WO2025181991A1 - Information processing device, information processing method, and program - Google Patents
Information processing device, information processing method, and programInfo
- Publication number
- WO2025181991A1 WO2025181991A1 PCT/JP2024/007469 JP2024007469W WO2025181991A1 WO 2025181991 A1 WO2025181991 A1 WO 2025181991A1 JP 2024007469 W JP2024007469 W JP 2024007469W WO 2025181991 A1 WO2025181991 A1 WO 2025181991A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- equipment
- vehicle
- information processing
- environment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Definitions
- the present invention relates to an information processing device, information processing method, and program that uses images of facilities around a vehicle.
- Patent Document 1 discloses an overhead line fitting detection device that detects overhead line fittings using line sensor images output from two line sensor cameras installed on a railway vehicle.
- the line sensor image is generated by combining line images captured continuously in a line while the line sensor or the object is moving.
- the overhead line fitting detection device performs day/night determination processing on each line image that makes up the line sensor image.
- the overhead line fitting detection device detects overhead wires and overhead line fittings by inverting the brightness of areas where a certain number of consecutive lines have a brightness value above a threshold for line images determined to be night.
- the overhead line fitting detection device described in Patent Document 1 can only detect overhead line fittings if the area around the overhead line fitting is bright in the line sensor image. As a result, it is unable to detect overhead line fittings from line sensor images taken in environments where the area around the overhead line fitting is not bright (for example, inside a tunnel, under a bridge or road). In other words, the overhead line fitting detection device has the problem of being limited in the environments in which images for detecting overhead line fittings can be taken. Therefore, there is a demand for technology that can detect equipment included as subjects in images taken in a variety of environments.
- One aspect of the present invention was made in consideration of the above-mentioned problems, and one of its objectives is to provide technology that improves the accuracy of detecting facilities around a vehicle from images of the facilities taken in various environments.
- An information processing device comprises an acquisition means for acquiring a vehicle surroundings image, an estimation means for estimating the environment at the time of photographing by referring to the vehicle surroundings image, and a detection means for detecting equipment included as a subject in the vehicle surroundings image using lower criteria as the difficulty of detection increases according to the estimated environment.
- An information processing method includes an information processing device acquiring a vehicle surroundings image, estimating the environment at the time of photographing by referring to the vehicle surroundings image, and detecting equipment included as a subject in the vehicle surroundings image using lower criteria as the difficulty of detection increases according to the estimated environment.
- a program causes a computer to function as an information processing device, and causes the computer to function as: an acquisition means for acquiring a vehicle surroundings image; an estimation means for estimating the environment at the time of photographing by referring to the vehicle surroundings image; and a detection means for detecting equipment included as a subject in the vehicle surroundings image using lower criteria as the difficulty of detection increases according to the estimated environment.
- One aspect of the present invention makes it possible to improve the accuracy of detecting facilities around a vehicle from images of the facilities taken in various environments.
- FIG. 1 is a block diagram showing a configuration of an information processing device according to a first exemplary embodiment of the present invention
- FIG. 1 is a flowchart showing the flow of an information processing method according to a first exemplary embodiment of the present invention.
- 10 is a table showing an example of equipment and status in exemplary embodiment 2 of the present invention.
- FIG. 10 is a schematic diagram showing an example of a railway vehicle TR and equipment in exemplary embodiment 2 of the present invention.
- FIG. 10 is a block diagram showing a configuration of an information processing device 2 according to an exemplary embodiment 2 of the present invention.
- FIG. 10 is a diagram illustrating a process for training an estimation model in exemplary embodiment 2 of the present invention.
- FIG. 10 is a flowchart showing the flow of an information processing method according to a second exemplary embodiment of the present invention.
- FIG. 10 is a diagram illustrating an example of processing by an estimation unit according to the second exemplary embodiment of the present invention.
- FIG. 2 is a block diagram showing an example of a hardware configuration of an information processing device according to each exemplary embodiment of the present invention.
- Example Embodiment 1 A first exemplary embodiment of the present invention will be described in detail with reference to the drawings. This exemplary embodiment is a basic form of the exemplary embodiments described below.
- Fig. 1 is a block diagram showing the configuration of an information processing device 1 according to this exemplary embodiment.
- the information processing device 1 includes an acquisition unit 11, an estimation unit 12, and a detection unit 13.
- the acquisition unit 11, the estimation unit 12, and the detection unit 13 are configured to realize an acquisition means, an estimation means, and a detection means, respectively.
- the acquisition unit 11 acquires an image of the vehicle's surroundings.
- the acquisition unit 11 supplies the acquired image of the vehicle's surroundings to the estimation unit 12.
- the estimation unit 12 estimates the environment at the time of shooting by referring to the vehicle surroundings image supplied from the acquisition unit 11.
- the estimation unit 12 supplies the vehicle surroundings image and the estimation result to the detection unit 13.
- the detection unit 13 uses lower criteria to detect equipment included as a subject in the vehicle surroundings image supplied from the estimation unit 12, and detects the equipment as the detection difficulty increases according to the environment estimated by the estimation unit 12.
- the information processing device 1 is configured to include an acquisition unit 11 that acquires vehicle surroundings images, an estimation unit 12 that estimates the environment at the time of shooting by referring to the vehicle surroundings images supplied from the acquisition unit 11, and a detection unit 13 that detects equipment included as a subject from the vehicle surroundings images supplied from the estimation unit 12 using lower criteria that correspond to higher detection difficulty in accordance with the environment estimated by the estimation unit 12.
- the information processing device 1 has the effect of improving the accuracy of detecting facilities around a vehicle from images of the facilities taken in various environments.
- Flow of information processing method S1 The flow of the information processing method S1 according to this exemplary embodiment will be described with reference to Fig. 2.
- Fig. 2 is a flow diagram showing the flow of the information processing method S1 according to this exemplary embodiment.
- Step S11 the acquisition unit 11 acquires a vehicle surroundings image and supplies the acquired vehicle surroundings image to the estimation unit 12.
- step S12 the estimation unit 12 estimates the environment at the time of shooting by referring to the vehicle surroundings image supplied from the acquisition unit 11.
- the estimation unit 12 supplies the vehicle surroundings image and the estimation result to the detection unit 13.
- Step S13 the detection unit 13 detects equipment included as a subject from the vehicle surroundings image supplied from the estimation unit 12 using a lower criterion as the difficulty of detection increases according to the environment estimated by the estimation unit 12.
- the information processing method S1 includes the following configuration: step S11 in which the acquisition unit 11 acquires a vehicle surroundings image; step S12 in which the estimation unit 12 estimates the environment at the time of image capture by referring to the vehicle surroundings image supplied from the acquisition unit 11; and step S13 in which the detection unit 13 detects equipment included as a subject from the vehicle surroundings image supplied from the estimation unit 12 using lower criteria as the difficulty of detection increases according to the environment estimated by the estimation unit 12. Therefore, the information processing method S1 according to this exemplary embodiment achieves the same effects as the information processing device 1 described above.
- the information processing device 2 is a device that analyzes the state of facilities around a vehicle. Although the vehicle is not particularly limited, this exemplary embodiment describes a case where the information processing device 2 analyzes the state of facilities around a railway vehicle.
- Peripheral equipment for railway vehicles refers to equipment installed around railway vehicles in order to allow the vehicles to run.
- the equipment is equipment used to supply power to railway vehicles.
- Examples of equipment include wires, contact wires, hangers, ears, connectors, bolts, and insulators.
- equipment and states are associated. For example, equipment “W Year” is associated with the states “CC Misalignment” and “Bolt Falling Off,” and equipment “Protector” is associated with the state “Bolt Falling Off.”
- the information processing device 2 analyzes whether the state of the equipment is in a state associated with that equipment. As one example, the information processing device 2 analyzes whether the equipment "W Year” is in the state "CC Misaligned” and whether the equipment "W Year” is in the state “Bolt Missing.” As another example, the information processing device 2 analyzes whether the equipment "Protector" is in the state "Bolt Missing.”
- the information processing device 2 acquires vehicle surroundings images, which are images captured by cameras installed on surfaces exposed to the outside of the railway vehicle and which include multiple pieces of equipment as subjects.
- the vehicle surroundings images may be images captured while the vehicle is in motion.
- the surfaces exposed to the outside include, for example, the top surface, bottom surface, left and right sides, and some or all of the front and rear sides of the railway vehicle.
- the surface on which the camera is installed will be described mainly as the top surface of the railway vehicle, but is not limited to this.
- top surface of the railway vehicle will also be simply referred to as "on the railway vehicle.”
- the cameras installed on the railway vehicle and the equipment that serves as the subject will be described with reference to Figure 4.
- Figure 4 is a schematic diagram showing an example of a railway vehicle TR and equipment in this exemplary embodiment.
- multiple cameras are installed on the railway vehicle TR, capturing images of equipment within their angle of view and outputting the captured images. It is desirable that at least a portion of the ranges within the angle of view of the multiple cameras are different from each other.
- the range within the angle of view of each camera (hereinafter also referred to as the "capture range”) may partially overlap with the range within the angle of view of at least one other camera, but it is desirable that at least a portion of the ranges are different.
- the installation manner of the multiple cameras is not particularly limited, but as an example, as shown in Figure 4, three cameras CA1 to CA3 are installed at different heights on the right side of the vehicle TR when viewing the front of the vehicle TR from the direction of travel of the vehicle TR. Similarly, three cameras CA4 to CA6 are installed at different heights on the left side of the vehicle TR when viewing the front of the vehicle TR from the direction of travel of the vehicle TR.
- cameras CA1 to CA6 photograph the equipment.
- One example is a configuration in which cameras CA1 to CA6 each photograph the equipment at a predetermined interval.
- Another example is a configuration in which multiple cameras photograph the equipment synchronously at predetermined intervals.
- One example of such a configuration is a configuration in which cameras CA1 and CA4 photograph the equipment synchronously, cameras CA2 and CA5 photograph the equipment synchronously, and cameras CA3 and CA6 photograph the equipment synchronously.
- images photographed by multiple cameras synchronously are not necessarily taken at exactly the same time due to processing delays, etc.
- cameras CA1 to CA6 photograph the equipment, which are hangers HA, ears EA, and trolley wire TW, as their subjects.
