data) based on a digital elevation model
  • an elevation analysis device 10 that analyzes the satellite data recorded in the satellite database 51.
  • Satellite S is equipped with a synthetic aperture radar (SAR) and photographs points on Earth from a pre-specified orbit, transmitting satellite data including the captured ground images (hereinafter referred to as SAR images or SAR data) to satellite base station 50.
  • SAR photographs the same point multiple times at different times, and each time transmits satellite data including the SAR image to satellite base station 50.
  • Satellite base station 50 receives satellite data from satellite S and records it in satellite database 51.
  • Satellite database 51 is connected to a communications network N such as the Internet.
  • a DEM database 52 is also connected to communications network N. DEM data generated in advance is stored in DEM database 52.
  • the elevation analysis device 10 acquires satellite data stored in the satellite database 51 and DEM data pre-stored in the DEM database 52 via the communications network N, and uses this acquired data to perform processing related to the calculation of elevation differences (elevation changes) caused by phenomena that cause significant changes in the earth's surface over a relatively short period of time.
  • the phenomena targeted for elevation difference calculation include, for example, watershed flood control, landslides, embankments, and large-scale collapses, which are phenomena that cause elevation changes of approximately 1 m to several tens of meters over a short period of time.
  • FIG. 2 is a block diagram showing an example of the functional configuration of an elevation analysis device 10 according to this embodiment.
  • the elevation analysis device 10 has, as its functional configuration, a satellite data acquisition unit 11, an interferometric SAR image generation unit 12, a DEM data acquisition unit 13, a DEM difference processing unit 14, a filter processing unit 15, and an elevation change calculation unit 16.
  • the above-mentioned functional blocks 11 to 16 execute the processes described below through the cooperation of hardware and software.
  • the processes of the above-mentioned functional blocks 11 to 16 are executed by the operation of a program stored in a storage medium such as RAM, ROM, a hard disk, or semiconductor memory under the control of a microcomputer comprising a CPU, RAM, ROM, etc.
  • a DSP Digital Signal Processor
  • the elevation analysis device 10 may be equipped with an LSI (Large-Scale Integration) that integrates a CPU with RAM and ROM.
  • LSI Large-Scale Integration
  • this embodiment describes a case where the elevation analysis device 10 is configured with a single computer, the elevation analysis device 10 may also be realized by combining multiple computers.
  • the satellite data acquisition unit 11 acquires satellite data stored in the satellite database 51.
  • repeat-pass observation technology is used, and the satellite data acquisition unit 11 acquires satellite data relating to two images taken from among the multiple satellite data generated by multiple SAR images for the area of interest for which the elevation difference is to be calculated.
  • the satellite data acquired by the satellite data acquisition unit 11 includes, in addition to SAR images, known information related to SAR observation of the Earth's surface as metadata.
  • the metadata includes, for example, the wavelength ⁇ of the radar wave, the baseline length B ⁇ , the off-nadir angle ⁇ , the tilt distance r, the satellite position, the satellite speed, the satellite movement direction, the satellite time, and geographic information of the observation area.
  • the baseline length B ⁇ is the distance between the observation points in two observations by one satellite S.
  • the off-nadir angle ⁇ is the angle of incidence of the radar wave emitted from the SAR, which is offset from the perpendicular to the Earth's surface.
  • the tilt distance r is the distance from the antenna of the satellite S to the observation point on the Earth's surface.
  • the interferometric SAR image generation unit 12 generates an interferometric SAR image (interferometric SAR data) by performing a predetermined interference process that causes interference between the two SAR images acquired by the satellite data acquisition unit 11.
  • a predetermined interference process that causes interference between the two SAR images acquired by the satellite data acquisition unit 11.
  • Known processes related to interferometric SAR can be used as the predetermined interference process.
  • Interferometric SAR is a technology that uses the phase of radar waves to obtain images. Two observations are made of the same location on the Earth's surface to generate two SAR images (phase images), which are then interfered with to obtain the difference, making it possible to obtain slight distance differences as phase difference information.
  • the image generated by interfering the two SAR images in this case is an interferometric SAR image.
  • interferometric SAR can capture the movement of the Earth's surface that occurs between two observation periods as a change in the distance between the satellite and the Earth's surface in millimeters or centimeters
  • this embodiment does not aim to capture such slight displacements of the Earth's surface.
  • the interferometric SAR image generator 12 only needs to generate an interferometric SAR image by interfering two SAR images, and does not need to calculate the phase difference ( ⁇ disp , described below) corresponding to the slight displacement of the Earth's surface.
  • the generated interferometric SAR image can be considered a phase difference image that contains information on the phase difference associated with surface deformation that is different from the phenomenon of the elevation difference calculation target.
  • Equation (1) shows multiple elements included in the phase difference component ⁇ of the interferometric SAR image generated by the interferometric SAR image generation unit 12.
  • ⁇ atm is the atmospheric error
  • ⁇ orb is the orbital fringe error of satellite S
  • ⁇ disp is the displacement component due to surface movement
  • ⁇ topo is the DEM differential phase
  • ⁇ noise is uncorrelated noise
  • 2k ⁇ is the phase integer value bias.
  • Atmospheric conditions change between the two observations of the SAR images, and the phase delay of the radar wave changes depending on the changed atmospheric conditions. Therefore, even if there is no change on the Earth's surface between the two observations, if there is a change in the atmospheric conditions, a phase difference will occur between the two SAR images. This phase difference is included in the phase difference component ⁇ of the interferometric SAR image as the atmospheric error ⁇ atm .
  • the displacement component ⁇ disp due to ground surface movement is the desired information in the case of general interferometric SAR, but in this embodiment, it is treated as noise information.
  • the desired information in this embodiment is the DEM differential phase ⁇ topo .
  • the DEM differential phase ⁇ topo is information indicating the phase difference from the topography shown in the DEM data, as will be described later.
  • Uncorrelated noise ⁇ noise is noise that occurs randomly.
  • the phase integer value bias 2k ⁇ can be considered an error related to the so-called phase unwrapping problem.
  • the phase value obtained in interferometric SAR is a fraction of the slope distance r from the antenna of satellite S to the observation point on the Earth's surface divided by the wavelength ⁇ of the radar wave, so the obtained phase value is folded (wrapped) into the range of ⁇ - ⁇ , ⁇ .
  • phases with a large dynamic range have an uncertainty value that is an integer multiple of 2 ⁇ . In other words, it is not possible to know how many 2 ⁇ cycles k of the radar wave there were, only the position within the last cycle. While it is possible to estimate the value of cycle k using a specified unwrapping process, this is not always an accurate estimate, and this is included as noise in the phase difference component ⁇ of the interferometric SAR image.
  • the phase difference component ⁇ of the interferometric SAR image generated by the interferometric SAR image generator 12 contains, in addition to the desired DEM differential phase ⁇ topo , atmospheric error ⁇ atm , orbital fringe error ⁇ orb , displacement component ⁇ disp due to ground surface movement, uncorrelated noise ⁇ noise , and phase integer value bias 2k ⁇ .
  • processing is performed to remove or reduce these noises, thereby enabling accurate calculation of changes in ground surface elevation from the phase difference component ⁇ ' in which various noises have been reduced.
  • the DEM data acquisition unit 13 acquires DEM data that has been stored in advance in the DEM database 52.
  • the DEM data acquired here is elevation data for the area of interest for which the elevation difference is to be calculated, and includes data for the same area of interest contained in the SAR data acquired by the satellite data acquisition unit 11. Note that it is not essential that the area of the SAR data acquired by the satellite data acquisition unit 11 and the area of the DEM data acquired by the DEM data acquisition unit 13 exactly match; it is sufficient that the area of interest is included in both data.
  • both the SAR data and the DEM data are accompanied by geographical information as metadata, and it is possible to identify the area of interest using this geographical information, for example.
  • the DEM difference processing unit 14 corresponds to the difference processing unit in the claims, and acquires differential interferometric SAR data (hereinafter also referred to as a differential interferometric SAR image) in which the displacement component ⁇ disp due to ground surface movement and uncorrelated noise ⁇ noise have been reduced by calculating the difference between the interferometric SAR data generated by the interferometric SAR image generation unit 12 and the DEM data acquired by the DEM data acquisition unit 13. At this time, the DEM difference processing unit 14 geocodes the interferometric SAR data and the DEM data to align them, and then calculates the difference.
  • DEM data is existing elevation data from a numerical model generated at a point in the past by airborne laser surveying or the like, and is data that represents the terrain by arranging elevation values in a grid pattern, for example.
  • interferometric SAR data is data that represents slight displacements of the earth's surface at two observation points in two SAR images obtained from the satellite database 51 as a phase difference. Because the phase difference is information that corresponds to the distance difference, it is possible to obtain differential interferometric SAR data that corresponds to the distance difference from existing elevation data by calculating the difference between the interferometric SAR data and the DEM data.
  • the differential interferometric SAR data generated by the DEM subtraction processor 14 can be said to be in a state in which the displacement component ⁇ disp due to ground deformation has been reduced.
  • This differential interferometric SAR data is in a state in which not only the displacement component ⁇ disp but also the uncorrelated noise ⁇ noise has been reduced, but other noise remains.
  • the filter processing unit 15 performs high-pass filtering on the differential interferometric SAR data generated by the DEM differential processing unit 14, thereby obtaining phase difference data from the differential interferometric SAR data in which the atmospheric error ⁇ atm and the orbital fringe error ⁇ orb of the satellite S have been further reduced.
  • the filter processing unit 15 of this embodiment performs low-pass filtering on the differential interferometric SAR data, and then subtracts the data obtained thereby from the original differential interferometric SAR data before the low-pass filtering.
  • the filter processing unit 15 first performs low-pass filtering on the differential interferometric SAR image to extract smoothly varying components from the differential interferometric SAR image.
  • the extracted smoothly varying components are then removed from the original differential interferometric SAR image.
  • the atmospheric error ⁇ atm and the orbital fringe error ⁇ orb occur on the order of several hundred meters to several kilometers, it is preferable to perform filtering with a window size that matches their size.
  • This window size is larger than the region of interest for which the elevation difference is to be calculated, so it does not significantly affect the phase information of the region of interest to be calculated.
  • the altitude change calculation unit 16 uses known information regarding the SAR observation of the Earth's surface to calculate altitude change data of the Earth's surface from the phase difference data generated by the filter processing unit 15.
  • the known information is information included as metadata in the satellite data acquired by the satellite data acquisition unit 11, and includes the wavelength ⁇ of the radar wave, the baseline length B ⁇ , the off-nadir angle ⁇ , and the tilt distance r.
  • the altitude change calculation unit 16 calculates the altitude change dh using the following equation (2):
  • phase difference component ⁇ of the interferometric SAR image By performing the processing up to the filter processing unit 15, it is possible to significantly reduce the atmospheric error ⁇ atm , the orbital fringe error ⁇ orb , the displacement component ⁇ disp due to ground movement, and the uncorrelated noise ⁇ noise contained in the phase difference component ⁇ of the interferometric SAR image in the above-mentioned equation (1).
  • the remaining phase integer value bias 2k ⁇ by performing SAR observation under conditions such that the phase difference data generated by the filter processing unit 15 is data within a range that does not require phase unwrapping, it is possible to avoid the phase unwrapping process, which is difficult to estimate, and to ignore the phase integer value bias 2k ⁇ . This makes it possible to use the above-mentioned equation (2).
  • the sensitivity of the elevation change dh which depends on the baseline length B ⁇ as shown in equation (2), is theoretically calculated for each satellite S, and observation conditions are found that make it unnecessary to perform phase unwrapping when detecting the elevation change dh of the magnitude related to the phenomenon of the elevation difference calculation target.
  • the sensitivity of the elevation change dh here means that it is possible to detect the elevation change dh of the magnitude related to the phenomenon of the elevation difference calculation target within a range in which the dynamic range of the phase difference is 2 ⁇ or less (a range not exceeding ⁇ - ⁇ , ⁇ ).
  • Figure 3 is a diagram showing the relationship between the baseline length B ⁇ and the altitude change dh that can be detected within a dynamic range of the phase difference of 2 ⁇ or less.
  • the horizontal axis represents the baseline length B ⁇ and the vertical axis represents the altitude change dh.
  • the figure shows the ranges for each type of satellite in which the altitude change dh can be detected within a dynamic range of the phase difference of 2 ⁇ or less.
  • the minimum value dhmin and maximum value dhmax of the altitude change dh that can be detected within a dynamic range of the phase difference of 2 ⁇ or less were calculated according to the following equation (3) derived from equation (2).
  • the minimum value dhmin of the altitude change dh shown in equation (3) is based on the case where coherence is low.
  • the minimum value dhmin when coherence is high is calculated using equation (4).
  • Sentinel-1 is not suitable (does not satisfy the conditions) because it does not have the sensitivity to this elevation change dh of approximately several meters.
  • Sentinel-1 cannot be said to be preferable also from the viewpoint that the range of usable baseline length B ⁇ is narrow.
  • the elevation change related to the phenomenon of the elevation difference calculation target is on the order of a few meters, ALOS-2 would also be unsuitable because it would not be sensitive to this elevation change dh of approximately a few meters.
  • TSX is deemed appropriate (meets the conditions) because it has sensitivity to elevation change dh of approximately several meters.
  • a predetermined value 1000 m not shown in the figure
  • Figure 4 is a diagram showing a partially enlarged view of the sensitivity of the CSK shown in Figure 3.
  • the elevation change amount related to the phenomenon of the elevation difference calculation target is 2 m or more and 8 m or less
  • the sensitivity of the elevation change dh is too high when the baseline length B ⁇ is 100 m or less
  • the sensitivity of the elevation change dh is somewhat insufficient when the baseline length B ⁇ is 300 m or more. Therefore, when using CSK to calculate the above-mentioned elevation change amount as the elevation difference calculation target, it is preferable to perform SAR observation so that the baseline length B ⁇ is in the range of 100 m or more and 300 m or less. A similar situation can be said when using TSX.
  • One of the requirements for satisfying the condition that the dynamic range of the phase difference is sensitive to the amount of elevation change of the elevation difference calculation target within 2 ⁇ or less is to use two SAR images with an appropriate baseline length B ⁇ . In other words, it is important to obtain satellite data related to two appropriate observations from the satellite data related to multiple observations stored in the satellite database 51.
  • Figure 5 is a diagram showing the baseline length B ⁇ for multiple SAR images obtained when multiple observations are made using the TSX.
  • the horizontal axis is the time axis
  • the vertical axis is the separation distance from the reference orbit to the actual observation position
  • each circle indicates the separation distance at each observation point.
  • the difference in separation distance between two circles indicates the baseline length B ⁇ for the two observations.
  • the satellite data acquisition unit 11 selects and acquires one pair of satellite data whose baseline length B ⁇ satisfies the above-mentioned condition from among the multiple satellite data corresponding to the multiple circles shown in Figure 5.
  • the first condition as described above, in this embodiment, one pair of satellite data is acquired that also satisfies the second condition relating to the short time interval between two observations. If the time interval between two observations is short, there is a low possibility that ground movement has occurred during that time, so it is possible to prevent or minimize the inclusion of the ground movement displacement component ⁇ disp in the phase difference component ⁇ of the interferometric SAR image.
  • the threshold value For example, if there are multiple combinations of satellite data that satisfy the first condition, it is possible to acquire one pair of satellite data with the shortest time interval from among them. Alternatively, if there are multiple combinations of satellite data that satisfy the first condition, it is possible to acquire one arbitrary pair of satellite data from among those pairs whose time interval is less than the threshold value.
  • phase difference data ⁇ ' is generated from the interferometric SAR data, with the various types of noise described above reduced, and altitude change dh is calculated from this phase difference data ⁇ ' using known information.
  • interferometric SAR data obtained using repeat-pass observation technology can be used to accurately measure altitude change dh related to phenomena in which the earth's surface changes significantly, for example in units of meters, over a relatively short period of time.
  • differential interferometric SAR data is acquired using satellite data observed under conditions of a baseline length B ⁇ that is sensitive to the amount of elevation change of the elevation difference calculation target within a dynamic range of the phase difference of 2 ⁇ or less, which eliminates the need for phase unwrapping, which generally involves estimation errors, and makes it possible to essentially ignore the phase integer value bias 2k ⁇ , thereby improving the detection accuracy of the elevation change dh.
  • SAR observation may be performed under conditions including a phase integer value bias of 2k ⁇ , and the altitude change dh may be calculated from equation (2) after phase unwrapping.
  • SAR observation may be performed using a combination of satellite S and baseline length B ⁇ that covers the altitude change amount that is the altitude difference calculation target within a range of 4 ⁇ , and the altitude change dh may be calculated from equation (2) after phase unwrapping.
  • the range estimated by phase unwrapping can be narrower, thereby reducing the occurrence of estimation errors compared to when normal phase unwrapping is performed.
  • an adaptive filter processing unit may be provided between the filter processing unit 15 and the altitude change calculation unit 16, and may further perform processing to extract or remove specific frequency components, for example.
  • a Gaussian filter may be applied to the image representing the amount of elevation change downstream of the elevation change calculation unit 16 to remove fine noise.
  • Elevation analysis device 11 Satellite data acquisition unit 12 Interferometric SAR image generation unit 13 DEM data acquisition unit 14 DEM difference processing unit (difference processing unit) 15 Filter processing unit 16 Elevation change calculation unit 51 Satellite database 52 DEM database S Satellite

