[go: up one dir, main page]

WO2025182162A1 - Inspection device, inspection method, and inspection program - Google Patents

Inspection device, inspection method, and inspection program

Info

Publication number
WO2025182162A1
WO2025182162A1 PCT/JP2024/040131 JP2024040131W WO2025182162A1 WO 2025182162 A1 WO2025182162 A1 WO 2025182162A1 JP 2024040131 W JP2024040131 W JP 2024040131W WO 2025182162 A1 WO2025182162 A1 WO 2025182162A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal
inspection
unit
subject
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2024/040131
Other languages
French (fr)
Japanese (ja)
Inventor
瑞穂 西
峰生 津島
優 布施
淳子 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of WO2025182162A1 publication Critical patent/WO2025182162A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids

Definitions

  • the present invention relates to an inspection device, an inspection method, and an inspection program.
  • Lifecycle management encompasses everything from the manufacturing process to health assessments of products while they are in service, remaining life predictions, and repairs, reuse, and recycling based on maintenance and inspections.
  • Ultrasonic devices are highly portable and are not harmful to the human body like X-rays, making them ideal for detecting defects and evaluating damage in various types of mobility.
  • Patent Document 1 discloses an inspection method that combines optical inspection with other techniques to improve inspection efficiency in the semiconductor manufacturing process.
  • Patent Document 2 discloses a method for detecting cracks in bridge decks, in which infrared thermal images are used as the first method to identify potential flaw detection locations on the deck plate, and ultrasonic or other inspection methods are used as the second method.
  • Patent Document 3 discloses a method that combines laser ultrasonic inspection with infrared thermography inspection, making it possible to inspect the internal structure of complex shapes.
  • the object of the present invention is to provide an inspection device, an inspection method, and an inspection program that can further improve the efficiency of non-destructive inspection of the interior of a test object.
  • the inspection device comprises: an internal inspection unit that inspects the internal abnormality of the subject; an estimation unit that estimates the degree of internal abnormality for each external part of the subject based on the external appearance information of the subject; a setting unit that sets parameters corresponding to the estimated degree of the internal abnormality in the internal inspection unit for each of the portions; Equipped with.
  • the inspection method comprises: An inspection method using an internal inspection unit, estimating the degree of internal abnormality for each part of the subject based on the external appearance information of the subject; setting a parameter corresponding to the estimated degree of the internal abnormality in the internal inspection unit for each of the portions; inspecting the subject for internal abnormalities using the internal inspection unit; It has.
  • the inspection program comprises: An inspection program using an internal inspection unit, On the computer, A process of estimating the degree of internal abnormality for each part of the subject based on the external appearance information of the subject; a process of setting parameters corresponding to the estimated degree of the internal abnormality in the internal inspection unit for each of the portions; a process of inspecting the subject for internal abnormalities by the internal inspection unit; Execute the following.
  • the present invention makes it possible to further improve the efficiency of non-destructive testing of the interior of a specimen.
  • FIG. 1 is a diagram illustrating an example of a configuration of an inspection device according to an embodiment of the present invention.
  • 10 is a flowchart showing an example of the operation of an inspection process of ultrasound data by a processing unit.
  • 10 is a flowchart showing an example of the operation of an inspection process of ultrasound data by a processing unit.
  • FIG. 10 is a diagram schematically illustrating an example of the configuration of an inspection device according to a modified example.
  • FIG. 2 is a diagram corresponding to FIG. 1 and illustrating an example of a subject according to a modified example.
  • FIG. 2 is a diagram corresponding to FIG. 1 and illustrating an example of a subject according to a modified example.
  • Figure 1 is a diagram schematically illustrating an example of the configuration of an inspection device 100 according to an embodiment of the present invention.
  • the inspection device 100 non-destructively detects internal defects and damage (also called internal abnormalities) that cannot be seen from the outside of the test object 1, and provides a soundness assessment that enables safe and secure operation of the test object 1.
  • internal defects and damage also called internal abnormalities
  • the inspection device 100 estimates the degree of internal abnormality for each part of the test subject 1 based on the appearance information of the test subject 1. The inspection device 100 then sets parameters corresponding to the estimated degree of internal abnormality for each part of the test subject 1 in the internal inspection unit 140 (described below), and inspects the test subject 1 for internal abnormalities. The inspection device 100 also uses the information on internal abnormalities based on the appearance information for screening, and inspects only the screened areas of the test subject 1 in detail.
  • the inspection results of the inspection device 100 indicate that the internal abnormality of the test subject 1 is at a level that could adversely affect the operation of the test subject 1, it becomes possible to carry out repairs and part replacements on the test subject 1.
  • the test object 1 is a moving object such as an automobile, aircraft, or rocket (including reusable rockets) or an internal part of a moving object (e.g., a fuel tank), and is made of a composite material such as CFRP.
  • the internal abnormality may be caused by, for example, collision damage when the moving object collides with some kind of object (e.g., a bird strike, flying stones, etc.), or damage to the test object 1 when an inspector drops a personal item (e.g., a tool, cell phone, etc.) onto the test object 1 during an inspection.
  • the internal abnormality is not limited to these, and may be any defect or damage occurring inside the test object 1.
  • FIG. 1 shows an example in which the test object 1 is a rocket.
  • FIG. 5A shows an example in which the test object 1 is a reusable part of a reusable rocket
  • FIG. 5B shows an example in which the test object 1 is a fuel tank.
  • the inspection device 100 has an appearance inspection unit 110, a processing unit 120, a database 130, and an internal inspection unit 140.
  • the appearance inspection unit 110 detects appearance information of the subject 1 and may be, for example, an optical camera.
  • the appearance information may be, for example, image information capturing the entire appearance of the subject 1.
  • Optical cameras capture appearance information with varying image quality depending on focus settings and lighting conditions, but they can acquire appearance information without contact and are compact. Furthermore, optical cameras can be connected to the processing unit 120 via wire or wirelessly, making them ideal for use as the appearance inspection unit 110 to acquire appearance information.
  • the appearance information acquired by the appearance inspection unit 110 is used to estimate the degree of internal abnormality in the subject 1.
  • the appearance information is also used to screen for areas of the subject 1 where there is a high possibility of an internal abnormality occurring.
  • the parameters of the visual inspection unit 110 may be set by the processing unit 120 (parameter determination unit 122). Specifically, the processing unit 120 acquires risk information and inspection location information from the database 130, determines the conditions for the visual inspection of the subject 1, and sets the parameters of the visual inspection unit 110.
  • the parameters of the appearance inspection unit 110 may be, for example, information on shooting conditions such as lighting arrangement and intensity, focus position, and data acquisition range.
  • the processing unit 120 is, for example, a device having a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), etc., such as a personal computer.
  • the processing unit 120 controls the appearance inspection unit 110, internal inspection unit 140, etc., and realizes each function by, for example, the CPU referencing control programs and various data stored in the ROM and RAM and executing the control programs.
  • the processing unit 120 has an analysis unit 121 and a parameter determination unit 122.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • PLD Programmable Logic Device
  • dedicated hardware circuits Examples of PLDs include FPGAs (Field Programmable Gate Arrays).
  • FPGAs Field Programmable Gate Arrays
  • GPU Graphics Processing Unit
  • the analysis unit 121 takes in the appearance information acquired by the appearance inspection unit 110 and performs image processing operations to analyze the appearance information.
  • the analysis unit 121 calculates appearance abnormality information based on the appearance information.
  • the appearance abnormality information includes at least one of the presence or absence of dents or scratches on the appearance and/or surface of the subject 1, their extent and depth, texture, and changes in color information.
  • the appearance abnormality information is linked to spatial position information on the appearance and/or surface of the subject 1.
  • the processing unit 120 can identify the spatial position of the abnormal area on the subject 1 based on the calculated appearance abnormality information.
  • the appearance abnormality information and spatial position information may be linked by comparing an appearance image based on an optical camera with a correct image.
  • the appearance abnormality information and spatial position information may also be linked by comparing the results of appearance irregularity detection based on an optical sensor with the appearance surface state under normal conditions.
  • Database 130 stores a data set linking shape information of external anomalies with internal anomaly information.
  • Database 130 corresponds to the "storage unit" of the present invention.
  • internal anomaly information includes information on the extent and shape of internal damage, estimated based on the extent and depth of external dents and the volume derived therefrom.
  • the data set records the corresponding degree of internal anomaly shape as internal anomaly information. Examples of the degree of internal anomaly shape include the size, area, volume, and number and length of cracks as the peeling progress of the CFRP layer.
  • CFRP has mechanical strength and orientation in the direction of the carbon fibers, and delamination tends to progress in the direction of the fiber orientation.
  • Non-Patent Document 1 describes the tendency for the degree of internal abnormalities to change depending on the shape of the external dents in CFRP components.
  • the internal anomaly is damage that has a shape that spreads out to a certain extent relative to the dent.
  • damage in the shape of a crack occurs in the component.
  • the internal anomaly is damage that has a shape that spreads out along the crack, resulting in even more widespread damage than in the case of a spherical object.
  • Non-Patent Document 2 discloses the results of verification of the estimation of post-impact compressive strength of CFRP components using a machine learning model created based on damage information and information on the test specimen (collided object). This shows that the accuracy of the machine learning model was significantly improved by adding the depth of the dents on the exterior of the CFRP component as a feature.
  • the database 130 stores internal abnormality information estimated from the appearance information, linked to shape information of the appearance abnormality of the specimen 1.
  • the internal abnormality information stored in the database 130 may be information measured in advance through experiments, etc.
  • the data set stored in the database 130 also records the setting parameters of the internal inspection unit 140, which are set based on the visual abnormality information, linked to each shape of internal damage.
  • the setting parameters are the parameter values of the internal inspection unit 140 that are set when data is acquired by the internal inspection unit 140, and different values are associated with them depending on the degree of the shape of the internal abnormality.
  • the setting parameters are, for example, transmission and reception conditions, coefficients used during analysis, etc.
  • the transmission and reception conditions are, for example, the transmission frequency, transmission intensity, focus position, data acquisition range, etc.
  • the coefficients used during analysis are, for example, the values of coefficients used in evaluation formulas such as equation (1) described below.
  • the analysis unit 121 references the database 130 and extracts internal abnormality information corresponding to the appearance abnormality information calculated from the appearance information. As a result, the analysis unit 121 estimates internal abnormality information for each part of the subject 1 based on the appearance information.
  • the analysis unit 121 corresponds to the "estimation unit" of the present invention.
  • Internal anomaly information may be estimated, for example, by linear interpolation between a data set stored in the database 130 and appearance anomaly information based on appearance information acquired from the appearance inspection unit 110. Internal anomaly information may also be estimated by selecting internal anomaly information linked to shape information of an appearance anomaly similar to appearance anomaly information based on appearance information.
  • the internal abnormality information obtained in this way is an estimated value based on the data set stored in the database 130, and may differ from the actual state of the internal abnormality.
  • the method of extracting internal abnormality information based on visual abnormality information is efficient, it may lack reliability from the perspective of ensuring the safe and secure operation of mobile objects that transport people and cargo.
  • the inspection device 100 is therefore used to screen for internal abnormality information estimated from appearance information. Specifically, the analysis unit 121 identifies the inspection range in the subject 1 based on the results of comparing the estimated internal abnormality information with a predetermined threshold.
  • the predetermined threshold is a threshold for comparison with parameters of the internal abnormality (for example, internal abnormality information estimated based on the depth of the external dent, the area of the external dent, or the volume of the external dent), and is a value that can be set as appropriate.
  • the predetermined threshold may be a different value for each part of the subject 1.
  • the predetermined threshold may be set to a relatively low value for parts of the subject 1 that require mechanical strength and are at high risk in consideration of the damage that may occur due to damage.
  • the predetermined threshold may be set to a relatively high value for parts at low risk in consideration of the above-mentioned damage.
  • High-risk parts are parts that could affect the operation of the vehicle if damaged, such as parts that require mechanical strength in the vehicle's structure or drive unit, or parts that are exposed to heat sources such as engines or changes in temperature or humidity due to the surrounding environment.
  • Low-risk parts are parts of a moving object that, even if damaged, do not affect its operation, such as parts that are solely part of the object's design or parts that are away from heat sources.