- Information processing device 2 acquires vehicle surroundings images captured by cameras CA1 to CA6.
- the configuration in which information processing device 2 acquires vehicle surroundings images is not particularly limited.
- One example is a configuration in which vehicle surroundings images captured by cameras CA1 to CA6 are stored on a recording medium, and information processing device 2 acquires vehicle surroundings images from the recording medium.
- Another configuration is a configuration in which information processing device 2 and cameras CA1 to CA6 are connected to each other so as to be able to communicate via a network, and information processing device 2 acquires vehicle surroundings images via the network.
- Fig. 5 is a block diagram showing the configuration of the information processing device 2 according to this exemplary embodiment.
- the information processing device 2 includes a control unit 20, an input/output unit 27, a communication unit 28, and a memory unit 29.
- the input/output unit 27 is an interface that accepts user input and outputs data.
- the input/output unit 27 supplies information indicating the accepted user input to the control unit 20, and outputs information supplied from the control unit 20.
- Examples of the input/output unit 27 include, but are not limited to, a keyboard, a mouse, a touchpad, a microphone, and an LCD display.
- the communication unit 28 is an interface that transmits and receives data over a network.
- the communication unit 28 transmits data supplied from the control unit 20 to other devices, and supplies data received from other devices to the control unit 20.
- Examples of the communication unit 28 include, but are not limited to, communication chips for various communication standards such as Ethernet (registered trademark), Wi-Fi (registered trademark), and wireless communication standards for mobile data communication networks, as well as USB-compliant connectors.
- the memory unit 29 stores data referenced by the control unit 20. Examples of data stored in the memory unit 29 include, but are not limited to, images of the vehicle's surroundings, images of equipment, and analysis results. Examples of the memory unit 29 include, but are not limited to, flash memory, HDD (Hard Disk Drive), SSD (Solid State Drive), or a combination of these.
- the control unit 20 controls each component included in the information processing device 2. As shown in Fig. 5 , the control unit 20 also includes an acquisition unit 11, an estimation unit 12, a detection unit 13, an image connection unit 21, and an analysis unit 22. In this exemplary embodiment, the acquisition unit 11, the estimation unit 12, the detection unit 13, and the analysis unit 22 are components that respectively realize an acquisition means, an estimation means, a detection means, and an analysis means.
- the acquisition unit 11 acquires data supplied from the input/output unit 27 or the communication unit 28.
- the acquisition unit 11 also acquires data stored in the storage unit 29.
- the acquisition unit 11 acquires vehicle surroundings images from a plurality of cameras, cameras CA1 to CA6, via the input/output unit 27 or the communication unit 28.
- the acquisition unit 11 may acquire vehicle surroundings images captured by cameras CA1 to CA6 and stored in the storage unit 29.
- the estimation unit 12 estimates the environment at the time of image capture by referring to the vehicle surroundings image.
- the environment at the time of image capture estimated by the estimation unit 12 is not limited, but as an example, the estimation unit 12 estimates whether the environment at the time of image capture is a predetermined environment. Examples of the predetermined environment include “inside a tunnel,”"under a bridge,””under a road,” and “raining.”
- the estimation unit 12 is configured to estimate which of two or more environments (e.g., inside a tunnel, under a bridge, and others) the environment at the time of image capture is. In this exemplary embodiment, the estimation unit 12 estimates whether the environment at the time of image capture is inside a tunnel.
- the estimation unit 12 supplies the vehicle surroundings image and the estimation result to the detection unit 13.
- the method by which the estimation unit 12 estimates whether the environment at the time the vehicle surroundings image was captured is inside a tunnel is not limited.
- the estimation unit 12 may estimate whether the environment at the time the vehicle surroundings image was captured is inside a tunnel using an estimation model learned by machine learning.
- FIG. 6 is a diagram showing the process for training the estimation model MD1 in this exemplary embodiment.
- the estimation model receives an image of the vehicle's surroundings as input and outputs an estimation result indicating whether the image of the vehicle's surroundings was taken inside a tunnel.
- the learning process shown in FIG. 6 may be executed by another information processing device, or by the control unit 20 of the information processing device 2.
- a vehicle surroundings image vp is associated with environmental information ei, which indicates whether the environment when the vehicle surroundings image vp was captured was inside a tunnel.
- the environmental information ei is the correct label.
- the vehicle surroundings image vp is cropped, the image size is reduced, and contrast correction is performed to match the contrast between multiple vehicle surroundings images vp (for example, by performing CLAHE (Contrast Limited Adaptive Histogram Equalization)), generating a processed vehicle surroundings image p_vp.
- An estimation model MD1 is then trained using a training dataset that pairs the processed vehicle surroundings image p_vp with the environmental information ei. Specifically, when a vehicle surroundings image p_vp is input to the estimation model MD1, training is performed so that environmental information ei, which is the correct label and indicates whether the vehicle surroundings image p_vp was captured inside a tunnel, is output.
- Another method by which the estimation unit 12 estimates whether the environment at the time of image capture is inside a tunnel is to refer to pixel values of the vehicle surroundings image. As an example, if the average brightness value of each pixel in the vehicle surroundings image is higher than a predetermined value, the estimation unit 12 estimates that the vehicle surroundings image was captured outside a tunnel, and if the average brightness value of each pixel in the vehicle surroundings image is equal to or lower than a predetermined value, the estimation unit 12 estimates that the vehicle surroundings image was captured inside a tunnel.
- the method by which the estimation unit 12 estimates the environment at the time of image capture is not limited to the above-mentioned method.
- the estimation unit 12 may also divide the vehicle surroundings image into multiple partial images along a direction corresponding to the vehicle's traveling direction, and estimate whether the environment at the time of capture was inside a tunnel for each partial image after division.
- the direction corresponding to the vehicle's traveling direction may be the vehicle's forward direction. Specific examples of processing performed by the estimation unit 12 for this configuration will be described later.
- the detection unit 13 detects equipment as a subject from the vehicle surroundings image using a lower criterion as the detection difficulty increases according to the environment indicated by the estimation result supplied from the estimation unit 12.
- the detection unit 13 supplies the estimation result and an equipment image including the detected equipment to the analysis unit 22.
- One equipment image includes one or more pieces of equipment as subjects.
- High detection difficulty refers to a situation in which the equipment is difficult to distinguish from its surroundings in the vehicle surroundings image.
- One example is a situation in which the vehicle surroundings image is taken in dark conditions, and an object similar to the equipment is captured in the background of the equipment.
- an image of the vehicle surroundings taken inside a tunnel may make the equipment difficult to see due to darkness, or the inner wall of the tunnel captured in the background of the equipment may resemble the equipment, making detection by the detection unit 13 more difficult.
- low standards refer to lenient conditions for satisfying the standards.
- the more difficult it is to detect equipment the more lenient the conditions under which the equipment is more easily detected by the detection unit 13.
- the less difficult it is to detect equipment the more strict the conditions under which the equipment is more difficult to detect by the detection unit 13.
- the detection unit 13 sets high standards for detecting the equipment, thereby reducing overdetection, in which subjects that are not equipment are detected as equipment.
- the detection unit 13 sets low standards for detecting the equipment, thereby allowing overdetection while reducing overlooking of equipment.
- the detection unit 13 can reduce overdetection while overlooking of equipment overall.
- the detection criterion may be a threshold value for comparison with a certainty level indicating the likelihood that the equipment is included as a subject in the vehicle surroundings image. In this case, if the certainty level is equal to or greater than the criterion, the equipment is detected, and if the certainty level is lower than the criterion, the equipment is not detected. In other words, the lower the detection criterion, the higher the equipment detection rate, and although there is a possibility of an increase in overdetection, the number of missed detections is reduced.
- the memory unit 29 may store each environment that can be estimated (for example, inside a tunnel, not inside a tunnel) in association with the detection criterion.
- the detection unit 13 uses lower detection standards when the vehicle is inside a tunnel than when the vehicle is not inside a tunnel. In other words, if the estimation result supplied from the estimation unit 12 indicates that the vehicle surroundings image was taken inside a tunnel, the detection unit 13 detects the equipment using lower standards. On the other hand, if the estimation result supplied from the estimation unit 12 indicates that the vehicle surroundings image was taken outside a tunnel, the detection unit 13 detects the equipment using higher standards.
- the detection unit 13 receives an image of the vehicle's surroundings as input and detects the equipment using a region extraction model trained to output the area of the equipment detected by region extraction (e.g., PWC).
- the detection unit 13 receives an image of the vehicle's surroundings as input and detects the equipment using an object detection model trained to output the equipment detected by object detection (e.g., SSD (Single Shot Multibox Detector)).
- object detection model trained to output the equipment detected by object detection
- the detection unit 13 detects the equipment depending on whether the certainty level output from the object detection model exceeds a reference level. For example, when the estimation result supplied from the estimation unit 12 indicates that the vehicle surroundings image was taken inside a tunnel, the detection unit 13 detects the equipment depending on whether the certainty level output from the object detection model is higher than a first threshold. On the other hand, when the estimation result supplied from the estimation unit 12 indicates that the vehicle surroundings image was taken outside a tunnel, the detection unit 13 detects the equipment depending on whether the certainty level output from the object detection model is higher than a second threshold that is higher than the first threshold.
- the detection unit 13 detects the equipment detected by the object detection model as equipment included in the vehicle surroundings image.
- the detection unit 13 does not detect the equipment detected by the object detection model as equipment included in the vehicle surroundings image.
- the detection unit 13 does not detect the equipment detected by the object detection model as equipment included in the vehicle surroundings image.
- the detection unit 13 detects the equipment detected by the object detection model as equipment included in the vehicle surroundings image.
- the image connection unit 21 connects images.
- the image connection unit 21 connects a plurality of vehicle surroundings images stored in the storage unit 29.
- the image connection unit 21 stores the connected vehicle surroundings images in the storage unit 29.
- the image linking unit 21 acquires multiple vehicle surroundings images captured by camera CA1 from the storage unit 29. Next, the image linking unit 21 sorts the acquired multiple vehicle surroundings images according to the date and time of capture. The image linking unit 21 then links the sorted multiple vehicle surroundings images so that the equipment included as subjects in each of the multiple vehicle surroundings images is connected, thereby generating a linked vehicle surroundings image. The image linking unit 21 performs similar processing on the multiple vehicle surroundings images captured by the other cameras CA2 to CA6, respectively, to generate a linked vehicle surroundings image.