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The present invention comprises: a DEM difference processing unit 14 that calculates the difference between interference SAR data and elevation data produced by a digital elevation model, thereby acquiring differential interference SAR data in which uncorrelated noise and a displacement component resulting from ground surface deformation are reduced; a filter processing unit 15 that performs high-pass filter processing on the differential interference SAR data, thereby acquiring phase difference data in which atmospheric error and satellite orbital stripe error are further reduced from the differential interference SAR data; and an elevation change calculation unit 16 that, from the phase difference data thus acquired, calculates ground surface elevation change data by using known information relating to ground surface observation performed by a synthetic aperture radar. The elevation change data is calculated by using phase difference data in which various kinds of noise are reduced from the interference SAR data, thereby making it possible to accurately measure, by using interference SAR data obtained through a repeat pass observation technique, an elevation difference relating to a phenomenon in which the ground surface, for example, changes greatly in a relatively short period.

Description

標高解析装置および標高解析方法Elevation analysis device and elevation analysis method

 本発明は、標高解析装置および標高解析方法に関し、特に、干渉SARを用いて地表の標高差を計測する技術に用いて好適なものである。 The present invention relates to an elevation analysis device and an elevation analysis method, and is particularly suitable for use in technology that uses interferometric SAR to measure elevation differences on the Earth's surface.

 標高モニタリングは、地理情報システム(GIS:Geographic Information System)やリモートセンシング技術を用いて地形の変化を監視するプロセスであり、以下に示すような多岐にわたる分野において活用されている。標高モニタリングは、地形変化のリアルタイムな把握、あるいは定期的なデータ収集により、適切な対策を講じるのに役立つ。
○流域治水(土砂移動・堆積量の把握、砂防ダム・砂防堰堤の状況監視など)
○土砂災害時の土砂移動量および範囲の計測
○盛土の監視
○ダム、斜面、鉱山等の大規模崩落時における地形変形の計測
Elevation monitoring is the process of monitoring changes in the terrain using Geographic Information Systems (GIS) and remote sensing technology, and is used in a wide range of fields, including the following: Elevation monitoring helps to understand terrain changes in real time or collect data periodically, allowing appropriate measures to be taken.
○ River basin flood control (understanding sediment movement and deposition volume, monitoring the status of sabo dams and sabo dams, etc.)
Measurement of the amount and extent of sediment movement during landslides Monitoring of embankments Measurement of topographical deformation during large-scale collapses of dams, slopes, mines, etc.

 標高モニタリングを行う技術として、地上測量や航空レーザ測量、数値標高モデル(DEM:Digital Elevation Model)を用いた差分計測、衛星のSAR(Synthetic Aperture Radar:合成開口レーダ)を用いた干渉SAR(InSAR)による変動計測などが存在する。地上測量や航空レーザ測量は、比較的高精度ではあるが、広域での測量は困難であり、コストがかかるため測量頻度が限られるというデメリットがある。DEM差分による計測は、既に計測済みで公表されている既存DEMを使う場合は低コストで済み、広域も網羅可能であるが、タイムリーなデータ取得が難しく、リアルタイムな計測には不向きである。 Technologies for monitoring elevation include terrestrial surveying, airborne laser surveying, differential measurements using digital elevation models (DEMs), and change measurement using interferometric SAR (InSAR) using satellite-based SAR (Synthetic Aperture Radar). Terrestrial surveying and airborne laser surveying are relatively accurate, but have the disadvantages of difficulty in surveying wide areas and limited survey frequency due to their high cost. Measurements using DEM differentials are low-cost and can cover wide areas if using existing DEMs that have already been measured and published, but timely data acquisition is difficult and they are not suitable for real-time measurements.

 干渉SARによる変動計測は、衛星による計測なので広域を網羅可能であり、mm単位またはcm単位の変動検出精度は高いものの、地表面が大きく変化する上記のような現象には使えない。これに対し、SARの経時変位(時系列差分干渉解析)を利用して標高を算出する技術が知られている(例えば、非特許文献1参照)。非特許文献1には、SARで撮像したデータを解析して対象エリアの標高を面的に算出した後、土砂移動後の撮像データを解析して面的な高さを算出し、これら2つの面的高さデータを差分解析することで、土砂移動量を算出することが開示されている。 As interferometric SAR is a satellite-based measurement, it can cover a wide area and has a high degree of accuracy in detecting changes in millimeters or centimeters, but it cannot be used for phenomena such as those mentioned above, where the Earth's surface undergoes major changes. In contrast, a technique is known for calculating elevation using SAR displacement over time (time-series differential interferometry analysis) (see, for example, Non-Patent Document 1). Non-Patent Document 1 discloses a method for analyzing data captured by SAR to calculate the elevation of the target area on a surface-by-surface basis, then analyzing the image data after sediment movement to calculate the surface height, and then calculating the amount of sediment movement by performing a differential analysis of these two surface height data.

 しかしながら、時系列差分干渉解析を行うためには大量のSAR画像データが必要であり、データが揃うまでに多くの時間がかかるという問題がある。また、時系列解析の対象期間内では、上記のような現象以外の現象による地表面の変動があってはいけないので、変動が起きやすい領域では土砂移動量の正確な算出が困難である。 However, performing time-series differential interferometry analysis requires a large amount of SAR image data, and it takes a long time to gather all the data. Furthermore, during the period covered by the time-series analysis, there must be no changes in the ground surface due to phenomena other than those mentioned above, making it difficult to accurately calculate sediment movement in areas where changes are likely to occur.