  • the analysis unit 121 identifies the external appearance part corresponding to that internal abnormality as an area requiring further inspection. Furthermore, if the value indicating the degree of internal abnormality is less than the predetermined threshold (outside the predetermined range), the analysis unit 121 identifies the part corresponding to that internal abnormality as an area not requiring further inspection, and excludes it from the inspection target.
  • the parameter determination unit 122 sets, in the internal inspection unit 140, setting parameters that correspond to the shape of the internal abnormality for each region of the subject 1 identified as an examination region. This makes it possible to automatically set the internal inspection unit 140 for each region.
  • the parameter determination unit 122 corresponds to the "setting unit" of the present invention.
  • the internal inspection unit 140 is, for example, an ultrasound device including a probe capable of transmitting and receiving ultrasound, and acquires data for detailed examination of the area to be examined in the subject 1.
  • the internal inspection unit 140 generates ultrasound waves by energizing a piezoelectric element included in the probe to generate vibrations while the probe is in contact with the screened portion of the subject 1 (the portion identified as the examination area).
  • the transmission level (transmission intensity) of the generated ultrasound waves is adjustable. In this way, ultrasound waves are transmitted to the portion of the subject 1 that is in contact with the probe.
  • the internal inspection unit 140 then receives ultrasound reflected from inside the subject 1 and converts the received signals into electrical signals.
  • the internal inspection unit 140 then converts the converted electrical signals into internal scan data as a digital signal sequence through analog-to-digital conversion.
  • Ultrasonic waves which are internal scan data, are largely reflected by the CFRP surface, with some of them penetrating the CFRP surface.
  • the transmitted ultrasonic waves are then reflected at the interface between the different materials of the CFRP's resin-rich and carbon-rich layers.
  • the wave motion is converted into heat and becomes smaller, and the signal strength actually received by the probe is greatly attenuated due to the effects of internal scattering.
  • the reflected signal strength follows an exponential, but monotonically decaying curve (attenuation curve) from shallow to deep.
  • acoustic impedance calculated as the product of the ultrasonic sound speed and the material density
  • the reflected signal is observed as a value that exceeds the attenuation curve described above. Based on this principle, it is possible to identify the location of an internal anomaly in a CFRP component by observing the depth, from shallow to deep, at which the attenuation curve is exceeded.
  • the analysis unit 121 evaluates that, for example, peeling has occurred in the area of the subject 1 inspected by the internal inspection unit 140.
  • t is the time of flight from transmitting the ultrasound until receiving the reflected signal.
  • A1(t) is the reflected signal strength at a certain flight time t.
  • A2 is the reflected signal strength from the CFRP surface.
  • T2 is the time of flight of the reflected signal from the CFRP surface.
  • ⁇ and ⁇ are implementation coefficients that can be set to appropriate values. These implementation coefficients may be included in the above setting parameters, or may be different values for each shape of the internal anomaly.
  • the evaluation formula used for the evaluation is not limited to the above formula (1).
  • the parameter determination unit 122 may select and determine the optimal evaluation formula from among multiple evaluation formulas depending on the degree of visual abnormality of the specimen 1, or may determine the coefficient values, evaluation range, etc.
  • test results obtained by the processing unit 120 may be output to a specified display device 2 or may be stored in a database 130 or the like.
  • the specified display device 2 may be, for example, a display device provided in the processing unit 120 itself, or a display device connected to the processing unit 120 via a wired or wireless connection (for example, a display device of an ultrasound device, a display device of a mobile terminal, etc.).
  • Figure 2 is a flowchart showing an example of the operation of the processing unit 120 for inspecting ultrasound data. This control is initiated when the inspection process of the subject 1 by the inspection device 100, which will be described below, is started.
  • the processing unit 120 acquires appearance information of the specimen 1 from the appearance inspection unit 110 (step S101). Furthermore, before step S101, the processing unit 120 may acquire risk information and inspection position information from the database 130, determine the conditions for the appearance inspection of the specimen 1, and set the parameters of the appearance inspection unit 110. After acquiring the appearance information, the processing unit 120 extracts internal anomaly information from the appearance anomaly information for each part (step S102). Specifically, the processing unit 120 calculates appearance anomaly information for each part of the specimen 1, and refers to the database 130 to extract internal anomaly information linked to shape information corresponding to the appearance anomaly information.
  • the processing unit 120 After extracting the internal abnormality information, the processing unit 120 identifies the inspection area and the non-inspection area (step S103). Specifically, the processing unit 120 compares the value indicating the degree of internal abnormality with a predetermined threshold for each region of the subject 1, and if the value indicating the degree of internal abnormality is equal to or greater than the predetermined threshold, it identifies the region as an inspection area. Furthermore, if the value indicating the degree of internal abnormality is less than the predetermined threshold, the processing unit 120 identifies the region as a non-inspection area and excludes it from the inspection target.
  • the processing unit 120 After identifying the inspection area and non-inspection area, the processing unit 120 automatically sets setting parameters for each inspection area (step S104). Specifically, the processing unit 120 references the database 130, extracts setting parameters linked to internal abnormality information in the inspection area, and sets the extracted setting parameters in the internal inspection unit 140 when inspecting the inspection area.
  • the processing unit 120 After automatically setting the setting parameters, the processing unit 120 acquires internal scan data for each part (step S105). After acquiring the internal scan data, the processing unit 120 analyzes the internal scan data and evaluates the degree of internal abnormality (step S106). The processing unit 120 then outputs the inspection results (step S107). After that, this control ends.
  • the ultrasonic signal propagates deeper into the CFRP, the signal attenuates exponentially, so the reflected signal itself has a relatively small value at deep locations. This makes it difficult to determine whether the signal is a reflection due to damage or noise, etc., and detection methods using attenuation curves may not be able to provide accurate evaluations.
  • CFRP is not identical depending on the manufacturer, material, and manufacturing process, and test results vary depending on the location of the test object. These factors make it more difficult to detect internal abnormalities compared to relatively homogeneous test objects such as metals. For this reason, inspectors check the output results and images from the ultrasound device in real time, while changing various adjustable parameters to detect internal abnormalities.
  • the areas to be inspected are screened from internal abnormality information predicted based on appearance information, and only the screened areas are inspected in detail by the internal inspection unit 140.
  • the presence of the above-mentioned predicted internal anomaly information makes it possible to automatically correct the above-mentioned attenuation curve.
  • This correction can be performed adaptively by comparing the setting position of the attenuation curve, the internal anomaly judgment criteria, the internal anomaly spread area, and the internal anomaly information.
  • the attenuation curve can be corrected, for example, by changing ⁇ and ⁇ in the above equation (1).
  • the above judgment criteria may be a threshold for determining whether it is appropriate for the reflected signal to exceed the attenuation curve, or a threshold for determining whether it is due to noise.
  • the internal inspection unit 140 can efficiently inspect the CFRP for internal abnormalities in a short amount of time, and with high detection capability.
  • the internal inspection unit 140 (ultrasonic probe) basically requires water or a contact medium, so there are limitations to the scanning speed.
  • screening is performed using the appearance inspection unit 110, which does not require contact with the specimen 1 and is capable of scanning at relatively high speeds. This improves efficiency by narrowing the inspection area of the specimen 1, and enables automatic and high-speed processing of ultrasound data using various parameters derived from internal anomaly information based on anomaly information calculated from appearance information from the appearance inspection unit 110. As a result, it is possible to achieve inspection efficiency and detectability not available with conventional technology.
  • the appearance information is acquired by the appearance inspection unit 110, but the present invention is not limited to this.
  • the internal inspection unit 140 may acquire the appearance information of the specimen 1.
  • the inspection device 100 does not need to have the appearance inspection unit 110.
  • the ultrasound device When inspecting the internal condition of the subject 1, the ultrasound device must set different parameters depending on the degree of internal abnormality. However, when inspecting the surface shape of the subject 1, there is no need to set detailed parameters, and the inspection can be carried out simply and quickly.
  • the inspection device 100 acquires appearance information using the internal inspection unit 140, and then inspects in detail only those areas that have been screened using that appearance information using the internal inspection unit 140.
  • the inspection device 100 may be configured to acquire appearance information from an external device.
  • the external device may be any device, such as an optical camera or ultrasound device, as long as it is capable of acquiring appearance information about the subject 1.
  • inspection was not performed on areas designated as non-inspection areas, but the present invention is not limited to this.
  • the non-inspection areas include an area requiring inspection, that area may be added to the inspection areas.
  • Areas requiring inspection are locations that require inspection regardless of whether or not there are visible dents.
  • areas requiring inspection may be the fuel tank or engine.
  • FIG. 3 is a flowchart showing another example of the operation of the processing unit 120 for inspecting ultrasound data. This control is initiated when the inspection process of the subject 1 by the inspection device 100, which will be described below, is started. Note that the processing of steps S101 to S106 in the flowchart shown in Figure 3 is the same as that in the flowchart shown in Figure 2, so detailed explanation will be omitted.
  • step S108 the processing unit 120 determines whether or not there is an area requiring inspection in the non-inspection area. If the determination result shows that there is no area requiring inspection in the non-inspection area (step S108, NO), processing transitions to step S104.
  • step S108 if there is an area requiring inspection in the non-scrutiny area (step S108, YES), the processing unit 120 adds the area requiring inspection to the scrutiny area (step S109). After step S109, the process transitions to step S104.
  • step S108 may be performed before the detailed examination area and non-detailed examination area are identified in step S103. In this case, if a part of the area requiring examination is identified as a non-detailed examination area in step S103, that part will not be excluded from the examination target.
  • This configuration ensures that areas requiring inspection are inspected, eliminating missed inspections.
  • the present invention is not limited to this.
  • the database 130 may be updated for each examination of the subject 1.
  • the processing unit 120 has a data update unit 123 in addition to the components shown in FIG. 1.
  • the data update unit 123 stores internal abnormality information, parameter information set by the internal inspection unit 140, evaluation formula information, etc. in the database 130.
  • the data update unit 123 updates the information stored in the database 130 every time an examination of the subject 1 is performed.
  • the timing for updating the data by the data update unit 123 may be, for example, after the processing of step S105 in FIG. 2.
  • the data update unit 123 updates the values stored in the database 130 to the changed values. This makes it possible to use the evaluation formula to which the updated coefficients have been applied when the evaluation is performed.
  • the timing of the data update by the data update unit 123 may be, for example, after the processing of step S106 in FIG. 2.
  • the data update unit 123 may add and update the results of the evaluation of the degree of internal abnormality obtained in the processing of step S106 to the database 130.
  • the inspection result may be the estimated result of the compressive strength after impact of a CFRP member.
  • the estimated result of the compressive strength after impact may be displayed on the display device 2, or both the details of the internal abnormality and the estimated result of the compressive strength after impact may be displayed on the display device 2 as the inspection result.
  • a method for estimating the compressive strength after impact a known method such as that described in Non-Patent Document 2 may be applied.
  • the evaluation formula, algorithm, hyperparameters in machine learning, etc. used when estimating the strength of the specimen 1 may be determined by the parameter determination unit by referring to the database 130, etc.
  • the internal inspection unit 140 was an ultrasound device capable of generating and transmitting ultrasound based on a piezoelectric element, but the present invention is not limited to this.
  • the internal scanner unit may be a device that does not generate ultrasound but is capable of receiving ultrasound generated by irradiating waves other than ultrasound, such as light, such as an optical ultrasound device, a laser ultrasound device, or an electromagnetic ultrasound device.
  • the specimen 1 is made of CFRP, but the present invention is not limited to this, and may be made of a composite material other than CFRP, such as GFRP (Glass Fiber Reinforced Plastic).
  • CFRP CFRP
  • GFRP Glass Fiber Reinforced Plastic
  • processing unit 120 and the internal inspection unit 140 are separate, but the present invention is not limited to this; for example, the processing unit may be built into the internal scanner unit.
  • estimation unit and setting unit are included in the processing unit, but the present invention is not limited to this, and the estimation unit and setting unit may be provided separately.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

This inspection device comprises: an internal inspection unit that inspects a specimen for an internal abnormality; an estimation unit that estimates, on the basis of appearance information of the specimen, the degree of the internal abnormality for each portion of the specimen; and a setting unit that sets, within the internal inspection unit, a parameter corresponding to the estimated degree of the internal abnormality for each portion.