- the analysis unit 22 analyzes the state of the equipment. As an example, the analysis unit 22 analyzes the state of the equipment using a quality determination model that receives an equipment image as input and outputs information indicating whether the state of the equipment included as a subject in the equipment image is poor and the degree of certainty of the information.
- the analysis unit 22 uses parameters according to the environment estimated by the estimation unit 12 to analyze the state of the equipment by referring to an equipment image acquired from a vehicle surroundings image, the equipment image including the equipment included as a subject in the vehicle surroundings image.
- the parameter may be a criterion for determining that equipment is defective.
- the criterion for determining that equipment is defective may be a threshold value for comparison with a certainty level indicating the likelihood that the equipment is defective. In this case, if the certainty level is equal to or greater than the criterion, the equipment is determined to be defective, and if the certainty level is lower than the criterion, the equipment is determined to be not defective (i.e., good).
- the memory unit 29 may store each environment that can be estimated (for example, inside a tunnel, not inside a tunnel) in association with the criterion for determining that equipment is defective.
- the analysis unit 22 determines whether the equipment is defective using a lower standard as the difficulty of determining whether it is defective increases depending on the environment at the time of photographing. For example, when analyzing equipment included as a subject in an equipment image in which the estimation unit 12 has estimated that the environment at the time of photographing was inside a tunnel, the analysis unit 22 uses the third threshold as the standard for determining that the equipment is defective. On the other hand, when analyzing equipment included as a subject in an equipment image in which the estimation unit 12 has estimated that the environment at the time of photographing was outside a tunnel, the analysis unit 22 uses a fourth threshold, which is higher than the third threshold, as the standard for determining that the equipment is defective.
- the analysis unit 22 uses the above-mentioned pass/fail judgment model.
- this configuration we will assume that an equipment image in which the estimation unit 12 estimates that the environment at the time of shooting was inside a tunnel is input to the pass/fail judgment model.
- the analysis unit 22 if the confidence level output from the pass/fail judgment model is higher than the third threshold, the analysis unit 22 outputs the information output from the pass/fail judgment model indicating whether the condition of the equipment is poor or not as the analysis result.
- the confidence level output from the pass/fail judgment model is lower than the third threshold, the analysis unit 22 outputs an analysis result indicating that pass/fail judgment is impossible.
- the analysis unit 22 outputs the information output from the quality determination model indicating whether the condition of the equipment is poor or not as the analysis result. On the other hand, if the confidence level output from the quality determination model is lower than the fourth threshold, the analysis unit 22 outputs an analysis result indicating that quality determination is impossible.
- the analysis unit 22 sets higher standards for determining that the equipment is defective, thereby reducing over-detection, in which equipment that is not defective is determined to be defective.
- the analysis unit 22 sets lower standards for determining that the equipment is defective, thereby allowing over-detection while reducing the number of times that equipment defects are overlooked. Furthermore, by limiting the range in which over-detection is allowed to the inside of the tunnel, it is possible to suppress over-detection overall while reducing the number of times that defects are overlooked.
- the third threshold and the fourth threshold differ depending on the equipment and its condition.
- the analysis unit 22 can appropriately analyze the condition for each piece of equipment and each condition of the equipment.
- Flow of information processing method S2 The flow of the information processing method S2 according to this exemplary embodiment will be described with reference to Fig. 7.
- Fig. 7 is a flow chart showing the flow of the information processing method S2 according to this exemplary embodiment.
- step S21 the acquisition unit 11 acquires the vehicle surroundings images captured by the cameras CA1 to CA6 and stores the acquired vehicle surroundings images in the storage unit 29.
- Step S22 the image connection unit 21 acquires a plurality of vehicle surroundings images stored in the storage unit 29.
- the image connection unit 21 also connects the acquired plurality of vehicle surroundings images.
- the image connection unit 21 stores the connected vehicle surroundings images in the storage unit 29.
- Step S23 The estimation unit 12 acquires the post-coupling vehicle surroundings image stored in the storage unit 29.
- the estimation unit 12 estimates whether the environment at the time of image capture was inside a tunnel from the post-coupling vehicle surroundings image.
- the processing in step S23 will be described with reference to Fig. 8.
- Fig. 8 is a diagram showing an example of the processing by the estimation unit 12 according to this exemplary embodiment.
- the estimation unit 12 acquires the concatenated vehicle surroundings image c_vp.
- the estimation unit 12 divides the concatenated vehicle surroundings image c_vp into multiple split images (split image dp1, split image dp2) along a direction corresponding to the traveling direction of the railway vehicle.
- the estimation unit 12 similarly divides the right side of split image dp2 into multiple split images.
- the estimation unit 12 may divide the concatenated vehicle surroundings image c_vp into multiple split images so that at least some areas overlap.
- the estimation unit 12 cuts out a partial image from the divided image.
- the estimation unit 12 is configured to cut out a partial image that includes at least one piece of equipment as a subject, based on the angles at which cameras CA1 to CA6 take pictures, the position of the equipment, etc. For example, as shown in Figure 8, a partial image tp1 that includes a trolley wire as a subject is cut out from divided image dp1.
- the estimation unit 12 then estimates, for each partial image, whether the environment at the time of shooting was inside a tunnel.
- the method by which the estimation unit estimates whether the environment at the time of shooting was inside a tunnel is as described above.
- the estimation unit 12 supplies the partial image and the estimation results to the detection unit 13.
- the estimation unit 12 may correct the environment at the time of shooting for each partial image based on the order of the environments at the time of shooting estimated for each partial image. For example, the estimation unit 12 assumes that a sequence of N or more partial images estimated to be a first environment, a sequence of n or less partial images estimated to be a second environment, and a sequence of N or more partial images estimated to be the first environment are arranged in this order. n is an integer equal to or greater than 1, and N is an integer greater than n.
- the first environment is, for example, "inside a tunnel," and the second environment is, for example, "outside a tunnel.”
- the estimation unit 12 may correct the estimated environment at the time of shooting for each of the n or fewer partial images that were estimated to be the second environment to the first environment. For example, in Figure 8, consider a case where the environment at the time of shooting of one partial image tp10 is estimated to be outside the tunnel, and the environments at the time of shooting of the two adjacent partial images (partial images tp8-tp9, tp11-tp12) are estimated to be inside the tunnel. In this case, since the estimation result that only partial image tp10 was outside the tunnel may be incorrect, the estimation unit 12 may correct the environment at the time of shooting of partial image tp10 and estimate it to be inside the tunnel.
- the estimation unit 12 corrects the environment when the certain partial image was photographed so that it is the same as the environment when the adjacent partial images were photographed. Therefore, the estimation unit 12 can improve the accuracy of estimating the environment when the partial image was photographed.
- the estimation unit 12 may use an estimation model that, when a partial image is input, outputs information indicating the area inside the tunnel in the partial image.
- the estimation unit 12 references the information output from the estimation model, and if the area inside the tunnel is equal to or greater than a predetermined value, estimates that the partial image was captured inside the tunnel.
- the estimation unit 12 can preferably detect facilities inside the tunnel in the facility detection process described below.
- the estimation unit 12 may be configured to reference the confidence level output from the estimation model described above. For example, when a partial image is input, if the confidence level for estimating that the image is inside a tunnel based on the estimation model is higher than the confidence level for estimating that the image is not inside a tunnel, the estimation unit 12 estimates that the partial image was taken inside the tunnel. On the other hand, if the confidence level for estimating that the image is inside a tunnel based on the estimation model is lower than the confidence level for estimating that the image is not inside a tunnel, the estimation unit 12 estimates that the partial image was taken outside the tunnel. Even with this configuration, the estimation unit 12 can effectively detect equipment inside a tunnel in the equipment detection process described below.
- the estimation unit 12 may estimate whether a partial image is an image taken inside a tunnel based on pixel values. For example, the estimation unit 12 calculates the percentage of pixels in the partial image that have pixel values lower than a predetermined value. If the calculated percentage is equal to or greater than a predetermined percentage (e.g., 30% or greater), the estimation unit 12 may estimate that the environment in which the partial image was taken is inside a tunnel. Even with this configuration, the estimation unit 12 can preferably detect facilities inside a tunnel in the facility detection process described below.
- a predetermined percentage e.g. 30% or greater
- Step S24 the detection unit 13 refers to the estimation result supplied from the estimation unit 12 in step S23 and determines whether the environment in which the partial image supplied from the estimation unit 12 was photographed was estimated to be inside a tunnel.
- Step S25 If it is estimated in step S24 that the subject is inside a tunnel (step S24: YES), in step S25 the detection unit 13 detects equipment included as a subject from the partial image using a low criterion. The detection unit 13 supplies the equipment image including the detected equipment and the estimation result supplied from the estimation unit 12 to the analysis unit 22.
- Step S26 If it is estimated in step S24 that the subject is not inside a tunnel (step S25: NO), the detection unit 13 detects equipment included as a subject from the partial image using a high standard in step S26. The detection unit 13 supplies the equipment image including the detected equipment and the estimation result supplied from the estimation unit 12 to the analysis unit 22.
- step S27 the analysis unit 22 analyzes the state of the equipment by referring to the equipment image, using the parameters according to the environment estimated by the estimation unit 12.
- the information processing device 2 estimates whether the environment at the time the vehicle surroundings image was captured is inside a tunnel, and detects equipment using lower criteria as the difficulty of detection increases depending on whether the environment is inside a tunnel or not.
- the information processing device 2 detects equipment included as subjects in images of the vehicle's surroundings taken inside a tunnel using low standards, thereby effectively preventing equipment included as subjects in images of the vehicle's surroundings taken inside a tunnel from being overlooked.
- the information processing device 2 detects equipment using high standards. As a result, the information processing device 2 can effectively prevent overdetection of subjects other than equipment as equipment.
- Some or all of the functions of the information processing devices 1 and 2 may be realized by hardware such as an integrated circuit (IC chip), or by software.
- information processing devices 1 and 2 are realized, for example, by a computer that executes program instructions, which are software that realizes each function.
- a computer that executes program instructions, which are software that realizes each function.