 また、SARとDEMまたは数値地形モデル(DTM:Digital Terrain Model)とを組み合わせて標高を算出する技術も提案されている(例えば、特許文献1,2参照)。特許文献1には、SARを用いて取得された多年に渡って利用できるN個(N>20)の画像について主画像との関係でN-1個の差分干渉像を、50メートルより良い垂直確度で形成することが開示されている。差分干渉像は、各画素の位相差から地形の影響を引き、既存のDEMを用いて作成される。 Technology has also been proposed for calculating elevation by combining SAR with DEM or a digital terrain model (DTM: Digital Terrain Model) (see, for example, Patent Documents 1 and 2). Patent Document 1 discloses that for N (N>20) images acquired using SAR that can be used over many years, N-1 differential interferograms are formed in relation to the main image with a vertical accuracy of better than 50 meters. The differential interferograms are created using an existing DEM, subtracting the influence of the terrain from the phase difference of each pixel.

 また、特許文献1では、同一表面領域を照射する送信と受信の2つのレーダアンテナを衛星が搭載し、それぞれ地面の一地点からρ,ρ+Δρの距離にあるとき、当該地面の一地点の標高qに関する位相差Φqの測定値は、次式(a)を用いて数メートルの精度で外挿可能であることが説明されている。ここで、λはレーダ波の波長、Bは視線に直交して投影した2点の衛星間距離である基線長、θは衛星から照射されるレーダ波の、地表面に対して垂直方向からずれた入射角である。 Patent Document 1 also explains that when a satellite is equipped with two radar antennas, one for transmitting and one for receiving, which irradiate the same surface area, and are located at distances ρ and ρ+Δρ from a point on the ground, respectively, the measured value of the phase difference Φq relative to the altitude q of that point on the ground can be extrapolated with an accuracy of a few meters using the following equation (a): where λ is the wavelength of the radar wave, B is the baseline length, which is the distance between two satellites projected perpendicular to the line of sight, and θ is the angle of incidence of the radar wave irradiated from the satellite that is offset from the perpendicular to the ground surface.

 また、特許文献1では、反射率の統計的性質に基づいて選択した差分干渉像の各画素について、干渉計位相の一時的シリーズを作成した後、基線に対し各一時的シリーズについて位相線型成分a(2乗最小に対する式Φ=aB+C(Cは常数)の直線の傾斜a)を計算することによって、一地点の標高差Δqを次式(b)により算出可能であることが説明されている。 Patent document 1 also explains that by creating a temporal series of interferometer phase for each pixel of a differential interferogram selected based on the statistical properties of reflectance, and then calculating the phase linear component a (the slope a of the line in the equation for least squares Φ = aB + C (C is a constant)) for each temporal series relative to the baseline, the elevation difference Δq at a point can be calculated using the following equation (b):

 特許文献2に記載の地形変動抽出装置では、1つの人工衛星から取得される2組のSAR再生画像を処理することによって干渉縞画像を生成する一方、干渉縞画像と2組の軌道データからDTMを生成し、同一地域のDTMと2組の軌道データとで地形変動がないと仮定した場合の擬似干渉縞画像を生成する。そして、このようにして生成した干渉縞画像および擬似干渉縞画像を処理して地形変動量を算出した後、地形変動量およびDTMから幾何歪量を算出して幾何変換を行う。 The terrain change extraction device described in Patent Document 2 generates an interference fringe image by processing two sets of SAR reconstructed images acquired from a single satellite, while also generating a DTM from the interference fringe image and two sets of orbital data, and generating a pseudo interference fringe image for the same area using the DTM and two sets of orbital data, assuming no terrain change. The interference fringe image and pseudo interference fringe image generated in this way are then processed to calculate the amount of terrain change, and the amount of geometric distortion is then calculated from the amount of terrain change and DTM, and a geometric transformation is performed.

特表2003-500658号公報Special Publication No. 2003-500658 特開平8-15426 号公報Japanese Unexamined Patent Publication No. 8-15426

2022.11.01「NECなど、SARのデータから標高を監視する技術開発-河川の土砂移動量を管理」,インターネット検索[URL:https://uchubiz.com/article/new9328/]2022.11.01 "NEC and others develop technology to monitor elevation using SAR data - managing river sediment movement," Internet search [URL: https://uchubiz.com/article/new9328/]

 干渉SARを用いて標高を計測する技術として、2基の衛星で同一地点を同時に撮影したSAR画像の差分を計測するBistatic観測技術と、1基の衛星で同一地点を2回にわたり撮影したSAR画像の差分を計測するRepeat pass観測技術とが存在する。前者の場合は高精度の計測が可能であるが、専用の衛星が必要である。一方、後者の場合は専用の衛星が不要であるが、2回の観測が同時ではないので、大気誤差や地表変動、干渉性低下の影響が計測精度を大きく低減させる要因となる。 Technologies for measuring elevation using interferometric SAR include bistatic observation technology, which measures the difference between SAR images taken simultaneously of the same location by two satellites, and repeat-pass observation technology, which measures the difference between SAR images taken twice of the same location by one satellite. The former allows for highly accurate measurements, but requires a dedicated satellite. The latter does not require a dedicated satellite, but because the two observations are not simultaneous, atmospheric errors, surface movement, and reduced coherence can significantly reduce measurement accuracy.

 特許文献1には、式(b)のように標高差Δqを算出可能であることが開示されているが、Repeat pass観測技術を用いる場合に、大気誤差や地表変動、干渉性低下の影響を如何に低減させるかについては開示していない。そのため、特許文献1に記載の技術によって標高差を精度よく計測するのは困難である。 Patent Document 1 discloses that it is possible to calculate the elevation difference Δq as shown in equation (b), but does not disclose how to reduce the effects of atmospheric errors, surface movement, and reduced coherence when using repeat-pass observation technology. As a result, it is difficult to accurately measure elevation difference using the technology described in Patent Document 1.

 本発明は、このような問題を解決するために成されたものであり、Repeat pass観測技術による干渉SARデータを用いて、比較的短期間のうちに地表面が大きく変化する現象に関する標高差を精度よく計測できるようにすることを目的とする。 The present invention was developed to solve these problems, and aims to use interferometric SAR data obtained through repeat-pass observation technology to enable accurate measurement of elevation differences related to phenomena in which the earth's surface undergoes significant changes over a relatively short period of time.

 上記した課題を解決するために、本発明では、衛星に搭載された合成開口レーダにより観測されるデータに対する所定の干渉処理によって生成した干渉SARデータと、数値標高モデルによる標高データとの差分を計算することにより、地表変動による変位成分および無相関ノイズが低減された差分干渉SARデータを取得した後、差分干渉SARデータに対してハイパスフィルタ処理を行うことにより、差分干渉SARデータから更に大気誤差および衛星の軌道縞誤差が低減された位相差データを取得する。そして、このようにして取得した位相差データから、合成開口レーダによる地表観測に関して既知の情報を用いて地表の標高変化データを算出する。 In order to solve the above-mentioned problems, the present invention calculates the difference between interferometric SAR data generated by a specified interferometric processing of data observed by a synthetic aperture radar mounted on a satellite and elevation data obtained from a digital elevation model, thereby obtaining differential interferometric SAR data in which displacement components due to surface movement and uncorrelated noise have been reduced. Then, by performing high-pass filtering on the differential interferometric SAR data, phase difference data is obtained from the differential interferometric SAR data in which atmospheric errors and satellite orbital fringe errors have been further reduced. Then, from the phase difference data obtained in this way, data on changes in the elevation of the earth's surface are calculated using known information regarding earth's surface observations by synthetic aperture radar.

 合成開口レーダによる観測データに基づき生成される干渉SARデータから地形を算出することは可能であるが、Repeat pass観測技術を用いて干渉SARデータを生成した場合、同じ地点に対する2回の観測時における状況変化に起因して大気誤差や地表変動、衛星の軌道縞誤差、無相関ノイズなどの各種ノイズが干渉SARデータに含まれてくる。これに対し、上記のように構成した本発明によれば、干渉SARデータから、上述の各種ノイズが低減された位相差データが生成され、この位相差データから既知の情報を用いて標高変化データが算出されるので、Repeat pass観測技術による干渉SARデータを用いて、比較的短期間のうちに地表面が大きく変化する現象に関する標高差を精度よく計測することができる。 It is possible to calculate topography from interferometric SAR data generated based on observation data from synthetic aperture radar, but when interferometric SAR data is generated using repeat-pass observation technology, various types of noise, such as atmospheric errors, surface movements, satellite orbital fringe errors, and uncorrelated noise, are included in the interferometric SAR data due to changes in conditions between the two observations of the same location. In contrast, according to the present invention configured as described above, phase difference data is generated from the interferometric SAR data in which the various types of noise mentioned above have been reduced, and elevation change data is calculated from this phase difference data using known information. Therefore, interferometric SAR data generated using repeat-pass observation technology can be used to accurately measure elevation differences related to phenomena in which the earth's surface changes significantly over a relatively short period of time.

本実施形態による解析システムのネットワーク構成例を示す図である。FIG. 1 is a diagram illustrating an example of a network configuration of an analysis system according to an embodiment of the present invention. 本実施形態による標高解析装置の機能構成例を示すブロック図である。1 is a block diagram showing an example of the functional configuration of an elevation analysis device according to an embodiment of the present invention; 位相差のダイナミックレンジが2π以下となる範囲内で検出可能な標高変化と基線長との関係を模式的に示す図である。FIG. 10 is a diagram schematically illustrating the relationship between the baseline length and altitude changes that can be detected within a dynamic range of the phase difference of 2π or less. CSKの感度を一部拡大した状態を示す図である。FIG. 10 is a diagram showing a partially enlarged view of the sensitivity of CSK. TSXを用いて複数回の観測を行ったときに得られる複数のSAR画像に関する基線長を模式的に示す図である。FIG. 1 is a diagram showing a schematic diagram of the baseline length for multiple SAR images obtained when multiple observations are performed using the TSX.

 以下、本発明の一実施形態を図面に基づいて説明する。図1は、本実施形態による解析システム100のネットワーク構成例を示す図である。本実施形態の解析システム100は、宇宙の衛星軌道を飛行する1基の衛星Sから衛星データを受信する衛星基地局50と、衛星データを記録する衛星データベース51と、数値標高モデルによる標高データ(例えば、DEMデータ)が記憶されたDEMデータベース52と、衛星データベース51に記録された衛星データを解析する標高解析装置10とを備える。 An embodiment of the present invention will now be described with reference to the drawings. Figure 1 is a diagram showing an example of the network configuration of an analysis system 100 according to this embodiment. The analysis system 100 of this embodiment comprises a satellite base station 50 that receives satellite data from a single satellite S flying in a satellite orbit in space, a satellite database 51 that records the satellite data, a DEM database 52 that stores elevation data (e.g., DEM data) based on a digital elevation model, and an elevation analysis device 10 that analyzes the satellite data recorded in the satellite database 51.

 衛星Sは、合成開口レーダ(SAR)を備え、あらかじめ指定された軌道から地球上の地点を撮影し、撮影した地上の画像(以下では、これをSAR画像またはSARデータという)を含む衛星データを衛星基地局50に送信する。SARは同じ地点を異なる時点で複数回にわたって撮影し、その都度SAR画像を含む衛星データを衛星基地局50に送信する。 Satellite S is equipped with a synthetic aperture radar (SAR) and photographs points on Earth from a pre-specified orbit, transmitting satellite data including the captured ground images (hereinafter referred to as SAR images or SAR data) to satellite base station 50. SAR photographs the same point multiple times at different times, and each time transmits satellite data including the SAR image to satellite base station 50.