Description

検査装置、検査方法および検査プログラムInspection device, inspection method, and inspection program

 本発明は、検査装置、検査方法および検査プログラムに関する。 The present invention relates to an inspection device, an inspection method, and an inspection program.

 先進諸国における高齢者層の増大による労働人口の減少、および、これを解決するためのDX(Digital Transformation)推進に伴い、いわゆるライフサイクル管理の自動化が進められている。ライフサイクル管理には、モノづくりの工程からモノの供用時の健全性評価、余寿命予測、保守点検に基づくリペア、リユース、リサイクル等も包含される。 In developed countries, the working population is shrinking due to an increasing elderly population, and as DX (Digital Transformation) is promoted to solve this problem, the automation of so-called lifecycle management is progressing. Lifecycle management encompasses everything from the manufacturing process to health assessments of products while they are in service, remaining life predictions, and repairs, reuse, and recycling based on maintenance and inspections.

 例えば、自動車、航空機、ロケットのような人および物資を運搬するモビリティーにおいて、長期間に亘り、複数回の使用における安全性の確保には、定期的な保守点検と整備が欠かせない。特に、航空機においては、事故防止を未然に防ぐための保守点検が規格化され、その作業手順もマニュアル化され、現在も運用されている。 For example, in mobility vehicles used to transport people and goods, such as automobiles, aircraft, and rockets, regular maintenance inspections and servicing are essential to ensure safety over long periods of time and over multiple uses. In particular, in the case of aircraft, maintenance inspections have been standardized to prevent accidents, and the associated work procedures have been compiled into manuals that are still in use today.

 さらに、地球環境への配慮と経済性との両面の観点から、エネルギー効率を高めるために、モビリティー重量の軽量化を図る取り組みが進められている。従来は重金属が用いられていたが、軽金属、さらに炭素繊維強化プラスチック(Carbon Fiber Reinforced Plastics:CFRP)に代表される軽量、かつ、比強度の高い複合樹脂の導入が進められている。 Furthermore, from the perspectives of both environmental friendliness and economic efficiency, efforts are underway to reduce the weight of mobility vehicles in order to improve energy efficiency. While heavy metals have traditionally been used, progress is being made in introducing light metals and even lightweight, high-strength composite resins such as carbon fiber reinforced plastics (CFRP).

 このような複合樹脂等を用いた物体の欠陥、損傷を非破壊で検出し、評価する方法として、超音波を用いた検出装置および方法が一般的に知られている。超音波装置は、可搬性に優れており、エックス線のように人体に害があるものではないので、様々な形状のモビリティーの欠陥検出および損傷評価に好適である。 Detection devices and methods using ultrasound are commonly known as a non-destructive method for detecting and evaluating defects and damage in objects made of composite resins and other materials. Ultrasonic devices are highly portable and are not harmful to the human body like X-rays, making them ideal for detecting defects and evaluating damage in various types of mobility.

 しかし、一般的な超音波を用いた検出装置および方法は、上述のように可搬性に優れ、外観から観察できない物体内部の欠陥および損傷を非破壊で検出し、評価できる特長を有するが、検査時間において課題がある。それは、超音波を送受する探触子のサイズ程度の領域が一度に検査可能な領域の大きさとなり、被検体の検査領域が大きい場合、その検査領域全てに探触子を接触させて検査する必要が生じて、検査時間が膨大になることが想定されるからである。 However, while typical ultrasonic detection devices and methods are highly portable as mentioned above and have the advantage of being able to non-destructively detect and evaluate defects and damage inside objects that cannot be observed from the outside, they pose an issue with inspection time. This is because the area that can be inspected at one time is approximately the size of the probe that transmits and receives the ultrasonic waves, and if the inspection area of the subject is large, it will be necessary to bring the probe into contact with the entire inspection area, which is expected to result in an enormous inspection time.

 さらに、CFRPのような2つ以上の素材を組み合わせた複合材を層状に積層した被検体の内部の欠陥および損傷の検出は、均一素材の検査とは異なり、超音波装置において多くのパラメーター調整を行う必要がある。この検出能力(パラメーター調整の時間、および、それで得られた検出結果そのもの)は、検査者の技量に拠るところが大きい。 Furthermore, detecting internal defects and damage in specimens made of layered composite materials, such as CFRP, which combine two or more materials, is different from inspecting homogeneous materials and requires adjusting many parameters in the ultrasound equipment. This detection capability (the time required to adjust parameters and the resulting detection results) is largely dependent on the skill of the inspector.

 被検体の健全性の評価および検査の効率化のため、様々な技術が知られている。例えば、特許文献1には、半導体製造工程の検査効率化のため、光学式検査および他の手法による組み合わせによる検査方法が開示されている。また、特許文献2には、橋梁床版の亀裂検出のため、第1の手段として赤外線熱画像を用いてデッキプレートの探傷候補位置を特定し、第2の手段として超音波などの検査手法をもちいる方法が開示されている。また、特許文献3には、レーザー超音波検査に、赤外線サーモグラフィーによる検査を組み合わせることで、複雑な形状の内部構造の検査を可能とする方法が開示されている。 Various techniques are known for evaluating the integrity of test objects and improving inspection efficiency. For example, Patent Document 1 discloses an inspection method that combines optical inspection with other techniques to improve inspection efficiency in the semiconductor manufacturing process. Patent Document 2 discloses a method for detecting cracks in bridge decks, in which infrared thermal images are used as the first method to identify potential flaw detection locations on the deck plate, and ultrasonic or other inspection methods are used as the second method. Patent Document 3 discloses a method that combines laser ultrasonic inspection with infrared thermography inspection, making it possible to inspect the internal structure of complex shapes.

特開2002-026102号公報Japanese Patent Application Laid-Open No. 2002-026102 特開2010-133835号公報JP 2010-133835 A 特表2010-512509号公報Special Publication No. 2010-512509

長谷部早紀、樋口諒、横関智弘、武田真一、「決定木ベースのマルチタスクラーニングによる複合材構造の衝突痕情報を用いた損傷情報予測」、計算工学講演会論文集vol.27、2022年6月、614-619Saki Hasebe, Ryo Higuchi, Tomohiro Yokozeki, Shinichi Takeda, "Damage prediction using impact scar information of composite structures using decision tree-based multitask learning," Proceedings of the 2022 JSCE Conference, Vol. 27, June 2022, pp. 614-619 原野佑夏、長谷部早紀、樋口諒、横関智弘、武田真一、「損傷情報を用いたCFRPの衝撃後圧縮強度の推定」、第13回日本複合材料会議Yuka Harano, Saki Hasebe, Ryo Higuchi, Tomohiro Yokozeki, Shinichi Takeda, "Estimation of Compressive Strength after Impact of CFRP Using Damage Information," 13th Japan Composite Materials Conference Xiaoyu Yang, Bing-Feng Ju, Mathias Kersemans,”Assessment of the 3D ply-by-ply fiber structure in impacted CFRP by means of planar Ultrasound Computed Tomography (pU-CT)”, Composite Structures 279 (2022) 114745Xiaoyu Yang, Bing-Feng Ju, Mathias Kersemans, “Assessment of the 3D ply-by-ply fiber structure in impacted CFRP by means of planar Ultrasound Computed Tomography (pU-CT)”, Composite Structures 279 (2022) 114745

 しかしながら、CFRPに代表される複合材の内部の欠陥および損傷を、効率的に検査する技術(例えば、短時間によるもの、検査者の手技依存性が極力ない自動化によるもの)は、いまだに開示されていない。被検体の健全性の保証を高めようとすると、検査領域全てに探触子を接触させ、被検体と探傷条件等を鑑みて、検査者が手動にて複数のパラメーター調整を行う必要が生じる。その結果、モビリティーのように比較的大きく、様々な形状を有し、かつ、部位に応じて異なる材質を有するものを被検体とする場合、既存の技術では非効率な検査となることが課題であった。 However, no technology has yet been disclosed for efficiently inspecting internal defects and damage in composite materials such as CFRP (for example, a technology that can be done in a short time and is automated to minimize reliance on the inspector's technique). In order to increase assurance of the integrity of the specimen, the inspector must manually adjust multiple parameters by bringing the probe into contact with the entire inspection area and taking into account the specimen and inspection conditions. As a result, when inspecting relatively large objects such as mobility devices, which have various shapes and are made of different materials depending on the location, existing technology results in inefficient inspections.

 本発明の目的は、被検体の内部の非破壊検査のさらなる効率化を図ることが可能な検査装置、検査方法および検査プログラムを提供することである。 The object of the present invention is to provide an inspection device, an inspection method, and an inspection program that can further improve the efficiency of non-destructive inspection of the interior of a test object.

 本発明に係る検査装置は、
 被検体の内部異常を検査する内部検査部と、
 前記被検体の外観情報に基づいて、前記被検体の外観上の部位毎に内部異常の程度を推定する推定部と、
 前記部位毎に、推定された前記内部異常の程度に応じたパラメーターを前記内部検査部に設定する設定部と、
 を備える。
The inspection device according to the present invention comprises:
an internal inspection unit that inspects the internal abnormality of the subject;
an estimation unit that estimates the degree of internal abnormality for each external part of the subject based on the external appearance information of the subject;
a setting unit that sets parameters corresponding to the estimated degree of the internal abnormality in the internal inspection unit for each of the portions;
Equipped with.

 本発明に係る検査方法は、
 内部検査部を用いた検査方法であって、
 被検体の外観情報に基づいて、前記被検体の部位毎に内部異常の程度を推定することと、
 前記部位毎に、推定された前記内部異常の程度に応じたパラメーターを前記内部検査部に設定することと、
 前記内部検査部により前記被検体の内部異常を検査することと、
 を有する。
The inspection method according to the present invention comprises:
An inspection method using an internal inspection unit,
estimating the degree of internal abnormality for each part of the subject based on the external appearance information of the subject;
setting a parameter corresponding to the estimated degree of the internal abnormality in the internal inspection unit for each of the portions;
inspecting the subject for internal abnormalities using the internal inspection unit;
It has.

 本発明に係る検査プログラムは、
 内部検査部を用いた検査プログラムであって、
 コンピューターに、
 被検体の外観情報に基づいて、前記被検体の部位毎に内部異常の程度を推定する処理と、
 前記部位毎に、推定された前記内部異常の程度に応じたパラメーターを前記内部検査部に設定する処理と、
 前記内部検査部により前記被検体の内部異常を検査する処理と、
 を実行させる。
The inspection program according to the present invention comprises:
An inspection program using an internal inspection unit,
On the computer,
A process of estimating the degree of internal abnormality for each part of the subject based on the external appearance information of the subject;
a process of setting parameters corresponding to the estimated degree of the internal abnormality in the internal inspection unit for each of the portions;
a process of inspecting the subject for internal abnormalities by the internal inspection unit;
Execute the following.

 本発明によれば、被検体の内部の非破壊検査のさらなる効率化を図ることができる。 The present invention makes it possible to further improve the efficiency of non-destructive testing of the interior of a specimen.

本発明の実施の形態に係る検査装置の構成の一例を概略的に示す図である。1 is a diagram illustrating an example of a configuration of an inspection device according to an embodiment of the present invention. 処理部による超音波データの検査処理の動作例を示すフローチャートである。10 is a flowchart showing an example of the operation of an inspection process of ultrasound data by a processing unit. 処理部による超音波データの検査処理の動作例を示すフローチャートである。10 is a flowchart showing an example of the operation of an inspection process of ultrasound data by a processing unit. 変形例に係る検査装置の構成の一例を概略的に示す図である。FIG. 10 is a diagram schematically illustrating an example of the configuration of an inspection device according to a modified example. 変形例に係る被検体の一例を示す、図1に対応する図である。FIG. 2 is a diagram corresponding to FIG. 1 and illustrating an example of a subject according to a modified example. 変形例に係る被検体の一例を示す、図1に対応する図である。FIG. 2 is a diagram corresponding to FIG. 1 and illustrating an example of a subject according to a modified example.