- An example of such a computer (hereinafter referred to as computer C) is shown in Figure 9.
- Computer C has at least one processor C1 and at least one memory C2.
- Memory C2 stores program P for operating computer C as information processing devices 1 and 2.
- processor C1 reads and executes program P from memory C2, thereby realizing each function of information processing devices 1 and 2.
- the processor C1 may be, for example, a CPU (Central Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), MPU (Micro Processing Unit), FPU (Floating point number Processing Unit), PPU (Physics Processing Unit), TPU (Tensor Processing Unit), quantum processor, microcontroller, or a combination of these.
- the memory C2 may be, for example, a flash memory, HDD (Hard Disk Drive), SSD (Solid State Drive), or a combination of these.
- Computer C may further include RAM (Random Access Memory) for expanding program P during execution and for temporarily storing various data.
- Computer C may also include a communications interface for sending and receiving data to and from other devices.
- Computer C may also include an input/output interface for connecting input/output devices such as a keyboard, mouse, display, or printer.
- the program P can be recorded on a non-transitory, tangible recording medium M that can be read by the computer C.
- a recording medium M can be, for example, a tape, disk, card, semiconductor memory, or programmable logic circuit.
- the computer C can acquire the program P via such a recording medium M.
- the program P can also be transmitted via a transmission medium.
- a transmission medium can be, for example, a communications network or broadcast waves.
- the computer C can also acquire the program P via such a transmission medium.
- An information processing device including: an acquisition means for acquiring a vehicle surroundings image; an estimation means for estimating the environment at the time of photographing by referring to the vehicle surroundings image; and a detection means for detecting equipment included as a subject from the vehicle surroundings image using a lower criterion as the difficulty of detection according to the estimated environment increases.
- the information processing device described in Appendix 1 further includes an analysis means for analyzing the state of the equipment by referring to an equipment image obtained from the vehicle surroundings image, the equipment image including the equipment included as a subject in the vehicle surroundings image, using parameters corresponding to the estimated environment.
- Appendix 3 The information processing device described in Appendix 1 or 2, wherein the estimation means estimates whether the environment at the time of shooting is inside a tunnel or not, and the detection means uses a lower standard for the detection when the environment is inside a tunnel than when the environment is not inside a tunnel.
- Appendix 4 The information processing device described in any of Appendices 1 to 3, wherein the estimation means divides the vehicle surroundings image into a plurality of partial images along a direction corresponding to the vehicle's traveling direction, and corrects the environment at the time of shooting for each partial image based on the order of the environment at the time of shooting estimated for each partial image.
- An information processing method including an information processing device acquiring a vehicle surroundings image, estimating the environment at the time of photographing by referring to the vehicle surroundings image, and detecting equipment included as a subject from the vehicle surroundings image using lower criteria as the difficulty of detection according to the estimated environment increases.
- the information processing method described in Appendix 5 further includes the information processing device analyzing the state of the equipment by referring to an equipment image obtained from the vehicle surroundings image, the equipment image including the equipment included as a subject in the vehicle surroundings image, using parameters corresponding to the estimated environment.
- Appendix 7 A program that causes a computer to function as an information processing device, the program causing the computer to function as an acquisition means that acquires an image of the vehicle's surroundings, an estimation means that estimates the environment at the time of shooting by referring to the image of the vehicle's surroundings, and a detection means that detects equipment included as a subject from the image of the vehicle's surroundings using lower criteria as the difficulty of detection increases according to the estimated environment.
- Appendix 8 The program described in Appendix 7 further causes the computer to function as an analysis means for analyzing the state of equipment by referring to an equipment image obtained from the vehicle surroundings image, the equipment image including equipment that is included as a subject in the vehicle surroundings image, using parameters according to the estimated environment.
- An information processing device comprising at least one processor, which executes an acquisition process for acquiring a vehicle surroundings image, an estimation process for estimating the environment at the time of image capture by referencing the vehicle surroundings image, and a detection process for detecting equipment included as a subject in the vehicle surroundings image using lower criteria as the difficulty of detection increases according to the estimated environment.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
Abstract
Description
本発明は、車両の周辺の設備を撮影した画像を用いる情報処理装置、情報処理方法、およびプログラムに関する。 The present invention relates to an information processing device, information processing method, and program that uses images of facilities around a vehicle.
車両の周辺の設備を撮影した画像から当該設備を検出する技術が知られている。 Technology is known that detects equipment around a vehicle from images of the equipment.
特許文献1には、鉄道車両に配置された2台のラインセンサカメラから出力されたラインセンサ画像を用いて、架線金具の検出を行う架線金具検出装置が開示されている。ラインセンサ画像は、ラインセンサまたは対象物を移動させながら連続的にライン状に撮像したライン画像を合成することにより生成される。当該架線金具検出装置は、ラインセンサ画像を構成する各ライン画像に対して昼夜判定処理を行う。また、当該架線金具検出装置は、夜であると判定されたライン画像に対して、閾値以上の輝度値が一定ライン数連続した領域の輝度を反転させることにより、架線や架線金具を検出する。 Patent Document 1 discloses an overhead line fitting detection device that detects overhead line fittings using line sensor images output from two line sensor cameras installed on a railway vehicle. The line sensor image is generated by combining line images captured continuously in a line while the line sensor or the object is moving. The overhead line fitting detection device performs day/night determination processing on each line image that makes up the line sensor image. Furthermore, the overhead line fitting detection device detects overhead wires and overhead line fittings by inverting the brightness of areas where a certain number of consecutive lines have a brightness value above a threshold for line images determined to be night.
特許文献1に記載の架線金具検出装置は、ラインセンサ画像において架線金具周辺が明るい場合にしか、当該架線金具を検出することができない。そのため、架線金具の周辺が明るくない環境(例えば、トンネル内、橋や道路の下)において撮影されたラインセンサ画像からは、架線金具を検出することができない。すなわち、当該架線金具検出装置では、架線金具を検出するための画像を撮影する環境が限定されてしまうという問題がある。そのため、様々な環境において撮影された各画像から、当該画像に被写体として含まれる設備を検出する技術が求められている。 The overhead line fitting detection device described in Patent Document 1 can only detect overhead line fittings if the area around the overhead line fitting is bright in the line sensor image. As a result, it is unable to detect overhead line fittings from line sensor images taken in environments where the area around the overhead line fitting is not bright (for example, inside a tunnel, under a bridge or road). In other words, the overhead line fitting detection device has the problem of being limited in the environments in which images for detecting overhead line fittings can be taken. Therefore, there is a demand for technology that can detect equipment included as subjects in images taken in a variety of environments.
本発明の一態様は、上記の問題に鑑みてなされたものであり、その目的の一例は、様々な環境において車両の周辺の設備を撮影した画像から当該設備を検出する精度を向上させる技術を提供することである。 One aspect of the present invention was made in consideration of the above-mentioned problems, and one of its objectives is to provide technology that improves the accuracy of detecting facilities around a vehicle from images of the facilities taken in various environments.
本発明の一側面に係る情報処理装置は、車両周辺画像を取得する取得手段と、前記車両周辺画像を参照して撮影時の環境を推定する推定手段と、前記車両周辺画像から被写体として含まれる設備を検出するための基準として、前記推定された環境に応じた検出の難易度が高いほど低い基準を用いて当該設備を検出する検出手段と、を備える。 An information processing device according to one aspect of the present invention comprises an acquisition means for acquiring a vehicle surroundings image, an estimation means for estimating the environment at the time of photographing by referring to the vehicle surroundings image, and a detection means for detecting equipment included as a subject in the vehicle surroundings image using lower criteria as the difficulty of detection increases according to the estimated environment.
本発明の一側面に係る情報処理方法は、情報処理装置が、車両周辺画像を取得することと、前記車両周辺画像を参照して撮影時の環境を推定することと、前記車両周辺画像から被写体として含まれる設備を検出するための基準として、前記推定された環境に応じた検出の難易度が高いほど低い基準を用いて当該設備を検出することと、を含む。 An information processing method according to one aspect of the present invention includes an information processing device acquiring a vehicle surroundings image, estimating the environment at the time of photographing by referring to the vehicle surroundings image, and detecting equipment included as a subject in the vehicle surroundings image using lower criteria as the difficulty of detection increases according to the estimated environment.
本発明の一側面に係るプログラムは、コンピュータを情報処理装置として機能させるプログラムであって、前記コンピュータを、車両周辺画像を取得する取得手段と、前記車両周辺画像を参照して撮影時の環境を推定する推定手段と、前記車両周辺画像から被写体として含まれる設備を検出するための基準として、前記推定された環境に応じた検出の難易度が高いほど低い基準を用いて当該設備を検出する検出手段と、として機能させる。 A program according to one aspect of the present invention causes a computer to function as an information processing device, and causes the computer to function as: an acquisition means for acquiring a vehicle surroundings image; an estimation means for estimating the environment at the time of photographing by referring to the vehicle surroundings image; and a detection means for detecting equipment included as a subject in the vehicle surroundings image using lower criteria as the difficulty of detection increases according to the estimated environment.
本発明の一態様によれば、様々な環境において車両の周辺の設備を撮影した画像から当該設備を検出する精度を向上させることができる。 One aspect of the present invention makes it possible to improve the accuracy of detecting facilities around a vehicle from images of the facilities taken in various environments.
〔例示的実施形態1〕
本発明の第1の例示的実施形態について、図面を参照して詳細に説明する。本例示的実施形態は、後述する例示的実施形態の基本となる形態である。
[Example Embodiment 1]
A first exemplary embodiment of the present invention will be described in detail with reference to the drawings. This exemplary embodiment is a basic form of the exemplary embodiments described below.
(情報処理装置1の構成)
本例示的実施形態に係る情報処理装置1の構成について、図1を参照して説明する。図1は、本例示的実施形態に係る情報処理装置1の構成を示すブロック図である。
(Configuration of information processing device 1)
The configuration of an information processing device 1 according to this exemplary embodiment will be described with reference to Fig. 1. Fig. 1 is a block diagram showing the configuration of an information processing device 1 according to this exemplary embodiment.