 衛星基地局50は、衛星Sから衛星データを受信し、衛星データベース51に記録する。衛星データベース51は、インターネット等の通信ネットワークNに接続される。通信ネットワークNには、DEMデータベース52も接続されている。DEMデータベース52には、あらかじめ生成されたDEMデータが記憶されている。 Satellite base station 50 receives satellite data from satellite S and records it in satellite database 51. Satellite database 51 is connected to a communications network N such as the Internet. A DEM database 52 is also connected to communications network N. DEM data generated in advance is stored in DEM database 52.

 標高解析装置10は、通信ネットワークNを介して、衛星データベース51に保存された衛星データおよびDEMデータベース52にあらかじめ記憶されているDEMデータを取得し、これらの取得データを用いて、比較的短期間のうちに地表面が大きく変化する現象によって生じる標高差(標高変化)の算出に関する処理を実行する。本実施形態において標高差算出のターゲットとする現象は、例えば流域治水、土砂災害、盛土、大規模崩落などであり、短期間のうちに約1m~数十m単位の標高変化が生じる現象である。 The elevation analysis device 10 acquires satellite data stored in the satellite database 51 and DEM data pre-stored in the DEM database 52 via the communications network N, and uses this acquired data to perform processing related to the calculation of elevation differences (elevation changes) caused by phenomena that cause significant changes in the earth's surface over a relatively short period of time. In this embodiment, the phenomena targeted for elevation difference calculation include, for example, watershed flood control, landslides, embankments, and large-scale collapses, which are phenomena that cause elevation changes of approximately 1 m to several tens of meters over a short period of time.

 図2は、本実施形態による標高解析装置10の機能構成例を示すブロック図である。図2に示すように、本実施形態の標高解析装置10は、機能構成として、衛星データ取得部11、干渉SAR画像生成部12、DEMデータ取得部13、DEM差分処理部14、フィルタ処理部15および標高変化算出部16を備えている。 FIG. 2 is a block diagram showing an example of the functional configuration of an elevation analysis device 10 according to this embodiment. As shown in FIG. 2, the elevation analysis device 10 according to this embodiment has, as its functional configuration, a satellite data acquisition unit 11, an interferometric SAR image generation unit 12, a DEM data acquisition unit 13, a DEM difference processing unit 14, a filter processing unit 15, and an elevation change calculation unit 16.

 上記機能ブロック11~16は、ハードウェアとソフトウェアとの協働によって以下に述べる処理を実行するものである。例えば、上記機能ブロック11~16の処理は、CPU、RAM、ROMなどを備えて構成されたマイクロコンピュータの制御により、RAMやROM、ハードディスクまたは半導体メモリ等の記憶媒体に記憶されたプログラムが動作することによって実行される。マイクロコンピュータに加えてDSP(Digital Signal Processor)などを備えてもよい。 The above-mentioned functional blocks 11 to 16 execute the processes described below through the cooperation of hardware and software. For example, the processes of the above-mentioned functional blocks 11 to 16 are executed by the operation of a program stored in a storage medium such as RAM, ROM, a hard disk, or semiconductor memory under the control of a microcomputer comprising a CPU, RAM, ROM, etc. In addition to the microcomputer, a DSP (Digital Signal Processor) etc. may also be included.

 なお、ここに記載した物理的な構成は例示であって、必ずしも独立した構成でなくてもよい。例えば、標高解析装置10は、CPUとRAMやROMが一体化したLSI(Large-Scale Integration)を備えていてもよい。また、本実施形態では、標高解析装置10が一台のコンピュータで構成される場合について説明するが、標高解析装置10は、複数のコンピュータを組み合わせて実現したものであってもよい。 Note that the physical configuration described here is an example and does not necessarily have to be an independent configuration. For example, the elevation analysis device 10 may be equipped with an LSI (Large-Scale Integration) that integrates a CPU with RAM and ROM. Furthermore, although this embodiment describes a case where the elevation analysis device 10 is configured with a single computer, the elevation analysis device 10 may also be realized by combining multiple computers.

 衛星データ取得部11は、衛星データベース51に保存された衛星データを取得する。本実施形態ではRepeat pass観測技術を用いており、衛星データ取得部11は、標高差を算出する関心領域について、SARの複数回にわたる撮影によって生成された複数回分の衛星データの中から、2回分の撮影に係る衛星データを取得する。 The satellite data acquisition unit 11 acquires satellite data stored in the satellite database 51. In this embodiment, repeat-pass observation technology is used, and the satellite data acquisition unit 11 acquires satellite data relating to two images taken from among the multiple satellite data generated by multiple SAR images for the area of interest for which the elevation difference is to be calculated.

 衛星データ取得部11が取得する衛星データの中には、SAR画像のほかに、SARによる地表観測に関して既知の情報がメタデータとして含まれる。メタデータには、例えば、レーダ波の波長λ、基線長B、オフナディア角θ、傾斜距離r、衛星位置、衛星速度、衛星移動方向、衛星時刻、観測領域の地理情報などが含まれる。基線長Bは、1基の衛星Sによる2回の観測における観測点間距離である。オフナディア角θは、SARから照射されるレーダ波の、地表面に対して垂直方向からずれた入射角である。傾斜距離rは、衛星Sのアンテナから地表面の観測地点までの距離である。 The satellite data acquired by the satellite data acquisition unit 11 includes, in addition to SAR images, known information related to SAR observation of the Earth's surface as metadata. The metadata includes, for example, the wavelength λ of the radar wave, the baseline length B⊥ , the off-nadir angle θ, the tilt distance r, the satellite position, the satellite speed, the satellite movement direction, the satellite time, and geographic information of the observation area. The baseline length B⊥ is the distance between the observation points in two observations by one satellite S. The off-nadir angle θ is the angle of incidence of the radar wave emitted from the SAR, which is offset from the perpendicular to the Earth's surface. The tilt distance r is the distance from the antenna of the satellite S to the observation point on the Earth's surface.

 干渉SAR画像生成部12は、衛星データ取得部11により取得された2枚のSAR画像を干渉させる所定の干渉処理を行うことにより、干渉SAR画像(干渉SARデータ)を生成する。所定の干渉処理として、干渉SARに関する公知の処理を用いることが可能である。 The interferometric SAR image generation unit 12 generates an interferometric SAR image (interferometric SAR data) by performing a predetermined interference process that causes interference between the two SAR images acquired by the satellite data acquisition unit 11. Known processes related to interferometric SAR can be used as the predetermined interference process.

 干渉SARは、レーダ波の位相を利用して画像を得る技術であり、地表の同一の場所に対して2回の観測を実施して2枚のSAR画像(位相画像)を生成し、それらを干渉させて差をとることにより、わずかな距離差を位相差の情報として得ることが可能である。このとき2枚のSAR画像を干渉させることによって生成される画像が干渉SAR画像である。 Interferometric SAR is a technology that uses the phase of radar waves to obtain images. Two observations are made of the same location on the Earth's surface to generate two SAR images (phase images), which are then interfered with to obtain the difference, making it possible to obtain slight distance differences as phase difference information. The image generated by interfering the two SAR images in this case is an interferometric SAR image.

 一般的な干渉SARによれば、2回の観測期間中に生じた地表の動きを衛星-地表間の距離の変化としてmm単位またはcm単位で捉えることが可能であるが、本実施形態はこのような地表のわずかな変位を捉えることを目的とするものでない。干渉SAR画像生成部12は、2枚のSAR画像を干渉させることによって干渉SAR画像を生成すればよく、上述の地表のわずかな変位に相当する位相差(後述するφdisp)を算出することまでは要しない。ただし、生成される干渉SAR画像は、標高差算出ターゲットの現象とは異なる地表変動に伴う位相差の情報を含んだ位相差画像と言える。 While typical interferometric SAR can capture the movement of the Earth's surface that occurs between two observation periods as a change in the distance between the satellite and the Earth's surface in millimeters or centimeters, this embodiment does not aim to capture such slight displacements of the Earth's surface. The interferometric SAR image generator 12 only needs to generate an interferometric SAR image by interfering two SAR images, and does not need to calculate the phase difference (φ disp , described below) corresponding to the slight displacement of the Earth's surface. However, the generated interferometric SAR image can be considered a phase difference image that contains information on the phase difference associated with surface deformation that is different from the phenomenon of the elevation difference calculation target.

 次式(1)は、干渉SAR画像生成部12により生成される干渉SAR画像の位相差成分Δφに含まれる複数の要素を示している。φatmは大気誤差、φorbは衛星Sの軌道縞誤差、φdispは地表変動による変位成分、φtopoはDEM差分位相、φnoiseは無相関ノイズ、2kπは位相整数値バイアスである。 The following equation (1) shows multiple elements included in the phase difference component Δφ of the interferometric SAR image generated by the interferometric SAR image generation unit 12. φ atm is the atmospheric error, φ orb is the orbital fringe error of satellite S, φ disp is the displacement component due to surface movement, φ topo is the DEM differential phase, φ noise is uncorrelated noise, and 2kπ is the phase integer value bias.

 SAR画像の2回の観測時において大気の状態が変わり、変化した大気の状態によってレーダ波の位相の遅延状態が変わる。このため、2回の観測時点において地表に変化が起きていなくても、大気の状態に変化が起きると、それに伴って2枚のSAR画像に位相差が生じてしまう。この位相差が大気誤差φatmとして干渉SAR画像の位相差成分Δφに含まれてくる。 Atmospheric conditions change between the two observations of the SAR images, and the phase delay of the radar wave changes depending on the changed atmospheric conditions. Therefore, even if there is no change on the Earth's surface between the two observations, if there is a change in the atmospheric conditions, a phase difference will occur between the two SAR images. This phase difference is included in the phase difference component Δφ of the interferometric SAR image as the atmospheric error φ atm .

 また、SAR画像の2回の観測時において衛星Sの軌道が完全に同一にはならないため、2回の観測時点において地表に変化が起きていなくても、軌道の違いに伴って2枚のSAR画像に位相差が生じてしまう。それが干渉SAR画像に縞状のノイズとして現れる。なお、衛星Sの軌道は既知であることから、その軌道の情報をもとに軌道縞誤差φorbを推定し、これをある程度は除去することが可能である。しかし、完全に除去することは難しく、軌道縞誤差φorbが干渉SAR画像の位相差成分Δφに含まれてくる。 Furthermore, since the orbit of satellite S is not completely identical when the SAR images are observed twice, even if there is no change on the Earth's surface between the two observation times, a phase difference occurs between the two SAR images due to the difference in orbit. This appears as striped noise in the interferometric SAR image. Note that since the orbit of satellite S is known, it is possible to estimate the orbital fringe error φ orb based on the orbital information and remove it to some extent. However, complete removal is difficult, and the orbital fringe error φ orb is included in the phase difference component Δφ of the interferometric SAR image.

 地表変動による変位成分φdispは、上述したように一般的な干渉SARの場合はこれが得たい情報となるが、本実施形態の場合はこれをノイズ情報として扱う。これに対して、本実施形態において得たい情報はDEM差分位相φtopoである。DEM差分位相φtopoは、後述するようにDEMデータで示される地形からの位相差を示す情報である。無相関ノイズφnoiseは、ランダムに発生するノイズである。 As described above, the displacement component φ disp due to ground surface movement is the desired information in the case of general interferometric SAR, but in this embodiment, it is treated as noise information. In contrast, the desired information in this embodiment is the DEM differential phase φ topo . The DEM differential phase φ topo is information indicating the phase difference from the topography shown in the DEM data, as will be described later. Uncorrelated noise φ noise is noise that occurs randomly.