 以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は、本発明の実施の形態に係る検査装置100の構成の一例を概略的に示す図である。 Embodiments of the present invention will now be described in detail with reference to the drawings. Figure 1 is a diagram schematically illustrating an example of the configuration of an inspection device 100 according to an embodiment of the present invention.

 図1に示すように、検査装置100は、被検体1の外観から視認できない内部の欠陥および損傷(内部異常とも称する)を非破壊で検出し、被検体1の安心かつ安全な運用を可能とする健全性評価を提供するものである。 As shown in Figure 1, the inspection device 100 non-destructively detects internal defects and damage (also called internal abnormalities) that cannot be seen from the outside of the test object 1, and provides a soundness assessment that enables safe and secure operation of the test object 1.

 具体的に、検査装置100は、被検体1の外観情報に基づいて被検体1の部位毎に内部異常の程度を推定する。そして、検査装置100は、被検体1の部位毎に、推定した内部異常の程度に応じたパラメーターを、後述する内部検査部140に設定し、被検体1の内部異常を検査する。また、検査装置100は、外観情報に基づく内部異常の情報をスクリーニングのために用い、被検体1においてスクリーニングされた箇所のみを検査対象として詳細に検査する。 Specifically, the inspection device 100 estimates the degree of internal abnormality for each part of the test subject 1 based on the appearance information of the test subject 1. The inspection device 100 then sets parameters corresponding to the estimated degree of internal abnormality for each part of the test subject 1 in the internal inspection unit 140 (described below), and inspects the test subject 1 for internal abnormalities. The inspection device 100 also uses the information on internal abnormalities based on the appearance information for screening, and inspects only the screened areas of the test subject 1 in detail.

 検査装置100の検査結果により、被検体1の内部異常が、被検体1の運用に悪影響を与えるレベルであると評価された場合、被検体1において修繕修理、部品交換を行うことが可能となる。 If the inspection results of the inspection device 100 indicate that the internal abnormality of the test subject 1 is at a level that could adversely affect the operation of the test subject 1, it becomes possible to carry out repairs and part replacements on the test subject 1.

 本実施の形態では、被検体1は、例えば自動車、航空機およびロケット(再利用型のロケットも含む)等の移動体または移動体の内蔵物(例えば、燃料タンク)であって、CFRPに代表される複合材で構成される移動体または移動体の内蔵物である。内部異常は、例えば、移動体が何らかの物体に衝突した際の衝突損傷(例えば、バードストライク、飛び石等)、検査者が検査中に所持品(例えば、工具、携帯電話等)を被検体1に落下させた際に被検体1が受ける損傷によるものであっても良い。なお、内部異常は、これらに限定されず、被検体1の内部に生じる欠陥、損傷である限り、どのようなものであっても良い。なお、図1には、被検体1がロケットである例が示されている。また、図5Aには、被検体1が再利用型のロケットの再利用部である例が示されており、図5Bには、被検体1が燃料タンクである例が示されている。 In this embodiment, the test object 1 is a moving object such as an automobile, aircraft, or rocket (including reusable rockets) or an internal part of a moving object (e.g., a fuel tank), and is made of a composite material such as CFRP. The internal abnormality may be caused by, for example, collision damage when the moving object collides with some kind of object (e.g., a bird strike, flying stones, etc.), or damage to the test object 1 when an inspector drops a personal item (e.g., a tool, cell phone, etc.) onto the test object 1 during an inspection. Note that the internal abnormality is not limited to these, and may be any defect or damage occurring inside the test object 1. Note that FIG. 1 shows an example in which the test object 1 is a rocket. FIG. 5A shows an example in which the test object 1 is a reusable part of a reusable rocket, and FIG. 5B shows an example in which the test object 1 is a fuel tank.

 検査装置100は、外観検査部110と、処理部120と、データベース130と、内部検査部140と、を有する。 The inspection device 100 has an appearance inspection unit 110, a processing unit 120, a database 130, and an internal inspection unit 140.

 外観検査部110は、被検体1の外観情報を検出するものであり、例えば、光学カメラ等であっても良い。外観情報は、例えば、被検体1の外観の全てを映した画像情報であっても良い。 The appearance inspection unit 110 detects appearance information of the subject 1 and may be, for example, an optical camera. The appearance information may be, for example, image information capturing the entire appearance of the subject 1.

 光学カメラは、フォーカス設定、照明の当たり方によって外観情報の画質が異なるが、非接触で外観情報を取得可能であり、かつ、コンパクトである。また、光学カメラは、有線または無線で処理部120と接続可能であるので、外観検査部110として外観情報を取得するのに好適である。 Optical cameras capture appearance information with varying image quality depending on focus settings and lighting conditions, but they can acquire appearance information without contact and are compact. Furthermore, optical cameras can be connected to the processing unit 120 via wire or wirelessly, making them ideal for use as the appearance inspection unit 110 to acquire appearance information.

 外観検査部110によって取得される外観情報は、被検体1の内部異常の程度を推定するために用いられる。また、外観情報は、被検体1の内部異常が発生している可能性が高い部分をスクリーニングするために用いられる。 The appearance information acquired by the appearance inspection unit 110 is used to estimate the degree of internal abnormality in the subject 1. The appearance information is also used to screen for areas of the subject 1 where there is a high possibility of an internal abnormality occurring.

 また、外観検査部110のパラメーターの設定は、処理部120(パラメーター決定部122)によって行われても良い。具体的には、処理部120がデータベース130からリスク情報および検査の位置情報を取得して、被検体1の外観検査の条件を決定して外観検査部110のパラメーターを設定する。 Furthermore, the parameters of the visual inspection unit 110 may be set by the processing unit 120 (parameter determination unit 122). Specifically, the processing unit 120 acquires risk information and inspection location information from the database 130, determines the conditions for the visual inspection of the subject 1, and sets the parameters of the visual inspection unit 110.

 外観検査部110のパラメーターは、例えば、外観検査部110が光学カメラである場合、照明の配置や強度、フォーカス位置、データ取得範囲等の撮影条件の情報であっても良い。 If the appearance inspection unit 110 is an optical camera, the parameters of the appearance inspection unit 110 may be, for example, information on shooting conditions such as lighting arrangement and intensity, focus position, and data acquisition range.

 処理部120は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を有する装置、例えば、パーソナルコンピューターである。処理部120は、例えば、CPUがROMやRAMに格納された制御プログラムや各種データを参照し、制御プログラムを実行することによって、外観検査部110および内部検査部140等を制御し、各機能を実現する。具体的に、処理部120は、解析部121およびパラメーター決定部122を有する。 The processing unit 120 is, for example, a device having a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), etc., such as a personal computer. The processing unit 120 controls the appearance inspection unit 110, internal inspection unit 140, etc., and realizes each function by, for example, the CPU referencing control programs and various data stored in the ROM and RAM and executing the control programs. Specifically, the processing unit 120 has an analysis unit 121 and a parameter determination unit 122.

 なお、これらの機能の一部又は全部は、ASIC(Application Specific Integrated Circuit)、DSP(Digital Signal Processor)、PLD(Programmable Logic Device)や専用のハードウェア回路等によって実現されてもよい。PLDとしては、FPGA(Field Programmable Gate Array)等を含む。また、これらの機能の一部又は全部は、GPU(Graphics Processing Unit)で実行するよう構成されてもよい。 Furthermore, some or all of these functions may be realized by an ASIC (Application Specific Integrated Circuit), a DSP (Digital Signal Processor), a PLD (Programmable Logic Device), or dedicated hardware circuits. Examples of PLDs include FPGAs (Field Programmable Gate Arrays). Furthermore, some or all of these functions may be configured to be executed by a GPU (Graphics Processing Unit).

 解析部121は、外観検査部110により取得された外観情報を取り込み、外観情報を解析するための画像処理演算を実行する。解析部121は、外観情報に基づく外観異常情報を算出する。ここに、外観異常情報には、被検体1の外観及び/又は表面における凹みや傷の有無、それらの広がりおよび深さ、テクスチャ、色情報の変化のいずれかすくなくとも1つを含む。外観異常情報と、被検体1の外観及び/又は表面における空間的位置情報とは紐付けられている。処理部120は、算出した外観異常情報に基づく異常部位が、被検体1のどの空間的位置に位置するかを同定可能である。なお、外観異常情報と空間的位置情報との紐付けは、光学カメラに基づく外観画像と正解画像との比較により行われても良い。また、外観異常情報と空間的位置情報との紐付けは、光学センサーに基づく外観の凹凸状態の検出結果と、正常時の外観の表面状態との比較により行われても良い。 The analysis unit 121 takes in the appearance information acquired by the appearance inspection unit 110 and performs image processing operations to analyze the appearance information. The analysis unit 121 calculates appearance abnormality information based on the appearance information. Here, the appearance abnormality information includes at least one of the presence or absence of dents or scratches on the appearance and/or surface of the subject 1, their extent and depth, texture, and changes in color information. The appearance abnormality information is linked to spatial position information on the appearance and/or surface of the subject 1. The processing unit 120 can identify the spatial position of the abnormal area on the subject 1 based on the calculated appearance abnormality information. Note that the appearance abnormality information and spatial position information may be linked by comparing an appearance image based on an optical camera with a correct image. The appearance abnormality information and spatial position information may also be linked by comparing the results of appearance irregularity detection based on an optical sensor with the appearance surface state under normal conditions.

 データベース130には、外観異常の形状情報と内部異常情報とが紐付けられたデータセットが記憶されている。データベース130は、本発明の「記憶部」に対応する。たとえば、内部異常情報は、外観の凹みの広がり、深さ、そこから導出される体積などに応じて推定される、内部の損傷の広がり、形状の情報などである。データセットには、外観異常の形状毎に、それに応じた内部異常の形状の程度が内部異常情報として記録されている。内部異常の形状の程度としては、CFRPの層の剥離の進展サイズ、面積、体積、クラックの本数や長さ等が挙げられる。 Database 130 stores a data set linking shape information of external anomalies with internal anomaly information. Database 130 corresponds to the "storage unit" of the present invention. For example, internal anomaly information includes information on the extent and shape of internal damage, estimated based on the extent and depth of external dents and the volume derived therefrom. For each shape of external anomaly, the data set records the corresponding degree of internal anomaly shape as internal anomaly information. Examples of the degree of internal anomaly shape include the size, area, volume, and number and length of cracks as the peeling progress of the CFRP layer.

 CFRPが外部からの衝撃により、表面に凹みが生じた場合、その衝撃エネルギーがCFRPの内部に伝搬することで、複数の層で構成されたプリプレグの層間に剥離が生じ内部異常となる。層間剥離が生じると、CFRPが有する強靱性が損なわれる。移動体の構造体などに用いられたCFRPに層間剥離が生じた場合、層間剥離が生じた部位を起点に破壊が進展し、移動体の安全な運用ができなくなる可能性がある。 If an external impact causes a dent on the surface of CFRP, the impact energy propagates into the interior of the CFRP, causing delamination between the layers of the prepreg, which is made up of multiple layers, resulting in an internal abnormality. Delamination reduces the toughness of the CFRP. If delamination occurs in CFRP used in the structure of a mobile object, the damage may progress from the point where the delamination occurred, potentially making it impossible to safely operate the mobile object.

 このような層間剥離に代表される損傷は、衝突面側において凹み周辺の浅部(表面付近)に発生し、衝突面の表面から深部になるにつれて、凹みの中心を中心とする同心円状に面積を広げながら一般的に剥離が進展する。CFRPは、炭素繊維の方向に、機械強度および配向性を有しており、剥離の進展は繊維配向の方向に進展しやすい。 Damage such as delamination occurs in the shallow area (near the surface) around the dent on the impact surface, and as it progresses from the surface to the depth of the impact surface, the delamination generally spreads in a concentric pattern centered on the center of the dent. CFRP has mechanical strength and orientation in the direction of the carbon fibers, and delamination tends to progress in the direction of the fiber orientation.

 また、凹みは、衝突物の形状による影響もあるが、その質量と速度による衝撃エネルギーと凹みの体積等の形状情報とが高い相関を持つことと、その凹みの情報と層間剥離の進展する面積も高い相関を持つこととが知られている。 In addition, while dents are also influenced by the shape of the colliding object, it is known that there is a high correlation between the impact energy, which is determined by the mass and speed of the object, and shape information such as the volume of the dent, and that there is also a high correlation between the dent information and the area over which delamination develops.