情報処理装置1は、図1に示すように、取得部11、推定部12、および検出部13を備えている。取得部11、推定部12、および検出部13は、それぞれ本例示的実施形態において、取得手段、推定手段、および検出手段を実現する構成である。 As shown in FIG. 1, the information processing device 1 includes an acquisition unit 11, an estimation unit 12, and a detection unit 13. In this exemplary embodiment, the acquisition unit 11, the estimation unit 12, and the detection unit 13 are configured to realize an acquisition means, an estimation means, and a detection means, respectively.
取得部11は、車両周辺画像を取得する。取得部11は、取得した車両周辺画像を推定部12に供給する。 The acquisition unit 11 acquires an image of the vehicle's surroundings. The acquisition unit 11 supplies the acquired image of the vehicle's surroundings to the estimation unit 12.
推定部12は、取得部11から供給された車両周辺画像を参照して撮影時の環境を推定する。推定部12は、車両周辺画像および推定結果を、検出部13に供給する。 The estimation unit 12 estimates the environment at the time of shooting by referring to the vehicle surroundings image supplied from the acquisition unit 11. The estimation unit 12 supplies the vehicle surroundings image and the estimation result to the detection unit 13.
検出部13は、推定部12から供給された車両周辺画像から被写体として含まれる設備を検出するための基準として、推定部12によって推定された環境に応じた検出の難易度が高いほど低い基準を用いて当該設備を検出する。 The detection unit 13 uses lower criteria to detect equipment included as a subject in the vehicle surroundings image supplied from the estimation unit 12, and detects the equipment as the detection difficulty increases according to the environment estimated by the estimation unit 12.
以上のように、本例示的実施形態に係る情報処理装置1においては、車両周辺画像を取得する取得部11と、取得部11から供給された車両周辺画像を参照して撮影時の環境を推定する推定部12と、推定部12から供給された車両周辺画像から被写体として含まれる設備を検出するための基準として、推定部12によって推定された環境に応じた検出の難易度が高いほど低い基準を用いて当該設備を検出する検出部13とを備える構成が採用されている。 As described above, the information processing device 1 according to this exemplary embodiment is configured to include an acquisition unit 11 that acquires vehicle surroundings images, an estimation unit 12 that estimates the environment at the time of shooting by referring to the vehicle surroundings images supplied from the acquisition unit 11, and a detection unit 13 that detects equipment included as a subject from the vehicle surroundings images supplied from the estimation unit 12 using lower criteria that correspond to higher detection difficulty in accordance with the environment estimated by the estimation unit 12.
このため、本例示的実施形態に係る情報処理装置1によれば、様々な環境において車両の周辺の設備を撮影した画像から当該設備を検出する精度を向上させるという効果が得られる。 As a result, the information processing device 1 according to this exemplary embodiment has the effect of improving the accuracy of detecting facilities around a vehicle from images of the facilities taken in various environments.
(情報処理方法S1の流れ)
本例示的実施形態に係る情報処理方法S1の流れについて、図2を参照して説明する。図2は、本例示的実施形態に係る情報処理方法S1の流れを示すフロー図である。
(Flow of information processing method S1)
The flow of the information processing method S1 according to this exemplary embodiment will be described with reference to Fig. 2. Fig. 2 is a flow diagram showing the flow of the information processing method S1 according to this exemplary embodiment.
(ステップS11)
ステップS11において、取得部11は、車両周辺画像を取得する。取得部11は、取得した車両周辺画像を推定部12に供給する。
(Step S11)
In step S11, the acquisition unit 11 acquires a vehicle surroundings image and supplies the acquired vehicle surroundings image to the estimation unit 12.
(ステップS12)
ステップS12において、推定部12は、取得部11から供給された車両周辺画像を参照して撮影時の環境を推定する。推定部12は、車両周辺画像および推定結果を、検出部13に供給する。
(Step S12)
In step S12, the estimation unit 12 estimates the environment at the time of shooting by referring to the vehicle surroundings image supplied from the acquisition unit 11. The estimation unit 12 supplies the vehicle surroundings image and the estimation result to the detection unit 13.
(ステップS13)
ステップS13において、検出部13は、推定部12から供給された車両周辺画像から被写体として含まれる設備を検出するための基準として、推定部12によって推定された環境に応じた検出の難易度が高いほど低い基準を用いて当該設備を検出する。
(Step S13)
In step S13, the detection unit 13 detects equipment included as a subject from the vehicle surroundings image supplied from the estimation unit 12 using a lower criterion as the difficulty of detection increases according to the environment estimated by the estimation unit 12.
以上のように、本例示的実施形態に係る情報処理方法S1においては、取得部11が車両周辺画像を取得するステップS11と、推定部12が取得部11から供給された車両周辺画像を参照して撮影時の環境を推定するステップS12と、検出部13が、推定部12から供給された車両周辺画像から被写体として含まれる設備を検出するための基準として、推定部12によって推定された環境に応じた検出の難易度が高いほど低い基準を用いて当該設備を検出するステップS13と、を含む構成が採用されている。このため、本例示的実施形態に係る情報処理方法S1においては、上述した情報処理装置1と同様の効果が得られる。 As described above, the information processing method S1 according to this exemplary embodiment includes the following configuration: step S11 in which the acquisition unit 11 acquires a vehicle surroundings image; step S12 in which the estimation unit 12 estimates the environment at the time of image capture by referring to the vehicle surroundings image supplied from the acquisition unit 11; and step S13 in which the detection unit 13 detects equipment included as a subject from the vehicle surroundings image supplied from the estimation unit 12 using lower criteria as the difficulty of detection increases according to the environment estimated by the estimation unit 12. Therefore, the information processing method S1 according to this exemplary embodiment achieves the same effects as the information processing device 1 described above.
〔例示的実施形態2〕
本発明の第2の例示的実施形態について、図面を参照して詳細に説明する。なお、例示的実施形態1にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付し、その説明を適宜省略する。
Exemplary Embodiment 2
A second exemplary embodiment of the present invention will be described in detail with reference to the drawings. Note that components having the same functions as those described in the first exemplary embodiment are denoted by the same reference numerals, and their description will be omitted as appropriate.
(情報処理装置2の概要)
本例示的実施形態に係る情報処理装置2は、車両の周辺の設備の状態を分析する装置である。車両は特に限定されないが、本例示的実施形態では、情報処理装置2が鉄道車両の周辺の設備の状態を分析する場合について説明する。
(Overview of information processing device 2)
The information processing device 2 according to this exemplary embodiment is a device that analyzes the state of facilities around a vehicle. Although the vehicle is not particularly limited, this exemplary embodiment describes a case where the information processing device 2 analyzes the state of facilities around a railway vehicle.
鉄道車両の周辺の設備とは、鉄道車両を走行させるために、鉄道車両の周辺に設置された設備である。例えば、設備とは、鉄道車両に電力を供給するための設備である。設備の一例として、素線、トロリー線、ハンガ、イヤー、コネクタ、ボルト、およびがいしが挙げられる。 Peripheral equipment for railway vehicles refers to equipment installed around railway vehicles in order to allow the vehicles to run. For example, the equipment is equipment used to supply power to railway vehicles. Examples of equipment include wires, contact wires, hangers, ears, connectors, bolts, and insulators.
また、設備の状態とは、当該設備の外見から判断可能な状態である。例えば、設備の状態は、良好な状態、および不良な状態の何れかであってもよい。また、設備によって良好な状態、および不良な状態は異なっていてもよく、この場合、設備と状態とは関連付けて規定されてもよい。 Furthermore, the state of equipment is a state that can be determined from the appearance of the equipment. For example, the state of equipment may be either a good state or a bad state. Furthermore, what constitutes a good state and what constitutes a bad state may differ depending on the equipment, in which case the equipment and the state may be specified in association with each other.
設備と状態とを関連付けて規定した場合の一例について、図3を参照して説明する。図3は、本例示的実施形態における設備および状態の一例を示す表である。 An example of how equipment and status are associated and defined will be described with reference to Figure 3. Figure 3 is a table showing an example of equipment and status in this exemplary embodiment.
図3に示す表では、設備と状態とが関連付けられている。例えば、設備「Wイヤー」と、状態「CCズレ」および状態「ボルト脱落」とが関連付けられており、設備「プロテクタ」と状態「ボルト脱落」とが関連付けられている。 In the table shown in Figure 3, equipment and states are associated. For example, equipment "W Year" is associated with the states "CC Misalignment" and "Bolt Falling Off," and equipment "Protector" is associated with the state "Bolt Falling Off."
情報処理装置2は、図3の表に基づき、設備の状態が、当該設備に関連付けられている状態になっているか否かを分析する。一例として、情報処理装置2は、設備「Wイヤー」が、状態「CCズレ」になっているか、および設備「Wイヤー」が、状態「ボルト脱落」になっているかを分析する。他の例として、情報処理装置2は、設備「プロテクタ」が状態「ボルト脱落」になっているかを分析する。 Based on the table in Figure 3, the information processing device 2 analyzes whether the state of the equipment is in a state associated with that equipment. As one example, the information processing device 2 analyzes whether the equipment "W Year" is in the state "CC Misaligned" and whether the equipment "W Year" is in the state "Bolt Missing." As another example, the information processing device 2 analyzes whether the equipment "Protector" is in the state "Bolt Missing."
なお、図3の表における状態は、設備に不具合が発生している状態である。そのため、情報処理装置2は、設備が不良の状態であるか否かを分析する、とも言える。 Note that the status in the table in Figure 3 is a status in which a malfunction has occurred in the equipment. Therefore, it can also be said that the information processing device 2 analyzes whether or not the equipment is in a defective state.
また、情報処理装置2は、設備の状態を分析するために、鉄道車両の外側に露出した表面上に設置されたカメラによって撮影された画像であって、複数の設備を被写体として含む画像である車両周辺画像を取得する。当該車両周辺画像は、車両が走行中に撮影された画像であってもよい。外側に露出した表面は、例えば、鉄道車両の天面、底面、左右の側面、および前後の側面の一部または全部を含む。本例示的実施形態においてカメラが設置される面は、鉄道車両の天面上である例を中心に説明するが、これに限定されない。以降では、「鉄道車両の天面上」を単に「鉄道車両上」とも記載する。鉄道車両上に設置されたカメラおよび被写体となる設備について、図4を参照して説明する。図4は、本例示的実施形態における鉄道車両TRおよび設備の一例を示す概要図である。 Furthermore, in order to analyze the condition of the equipment, the information processing device 2 acquires vehicle surroundings images, which are images captured by cameras installed on surfaces exposed to the outside of the railway vehicle and which include multiple pieces of equipment as subjects. The vehicle surroundings images may be images captured while the vehicle is in motion. The surfaces exposed to the outside include, for example, the top surface, bottom surface, left and right sides, and some or all of the front and rear sides of the railway vehicle. In this exemplary embodiment, the surface on which the camera is installed will be described mainly as the top surface of the railway vehicle, but is not limited to this. Hereinafter, "top surface of the railway vehicle" will also be simply referred to as "on the railway vehicle." The cameras installed on the railway vehicle and the equipment that serves as the subject will be described with reference to Figure 4. Figure 4 is a schematic diagram showing an example of a railway vehicle TR and equipment in this exemplary embodiment.