 位相整数値バイアス2kπは、いわゆる位相アンラップ問題に関する誤差と言えるものである。干渉SARにおいて取得される位相値は、衛星Sのアンテナから地表面の観測地点までの傾斜距離rをレーダ波の波長λで割ったときの端数となるため、得られる位相値は{-π,π}の範囲に折り畳まれる(ラップされる)。このため、ダイナミックレンジの大きな位相に対しては2πの整数倍の不確定値を持つ。すなわち、レーダ波の2πのサイクルkがいくつあったかは分からず、最後の1サイクルの中のどの位置かということしか分からない。所定のアンラップ処理によってサイクルkの値を推定することは可能であるが、必ずしも正確に推定できるとは限らず、これがノイズとして干渉SAR画像の位相差成分Δφに含まれてくる。 The phase integer value bias 2kπ can be considered an error related to the so-called phase unwrapping problem. The phase value obtained in interferometric SAR is a fraction of the slope distance r from the antenna of satellite S to the observation point on the Earth's surface divided by the wavelength λ of the radar wave, so the obtained phase value is folded (wrapped) into the range of {-π, π}. As a result, phases with a large dynamic range have an uncertainty value that is an integer multiple of 2π. In other words, it is not possible to know how many 2π cycles k of the radar wave there were, only the position within the last cycle. While it is possible to estimate the value of cycle k using a specified unwrapping process, this is not always an accurate estimate, and this is included as noise in the phase difference component Δφ of the interferometric SAR image.

 式(1)に示したように、干渉SAR画像生成部12により生成される干渉SAR画像の位相差成分Δφの中には、求めたいDEM差分位相φtopoの他に、大気誤差φatm、軌道縞誤差φorb、地表変動による変位成分φdisp、無相関ノイズφnoiseおよび位相整数値バイアス2kπが含まれてくる。本実施形態では、以下に詳述するように、これらのノイズを除去または低減するための処理を行うことにより、各種ノイズが低減された位相差成分Δφ’から地表の標高変化を精度よく算出することができるようにしている。 As shown in equation (1), the phase difference component Δφ of the interferometric SAR image generated by the interferometric SAR image generator 12 contains, in addition to the desired DEM differential phase φ topo , atmospheric error φ atm , orbital fringe error φ orb , displacement component φ disp due to ground surface movement, uncorrelated noise φ noise , and phase integer value bias 2kπ. In this embodiment, as described in detail below, processing is performed to remove or reduce these noises, thereby enabling accurate calculation of changes in ground surface elevation from the phase difference component Δφ' in which various noises have been reduced.

 DEMデータ取得部13は、DEMデータベース52にあらかじめ記憶されているDEMデータを取得する。ここで取得するDEMデータは、標高差を算出する関心領域の標高データであり、衛星データ取得部11が取得したSARデータに含まれる関心領域と同じ領域のデータを含む。なお、衛星データ取得部11が取得するSARデータの領域と、DEMデータ取得部13が取得するDEMデータの領域とが完全に一致することは必須ではなく、両データに関心領域が含まれていればよい。なお、SARデータおよびDEMデータの何れにも地理情報がメタデータとして付随しており、例えばこの地理情報を用いて感心領域を特定することが可能である。 The DEM data acquisition unit 13 acquires DEM data that has been stored in advance in the DEM database 52. The DEM data acquired here is elevation data for the area of interest for which the elevation difference is to be calculated, and includes data for the same area of interest contained in the SAR data acquired by the satellite data acquisition unit 11. Note that it is not essential that the area of the SAR data acquired by the satellite data acquisition unit 11 and the area of the DEM data acquired by the DEM data acquisition unit 13 exactly match; it is sufficient that the area of interest is included in both data. Note that both the SAR data and the DEM data are accompanied by geographical information as metadata, and it is possible to identify the area of interest using this geographical information, for example.

 DEM差分処理部14は、特許請求の範囲の差分処理部に相当するものであり、干渉SAR画像生成部12により生成された干渉SARデータと、DEMデータ取得部13により取得されたDEMデータとの差分を計算することにより、地表変動による変位成分φdispおよび無相関ノイズφnoiseが低減された差分干渉SARデータ(以下、差分干渉SAR画像ということもある)を取得する。このときDEM差分処理部14は、干渉SARデータとDEMデータとをそれぞれジオコーディオングして位置合わせを行った上で差分を計算する。 The DEM difference processing unit 14 corresponds to the difference processing unit in the claims, and acquires differential interferometric SAR data (hereinafter also referred to as a differential interferometric SAR image) in which the displacement component φ disp due to ground surface movement and uncorrelated noise φ noise have been reduced by calculating the difference between the interferometric SAR data generated by the interferometric SAR image generation unit 12 and the DEM data acquired by the DEM data acquisition unit 13. At this time, the DEM difference processing unit 14 geocodes the interferometric SAR data and the DEM data to align them, and then calculates the difference.

 DEMデータは、過去の一時点において航空レーザ測量などによって生成された数値モデルの既存標高データであり、例えば格子状に標高値を配列することによって地形を表現したデータである。これに対し、干渉SARデータは、衛星データベース51から取得した2枚のSAR画像の2回の観測時点における地表面の僅かな変位を位相差として表したデータである。位相差は距離差に対応する情報であるから、DEMデータからの干渉SARデータの差分を計算することにより、既存の標高データからの距離差に相当する差分干渉SARデータを得ることが可能である。 DEM data is existing elevation data from a numerical model generated at a point in the past by airborne laser surveying or the like, and is data that represents the terrain by arranging elevation values in a grid pattern, for example. In contrast, interferometric SAR data is data that represents slight displacements of the earth's surface at two observation points in two SAR images obtained from the satellite database 51 as a phase difference. Because the phase difference is information that corresponds to the distance difference, it is possible to obtain differential interferometric SAR data that corresponds to the distance difference from existing elevation data by calculating the difference between the interferometric SAR data and the DEM data.

 ここで、2枚のSAR画像を撮影する2回の観測の時間間隔を短くすることにより、その間に地表変動が生じる可能性を低くすることが可能である。この場合、DEM差分処理部14により生成される差分干渉SARデータは、地表変動による変位成分φdispが低減された状態となっていると言える。この差分干渉SARデータは、変位成分φdispに加えて無相関ノイズφnoiseも低減された状態となっているが、その他のノイズは残っている。 Here, by shortening the time interval between the two observations in which the two SAR images are taken, it is possible to reduce the possibility of ground deformation occurring during that time. In this case, the differential interferometric SAR data generated by the DEM subtraction processor 14 can be said to be in a state in which the displacement component φ disp due to ground deformation has been reduced. This differential interferometric SAR data is in a state in which not only the displacement component φ disp but also the uncorrelated noise φ noise has been reduced, but other noise remains.

 フィルタ処理部15は、DEM差分処理部14により生成された差分干渉SARデータに対してハイパスフィルタ処理を行うことにより、差分干渉SARデータから更に大気誤差φatmおよび衛星Sの軌道縞誤差φorbが低減された位相差データを取得する。特に本実施形態のフィルタ処理部15は、差分干渉SARデータに対してローパスフィルタ処理を行い、それによって得られたデータを、ローパスフィルタ処理を行う前の元の差分干渉SARデータから差し引く処理を行う。 The filter processing unit 15 performs high-pass filtering on the differential interferometric SAR data generated by the DEM differential processing unit 14, thereby obtaining phase difference data from the differential interferometric SAR data in which the atmospheric error φ atm and the orbital fringe error φ orb of the satellite S have been further reduced. In particular, the filter processing unit 15 of this embodiment performs low-pass filtering on the differential interferometric SAR data, and then subtracts the data obtained thereby from the original differential interferometric SAR data before the low-pass filtering.

 すなわち、フィルタ処理部15は、まず、差分干渉SAR画像に対してローパスフィルタ処理を行うことによって、差分干渉SAR画像から滑らかな変化成分を抽出する。そして、その抽出した滑らかな変化成分を元の差分干渉SAR画像から除去する。このような処理によってハイパスフィルタをかけることにより、低周波領域に成分を持つ大気誤差φatmおよび軌道縞誤差φorbを大幅に低減することが可能である。 That is, the filter processing unit 15 first performs low-pass filtering on the differential interferometric SAR image to extract smoothly varying components from the differential interferometric SAR image. The extracted smoothly varying components are then removed from the original differential interferometric SAR image. By applying a high-pass filter in this manner, it is possible to significantly reduce the atmospheric error φ atm and the orbital fringe error φ orb , which have components in the low-frequency region.

 なお、大気誤差φatmや軌道縞誤差φorbは、数百mから数kmのオーダーで発生するので、その大きさに合わせたウィンドウサイズでフィルタ処理を行うのが好ましい。この大きさのウィンドウサイズであれば、標高差を算出する関心領域よりも大きくなるため、求めようとする関心領域の位相情報に大きな影響を与えることはない。 Since the atmospheric error φ atm and the orbital fringe error φ orb occur on the order of several hundred meters to several kilometers, it is preferable to perform filtering with a window size that matches their size. This window size is larger than the region of interest for which the elevation difference is to be calculated, so it does not significantly affect the phase information of the region of interest to be calculated.

 標高変化算出部16は、SARによる地表観測に関して既知の情報を用いて、フィルタ処理部15により生成された位相差データから地表の標高変化データを算出する。既知の情報は、衛星データ取得部11により取得された衛星データの中にメタデータとして含まれている情報であり、レーダ波の波長λ、基線長B、オフナディア角θ、傾斜距離rである。標高変化算出部16は、これらの既知の情報を用いて、次式(2)により標高変化dhを算出する。 The altitude change calculation unit 16 uses known information regarding the SAR observation of the Earth's surface to calculate altitude change data of the Earth's surface from the phase difference data generated by the filter processing unit 15. The known information is information included as metadata in the satellite data acquired by the satellite data acquisition unit 11, and includes the wavelength λ of the radar wave, the baseline length B , the off-nadir angle θ, and the tilt distance r. Using this known information, the altitude change calculation unit 16 calculates the altitude change dh using the following equation (2):

 フィルタ処理部15までの処理により、上述した式(1)において、干渉SAR画像の位相差成分Δφに含まれる大気誤差φatm、軌道縞誤差φorb、地表変動による変位成分φdispおよび無相関ノイズφnoiseを大幅に低減させることができる。残る位相整数値バイアス2kπについては、フィルタ処理部15により生成される位相差データが、位相アンラップ処理を行うことが不要な範囲のデータとなるような条件下でSARによる観測を行うようにすることで、推定が困難な位相アンラップ処理を回避して位相整数値バイアス2kπを無視できるようにする。これにより、上記式(2)が使える状態とする。 By performing the processing up to the filter processing unit 15, it is possible to significantly reduce the atmospheric error φ atm , the orbital fringe error φ orb , the displacement component φ disp due to ground movement, and the uncorrelated noise φ noise contained in the phase difference component Δφ of the interferometric SAR image in the above-mentioned equation (1). As for the remaining phase integer value bias 2kπ, by performing SAR observation under conditions such that the phase difference data generated by the filter processing unit 15 is data within a range that does not require phase unwrapping, it is possible to avoid the phase unwrapping process, which is difficult to estimate, and to ignore the phase integer value bias 2kπ. This makes it possible to use the above-mentioned equation (2).