 例えば、非特許文献1には、CFRPの部材への外観の凹みの形状に応じて、内部異常の度合いの変化の傾向について記載されている。 For example, Non-Patent Document 1 describes the tendency for the degree of internal abnormalities to change depending on the shape of the external dents in CFRP components.

 具体的には、球状の物体がCFRPの部材に衝突した場合、部材に球状の損傷が生じる。この場合の内部異常は、凹みに対してある程度広がった形状を有する損傷となる。また、円錐状の物体の頂点部分がCFRPの部材に衝突した場合、部材に亀裂の形状の損傷が生じる。この場合の内部異常は、亀裂に沿って広がった形状を有する損傷となり、球状の物体の場合よりもさらに広範囲の損傷となる。 Specifically, when a spherical object collides with a CFRP component, spherical damage occurs in the component. In this case, the internal anomaly is damage that has a shape that spreads out to a certain extent relative to the dent. Furthermore, when the apex of a conical object collides with a CFRP component, damage in the shape of a crack occurs in the component. In this case, the internal anomaly is damage that has a shape that spreads out along the crack, resulting in even more widespread damage than in the case of a spherical object.

 また、非特許文献2には、損傷情報と試験片(衝突物)の情報とに基づいて作成された機械学習モデルによって、CFRPの部材における衝撃後圧縮強度の推定についての検証結果が開示されている。これによれば、CFRPの部材の外観の凹みの深さを特徴量に加えることで、機械学習モデルの精度が大幅に向上したことが示されている。 Furthermore, Non-Patent Document 2 discloses the results of verification of the estimation of post-impact compressive strength of CFRP components using a machine learning model created based on damage information and information on the test specimen (collided object). This shows that the accuracy of the machine learning model was significantly improved by adding the depth of the dents on the exterior of the CFRP component as a feature.

 このように、凹みの形状と、内部異常の形状とは相関があるので、外観異常情報から、CFRPの部材の内部異常の程度を推定することができる。そのため、データベース130には、外観情報から推定される内部異常情報が、被検体1の外観異常の形状情報に紐付けられて記憶されている。データベース130に記憶される内部異常情報は、予め実験等により測定された情報であっても良い。 As such, because there is a correlation between the shape of the dent and the shape of the internal abnormality, the degree of the internal abnormality in the CFRP component can be estimated from the appearance abnormality information. For this reason, the database 130 stores internal abnormality information estimated from the appearance information, linked to shape information of the appearance abnormality of the specimen 1. The internal abnormality information stored in the database 130 may be information measured in advance through experiments, etc.

 また、データベース130に記憶されるデータセットには、外観異常情報に基づいて設定される内部検査部140の設定パラメーターも、内部の損傷の形状毎に紐付けられて記録されている。 In addition, the data set stored in the database 130 also records the setting parameters of the internal inspection unit 140, which are set based on the visual abnormality information, linked to each shape of internal damage.

 設定パラメーターは、内部検査部140によりデータ取得を行う際に設定される内部検査部140のパラメーターの値であり、内部異常の形状の程度に応じて異なる値が紐付けられる。設定パラメーターは、例えば、送受信条件、解析時の係数、などである。送受信条件は、例えば、送信周波数、送信強度、フォーカス位置、データ取得範囲等である。また、解析時の係数は、後述する式(1)のような評価式で使用される係数の値等である。 The setting parameters are the parameter values of the internal inspection unit 140 that are set when data is acquired by the internal inspection unit 140, and different values are associated with them depending on the degree of the shape of the internal abnormality. The setting parameters are, for example, transmission and reception conditions, coefficients used during analysis, etc. The transmission and reception conditions are, for example, the transmission frequency, transmission intensity, focus position, data acquisition range, etc. The coefficients used during analysis are, for example, the values of coefficients used in evaluation formulas such as equation (1) described below.

 解析部121は、データベース130を参照して、外観情報から算出した外観異常情報に対応する内部異常情報を抽出する。これにより、解析部121は、外観情報に基づいて、被検体1の部位毎に内部異常情報を推定する。解析部121は、本発明の「推定部」に対応する。 The analysis unit 121 references the database 130 and extracts internal abnormality information corresponding to the appearance abnormality information calculated from the appearance information. As a result, the analysis unit 121 estimates internal abnormality information for each part of the subject 1 based on the appearance information. The analysis unit 121 corresponds to the "estimation unit" of the present invention.

 内部異常情報の推定は、例えば、データベース130に記憶されたデータセットと、外観検査部110から取得した外観情報に基づく外観異常情報との線形補間によって行われても良い。また、内部異常情報の推定は、外観情報に基づく外観異常情報と類似する外観異常の形状情報に紐付けられた内部異常情報を選択することにより行われても良い。 Internal anomaly information may be estimated, for example, by linear interpolation between a data set stored in the database 130 and appearance anomaly information based on appearance information acquired from the appearance inspection unit 110. Internal anomaly information may also be estimated by selecting internal anomaly information linked to shape information of an appearance anomaly similar to appearance anomaly information based on appearance information.

 このようにすることで、被検体1に対して、内部異常の程度を外観検査部110により非接触で簡易に推定することが可能である。しかし、このように取得される内部異常情報は、データベース130に記憶されたデータセットに基づく推定値であり、実際の内部異常の状態と異なる場合がある。すなわち、外観異常情報に基づき内部異常情報を抽出する方法は効率面では優れるものの、人および荷物を輸送する移動体の安心かつ安全な運行を確保する観点から、信頼性に欠ける可能性がある。 By doing this, it is possible to easily estimate the degree of internal abnormality in the subject 1 without contact using the visual inspection unit 110. However, the internal abnormality information obtained in this way is an estimated value based on the data set stored in the database 130, and may differ from the actual state of the internal abnormality. In other words, although the method of extracting internal abnormality information based on visual abnormality information is efficient, it may lack reliability from the perspective of ensuring the safe and secure operation of mobile objects that transport people and cargo.

 そこで、本実施の形態に係る検査装置100は、外観情報により推定された内部異常情報のスクリーニングのために用いる。具体的には、解析部121は、推定した内部異常情報と所定閾値との比較結果に基づいて、被検体1における精査範囲を特定する。 The inspection device 100 according to this embodiment is therefore used to screen for internal abnormality information estimated from appearance information. Specifically, the analysis unit 121 identifies the inspection range in the subject 1 based on the results of comparing the estimated internal abnormality information with a predetermined threshold.

 所定閾値は、内部異常のパラメーター(例えば、外観の凹みの深さ、または外観の凹みの面積、または外観の凹みの体積に基づいて推定された内部異常情報)と比較するための閾値であり、適宜設定可能な値である。所定閾値は、被検体1の部位毎に異なる値であっても良い。例えば、被検体1において、機械的強度が必要で、損傷により発生し得る被害を考慮してハイリスクな部分については、所定閾値が比較的低い値に設定されていても良い。また、上記の被害を考慮してローリスクな部分については、所定閾値が比較的高い値に設定されていても良い。 The predetermined threshold is a threshold for comparison with parameters of the internal abnormality (for example, internal abnormality information estimated based on the depth of the external dent, the area of the external dent, or the volume of the external dent), and is a value that can be set as appropriate. The predetermined threshold may be a different value for each part of the subject 1. For example, the predetermined threshold may be set to a relatively low value for parts of the subject 1 that require mechanical strength and are at high risk in consideration of the damage that may occur due to damage. Furthermore, the predetermined threshold may be set to a relatively high value for parts at low risk in consideration of the above-mentioned damage.

 ハイリスクな部分は、例えば、移動体の構造体や駆動部において機械的強度を必要とする部位、エンジン等の熱源や周囲環境による温度や湿度の上昇や変化にさらされる部位等、損傷に起因して移動体の動作に影響する部分である。 High-risk parts are parts that could affect the operation of the vehicle if damaged, such as parts that require mechanical strength in the vehicle's structure or drive unit, or parts that are exposed to heat sources such as engines or changes in temperature or humidity due to the surrounding environment.

 ローリスクな部分は、例えば、移動体の意匠のみを構成する部位や熱源から離間した部位等、移動体において損傷していても移動体の動作に影響しない部分である。 Low-risk parts are parts of a moving object that, even if damaged, do not affect its operation, such as parts that are solely part of the object's design or parts that are away from heat sources.

 また、解析部121は、内部異常の程度を示す値が、所定閾値以上(所定範囲内)である場合、その内部異常に対応する外観部位を要精査領域と特定する。また、解析部121は、内部異常の程度を示す値が、所定閾値未満(所定範囲外)である場合、その内部異常に対応する部位を非精査領域と特定し、検査対象から除外する。 Furthermore, if the value indicating the degree of internal abnormality is equal to or greater than a predetermined threshold (within a predetermined range), the analysis unit 121 identifies the external appearance part corresponding to that internal abnormality as an area requiring further inspection. Furthermore, if the value indicating the degree of internal abnormality is less than the predetermined threshold (outside the predetermined range), the analysis unit 121 identifies the part corresponding to that internal abnormality as an area not requiring further inspection, and excludes it from the inspection target.

 パラメーター決定部122は、精査領域であると特定した被検体1の領域毎に、内部異常の形状に応じた設定パラメーターを内部検査部140に設定する。これにより、領域毎に内部検査部140の設定が自動で行うことが可能となる。パラメーター決定部122は、本発明の「設定部」に対応する。 The parameter determination unit 122 sets, in the internal inspection unit 140, setting parameters that correspond to the shape of the internal abnormality for each region of the subject 1 identified as an examination region. This makes it possible to automatically set the internal inspection unit 140 for each region. The parameter determination unit 122 corresponds to the "setting unit" of the present invention.

 内部検査部140は、例えば、超音波を送受信可能な探触子を含む超音波装置であり、被検体1における精査部位について詳細に検査するためのデータを取得する。 The internal inspection unit 140 is, for example, an ultrasound device including a probe capable of transmitting and receiving ultrasound, and acquires data for detailed examination of the area to be examined in the subject 1.

 例えば、内部検査部140は、探触子を被検体1でスクリーニングされた部分(精査部位と特定された部分)に接触させた状態で、探触子に含まれる圧電素子を通電させて振動を発生させることにより、超音波を発生させる。発生した超音波の送信レベル(送信強度)は、調整可能である。こうすることで、被検体1の探触子との接触部分に超音波が送信される。 For example, the internal inspection unit 140 generates ultrasound waves by energizing a piezoelectric element included in the probe to generate vibrations while the probe is in contact with the screened portion of the subject 1 (the portion identified as the examination area). The transmission level (transmission intensity) of the generated ultrasound waves is adjustable. In this way, ultrasound waves are transmitted to the portion of the subject 1 that is in contact with the probe.

 そして、内部検査部140は、被検体1の内部から反射された超音波を受信し、受信信号を電気信号に変換する。内部検査部140は、変換した電気信号を、アナログデジタル変換により、デジタル信号列として内部スキャンデータとする。 The internal inspection unit 140 then receives ultrasound reflected from inside the subject 1 and converts the received signals into electrical signals. The internal inspection unit 140 then converts the converted electrical signals into internal scan data as a digital signal sequence through analog-to-digital conversion.

 内部スキャンデータである超音波は、CFRP表面で大きく反射し、その一部はCFRP表面を透過する。透過した超音波は、CFRPの樹脂リッチな層、炭素リッチな層の材質違いの界面で反射する。また、超音波が伝搬するにつれ、波動が熱に変換されて小さくなること、内部散乱による影響により実際に探触子で受信される信号強度は大きく減衰する。つまり、反射信号強度は、CFRPの部材において内部異常が存在しない領域では、浅部から深部に向かって指数的ではあるものの単調に減衰した曲線(減衰カーブ)を描く。 Ultrasonic waves, which are internal scan data, are largely reflected by the CFRP surface, with some of them penetrating the CFRP surface. The transmitted ultrasonic waves are then reflected at the interface between the different materials of the CFRP's resin-rich and carbon-rich layers. As the ultrasonic waves propagate, the wave motion is converted into heat and becomes smaller, and the signal strength actually received by the probe is greatly attenuated due to the effects of internal scattering. In other words, in areas of the CFRP component where no internal abnormalities exist, the reflected signal strength follows an exponential, but monotonically decaying curve (attenuation curve) from shallow to deep.