図4に示すように、鉄道車両TRの車両上には、画角に含まれる設備を撮影し、撮影した画像を出力する複数のカメラ(カメラCA1~カメラCA6)が設置されている。複数のカメラの画角に含まれる範囲は、少なくとも一部が互いに異なることが望ましい。換言すると、各カメラの画角に含まれる範囲(以下、「撮影範囲」とも称する)は、他の少なくとも1つのカメラの画角に含まれる範囲の一部と重複していてもよいが、少なくとも一部が異なっていることが望ましい。 As shown in Figure 4, multiple cameras (cameras CA1 to CA6) are installed on the railway vehicle TR, capturing images of equipment within their angle of view and outputting the captured images. It is desirable that at least a portion of the ranges within the angle of view of the multiple cameras are different from each other. In other words, the range within the angle of view of each camera (hereinafter also referred to as the "capture range") may partially overlap with the range within the angle of view of at least one other camera, but it is desirable that at least a portion of the ranges are different.
複数のカメラの設置態様は特に限定されないが、一例として、図4に示すように、カメラCA1~カメラCA3の3台は、車両TRの進行方向から車両TRの正面を見た場合に、車両TR上の右側にそれぞれ異なる高さで設置される構成が挙げられる。また、カメラCA4~カメラCA6の3台も同様に、車両TRの進行方向から車両TRの正面を見た場合に、車両TR上の左側にそれぞれ異なる高さで設置される構成が挙げられる。 The installation manner of the multiple cameras is not particularly limited, but as an example, as shown in Figure 4, three cameras CA1 to CA3 are installed at different heights on the right side of the vehicle TR when viewing the front of the vehicle TR from the direction of travel of the vehicle TR. Similarly, three cameras CA4 to CA6 are installed at different heights on the left side of the vehicle TR when viewing the front of the vehicle TR from the direction of travel of the vehicle TR.
また、カメラCA1~カメラCA6が設備を撮影するタイミングは特に限定されない。一例として、所定の間隔毎にカメラCA1~カメラCA6がそれぞれ設備を撮影する構成が挙げられる。他の例として、所定の間隔毎に、複数のカメラが同期して設備を撮影する構成が挙げられる。当該構成の一例として、カメラCA1およびカメラCA4が同期して設備を撮影し、カメラCA2およびカメラCA5が同期して設備を撮影し、カメラCA3およびカメラCA6が同期して設備を撮影する構成が挙げられる。ただし、複数のカメラが同期して撮影した画像は、処理の遅延等により、必ずしも完全に同一の時点で撮影されるとは限られない。また、一例として、図4に示すように、カメラCA1~カメラCA6は、設備であるハンガHA、イヤーEA、およびトロリー線TWを被写体として撮影する。 Furthermore, there are no particular limitations on the timing at which cameras CA1 to CA6 photograph the equipment. One example is a configuration in which cameras CA1 to CA6 each photograph the equipment at a predetermined interval. Another example is a configuration in which multiple cameras photograph the equipment synchronously at predetermined intervals. One example of such a configuration is a configuration in which cameras CA1 and CA4 photograph the equipment synchronously, cameras CA2 and CA5 photograph the equipment synchronously, and cameras CA3 and CA6 photograph the equipment synchronously. However, images photographed by multiple cameras synchronously are not necessarily taken at exactly the same time due to processing delays, etc. Also, as one example, as shown in Figure 4, cameras CA1 to CA6 photograph the equipment, which are hangers HA, ears EA, and trolley wire TW, as their subjects.
情報処理装置2は、カメラCA1~カメラCA6が撮影した車両周辺画像を取得する。情報処理装置2が車両周辺画像を取得する構成は、特に限定されない。一例として、カメラCA1~カメラCA6が撮影した車両周辺画像が記録媒体に保存され、情報処理装置2が当該記録媒体から車両周辺画像を取得する構成が挙げられる。他の構成として、情報処理装置2とカメラCA1~カメラCA6とがネットワークを介して通信可能に接続され、情報処理装置2が当該ネットワークを介して車両周辺画像を取得する構成が挙げられる。 Information processing device 2 acquires vehicle surroundings images captured by cameras CA1 to CA6. The configuration in which information processing device 2 acquires vehicle surroundings images is not particularly limited. One example is a configuration in which vehicle surroundings images captured by cameras CA1 to CA6 are stored on a recording medium, and information processing device 2 acquires vehicle surroundings images from the recording medium. Another configuration is a configuration in which information processing device 2 and cameras CA1 to CA6 are connected to each other so as to be able to communicate via a network, and information processing device 2 acquires vehicle surroundings images via the network.
(情報処理装置2の構成)
情報処理装置2の構成について、図5を参照して説明する。図5は、本例示的実施形態に係る情報処理装置2の構成を示すブロック図である。
(Configuration of information processing device 2)
The configuration of the information processing device 2 will be described with reference to Fig. 5. Fig. 5 is a block diagram showing the configuration of the information processing device 2 according to this exemplary embodiment.
情報処理装置2は、図5に示すように、制御部20、入出力部27、通信部28、および記憶部29を備えている。 As shown in FIG. 5, the information processing device 2 includes a control unit 20, an input/output unit 27, a communication unit 28, and a memory unit 29.
入出力部27は、ユーザの入力を受け付けたり、データを出力したりするインタフェースである。一例として、入出力部27は、受け付けたユーザの入力を示す情報を、制御部20に供給したり、制御部20から供給された情報を出力したりする。入出力部27の例として、キーボード、マウス、タッチパッド、マイク、液晶ディスプレイが挙げられるが、これらに限定されない。 The input/output unit 27 is an interface that accepts user input and outputs data. For example, the input/output unit 27 supplies information indicating the accepted user input to the control unit 20, and outputs information supplied from the control unit 20. Examples of the input/output unit 27 include, but are not limited to, a keyboard, a mouse, a touchpad, a microphone, and an LCD display.
通信部28は、ネットワークを介してデータを送受信するインタフェースである。一例として、通信部28は、制御部20から供給されたデータを他の装置に送信したり、他の装置から受信したデータを制御部20に供給したりする。通信部28の例として、イーサネット(登録商標)、Wi-Fi(登録商標)、モバイルデータ通信網の無線通信規格といった各種通信規格における通信チップ、およびUSB準拠のコネクタが挙げられるが、これらに限定されない。 The communication unit 28 is an interface that transmits and receives data over a network. For example, the communication unit 28 transmits data supplied from the control unit 20 to other devices, and supplies data received from other devices to the control unit 20. Examples of the communication unit 28 include, but are not limited to, communication chips for various communication standards such as Ethernet (registered trademark), Wi-Fi (registered trademark), and wireless communication standards for mobile data communication networks, as well as USB-compliant connectors.
記憶部29には、制御部20が参照するデータが保存されている。記憶部29に保存されているデータの一例として、車両周辺画像、設備画像、および分析結果が挙げられるが、これらに限定されない。記憶部29の例として、フラッシュメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)、または、これらの組み合わせが挙げられるが、これらに限定されない。 The memory unit 29 stores data referenced by the control unit 20. Examples of data stored in the memory unit 29 include, but are not limited to, images of the vehicle's surroundings, images of equipment, and analysis results. Examples of the memory unit 29 include, but are not limited to, flash memory, HDD (Hard Disk Drive), SSD (Solid State Drive), or a combination of these.
(制御部20の機能)
制御部20は、情報処理装置2が備える各構成要素を制御する。また、制御部20は、図5に示すように、取得部11、推定部12、検出部13、画像連結部21、および分析部22を備えている。取得部11、推定部12、検出部13、および分析部22は、それぞれ本例示的実施形態において、取得手段、推定手段、検出手段、および分析手段を実現する構成である。
(Functions of the control unit 20)
The control unit 20 controls each component included in the information processing device 2. As shown in Fig. 5 , the control unit 20 also includes an acquisition unit 11, an estimation unit 12, a detection unit 13, an image connection unit 21, and an analysis unit 22. In this exemplary embodiment, the acquisition unit 11, the estimation unit 12, the detection unit 13, and the analysis unit 22 are components that respectively realize an acquisition means, an estimation means, a detection means, and an analysis means.
(取得部11)
取得部11は、入出力部27または通信部28から供給されたデータを取得する。また、取得部11は、記憶部29に保存されているデータを取得する。一例として、取得部11は、複数台のカメラであるカメラCA1~カメラCA6から、入出力部27または通信部28を介して車両周辺画像を取得する。また、一例として、取得部11は、記憶部29に保存されている、カメラCA1~カメラCA6によって撮影された車両周辺画像を取得してもよい。
(Acquisition unit 11)
The acquisition unit 11 acquires data supplied from the input/output unit 27 or the communication unit 28. The acquisition unit 11 also acquires data stored in the storage unit 29. As an example, the acquisition unit 11 acquires vehicle surroundings images from a plurality of cameras, cameras CA1 to CA6, via the input/output unit 27 or the communication unit 28. As another example, the acquisition unit 11 may acquire vehicle surroundings images captured by cameras CA1 to CA6 and stored in the storage unit 29.