 このために本実施形態では、式(2)に示されるように基線長Bに依存する標高変化dhの感度を衛星Sごとに理論的に計算し、標高差算出ターゲットの現象に関する大きさの標高変化dhを検出する際に位相アンラップ処理を行うことが不要となる観測の条件を求めた。ここでいう標高変化dhの感度とは、位相差のダイナミックレンジが2π以下となる範囲({-π,π}を超えない範囲)内で、標高差算出ターゲットの現象に関する大きさの標高変化dhを検出可能であることを意味する。 For this reason, in this embodiment, the sensitivity of the elevation change dh, which depends on the baseline length B⊥ as shown in equation (2), is theoretically calculated for each satellite S, and observation conditions are found that make it unnecessary to perform phase unwrapping when detecting the elevation change dh of the magnitude related to the phenomenon of the elevation difference calculation target. The sensitivity of the elevation change dh here means that it is possible to detect the elevation change dh of the magnitude related to the phenomenon of the elevation difference calculation target within a range in which the dynamic range of the phase difference is 2π or less (a range not exceeding {-π, π}).

 図3は、位相差のダイナミックレンジが2π以下となる範囲内で検出可能な標高変化dhと基線長Bとの関係を模式的に示す図である。図3では、横軸に基線長B、縦軸に標高変化dhをとり、位相差のダイナミックレンジが2π以下となる範囲内で標高変化dhを検出可能な範囲を、複数種類の衛星ごとに示している。範囲31は衛星SがCバンド(波長λ=5.6cm)のSentinel-1である場合の感度を示し、範囲32は衛星SがLバンド(波長λ=24cm)のALOS-2である場合の感度を示し、範囲33は衛星SがXバンド(波長λ=3.1cm)のTSXである場合の感度を示し、範囲34は衛星SがXバンド(波長λ=3.1cm)のCSKである場合の感度を示している。 Figure 3 is a diagram showing the relationship between the baseline length B⊥ and the altitude change dh that can be detected within a dynamic range of the phase difference of 2π or less. In Figure 3, the horizontal axis represents the baseline length B⊥ and the vertical axis represents the altitude change dh. The figure shows the ranges for each type of satellite in which the altitude change dh can be detected within a dynamic range of the phase difference of 2π or less. Range 31 indicates the sensitivity when the satellite S is Sentinel-1 (C-band, wavelength λ = 5.6 cm), range 32 indicates the sensitivity when the satellite S is ALOS-2 (L-band, wavelength λ = 24 cm), range 33 indicates the sensitivity when the satellite S is TSX (X-band, wavelength λ = 3.1 cm), and range 34 indicates the sensitivity when the satellite S is CSK (X-band, wavelength λ = 3.1 cm).

 図3において、位相差のダイナミックレンジが2π以下となる範囲内で検出可能な標高変化dhの最小値dhminと最大値dhmaxは、式(2)をもとに導出した次式(3)の通り計算した。式(3)に示す標高変化dhの最小値dhminは、コヒーレンスが低い場合に基づいている。コヒーレンスが高い場合の最小値dhminは、式(4)により計算する。
In Figure 3, the minimum value dhmin and maximum value dhmax of the altitude change dh that can be detected within a dynamic range of the phase difference of 2π or less were calculated according to the following equation (3) derived from equation (2). The minimum value dhmin of the altitude change dh shown in equation (3) is based on the case where coherence is low. The minimum value dhmin when coherence is high is calculated using equation (4).

 図3に示す感度の計算結果をもとに、位相差のダイナミックレンジが2π以下となる範囲内で標高差算出ターゲットの現象に関する標高変化量に対して感度を持つ衛星Sと基線長Bとの組み合わせを条件として、SARによる観測を行うようにする。そして、DEM差分処理部14は、そのような条件下で観測されるデータから生成される干渉SARデータを用いて、差分干渉SARデータを生成する。 Based on the sensitivity calculation results shown in Figure 3, SAR observation is performed under the condition of a combination of satellite S and baseline length B⊥ that has sensitivity to the amount of elevation change related to the phenomenon of the elevation difference calculation target within a range in which the dynamic range of the phase difference is 2π or less. Then, the DEM difference processing unit 14 generates differential interferometric SAR data using interferometric SAR data generated from data observed under such conditions.

 図3において、範囲31で示されるSentinel-1の感度は、基線長Bが100m以下の範囲において、約12m以下の標高変化dhは検出不可能であることを示している(基線長Bが100mの場合の感度はdhmin=約12m、dhmax=約57m)。例えば、標高差算出ターゲットの現象に関する標高変化量が数m程度である場合、当該数m程度の標高変化dhに感度を持たないため、Sentinel-1は不適(条件を満たさない)ということになる。Sentinel-1は、使える基線長Bの範囲が狭いという観点からも、好ましいとは言えない。 In Figure 3, the sensitivity of Sentinel-1, shown in range 31, indicates that it cannot detect an elevation change dh of approximately 12 m or less in a range where the baseline length B⊥ is 100 m or less (the sensitivity when the baseline length B⊥ is 100 m is dhmin = approximately 12 m, dhmax = approximately 57 m). For example, when the elevation change amount related to the phenomenon of the elevation difference calculation target is on the order of several meters, Sentinel-1 is not suitable (does not satisfy the conditions) because it does not have the sensitivity to this elevation change dh of approximately several meters. Sentinel-1 cannot be said to be preferable also from the viewpoint that the range of usable baseline length B⊥ is narrow.

 範囲32で示されるALOS-2の感度は、基線長Bが500m以下の範囲において、約10m以下の標高変化dhは検出不可能であることを示している(基線長Bが500mの場合の感度はdhmin=約10m、dhmax=約44m)。例えば、標高差算出ターゲットの現象に関する標高変化量が数m程度である場合、当該数m程度の標高変化dhに感度を持たないため、ALOS-2も不適ということになる。 The sensitivity of ALOS-2 shown in range 32 indicates that it cannot detect an elevation change dh of approximately 10 m or less in a range where the baseline length B⊥ is 500 m or less (the sensitivity when the baseline length B⊥ is 500 m is dhmin = approximately 10 m, dhmax = approximately 44 m). For example, if the elevation change related to the phenomenon of the elevation difference calculation target is on the order of a few meters, ALOS-2 would also be unsuitable because it would not be sensitive to this elevation change dh of approximately a few meters.

 範囲33で示されるTSXの感度は、基線長Bが300m以下の範囲において、約2m以下の標高変化dhは検出不可能であることを示している(基線長Bが300mの場合の感度はdhmin=約2m、dhmax=約8m)。例えば、標高差算出ターゲットの現象に関する標高変化量が数m程度(ただし2m以上)である場合、当該数m程度の標高変化dhに感度を持つため、TSXは適切(条件を満たす)ということになる。 The sensitivity of TSX shown in range 33 indicates that it is unable to detect an elevation change dh of approximately 2 m or less in the range where the baseline length B⊥ is 300 m or less (the sensitivity when the baseline length B⊥ is 300 m is dhmin = approximately 2 m, dhmax = approximately 8 m). For example, when the elevation change amount related to the phenomenon of the elevation difference calculation target is on the order of several meters (but 2 m or more), TSX is deemed appropriate (meets the conditions) because it has sensitivity to elevation change dh of approximately several meters.

 範囲34で示されるCSKの感度は、基線長Bが600m以上の所定値(図には表れていない1000m)以下の範囲において、約2m以下の標高変化dh検出不可能であることを示している(基線長Bが600mの場合の感度はdhmin=約2m、dhmax=約5m)。例えば、標高差算出ターゲットの現象に関する標高変化量が数m程度(ただし2m以上)である場合、当該数m程度の標高変化dhに感度を持つため、CSKも適切ということになる。 The sensitivity of CSK shown in range 34 indicates that it is unable to detect an elevation change dh of approximately 2 m or less in the range where the baseline length B⊥ is 600 m or more and up to a predetermined value (1000 m not shown in the figure) (when the baseline length B⊥ is 600 m, the sensitivity is dhmin = approximately 2 m, dhmax = approximately 5 m). For example, if the elevation change amount related to the phenomenon of the elevation difference calculation target is on the order of several meters (but 2 m or more), CSK is also appropriate because it has sensitivity to elevation changes dh of approximately several meters.

 以上のことから、標高差算出ターゲットの現象に関する標高変化量が数m程度である場合には、TSXまたはCSKのXバンドの衛星Sで観測を行うことが適切であることが分かる。すなわち、Xバンドの衛星Sを用いて、図3に示される基線長Bの範囲となるようにSARの観測を行えば、位相差のダイナミックレンジが2π以下となる範囲内で標高差算出ターゲットの標高変化dhを検出可能であり、位相整数値バイアス2kπを無視することが可能となる。 From the above, it can be seen that when the amount of elevation change related to the phenomenon of the elevation difference calculation target is on the order of a few meters, it is appropriate to perform observations using the TSX or CSK X-band satellite S. In other words, if SAR observations are performed using the X-band satellite S so as to fall within the range of the baseline length B⊥ shown in Figure 3, it is possible to detect the elevation change dh of the elevation difference calculation target within a dynamic range of the phase difference of 2π or less, and it becomes possible to ignore the phase integer value bias 2kπ.

 図4は、図3に示したCSKの感度を一部拡大した状態を示す図である。標高差算出ターゲットの現象に関する標高変化量が2m以上8m以下の場合、基線長Bが100m以下の場合は標高変化dhの感度が大きすぎる一方、基線長Bが300m以上の場合は標高変化dhの感度が不足ぎみとなる。よって、CSKを用いて上述の標高変化量を標高差算出ターゲットとする場合は、基線長Bが100m以上300m以下の範囲となるようにSARの観測を行うのが好ましいと言える。TSXを用いる場合もこれとほぼ同様のことが言える。 Figure 4 is a diagram showing a partially enlarged view of the sensitivity of the CSK shown in Figure 3. When the elevation change amount related to the phenomenon of the elevation difference calculation target is 2 m or more and 8 m or less, the sensitivity of the elevation change dh is too high when the baseline length B⊥ is 100 m or less, while the sensitivity of the elevation change dh is somewhat insufficient when the baseline length B⊥ is 300 m or more. Therefore, when using CSK to calculate the above-mentioned elevation change amount as the elevation difference calculation target, it is preferable to perform SAR observation so that the baseline length B⊥ is in the range of 100 m or more and 300 m or less. A similar situation can be said when using TSX.

 なお、標高差算出ターゲットの標高変化量が変われば、それに合わせて好適な衛星Sと基線長Bとの組み合わせが変わることは言うまでもない。 It goes without saying that if the amount of change in altitude of the altitude difference calculation target changes, the suitable combination of satellite S and baseline length B⊥ will change accordingly.

 位相差のダイナミックレンジが2π以下となる範囲内で標高差算出ターゲットの標高変化量に対して感度を持つという条件を満たす上で必要なことの1つとして、適切な基線長Bとなる2枚のSAR画像を使うということが挙げられる。すなわち、衛星データベース51に保存された複数回分の観測に係る衛星データの中から、適切な2回分の観測に係る衛星データを取得することが大切ということである。 One of the requirements for satisfying the condition that the dynamic range of the phase difference is sensitive to the amount of elevation change of the elevation difference calculation target within 2π or less is to use two SAR images with an appropriate baseline length B⊥ . In other words, it is important to obtain satellite data related to two appropriate observations from the satellite data related to multiple observations stored in the satellite database 51.