 CFRPの部材の層間に剥離のような内部異常がある場合、音響インピーダンスと称される値(超音波の音速と材質の密度との積で算出される値)が、その境界面で大きく変化する。このことから、内部異常が存在する部位では、比較的大きな反射が起こる。 If there is an internal abnormality, such as delamination, between the layers of a CFRP component, a value known as acoustic impedance (calculated as the product of the ultrasonic sound speed and the material density) will change significantly at the boundary surface. As a result, a relatively large reflection will occur in areas where there is an internal abnormality.

 したがって、CFRPの部材において内部異常が存在する領域では、反射信号が、上記の減衰カーブを超える値として観測される。この原理に基づいて、浅部から深部のどの深さ位置で、減衰カーブを超えたかを観測することにより、CFRPの部材における内部異常の位置を特定することが可能である。 Therefore, in areas where an internal anomaly exists in a CFRP component, the reflected signal is observed as a value that exceeds the attenuation curve described above. Based on this principle, it is possible to identify the location of an internal anomaly in a CFRP component by observing the depth, from shallow to deep, at which the attenuation curve is exceeded.

 一例として、内部検査部140より得られた反射信号強度が、以下の式(1)(非特許文献3参照)を満たした場合、解析部121は、被検体1における、内部検査部140により検査された部位で例えば剥離が発生している、と評価する。 As an example, if the reflected signal intensity obtained by the internal inspection unit 140 satisfies the following formula (1) (see Non-Patent Document 3), the analysis unit 121 evaluates that, for example, peeling has occurred in the area of the subject 1 inspected by the internal inspection unit 140.

 |A1(t)|>β×A2×exp(-α×(t-T2))・・・(1) |A1(t)|>β×A2×exp(-α×(t-T2))...(1)

 tは超音波を送信してから、反射信号を受信するまでの飛行時間である。A1(t)は、ある飛行時間tにおける反射信号強度である。A2は、CFRP表面の反射信号強度である。T2は、CFRP表面の反射信号の飛行時間である。αおよびβは、実装上の係数であり、適宜な値に設定可能である。これらの実装上の係数は、上記の設定パラメーターに含まれていても良く、内部異常の形状毎に異なる値であっても良い。 t is the time of flight from transmitting the ultrasound until receiving the reflected signal. A1(t) is the reflected signal strength at a certain flight time t. A2 is the reflected signal strength from the CFRP surface. T2 is the time of flight of the reflected signal from the CFRP surface. α and β are implementation coefficients that can be set to appropriate values. These implementation coefficients may be included in the above setting parameters, or may be different values for each shape of the internal anomaly.

 なお、本実施の形態では、検量線を用いて被検体1の評価をすることが目的であるので、評価に用いる評価式は、上記の式(1)には限定されない。また、パラメーター決定部122は、評価を行う際、被検体1の外観異常の程度に応じて、複数の評価式の中から最適な評価式を選択して決定しても良いし、係数の値、評価範囲等を決定しても良い。 In this embodiment, since the purpose is to evaluate the specimen 1 using the calibration curve, the evaluation formula used for the evaluation is not limited to the above formula (1). Furthermore, when performing the evaluation, the parameter determination unit 122 may select and determine the optimal evaluation formula from among multiple evaluation formulas depending on the degree of visual abnormality of the specimen 1, or may determine the coefficient values, evaluation range, etc.

 また、処理部120による検査結果は、所定の表示装置2に出力されても良いし、データベース130等に記憶されても良い。所定の表示装置2は、例えば、処理部120自身が備える表示部であっても良いし、処理部120と有線または無線で接続された表示装置(例えば、超音波装置の表示部、携帯端末の表示部等)であっても良い。 Furthermore, the test results obtained by the processing unit 120 may be output to a specified display device 2 or may be stored in a database 130 or the like. The specified display device 2 may be, for example, a display device provided in the processing unit 120 itself, or a display device connected to the processing unit 120 via a wired or wireless connection (for example, a display device of an ultrasound device, a display device of a mobile terminal, etc.).

 次に、処理部120による処理の流れについて説明する。図2は、処理部120による超音波データの検査処理の動作例を示すフローチャートである。本制御は、以下に説明する、検査装置100による被検体1の検査処理が開始されたことにより、開始される。 Next, the processing flow by the processing unit 120 will be described. Figure 2 is a flowchart showing an example of the operation of the processing unit 120 for inspecting ultrasound data. This control is initiated when the inspection process of the subject 1 by the inspection device 100, which will be described below, is started.

 図2に示すように、処理部120は、外観検査部110から被検体1の外観情報を取得する(ステップS101)。また、ステップS101の前に、処理部120は、データベース130からリスク情報および検査の位置情報を取得して、被検体1の外観検査の条件を決定して外観検査部110のパラメーターを設定しても良い。外観情報を取得した後、処理部120は、部位毎の外観異常情報により内部異常情報を抽出する(ステップS102)。具体的には、処理部120は、被検体1の部位毎に外観異常情報を算出し、データベース130を参照して、外観異常情報に対応する形状情報に紐付けられた内部異常情報を抽出する。 As shown in FIG. 2, the processing unit 120 acquires appearance information of the specimen 1 from the appearance inspection unit 110 (step S101). Furthermore, before step S101, the processing unit 120 may acquire risk information and inspection position information from the database 130, determine the conditions for the appearance inspection of the specimen 1, and set the parameters of the appearance inspection unit 110. After acquiring the appearance information, the processing unit 120 extracts internal anomaly information from the appearance anomaly information for each part (step S102). Specifically, the processing unit 120 calculates appearance anomaly information for each part of the specimen 1, and refers to the database 130 to extract internal anomaly information linked to shape information corresponding to the appearance anomaly information.

 内部異常情報を抽出した後、処理部120は、精査領域、非精査領域を特定する(ステップS103)。具体的には、処理部120は、被検体1の部位毎に、内部異常の程度を示す値と所定閾値とを比較し、内部異常の程度を示す値が所定閾値以上である場合、当該部位を精査領域と特定する。また、処理部120は、内部異常の程度を示す値が所定閾値未満である場合、当該部位を非精査領域と特定し、検査対象から除外する。 After extracting the internal abnormality information, the processing unit 120 identifies the inspection area and the non-inspection area (step S103). Specifically, the processing unit 120 compares the value indicating the degree of internal abnormality with a predetermined threshold for each region of the subject 1, and if the value indicating the degree of internal abnormality is equal to or greater than the predetermined threshold, it identifies the region as an inspection area. Furthermore, if the value indicating the degree of internal abnormality is less than the predetermined threshold, the processing unit 120 identifies the region as a non-inspection area and excludes it from the inspection target.

 精査部位、非精査部位を特定した後、処理部120は、精査領域毎に設定パラメーターを自動設定する(ステップS104)。具体的には、処理部120は、データベース130を参照して、精査領域における内部異常情報に紐付けられた設定パラメーターを抽出して、当該精査領域の検査時における内部検査部140に、抽出した設定パラメーターを設定する。 After identifying the inspection area and non-inspection area, the processing unit 120 automatically sets setting parameters for each inspection area (step S104). Specifically, the processing unit 120 references the database 130, extracts setting parameters linked to internal abnormality information in the inspection area, and sets the extracted setting parameters in the internal inspection unit 140 when inspecting the inspection area.

 設定パラメーターを自動設定した後、処理部120は、部位毎に内部スキャンデータを取得する(ステップS105)。内部スキャンデータを取得した後、処理部120は、内部スキャンデータを解析し、内部異常の程度を評価する(ステップS106)。そして、処理部120は、検査結果を出力する(ステップS107)。その後、本制御は終了する。 After automatically setting the setting parameters, the processing unit 120 acquires internal scan data for each part (step S105). After acquiring the internal scan data, the processing unit 120 analyzes the internal scan data and evaluates the degree of internal abnormality (step S106). The processing unit 120 then outputs the inspection results (step S107). After that, this control ends.

 以上のように構成された本実施の形態の効果について説明する。
 超音波装置による検査手法は、上記の通りであるが、実際の検査では、内部異常の位置を正確に検出することは容易ではない。CFRPの表面では、反射が大きく、一般的に超音波装置において波長の短いパルスを送信することが装置の構成上容易ではない。そのため、CFRPの表面の浅部の損傷に関して、減衰カーブを表面位置の直下から設定すると損傷がないにも関わらず、減衰カーブよりも値の大きい反射信号が受信される場合があり、ひいては損傷ありと誤判定される場合がある。
The effects of this embodiment configured as above will be described.
Although the inspection method using an ultrasonic device is as described above, it is not easy to accurately detect the location of internal abnormalities in actual inspections. Reflection is high on the surface of CFRP, and it is generally not easy to transmit short-wavelength pulses with an ultrasonic device due to the device's configuration. Therefore, for damage in the shallow part of the CFRP surface, if the attenuation curve is set from just below the surface position, a reflected signal with a value greater than the attenuation curve may be received even when there is no damage, which may result in an erroneous determination that damage exists.

 また、CFRPの深部に超音波信号が伝搬するにつれ、指数的に信号が減衰する特性があることから、深部においては反射信号そのものが比較的小さい値となる。そのため、損傷による反射であるのか、ノイズ等による信号であるか判別することが困難であり、減衰カーブによる検出法であると正確に評価できない可能性がある。 Furthermore, as the ultrasonic signal propagates deeper into the CFRP, the signal attenuates exponentially, so the reflected signal itself has a relatively small value at deep locations. This makes it difficult to determine whether the signal is a reflection due to damage or noise, etc., and detection methods using attenuation curves may not be able to provide accurate evaluations.

 特に、CFRPは、製造者、素材、製造プロセスにより、同一のものではなく、被検体の検査場所による検査結果のバラツキもある。これらのことが、金属のような比較的均質な検査物と比較して内部異常の検出を困難にしている。そのため、検査者は、リアルタイムに超音波装置の出力結果、出力画像を確認しながら、各種調整可能なパラメーターを変更して、内部異常の検出を行う。 In particular, CFRP is not identical depending on the manufacturer, material, and manufacturing process, and test results vary depending on the location of the test object. These factors make it more difficult to detect internal abnormalities compared to relatively homogeneous test objects such as metals. For this reason, inspectors check the output results and images from the ultrasound device in real time, while changing various adjustable parameters to detect internal abnormalities.

 このような方法は、検査者の手技依存性が高く、ベテランの検査者では短時間で効率的に検査を行うことができるが、非熟練者では、効率的に検査を行うことができない。この手技依存性は効率だけでなく、検出能にも影響するので、安心安全な運用を目的とした検査そのものの信頼性を揺るがすものとなり得る。また、検査効率の向上と検査能の向上とは、ベテランの検査者にとってもトレードオフであり、一方の向上を図ると、他方が低下することが一般的である。 Such methods are highly dependent on the skill of the examiner, and while experienced examiners can perform the test efficiently in a short amount of time, inexperienced examiners cannot. This skill dependency affects not only efficiency but also detection ability, which can undermine the reliability of the test itself, which is intended for safe and secure operation. Furthermore, improving testing efficiency and improving testing ability is a trade-off even for experienced examiners, and improving one generally results in a decrease in the other.

 それに対し、本実施の形態では、外観情報に基づいて予測した内部異常情報から検査すべき箇所をスクリーニングして、スクリーニングした箇所のみを内部検査部140によって詳細に検査する。 In contrast, in this embodiment, the areas to be inspected are screened from internal abnormality information predicted based on appearance information, and only the screened areas are inspected in detail by the internal inspection unit 140.

 これにより、予測した内部異常情報からスクリーニングされなかった箇所については、内部検査部140による検査対象から除外される。その結果、被検体1の全体を詳細に検査する装置と比較して、大幅に検査効率の向上を図ることができ、ひいてはCFRPの内部異常、損傷の検査効率と検出能の両方の向上を図ることができる。 As a result, areas not screened based on the predicted internal abnormality information are excluded from inspection by the internal inspection unit 140. As a result, inspection efficiency can be significantly improved compared to devices that inspect the entire test object 1 in detail, and ultimately, both the inspection efficiency and detectability of internal abnormalities and damage in CFRP can be improved.