(推定部12)
推定部12は、車両周辺画像を参照して撮影時の環境を推定する。推定部12が推定する撮影時の環境は限定されないが、一例として、推定部12は、撮影時の環境として、所定の環境であるか否かを推定する。例えば、所定の環境として「トンネル内」、「橋の下」、「道路の下」、「雨が降っている」等が挙げられる。また、他の例として、推定部12は、撮影時の環境が、2以上の環境(例えば、トンネル内、橋の下、および、それ以外)の何れであるかを推定する構成が挙げられる。本例示的実施形態では、推定部12は、撮影時の環境として、トンネル内であるか否かを推定するものとする。推定部12は、車両周辺画像および推定結果を、検出部13に供給する。
(Estimation unit 12)
The estimation unit 12 estimates the environment at the time of image capture by referring to the vehicle surroundings image. The environment at the time of image capture estimated by the estimation unit 12 is not limited, but as an example, the estimation unit 12 estimates whether the environment at the time of image capture is a predetermined environment. Examples of the predetermined environment include "inside a tunnel,""under a bridge,""under a road," and "raining." As another example, the estimation unit 12 is configured to estimate which of two or more environments (e.g., inside a tunnel, under a bridge, and others) the environment at the time of image capture is. In this exemplary embodiment, the estimation unit 12 estimates whether the environment at the time of image capture is inside a tunnel. The estimation unit 12 supplies the vehicle surroundings image and the estimation result to the detection unit 13.
推定部12が、車両周辺画像の撮影時の環境がトンネル内であるか否かを推定する方法は限定されない。一例として、推定部12は、機械学習によって学習された推定モデルを用いて、車両周辺画像の撮影時の環境がトンネル内であるか否かを推定してもよい。 The method by which the estimation unit 12 estimates whether the environment at the time the vehicle surroundings image was captured is inside a tunnel is not limited. As an example, the estimation unit 12 may estimate whether the environment at the time the vehicle surroundings image was captured is inside a tunnel using an estimation model learned by machine learning.
推定モデルを学習させる構成について、図6を参照して説明する。図6は、本例示的実施形態における推定モデルMD1を学習させる処理を示す図である。推定モデルは、車両周辺画像を入力として、当該車両周辺画像がトンネル内で撮影された画像であるか否かを推定した推定結果を出力する。図6に示す学習処理は、他の情報処理装置によって実行されてもよいし、情報処理装置2の制御部20によって実行されてもよい。 The configuration for training the estimation model will be described with reference to FIG. 6. FIG. 6 is a diagram showing the process for training the estimation model MD1 in this exemplary embodiment. The estimation model receives an image of the vehicle's surroundings as input and outputs an estimation result indicating whether the image of the vehicle's surroundings was taken inside a tunnel. The learning process shown in FIG. 6 may be executed by another information processing device, or by the control unit 20 of the information processing device 2.
図6に示すように、まず、車両周辺画像vpと、車両周辺画像vpの撮影時の環境がトンネル内であるか否かを示す環境情報eiとが関連付けられる。環境情報eiは、換言すると、正解ラベルである。次に、車両周辺画像vpの切り出し、画像サイズの縮小、および複数の車両周辺画像vp間のコントラストを合わせるためのコントラスト補正が実行され(例えば、CLAHE(Contrast Limited Adaptive Histogram Equalization)を実施する)、画像処理後の車両周辺画像p_vpが生成される。そして、画像処理後の車両周辺画像p_vpと、環境情報eiとを組とした学習データセットを用いて、推定モデルMD1が学習される。具体的には、推定モデルMD1に対して、車両周辺画像p_vpが入力されると、正解ラベルである、車両周辺画像p_vpがトンネル内で撮影された画像であるか否かを示す環境情報eiが出力されるように、学習が行われる。 As shown in Figure 6, first, a vehicle surroundings image vp is associated with environmental information ei, which indicates whether the environment when the vehicle surroundings image vp was captured was inside a tunnel. In other words, the environmental information ei is the correct label. Next, the vehicle surroundings image vp is cropped, the image size is reduced, and contrast correction is performed to match the contrast between multiple vehicle surroundings images vp (for example, by performing CLAHE (Contrast Limited Adaptive Histogram Equalization)), generating a processed vehicle surroundings image p_vp. An estimation model MD1 is then trained using a training dataset that pairs the processed vehicle surroundings image p_vp with the environmental information ei. Specifically, when a vehicle surroundings image p_vp is input to the estimation model MD1, training is performed so that environmental information ei, which is the correct label and indicates whether the vehicle surroundings image p_vp was captured inside a tunnel, is output.
推定部12が撮影時の環境がトンネル内であるか否かを推定する方法の他の方法として、車両周辺画像の画素値を参照する構成が挙げられる。一例として、推定部12は、車両周辺画像の各画素の輝度の平均値が所定の値より高ければ、当該車両周辺画像はトンネル外で撮影されたと推定し、車両周辺画像の各画素の輝度の平均値が所定の値以下であれば、当該車両周辺画像はトンネル内で撮影されたと推定する。ただし、推定部12が撮影時の環境を推定する手法は、上述した手法に限られない。 Another method by which the estimation unit 12 estimates whether the environment at the time of image capture is inside a tunnel is to refer to pixel values of the vehicle surroundings image. As an example, if the average brightness value of each pixel in the vehicle surroundings image is higher than a predetermined value, the estimation unit 12 estimates that the vehicle surroundings image was captured outside a tunnel, and if the average brightness value of each pixel in the vehicle surroundings image is equal to or lower than a predetermined value, the estimation unit 12 estimates that the vehicle surroundings image was captured inside a tunnel. However, the method by which the estimation unit 12 estimates the environment at the time of image capture is not limited to the above-mentioned method.
また、推定部12は、車両周辺画像を車両の走行方向に対応する方向に沿って複数の部分画像に分割し、分割後の各部分画像について、撮影時の環境がトンネル内であるか否かを推定してもよい。車両の走行方向に対応する方向は、車両の進行方向であってもよい。当該構成について、推定部12が実行する処理の具体例を後述する。 The estimation unit 12 may also divide the vehicle surroundings image into multiple partial images along a direction corresponding to the vehicle's traveling direction, and estimate whether the environment at the time of capture was inside a tunnel for each partial image after division. The direction corresponding to the vehicle's traveling direction may be the vehicle's forward direction. Specific examples of processing performed by the estimation unit 12 for this configuration will be described later.
(検出部13)
検出部13は、車両周辺画像から被写体として含まれる設備を検出するための基準として、推定部12から供給された推定結果が示す環境に応じた検出の難易度が高いほど低い基準を用いて設備を検出する。検出部13は、推定結果および検出した設備を含む設備画像を分析部22に供給する。1つの設備画像には、1または複数の設備が被写体として含まれる。
(Detection unit 13)
The detection unit 13 detects equipment as a subject from the vehicle surroundings image using a lower criterion as the detection difficulty increases according to the environment indicated by the estimation result supplied from the estimation unit 12. The detection unit 13 supplies the estimation result and an equipment image including the detected equipment to the analysis unit 22. One equipment image includes one or more pieces of equipment as subjects.
検出の難易度が高いとは、車両周辺画像において、設備が当該設備の周囲と区別し難い状況であることを指す。一例として、暗い状況において撮影された車両周辺画像、設備の背景に設備と似たような被写体が写っている場合が挙げられる。例えば、トンネル内において撮影された車両周辺画像は、暗いために設備が見え難かったり、設備の背景に写ったトンネルの内壁が設備と似ていたりする場合があるため、検出部13による検出の難易度が高くなる。 High detection difficulty refers to a situation in which the equipment is difficult to distinguish from its surroundings in the vehicle surroundings image. One example is a situation in which the vehicle surroundings image is taken in dark conditions, and an object similar to the equipment is captured in the background of the equipment. For example, an image of the vehicle surroundings taken inside a tunnel may make the equipment difficult to see due to darkness, or the inner wall of the tunnel captured in the background of the equipment may resemble the equipment, making detection by the detection unit 13 more difficult.
また、低い基準とは、当該基準を満たすための条件が緩いことを指す。すなわち、検出部13は、設備を検出する難易度が高いほど、当該設備が検出され易い緩い条件を用いて、当該設備を検出する。一方、検出部13は、設備を検出する難易度が低いほど、当該設備が検出され難い厳しい条件を用いて、当該設備を検出する。 Furthermore, low standards refer to lenient conditions for satisfying the standards. In other words, the more difficult it is to detect equipment, the more lenient the conditions under which the equipment is more easily detected by the detection unit 13. On the other hand, the less difficult it is to detect equipment, the more strict the conditions under which the equipment is more difficult to detect by the detection unit 13.
当該構成により、検出の難易度が低い環境において撮影された車両周辺画像に被写体として含まれる設備に対して、検出部13は当該設備を検出するための基準を高くするので、設備ではない被写体とを設備であると検出する過検知を減らすことができる。一方、検出の難易度が高い環境において撮影された車両周辺画像に被写体として含まれる設備に対して、検出部13は当該設備を検出するための基準を低くするので、過検知を許容しつつ設備を見逃すことを減らすことができる。また、過検知を許容する範囲を、検出の難易度が高い環境に限定することで、検出部13は全体として過検知を抑えつつ設備の見逃しを低減できる。 With this configuration, for equipment included as a subject in vehicle surroundings images taken in environments where detection is low, the detection unit 13 sets high standards for detecting the equipment, thereby reducing overdetection, in which subjects that are not equipment are detected as equipment. On the other hand, for equipment included as a subject in vehicle surroundings images taken in environments where detection is high, the detection unit 13 sets low standards for detecting the equipment, thereby allowing overdetection while reducing overlooking of equipment. Furthermore, by limiting the range in which overdetection is allowed to only environments where detection is high, the detection unit 13 can reduce overdetection while overlooking of equipment overall.
検出するための基準は、車両周辺画像に設備が被写体として含まれることの確からしさを示す確信度と比較するための閾値であってもよい。この場合、確信度が基準以上であれば設備が検出され、確信度が基準より小さければ設備は検出されない。つまり、検出するための基準が低いほど設備の検出率があがり、過検出は増加する可能性があるが検出の見逃しが低減される。記憶部29には、推定され得る各環境(例えば、トンネル内である、トンネル内でない、のそれぞれ)と、検出するための基準とが関連付けられて記憶されていてもよい。 The detection criterion may be a threshold value for comparison with a certainty level indicating the likelihood that the equipment is included as a subject in the vehicle surroundings image. In this case, if the certainty level is equal to or greater than the criterion, the equipment is detected, and if the certainty level is lower than the criterion, the equipment is not detected. In other words, the lower the detection criterion, the higher the equipment detection rate, and although there is a possibility of an increase in overdetection, the number of missed detections is reduced. The memory unit 29 may store each environment that can be estimated (for example, inside a tunnel, not inside a tunnel) in association with the detection criterion.