 図5は、TSXを用いて複数回の観測を行ったときに得られる複数のSAR画像に関する基線長Bを模式的に示す図である。図5において、横軸は時間軸、縦軸は基準軌道から実際の観測位置までの離間距離であり、個々の〇印は各観測時点における離間距離を示している。2つの〇印の離間距離の差が、2回の観測に係る基線長Bを示す。 Figure 5 is a diagram showing the baseline length B⊥ for multiple SAR images obtained when multiple observations are made using the TSX. In Figure 5, the horizontal axis is the time axis, the vertical axis is the separation distance from the reference orbit to the actual observation position, and each circle indicates the separation distance at each observation point. The difference in separation distance between two circles indicates the baseline length B⊥ for the two observations.

 本実施形態において衛星データ取得部11は、図5に示す複数の〇印に対応する複数の衛星データの中から、基線長Bが上述の条件を満たす1ペアの衛星データを選んで取得する。これを第1条件として、本実施形態では上述したように、2回の観測の時間間隔が短いことに関する第2条件を更に満たす1ペアの衛星データを取得する。2回の観測の時間間隔が短い場合は、その間に地表変動が生じている可能性が低くなるため、干渉SAR画像の位相差成分Δφに地表変動の変位成分φdispが含まれないようにする、あるいは極小化することが可能である。 In this embodiment, the satellite data acquisition unit 11 selects and acquires one pair of satellite data whose baseline length B⊥ satisfies the above-mentioned condition from among the multiple satellite data corresponding to the multiple circles shown in Figure 5. With this as the first condition, as described above, in this embodiment, one pair of satellite data is acquired that also satisfies the second condition relating to the short time interval between two observations. If the time interval between two observations is short, there is a low possibility that ground movement has occurred during that time, so it is possible to prevent or minimize the inclusion of the ground movement displacement component φdisp in the phase difference component Δφ of the interferometric SAR image.

 例えば、第1条件を満たす衛星データの組み合わせが複数ある場合、その中から最も時間間隔が短い1ペアの衛星データを取得するようにしてもよい。あるいは、第1条件を満たす衛星データの組み合わせが複数ある場合、その中で時間間隔が閾値未満となるペアのうち任意の1ペアの衛星データを取得するようにしてもよい。 For example, if there are multiple combinations of satellite data that satisfy the first condition, it is possible to acquire one pair of satellite data with the shortest time interval from among them. Alternatively, if there are multiple combinations of satellite data that satisfy the first condition, it is possible to acquire one arbitrary pair of satellite data from among those pairs whose time interval is less than the threshold value.

 以上詳しく説明したように、本実施形態では、干渉SARデータと数値標高モデルによる標高データとの差分を計算することにより、地表変動による変位成分φdispおよび無相関ノイズφnoiseが低減された差分干渉SARデータを取得した後、差分干渉SARデータに対してハイパスフィルタ処理を行うことにより、差分干渉SARデータから更に大気誤差φatmおよび衛星Sの軌道縞誤差φorbが低減された位相差データΔφ’(=φtopo)を取得する。そして、このようにして取得した位相差データΔφ’から、SARによる地表観測に関して既知の情報を用いて式(2)により地表の標高変化dhを算出する。 As explained in detail above, in this embodiment, the difference between the interferometric SAR data and elevation data from the digital elevation model is calculated to obtain differential interferometric SAR data in which the displacement component φ disp due to ground movement and the uncorrelated noise φ noise have been reduced, and then high-pass filtering is performed on the differential interferometric SAR data to obtain phase difference data Δφ' (=φ topo ) from the differential interferometric SAR data in which the atmospheric error φ atm and the orbital fringe error φ orb of the satellite S have been further reduced. Then, from the phase difference data Δφ' obtained in this way, the elevation change dh of the ground surface is calculated using equation (2) using known information regarding ground surface observation by SAR.

 このように構成した本実施形態によれば、干渉SARデータから、上述の各種ノイズが低減された位相差データΔφ’が生成され、この位相差データΔφ’から既知の情報を用いて標高変化dhが算出されるので、Repeat pass観測技術による干渉SARデータを用いて、比較的短期間のうちに地表面が例えばm単位で大きく変化する現象に関する標高変化dhを精度よく計測することができる。 In this embodiment, which is configured in this manner, phase difference data Δφ' is generated from the interferometric SAR data, with the various types of noise described above reduced, and altitude change dh is calculated from this phase difference data Δφ' using known information.As a result, interferometric SAR data obtained using repeat-pass observation technology can be used to accurately measure altitude change dh related to phenomena in which the earth's surface changes significantly, for example in units of meters, over a relatively short period of time.

 また、本実施形態では、位相差のダイナミックレンジが2π以下となる範囲内で標高差算出ターゲットの標高変化量に対して感度を持つ基線長Bの条件下で観測される衛星データを用いて、差分干渉SARデータを取得するようにしているので、一般的に推定誤差が付きまとう位相アンラップ処理を不要とすることができ、位相整数値バイアス2kπを実質的に無視することが可能となる。これにより、標高変化dhの検出精度を向上させることができる。 Furthermore, in this embodiment, differential interferometric SAR data is acquired using satellite data observed under conditions of a baseline length B⊥ that is sensitive to the amount of elevation change of the elevation difference calculation target within a dynamic range of the phase difference of 2π or less, which eliminates the need for phase unwrapping, which generally involves estimation errors, and makes it possible to essentially ignore the phase integer value bias 2kπ, thereby improving the detection accuracy of the elevation change dh.

 なお、上記実施形態において、場合によっては位相整数値バイアス2kπを含む条件化でSARの観測を行い、位相アンラップ処理を行った上で式(2)から標高変化dhを算出するようにしてもよい。例えば、2πの範囲で標高差算出ターゲットとする標高変化量を完全にカバーする衛星Sと基線長Bとの組み合わせが存在しない場合に、4πの範囲で標高差算出ターゲットとする標高変化量をカバーする衛星Sと基線長Bとの組み合わせによってSARの観測を行い、位相アンラップ処理を行った上で式(2)から標高変化dhを算出するようにしてもよい。この場合でも、位相アンラップ処理で推定する範囲が狭くて済むので、通常の位相アンラップ処理を行う場合に比べて推定誤差の発生を抑制することができる。 In the above embodiment, in some cases, SAR observation may be performed under conditions including a phase integer value bias of 2kπ, and the altitude change dh may be calculated from equation (2) after phase unwrapping. For example, if there is no combination of satellite S and baseline length B⊥ that completely covers the altitude change amount that is the altitude difference calculation target within a range of 2π, SAR observation may be performed using a combination of satellite S and baseline length B⊥ that covers the altitude change amount that is the altitude difference calculation target within a range of 4π, and the altitude change dh may be calculated from equation (2) after phase unwrapping. Even in this case, the range estimated by phase unwrapping can be narrower, thereby reducing the occurrence of estimation errors compared to when normal phase unwrapping is performed.

 また、上記実施形態において、フィルタ処理部15と標高変化算出部16との間に適応フィルタ処理部を設け、例えば特定の周波数成分を抽出または除去する処理を更に行うようにしてもよい。これにより、干渉SAR画像生成部12の処理によっても残ってしまうことがある無相関ノイズφnoiseを更に低減することができる。例えば、SAR画像の中に海や湖などの水の領域が含まれている場合、その領域ではSAR画像の干渉を起こしにくいため、ザラザラ感のあるノイズとして現れる。これを適応フィルタ処理によって低減することが可能である。 Furthermore, in the above embodiment, an adaptive filter processing unit may be provided between the filter processing unit 15 and the altitude change calculation unit 16, and may further perform processing to extract or remove specific frequency components, for example. This makes it possible to further reduce uncorrelated noise φ noise that may remain even after processing by the interferometric SAR image generation unit 12. For example, if the SAR image includes a water area such as an ocean or lake, interference in the SAR image is unlikely to occur in that area, and therefore the noise appears as a grainy texture. This can be reduced by adaptive filter processing.

 また、上記実施形態において、標高変化算出部16の後段に、標高変化量を表した画像に対してガウシアンフィルタをかけ、細かいノイズを除去するようにしてもよい。 Furthermore, in the above embodiment, a Gaussian filter may be applied to the image representing the amount of elevation change downstream of the elevation change calculation unit 16 to remove fine noise.

 また、上記実施形態において、ある時点で観測した2枚のSAR画像とDEMデータとを用いて標高変化dh1を算出するとともに、それとは別の時点で観測した2枚のSAR画像とDEMデータとを用いて標高変化dh2を算出し、2つの標高変化dh1,dh2の差分dh2-1=dh2-dh1を算出するようにしてもよい。例えば、標高差算出のターゲットとする現象が発生する前に観測した2枚のSAR画像とDEMデータとを用いて標高変化dh1を算出するとともに、当該現象が発生した後に観測した2枚のSAR画像とDEMデータとを用いて標高変化dh2を算出し、それらの差分dh2-1を算出するようにしてもよい。 Furthermore, in the above-described embodiment, it is also possible to calculate the elevation change dh 1 using two SAR images and DEM data observed at a certain point in time, and to calculate the elevation change dh 2 using two SAR images and DEM data observed at a different point in time, and then calculate the difference dh 2-1 = dh 2 - dh 1 between the two elevation changes dh 1 and dh 2. For example, it is also possible to calculate the elevation change dh 1 using two SAR images and DEM data observed before the occurrence of a phenomenon that is the target of the elevation difference calculation, and to calculate the elevation change dh 2 using two SAR images and DEM data observed after the occurrence of the phenomenon, and then calculate the difference dh 2-1 therebetween.

 このようにすることにより、任意の2つの異なる時点間における標高変化dh2-1を計測することが可能である。また、DEMデータ自体が有している標高値の誤差を相殺することができるというメリットもある。また、このように標高変化dh2-1を計測する場合でも、使用するSAR画像は4枚(2ぺア)でよく、非特許文献1のように時系列差分干渉解析を行う場合に比べてはるかに少ないSAR画像で標高変化dh2-1を算出することが可能である。 By doing this, it is possible to measure the elevation change dh 2-1 between any two different points in time. Another advantage is that it is possible to offset any errors in the elevation values contained in the DEM data itself. Even when measuring elevation change dh 2-1 in this way, only four SAR images (two pairs) are required, making it possible to calculate elevation change dh 2-1 with far fewer SAR images than when performing time-series differential interferometry analysis as in Non-Patent Document 1.

 その他、上記実施形態は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。 Furthermore, the above-described embodiments are merely examples of specific ways of implementing the present invention, and should not be interpreted as limiting the technical scope of the present invention. In other words, the present invention can be implemented in various forms without departing from its gist or main features.