 また、上記の通り、CFRPの外観の異常情報と内部異常、損傷の広がりとが相関があることが知られている。そのため、被検体1の外観から取得した外観情報と紐付いた内部異常情報がデータベース130に記憶されることにより、外観情報から容易に内部異常情報を推定することが可能である。 Furthermore, as mentioned above, it is known that there is a correlation between abnormality information on the appearance of CFRP and internal abnormalities and the extent of damage. Therefore, by storing internal abnormality information linked to appearance information obtained from the appearance of the subject 1 in database 130, it is possible to easily estimate internal abnormality information from the appearance information.

 したがって、内部検査部140により取得された内部スキャンデータから内部異常の程度を計算する際に、上記の予測した内部異常情報があることで、上記の減衰カーブを自動的に補正することが可能となる。この補正は、減衰カーブの設定位置、内部異常の判定基準、内部異常の広がり領域と、内部異常情報との比較によって適応的に行うことが可能である。また、減衰カーブの補正は、例えば、上記の式(1)のαおよびβを変更することにより行うことが可能である。上記の判定基準は、反射信号が減衰カーブを超えたことを妥当と判定するための閾値であっても良いし、ノイズによるものであるかを判定するための閾値であっても良い。 Therefore, when calculating the degree of internal anomaly from the internal scan data acquired by the internal inspection unit 140, the presence of the above-mentioned predicted internal anomaly information makes it possible to automatically correct the above-mentioned attenuation curve. This correction can be performed adaptively by comparing the setting position of the attenuation curve, the internal anomaly judgment criteria, the internal anomaly spread area, and the internal anomaly information. Furthermore, the attenuation curve can be corrected, for example, by changing α and β in the above equation (1). The above judgment criteria may be a threshold for determining whether it is appropriate for the reflected signal to exceed the attenuation curve, or a threshold for determining whether it is due to noise.

 以上のことは、検査者が各種調整可能なパラメーターを変えながら検査していたことを自動的に瞬時に実行でき、かつ、その際の検出能は非常に高いものになることを意味する。 The above means that inspections that were previously performed by an inspector while changing various adjustable parameters can now be performed automatically and instantly, with extremely high detection capabilities.

 つまり、本実施の形態では、内部検査部140によるCFRPの内部異常の検査を短時間で効率よく行うことができ、かつ、高い検出能により行うことができる。 In other words, in this embodiment, the internal inspection unit 140 can efficiently inspect the CFRP for internal abnormalities in a short amount of time, and with high detection capability.

 内部検査部140(超音波探触子)は、基本的に水や接触媒質が必要となるので、スキャン速度に制約がある。それに対し、本実施の形態では、被検体1に接触させる必要がなく、比較的高速にスキャン可能な外観検査部110によりスクリーニングを行う。これにより、被検体1の精査領域を絞り込むことによる効率化と、外観検査部110からの外観情報から計算した異常情報に基づく内部異常情報から導出される各種パラメーターを用いて超音波データを自動かつ高速に処理することができる。その結果、従来技術にはない、検査効率および検出能を実現することができる。 The internal inspection unit 140 (ultrasonic probe) basically requires water or a contact medium, so there are limitations to the scanning speed. In contrast, in this embodiment, screening is performed using the appearance inspection unit 110, which does not require contact with the specimen 1 and is capable of scanning at relatively high speeds. This improves efficiency by narrowing the inspection area of the specimen 1, and enables automatic and high-speed processing of ultrasound data using various parameters derived from internal anomaly information based on anomaly information calculated from appearance information from the appearance inspection unit 110. As a result, it is possible to achieve inspection efficiency and detectability not available with conventional technology.

 なお、上記実施の形態では、外観検査部110により、外観情報を取得していたが、本発明はこれに限定されない。例えば、内部検査部140が、被検体1の外観情報を取得しても良い。この場合、検査装置100は、外観検査部110を有していなくても良い。 In the above embodiment, the appearance information is acquired by the appearance inspection unit 110, but the present invention is not limited to this. For example, the internal inspection unit 140 may acquire the appearance information of the specimen 1. In this case, the inspection device 100 does not need to have the appearance inspection unit 110.

 超音波装置は、被検体1の内部の状態を検査する場合については、内部異常の程度によって、異なるパラメーターを設定する必要がある。しかし、被検体1の表面形状を検査する場合については、細かいパラメーターの設定を行う必要がなく、簡易的かつ迅速に検査することが可能である。 When inspecting the internal condition of the subject 1, the ultrasound device must set different parameters depending on the degree of internal abnormality. However, when inspecting the surface shape of the subject 1, there is no need to set detailed parameters, and the inspection can be carried out simply and quickly.

 そのため、検査装置100は、内部検査部140によって、外観情報を取得し、その外観情報によってスクリーニングした箇所のみを内部検査部140によって詳細に検査する。 For this reason, the inspection device 100 acquires appearance information using the internal inspection unit 140, and then inspects in detail only those areas that have been screened using that appearance information using the internal inspection unit 140.

 このような構成であっても、CFRPの内部異常、損傷の検査効率と検出能の両方の向上を図ることができる。 Even with this configuration, it is possible to improve both the inspection efficiency and the detectability of internal abnormalities and damage in CFRP.

 また、検査装置100は、外観情報を外部の装置から取得する構成であっても良い。外部の装置は、光学カメラまたは超音波装置等、被検体1の外観情報を取得可能な装置である限り、どのような装置であっても良い。 Furthermore, the inspection device 100 may be configured to acquire appearance information from an external device. The external device may be any device, such as an optical camera or ultrasound device, as long as it is capable of acquiring appearance information about the subject 1.

 また、上記実施の形態では、非検査箇所とされた箇所については検査が行われていなかったが、本発明はこれに限定されない。例えば、非検査箇所に要検査領域が含まれている場合、その箇所が検査箇所に追加されても良い。 Furthermore, in the above embodiment, inspection was not performed on areas designated as non-inspection areas, but the present invention is not limited to this. For example, if the non-inspection areas include an area requiring inspection, that area may be added to the inspection areas.

 要検査領域は、外観での凹みの有無に関わらず、検査が必要となる箇所である。例えば、要検査領域は、例えば、燃料タンクやエンジンであっても良い。 Areas requiring inspection are locations that require inspection regardless of whether or not there are visible dents. For example, areas requiring inspection may be the fuel tank or engine.

 次に、処理部120による他の処理の流れについて説明する。図3は、処理部120による超音波データの検査処理の他の動作例を示すフローチャートである。本制御は、以下に説明する、検査装置100による被検体1の検査処理が開始されたことにより、開始される。なお、図3に示すフローチャートは、ステップS101~ステップS106の処理は、図2に示すフローチャートと同様であるため、詳細な説明を省略する。 Next, we will explain the flow of other processing by the processing unit 120. Figure 3 is a flowchart showing another example of the operation of the processing unit 120 for inspecting ultrasound data. This control is initiated when the inspection process of the subject 1 by the inspection device 100, which will be described below, is started. Note that the processing of steps S101 to S106 in the flowchart shown in Figure 3 is the same as that in the flowchart shown in Figure 2, so detailed explanation will be omitted.

 図3に示すように、ステップS103の処理の後、処理部120は、非精査領域に要検査領域があるか否かについて判定する(ステップS108)。判定の結果、非精査領域に要検査領域がない場合(ステップS108、NO)、処理はステップS104に遷移する。 As shown in FIG. 3, after processing in step S103, the processing unit 120 determines whether or not there is an area requiring inspection in the non-inspection area (step S108). If the determination result shows that there is no area requiring inspection in the non-inspection area (step S108, NO), processing transitions to step S104.

 一方、非精査領域に要検査領域がある場合(ステップS108、YES)、処理部120は、要検査領域を精査領域に追加する(ステップS109)。ステップS109の後、処理はステップS104に遷移する。 On the other hand, if there is an area requiring inspection in the non-scrutiny area (step S108, YES), the processing unit 120 adds the area requiring inspection to the scrutiny area (step S109). After step S109, the process transitions to step S104.

 なお、ステップS108の処理は、ステップS103において、精査領域、非精査領域が特定される前に行われても良い。この場合、ステップS103において、要検査領域の部位が、非精査領域と特定された際には、当該部位は検査対象から除外されない。 Note that the processing of step S108 may be performed before the detailed examination area and non-detailed examination area are identified in step S103. In this case, if a part of the area requiring examination is identified as a non-detailed examination area in step S103, that part will not be excluded from the examination target.

 このような構成によれば、要検査領域が確実に検査対象となるので、検査漏れをなくすことができる。 This configuration ensures that areas requiring inspection are inspected, eliminating missed inspections.

 また、上記実施の形態では、データベース130の更新については特に言及されていなかったが、本発明はこれに限定されない。例えば、被検体1の検査毎にデータベース130が更新されても良い。 Furthermore, although the above embodiment does not specifically mention updating the database 130, the present invention is not limited to this. For example, the database 130 may be updated for each examination of the subject 1.

 図4に示すように、処理部120は、図1に示す構成の他、データ更新部123を有する。データ更新部123は、被検体1の検査が行われた後に内部異常情報、内部検査部140で設定されたパラメーターの情報、評価式の情報等をデータベース130に記憶させる。データ更新部123は、被検体1の検査が行われる度に、データベース130に記憶させた情報を更新する。 As shown in FIG. 4, the processing unit 120 has a data update unit 123 in addition to the components shown in FIG. 1. After an examination of the subject 1 is performed, the data update unit 123 stores internal abnormality information, parameter information set by the internal inspection unit 140, evaluation formula information, etc. in the database 130. The data update unit 123 updates the information stored in the database 130 every time an examination of the subject 1 is performed.

 データ更新部123によるデータ更新のタイミングは、例えば、図2におけるステップS105の処理の後であっても良い。例えば、ステップS105の処理の後、パラメーター決定部122が内部スキャンデータに基づいて評価式の係数等の変更を行った際、データ更新部123が、データベース130の記憶されていた値から、変更値への更新を行う。これにより、評価が行われる際に、更新された係数が適用された評価式を用いることができる。 The timing for updating the data by the data update unit 123 may be, for example, after the processing of step S105 in FIG. 2. For example, after the processing of step S105, when the parameter determination unit 122 changes the coefficients of the evaluation formula based on the internal scan data, the data update unit 123 updates the values stored in the database 130 to the changed values. This makes it possible to use the evaluation formula to which the updated coefficients have been applied when the evaluation is performed.

 また、データ更新部123によるデータ更新のタイミングは、例えば、図2におけるステップS106の処理の後であっても良い。例えば、ステップS106の処理で、得られた内部異常の程度の評価の結果を、データ更新部123がデータベース130に追加更新しても良い。 Furthermore, the timing of the data update by the data update unit 123 may be, for example, after the processing of step S106 in FIG. 2. For example, the data update unit 123 may add and update the results of the evaluation of the degree of internal abnormality obtained in the processing of step S106 to the database 130.

 また、上記実施の形態では、内部異常の内容(剥離が生じている等)を検査結果としていたが、本発明はこれに限定されない。例えば、CFRPの部材における衝撃後圧縮強度の推定結果が検査結果であっても良い。また、この場合、衝撃後圧縮強度の推定結果のみが表示装置2に表示されても良いし、内部異常の内容と、衝撃後圧縮強度の推定結果との両方が検査結果として、表示装置2に表示されても良い。衝撃後圧縮強度の推定方法については、例えば、非特許文献2に記載されているような、公知の方法が適用されても良い。また、被検体1の強度を推定する際の評価式、アルゴリズム、機械学習におけるハイパーパラメーター等は、パラメーター決定部により、データベース130等を参照することにより行われても良い。 Furthermore, in the above embodiment, the details of the internal abnormality (such as peeling) were used as the inspection result, but the present invention is not limited to this. For example, the inspection result may be the estimated result of the compressive strength after impact of a CFRP member. In this case, only the estimated result of the compressive strength after impact may be displayed on the display device 2, or both the details of the internal abnormality and the estimated result of the compressive strength after impact may be displayed on the display device 2 as the inspection result. As a method for estimating the compressive strength after impact, a known method such as that described in Non-Patent Document 2 may be applied. Furthermore, the evaluation formula, algorithm, hyperparameters in machine learning, etc. used when estimating the strength of the specimen 1 may be determined by the parameter determination unit by referring to the database 130, etc.

 また、上記実施の形態では、内部検査部140が圧電素子に基づく超音波を発生させて超音波を送受信可能な超音波装置であったが、本発明はこれに限定されない。例えば、内部スキャナー部は、光超音波装置、レーザー超音波装置、電磁超音波等、超音波を発生させずに、光等の超音波と異なる波動を照射して発生した超音波を受信可能な装置であっても良い。 Furthermore, in the above embodiment, the internal inspection unit 140 was an ultrasound device capable of generating and transmitting ultrasound based on a piezoelectric element, but the present invention is not limited to this. For example, the internal scanner unit may be a device that does not generate ultrasound but is capable of receiving ultrasound generated by irradiating waves other than ultrasound, such as light, such as an optical ultrasound device, a laser ultrasound device, or an electromagnetic ultrasound device.

 また、上記実施の形態では、被検体1がCFRPで構成されていたが、本発明はこれに限定されず、例えば、GFRP(Glass Fiber Reinforced Plastic)等、CFRP以外の複合材であっても良い。 Furthermore, in the above embodiment, the specimen 1 is made of CFRP, but the present invention is not limited to this, and may be made of a composite material other than CFRP, such as GFRP (Glass Fiber Reinforced Plastic).

 また、上記実施の形態では、処理部120と内部検査部140とが分けられていたが、本発明はこれに限定されず、例えば処理部が内部スキャナー部に内蔵されていても良い。 Furthermore, in the above embodiment, the processing unit 120 and the internal inspection unit 140 are separate, but the present invention is not limited to this; for example, the processing unit may be built into the internal scanner unit.

 また、上記実施の形態では、推定部および設定部が処理部に含まれていたが、本発明はこれに限定されず、推定部および設定部が別々に設けられていても良い。 Furthermore, in the above embodiment, the estimation unit and setting unit are included in the processing unit, but the present invention is not limited to this, and the estimation unit and setting unit may be provided separately.

 その他、上記実施の形態は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。 Furthermore, the above-described embodiments are merely examples of specific embodiments for carrying out the present invention, and the technical scope of the present invention should not be interpreted as being limited by them. In other words, the present invention can be embodied in various forms without departing from its gist or main features.

 2024年2月26日出願の特願2024-026795の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The entire disclosures of the specification, drawings, and abstract contained in Japanese Patent Application No. 2024-026795, filed February 26, 2024, are incorporated herein by reference.

 1 被検体
 100 検査装置
 110 外観検査部
 120 処理部
 121 解析部
 122 パラメーター決定部
 123 データ更新部
 130 データベース
 140 内部検査部
REFERENCE SIGNS LIST 1 Inspection object 100 Inspection device 110 Visual inspection unit 120 Processing unit 121 Analysis unit 122 Parameter determination unit 123 Data update unit 130 Database 140 Internal inspection unit

Claims (12)

 被検体の内部異常を検査する内部検査部と、
 前記被検体の外観情報に基づいて、前記被検体の外観上の部位毎に内部異常の程度を推定する推定部と、
 前記部位毎に、推定された前記内部異常の程度に応じたパラメーターを前記内部検査部に設定する設定部と、
 を備える検査装置。
an internal inspection unit that inspects the internal abnormality of the subject;
an estimation unit that estimates the degree of internal abnormality for each external part of the subject based on the external appearance information of the subject;
a setting unit that sets parameters corresponding to the estimated degree of the internal abnormality in the internal inspection unit for each of the portions;
An inspection device comprising:
 前記被検体の外観異常情報と内部異常情報とが紐付けられたデータセットを記憶する記憶部をさらに備え、
 前記推定部は、前記外観情報から算出された凹みの形状に対応する前記内部異常情報を前記記憶部から抽出する、
 請求項1に記載の検査装置。
a storage unit that stores a data set in which the external abnormality information and the internal abnormality information of the subject are linked,
the estimation unit extracts, from the storage unit, the internal abnormality information corresponding to the shape of the dent calculated from the appearance information;
The inspection device according to claim 1 .
 前記外観異常情報は、前記被検体の外観上の凹みの形状情報である、
 請求項2に記載の検査装置。
The appearance abnormality information is shape information of a depression on the appearance of the subject.
The inspection device according to claim 2 .
 前記設定部は、推定された前記内部異常の程度を示す値が所定範囲外である部位を、前記内部検査部による検査対象から除外する、
 請求項1に記載の検査装置。
the setting unit excludes a portion for which the value indicating the estimated degree of the internal abnormality is outside a predetermined range from a target for inspection by the internal inspection unit.
The inspection device according to claim 1 .
 前記設定部は、前記検査対象からの除外の有無に関わらず、前記被検体における要検査領域を前記検査対象とする、
 請求項4に記載の検査装置。
the setting unit sets a region to be examined in the subject as the examination target, regardless of whether the region is excluded from the examination target.
The inspection device according to claim 4.
 前記内部検査部は、超音波装置である、
 請求項1に記載の検査装置。
The internal inspection unit is an ultrasound device.
The inspection device according to claim 1 .
 前記被検体の外観情報を検出する外観検査部をさらに備える、
 請求項1に記載の検査装置。
further comprising an appearance inspection unit that detects appearance information of the subject;
The inspection device according to claim 1 .
 前記外観検査部は、光学カメラである、
 請求項7に記載の検査装置。
The appearance inspection unit is an optical camera.
The inspection device according to claim 7.
 前記被検体は、炭素繊維強化プラスチックで構成される、
 請求項1に記載の検査装置。
The subject is made of carbon fiber reinforced plastic.
The inspection device according to claim 1 .
 前記設定部は、前記被検体の内部異常の程度に応じて異なるパラメーターの値を設定する、
 請求項1に記載の検査装置。
the setting unit sets different parameter values depending on the degree of internal abnormality of the subject.
The inspection device according to claim 1 .
 内部検査部を用いた検査方法であって、
 被検体の外観情報に基づいて、前記被検体の部位毎に内部異常の程度を推定することと、
 前記部位毎に、推定された前記内部異常の程度に応じたパラメーターを前記内部検査部に設定することと、
 前記内部検査部により前記被検体の内部異常を検査することと、
 を有する検査方法。
An inspection method using an internal inspection unit,
estimating the degree of internal abnormality for each part of the subject based on the external appearance information of the subject;
setting a parameter corresponding to the estimated degree of the internal abnormality in the internal inspection unit for each of the portions;
inspecting the subject for internal abnormalities using the internal inspection unit;
An inspection method having the following.
 内部検査部を用いた検査プログラムであって、
 コンピューターに、
 被検体の外観情報に基づいて、前記被検体の部位毎に内部異常の程度を推定する処理と、
 前記部位毎に、推定された前記内部異常の程度に応じたパラメーターを前記内部検査部に設定する処理と、
 前記内部検査部により前記被検体の内部異常を検査する処理と、
 を実行させる検査プログラム。
An inspection program using an internal inspection unit,
On the computer,
A process of estimating the degree of internal abnormality for each part of the subject based on the external appearance information of the subject;
a process of setting parameters corresponding to the estimated degree of the internal abnormality in the internal inspection unit for each of the portions;
a process of inspecting the subject for internal abnormalities by the internal inspection unit;
A test program that executes the following.
PCT/JP2024/040131 2024-02-26 2024-11-12 Inspection device, inspection method, and inspection program Pending WO2025182162A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2024-026795 2024-02-26
JP2024026795 2024-02-26

Publications (1)

Publication Number Publication Date
WO2025182162A1 true WO2025182162A1 (en) 2025-09-04

Family

ID=96921023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/040131 Pending WO2025182162A1 (en) 2024-02-26 2024-11-12 Inspection device, inspection method, and inspection program

Country Status (1)

Country Link
WO (1) WO2025182162A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127952A (en) * 1987-11-13 1989-05-19 Canon Inc Ultrasonic video device
JP2006133122A (en) * 2004-11-08 2006-05-25 Olympus Corp Nondestructive inspection device
JP2015500998A (en) * 2011-12-23 2015-01-08 ヘクセル コンポジッツ、リミテッド Online control method for multi-component sheet material manufacturing process
JP2023062675A (en) * 2021-10-21 2023-05-08 キヤノンメディカルシステムズ株式会社 Ultrasonic diagnostic device, ultrasonic diagnostic method and ultrasonic diagnostic program
JP2023114589A (en) * 2022-02-07 2023-08-18 株式会社東芝 Ultrasonic data evaluation system, ultrasonic data evaluation method, and judgment model generation method
JP2024155567A (en) * 2023-04-21 2024-10-31 株式会社東芝 Information generating device and information generating method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127952A (en) * 1987-11-13 1989-05-19 Canon Inc Ultrasonic video device
JP2006133122A (en) * 2004-11-08 2006-05-25 Olympus Corp Nondestructive inspection device
JP2015500998A (en) * 2011-12-23 2015-01-08 ヘクセル コンポジッツ、リミテッド Online control method for multi-component sheet material manufacturing process
JP2023062675A (en) * 2021-10-21 2023-05-08 キヤノンメディカルシステムズ株式会社 Ultrasonic diagnostic device, ultrasonic diagnostic method and ultrasonic diagnostic program
JP2023114589A (en) * 2022-02-07 2023-08-18 株式会社東芝 Ultrasonic data evaluation system, ultrasonic data evaluation method, and judgment model generation method
JP2024155567A (en) * 2023-04-21 2024-10-31 株式会社東芝 Information generating device and information generating method

Similar Documents

Publication Publication Date Title
EP3315961B1 (en) Wrinkle characterization and performance prediction for composite structures using ultrasonic and optical inspection
Bossi et al. Nondestructive testing of damage in aerospace composites
EP2126559B1 (en) Method and apparatus for inspecting a workpiece with angularly offset ultrasonic signals
Kumar et al. Recent trends in industrial and other engineering applications of non destructive testing: a review
Bossi et al. Nondestructive testing of aerospace composites
GB2482588A (en) Ultrasonic probe
Poudel et al. Comparison and analysis of Acoustography with other NDE techniques for foreign object inclusion detection in graphite epoxy composites
WO2025182162A1 (en) Inspection device, inspection method, and inspection program
Torbali et al. Enhanced defect identification by image fusion of infrared thermography and ultrasonic phased array inspection techniques
Chady et al. Testing of glass-fiber reinforced composite materials using terahertz technique
Toughiry Examination of the nondestructive evaluation of composite gas cylinders
Forsyth Non-destructive testing for corrosion
Zhong et al. Ultrasonic testing techniques for nondestructive evaluation of fiber-reinforced composite structures
Pirinu et al. Low-Velocity Impact Damage Quantification on Sandwich Panels by Thermographic and Ultrasonic Procedures
Chaki et al. Non-destructive health monitoring of structural polymer composites: trends and perspectives in the digital era. Materials 2022, 15, 7838
Swornowski Scanning of the internal structure part with laser ultrasonic in aviation industry
Finlayson et al. Acoustic emission structural health management systems (AE-SHMS)
Inc et al. Real-Time Phased Array Ultrasonic Monitoring of Debonding Growth Under Cycling Loading in CFRP
Zammit-Mangion et al. Pushing the boundaries of green composites: a novel robust inspection system for damage identification and classification in NFRPs
Prasad et al. Defect analysis in aerospace systems using non-destructive testing
CA2977148C (en) Wrinkle characterization and performance prediction for composite structures
Sharma Low-velocity impact damage detection using coda waves on CFRP laminates
Kim et al. Probability of detection analysis of CFRP delamination with a triple functional ultrasonic propagation imager
Kulowitch Ultrasonic Nondestructive Analysis of Plastics
KUMAR et al. A COMPREHENSIVE REVIEW IN ULTRASONIC NON-DESTRUCTIVE TESTING AND EVALUATION FOR CARBON FIBRE REINFORCED PLASTICS STRUCTURES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24927046

Country of ref document: EP

Kind code of ref document: A1