 10 標高解析装置
 11 衛星データ取得部
 12 干渉SAR画像生成部
 13 DEMデータ取得部
 14 DEM差分処理部(差分処理部)
 15 フィルタ処理部
 16 標高変化算出部
 51 衛星データベース
 52 DEMデータベース
 S 衛星
10 Elevation analysis device 11 Satellite data acquisition unit 12 Interferometric SAR image generation unit 13 DEM data acquisition unit 14 DEM difference processing unit (difference processing unit)
15 Filter processing unit 16 Elevation change calculation unit 51 Satellite database 52 DEM database S Satellite

Claims (7)

 衛星に搭載された合成開口レーダにより観測されるデータに対する所定の干渉処理によって生成した干渉SARデータと、数値標高モデルによる標高データとの差分を計算することにより、地表変動による変位成分および無相関ノイズが低減された差分干渉SARデータを取得する差分処理部と、
 上記差分干渉SARデータに対してハイパスフィルタ処理を行うことにより、上記差分干渉SARデータから更に大気誤差および上記衛星の軌道縞誤差が低減された位相差データを取得するフィルタ処理部と、
 上記合成開口レーダによる地表観測に関して既知の情報を用いて、上記位相差データから地表の標高変化データを算出する標高変化算出部とを備えた
ことを特徴とする標高解析装置。
a differential processing unit that calculates the difference between interferometric SAR data generated by a predetermined interferometric processing of data observed by a synthetic aperture radar mounted on a satellite and elevation data obtained by a digital elevation model, thereby obtaining differential interferometric SAR data in which displacement components due to ground surface deformation and uncorrelated noise have been reduced;
a filter processing unit that performs high-pass filtering on the differential interferometric SAR data to obtain phase difference data from the differential interferometric SAR data in which atmospheric errors and orbital fringe errors of the satellite have been further reduced;
and an altitude change calculation unit that calculates altitude change data of the earth's surface from the phase difference data using known information regarding the earth's surface observation by the synthetic aperture radar.
 上記フィルタ処理部は、上記差分干渉SARデータに対してローパスフィルタ処理を行い、それによって得られたデータを、上記ローパスフィルタ処理を行う前の元の上記差分干渉SARデータから差し引く処理を行うことを特徴とする請求項1に記載の標高解析装置。 The elevation analysis device described in claim 1, characterized in that the filter processing unit performs low-pass filtering on the differential interferometric SAR data and subtracts the data obtained thereby from the original differential interferometric SAR data before the low-pass filtering.  上記既知の情報は、1基の衛星による2回の観測における観測点間距離である基線長を含み、
 上記差分処理部は、上記位相差データで示される位相差のダイナミックレンジが2π以下となる範囲内で標高差算出ターゲットの標高変化量に対して感度を持つ基線長の条件下で観測されるデータを用いて、上記差分干渉SARデータを取得する
ことを特徴とする請求項1に記載の標高解析装置。
The known information includes a baseline length, which is the distance between observation points in two observations by one satellite;
The elevation analysis device according to claim 1, characterized in that the differential processing unit acquires the differential interferometric SAR data using data observed under conditions of a baseline length that is sensitive to the amount of elevation change of the elevation difference calculation target within a range in which the dynamic range of the phase difference indicated by the phase difference data is 2π or less.
 上記既知の情報は、1基の衛星による2回の観測における観測点間距離である基線長を含み、
 上記差分処理部は、上記位相差データで示される位相差のダイナミックレンジが2π以下となる範囲内で標高差算出ターゲットの標高変化量に対して感度を持つ基線長となる第1条件と、上記2回の観測の時間間隔が短いことに関する第2条件とを満たす2回の観測データを用いて、上記差分干渉SARデータを取得する
ことを特徴とする請求項1に記載の標高解析装置。
The known information includes a baseline length, which is the distance between observation points in two observations by one satellite;
2. The elevation analysis device according to claim 1, wherein the differential processing unit acquires the differential interferometric SAR data using two observation data that satisfy a first condition that the baseline length is sensitive to the amount of elevation change of the elevation difference calculation target within a range in which the dynamic range of the phase difference indicated by the phase difference data is 2π or less, and a second condition that the time interval between the two observations is short.
 上記合成開口レーダによりある時点で観測されたデータに基づき生成された上記干渉SARデータと上記標高データとを用いて、上記差分処理部、上記フィルタ処理部および上記標高変化算出部の処理を行うことによって第1の標高変化データを算出するとともに、
 上記合成開口レーダにより上記ある時点とは別の時点で観測されたデータに基づき生成された上記干渉SARデータと上記標高データとを用いて、上記差分処理部、上記フィルタ処理部および上記標高変化算出部の処理を行うことによって第2の標高変化データを算出し、
 上記標高変化算出部は更に、上記第1の標高変化データと上記第2の標高変化データとの差分を算出する
ことを特徴とする請求項1~4の何れか1項に記載の標高解析装置。
using the interferometric SAR data generated based on data observed at a certain point in time by the synthetic aperture radar and the altitude data, by performing processing by the difference processing unit, the filter processing unit, and the altitude change calculation unit to calculate first altitude change data;
calculating second altitude change data by performing processing by the difference processing unit, the filter processing unit, and the altitude change calculation unit using the interferometric SAR data generated based on data observed by the synthetic aperture radar at a time different from the certain time point;
5. The altitude analysis device according to claim 1, wherein the altitude change calculation unit further calculates a difference between the first altitude change data and the second altitude change data.
 コンピュータの差分処理部が、衛星に搭載された合成開口レーダにより観測されるデータに対する所定の干渉処理によって生成した干渉SARデータと、数値標高モデルによる標高データとの差分を計算することにより、地表変動による変位成分および無相関ノイズが低減された差分干渉SARデータを取得する第1のステップと、
 上記コンピュータのフィルタ処理部が、上記差分干渉SARデータに対してハイパスフィルタ処理を行うことにより、上記差分干渉SARデータから更に大気誤差および上記衛星の軌道縞誤差が低減された位相差データを取得する第2のステップと、
 上記コンピュータの標高変化算出部が、上記合成開口レーダによる地表観測に関して既知の情報を用いて、上記位相差データから地表の標高変化データを算出する第3のステップとを有する
ことを特徴とする標高解析方法。
a first step in which a differential processing unit of a computer calculates the difference between interferometric SAR data generated by a predetermined interferometric processing of data observed by a synthetic aperture radar mounted on a satellite and elevation data obtained by a digital elevation model, thereby obtaining differential interferometric SAR data in which displacement components due to ground surface deformation and uncorrelated noise have been reduced;
a second step in which a filter processing unit of the computer performs high-pass filtering on the differential interferometric SAR data to obtain phase difference data from the differential interferometric SAR data in which atmospheric errors and orbital fringe errors of the satellite have been further reduced;
and a third step in which the altitude change calculation unit of the computer calculates altitude change data of the earth's surface from the phase difference data using known information regarding ground surface observation by the synthetic aperture radar.
 上記既知の情報は、1基の衛星による2回の観測における観測点間距離である基線長を含み、
 上記差分処理部は、上記位相差データで示される位相差のダイナミックレンジが2π以下となる範囲内で標高差算出ターゲットの標高変化量に対して感度を持つ基線長の条件下で観測されるデータを用いて、上記差分干渉SARデータを取得する
ことを特徴とする請求項6に記載の標高解析方法。
 
The known information includes a baseline length, which is the distance between observation points in two observations by one satellite;
The elevation analysis method according to claim 6, characterized in that the differential processing unit acquires the differential interferometric SAR data using data observed under conditions of a baseline length that is sensitive to the amount of elevation change of the elevation difference calculation target within a range in which the dynamic range of the phase difference indicated by the phase difference data is 2π or less.
PCT/JP2024/009808 2024-03-13 2024-03-13 Elevation analysis device and elevation analysis method Pending WO2025191739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2024/009808 WO2025191739A1 (en) 2024-03-13 2024-03-13 Elevation analysis device and elevation analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2024/009808 WO2025191739A1 (en) 2024-03-13 2024-03-13 Elevation analysis device and elevation analysis method

Publications (1)

Publication Number Publication Date
WO2025191739A1 true WO2025191739A1 (en) 2025-09-18

Family

ID=97063062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/009808 Pending WO2025191739A1 (en) 2024-03-13 2024-03-13 Elevation analysis device and elevation analysis method

Country Status (1)

Country Link
WO (1) WO2025191739A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057092A (en) * 2014-09-05 2016-04-21 国立研究開発法人情報通信研究機構 3D topographic map formation method from SAR map
CN110018476A (en) * 2019-05-20 2019-07-16 月明星(北京)科技有限公司 Time difference baseline set timing interference SAR processing method
US20200394780A1 (en) * 2017-06-15 2020-12-17 The University Of Nottingham Land deformation measurement
CN113960595A (en) * 2021-09-24 2022-01-21 中国科学院深圳先进技术研究院 Surface deformation monitoring method and system
CN117492000A (en) * 2023-11-09 2024-02-02 中国铁路上海局集团有限公司芜湖工务段 Railway side slope deformation hidden danger grading method based on TS-InSAR technology and topography factors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016057092A (en) * 2014-09-05 2016-04-21 国立研究開発法人情報通信研究機構 3D topographic map formation method from SAR map
US20200394780A1 (en) * 2017-06-15 2020-12-17 The University Of Nottingham Land deformation measurement
CN110018476A (en) * 2019-05-20 2019-07-16 月明星(北京)科技有限公司 Time difference baseline set timing interference SAR processing method
CN113960595A (en) * 2021-09-24 2022-01-21 中国科学院深圳先进技术研究院 Surface deformation monitoring method and system
CN117492000A (en) * 2023-11-09 2024-02-02 中国铁路上海局集团有限公司芜湖工务段 Railway side slope deformation hidden danger grading method based on TS-InSAR technology and topography factors

Similar Documents

Publication Publication Date Title
JP4861555B2 (en) Procedures for radar measurements on urban area and landslide movements.
Gomba et al. Toward operational compensation of ionospheric effects in SAR interferograms: The split-spectrum method
Wang et al. Improved SAR amplitude image offset measurements for deriving three-dimensional coseismic displacements
US8154435B2 (en) Stability monitoring using synthetic aperture radar
Liu et al. Estimating Spatiotemporal Ground Deformation With Improved Persistent-Scatterer Radar Interferometry $^\ast$
Gheorghe et al. Comparison of multi-temporal differential interferometry techniques applied to the measurement of Bucharest City Subsidence
Chae et al. An improvement of the performance of SAR offset tracking approach to measure optimal surface displacements
Mao et al. An InSAR ionospheric correction method based on variance component estimation with integration of MAI and RSS measurements
Zhang et al. Minimizing height effects in MTInSAR for deformation detection over built areas
Biswas et al. Spatial-correlation based persistent scatterer interferometric study for ground deformation
Ab Latip et al. Monitoring of offshore platform deformation with stanford method of Persistent Scatterer (StaMPS)
Zhao et al. Different scale land subsidence and ground fissure monitoring with multiple InSAR techniques over Fenwei basin, China
Yang et al. Monitoring urban subsidence with multi-master radar interferometry based on coherent targets
Tripathi et al. Mapping of deflection caused due to hydrostatic pressure using Differential SAR Interferometry (DInSAR) on Bhakhra dam
WO2025191739A1 (en) Elevation analysis device and elevation analysis method
Lu et al. Digital elevation model generation from satellite interferometric synthetic aperture radar
Varugu et al. Glacier velocity estimation using high resolution SAR images–Application to Gangotri glacier in Himalayas
Eskandari et al. SAR and InSAR Processing for Earthquake Effects: A Short Review on Background and New Potentials
Marghany A Three-dimensional of coastline deformation using the sorting reliability algorithm of ENVISAT interferometric synthetic aperture radar
Biswas et al. Investigation of ground deformation with PSInSAR approach in an unstable urban area Naples, Italy using X-band SAR images
Guccione et al. Kriging interpolation on GB-SAR data to quickly update topographic maps in areas prone to slope instability
Fornaro et al. A comparison of atmospheric phase delay estimated by ASAR and MERIS over the Campania area
Yu et al. Extraction of DEM and Error Analysis in Mountainous Area by Using Spaceborne SAR Data
Fikri et al. Integration of PS-InSAR and SBAS Methods With Different DEM for Monitoring the Activity of the Kendeng Fault in the Surabaya and Waru Segments
Bogdanovski et al. Tome Gegovski

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24929710

Country of ref document: EP

Kind code of ref document: A1