検出部13は、検出するための基準として、トンネル内である場合にトンネル内でない場合より低い基準を用いる。換言すると、推定部12から供給された推定結果が、車両周辺画像はトンネル内で撮影されたことを示す場合、検出部13は、低い基準を用いて設備を検出する。一方、推定部12から供給された推定結果が、車両周辺画像はトンネル外で撮影されたことを示す場合、検出部13は、高い基準を用いて設備を検出する。 The detection unit 13 uses lower detection standards when the vehicle is inside a tunnel than when the vehicle is not inside a tunnel. In other words, if the estimation result supplied from the estimation unit 12 indicates that the vehicle surroundings image was taken inside a tunnel, the detection unit 13 detects the equipment using lower standards. On the other hand, if the estimation result supplied from the estimation unit 12 indicates that the vehicle surroundings image was taken outside a tunnel, the detection unit 13 detects the equipment using higher standards.
設備を検出する方法の一例として、検出部13は、車両周辺画像を入力として、領域抽出(例えば、PWC)によって検出した設備の領域を出力するように学習された領域抽出モデルを用いて、設備を検出する。他の例として、検出部13は、車両周辺画像を入力として、物体検知(例えば、SSD(Single Shot Multibox Detector))によって検出した設備を出力するように学習された物体検知モデルを用いて、設備を検出する。本例示的実施形態では、検出モデルとして、物体検知モデルを適用する例を中心に説明する。 As one example of a method for detecting equipment, the detection unit 13 receives an image of the vehicle's surroundings as input and detects the equipment using a region extraction model trained to output the area of the equipment detected by region extraction (e.g., PWC). As another example, the detection unit 13 receives an image of the vehicle's surroundings as input and detects the equipment using an object detection model trained to output the equipment detected by object detection (e.g., SSD (Single Shot Multibox Detector)). In this exemplary embodiment, an example in which an object detection model is applied as the detection model will be mainly described.
また、検出部13は、物体検知モデルを用いて設備を検出する場合、物体検知モデルから出力された確信度が基準を上回っているか否かに応じて、設備を検出する。例えば、検出部13は、推定部12から供給された推定結果が、車両周辺画像はトンネル内で撮影されたことを示す場合、物体検知モデルから出力された確信度が第1の閾値より高いか否かに応じて、設備を検出する。一方、検出部13は、推定部12から供給された推定結果が、車両周辺画像はトンネル外で撮影されたことを示す場合、物体検知モデルから出力された確信度が第1の閾値より高い第2の閾値より高いか否かに応じて、設備を検出する。 Furthermore, when detecting equipment using an object detection model, the detection unit 13 detects the equipment depending on whether the certainty level output from the object detection model exceeds a reference level. For example, when the estimation result supplied from the estimation unit 12 indicates that the vehicle surroundings image was taken inside a tunnel, the detection unit 13 detects the equipment depending on whether the certainty level output from the object detection model is higher than a first threshold. On the other hand, when the estimation result supplied from the estimation unit 12 indicates that the vehicle surroundings image was taken outside a tunnel, the detection unit 13 detects the equipment depending on whether the certainty level output from the object detection model is higher than a second threshold that is higher than the first threshold.
一例として、推定部12から供給された推定結果が、車両周辺画像はトンネル内で撮影されたことを示し、物体検知モデルから出力される確信度が第1の閾値より高い場合を想定する。この場合、検出部13は、物体検知モデルによって検出された設備を、車両周辺画像に含まれる設備として検出する。 As an example, assume that the estimation result supplied from the estimation unit 12 indicates that the vehicle surroundings image was taken inside a tunnel, and the confidence level output from the object detection model is higher than the first threshold. In this case, the detection unit 13 detects the equipment detected by the object detection model as equipment included in the vehicle surroundings image.
一方、推定部12から供給された推定結果が、車両周辺画像はトンネル内で撮影されたことを示し、物体検知モデルから出力される確信度が第1の閾値以下の場合を想定する。この場合、検出部13は、物体検知モデルによって検出された設備を、車両周辺画像に含まれる設備として検出しない。 On the other hand, assume that the estimation result supplied from the estimation unit 12 indicates that the vehicle surroundings image was taken inside a tunnel, and the confidence level output from the object detection model is equal to or less than the first threshold. In this case, the detection unit 13 does not detect the equipment detected by the object detection model as equipment included in the vehicle surroundings image.
他の例として、推定部12から供給された推定結果が、車両周辺画像はトンネル外で撮影されたことを示し、物体検知モデルから出力される確信度が、第1の閾値より高い第2の閾値より低い場合を想定する。この場合、検出部13は、物体検知モデルによって検出された設備を、車両周辺画像に含まれる設備として検出しない。 As another example, consider a case where the estimation result supplied from the estimation unit 12 indicates that the vehicle surroundings image was taken outside a tunnel, and the confidence level output from the object detection model is lower than a second threshold that is higher than the first threshold. In this case, the detection unit 13 does not detect the equipment detected by the object detection model as equipment included in the vehicle surroundings image.
一方、推定部12から供給された推定結果が、車両周辺画像はトンネル外で撮影されたことを示し、物体検知モデルから出力される確信度が第2の閾値より高い場合を想定する。この場合、検出部13は、物体検知モデルによって検出された設備を、車両周辺画像に含まれる設備として検出する。 On the other hand, assume that the estimation result supplied from the estimation unit 12 indicates that the vehicle surroundings image was taken outside the tunnel, and the confidence level output from the object detection model is higher than the second threshold. In this case, the detection unit 13 detects the equipment detected by the object detection model as equipment included in the vehicle surroundings image.
(画像連結部21)
画像連結部21は、画像を連結させる。一例として、画像連結部21は、記憶部29に保存されている複数の車両周辺画像を連結させる。画像連結部21は、連結後の車両周辺画像を、記憶部29に保存させる。
(Image connection unit 21)
The image connection unit 21 connects images. For example, the image connection unit 21 connects a plurality of vehicle surroundings images stored in the storage unit 29. The image connection unit 21 stores the connected vehicle surroundings images in the storage unit 29.
例えば、画像連結部21は、カメラCA1が撮影した複数の車両周辺画像を、記憶部29から取得する。次に、画像連結部21は、取得した複数の車両周辺画像を、撮影された日時に応じて並び替える。そして、画像連結部21は、並び替えた複数の車両周辺画像を、当該複数の車両周辺画像のそれぞれに被写体として含まれる設備が繋がるように連結させ、連結後の車両周辺画像を生成する。画像連結部21は、他のカメラCA2~カメラCA6がそれぞれ撮影した複数の車両周辺画像についても同様の処理を実行し、連結後の車両周辺画像を生成する。 For example, the image linking unit 21 acquires multiple vehicle surroundings images captured by camera CA1 from the storage unit 29. Next, the image linking unit 21 sorts the acquired multiple vehicle surroundings images according to the date and time of capture. The image linking unit 21 then links the sorted multiple vehicle surroundings images so that the equipment included as subjects in each of the multiple vehicle surroundings images is connected, thereby generating a linked vehicle surroundings image. The image linking unit 21 performs similar processing on the multiple vehicle surroundings images captured by the other cameras CA2 to CA6, respectively, to generate a linked vehicle surroundings image.
(分析部22)
分析部22は、設備の状態を分析する。一例として、分析部22は、設備画像を入力として、当該設備画像に被写体として含まれる設備の状態が不良であるか否かを示す情報およびその確信度を出力する良否判定モデルを用いて、設備の状態を分析する。
(Analysis Department 22)
The analysis unit 22 analyzes the state of the equipment. As an example, the analysis unit 22 analyzes the state of the equipment using a quality determination model that receives an equipment image as input and outputs information indicating whether the state of the equipment included as a subject in the equipment image is poor and the degree of certainty of the information.
他の例として、本例示的実施形態では、分析部22は、推定部12により推定された環境に応じたパラメータを用いて、車両周辺画像から取得された設備画像であって、当該車両周辺画像に被写体として含まれる設備を含む設備画像を参照して当該設備の状態を分析する。 As another example, in this exemplary embodiment, the analysis unit 22 uses parameters according to the environment estimated by the estimation unit 12 to analyze the state of the equipment by referring to an equipment image acquired from a vehicle surroundings image, the equipment image including the equipment included as a subject in the vehicle surroundings image.
当該構成において、パラメータは、設備が不良であると判定するための基準であってもよい。例えば、設備が不良であると判定するための基準は、当該設備が不良であることの確からしさを示す確信度と比較するための閾値であってもよい。この場合、確信度が基準以上であれば設備は不良であると判定され、確信度が基準より小さければ設備は不良ではない(すなわち良好である)と判定される。つまり、不良であると判定するための基準が低いほど不良判定率があがり、本来良好な設備が不良であると判定される誤判定が増加する可能性があるが、不良の見逃しが低減される。記憶部29には、推定され得る各環境(例えば、トンネル内である、トンネル内でない、のそれぞれ)と、不良であると判定するための基準とが関連付けられて記憶されていてもよい。 In this configuration, the parameter may be a criterion for determining that equipment is defective. For example, the criterion for determining that equipment is defective may be a threshold value for comparison with a certainty level indicating the likelihood that the equipment is defective. In this case, if the certainty level is equal to or greater than the criterion, the equipment is determined to be defective, and if the certainty level is lower than the criterion, the equipment is determined to be not defective (i.e., good). In other words, the lower the criterion for determining that equipment is defective, the higher the defect determination rate, and although there is a possibility of an increase in erroneous determinations in which equipment that is actually good is determined to be defective, the number of times that equipment is overlooked as defective is reduced. The memory unit 29 may store each environment that can be estimated (for example, inside a tunnel, not inside a tunnel) in association with the criterion for determining that equipment is defective.
この場合、分析部22は、撮影時の環境に応じた不良判定の難易度が高いほど低い基準を用いて当該設備が不良であるか否かを判定する。例えば、推定部12によって撮影時の環境がトンネル内であると推定された設備画像に被写体として含まれる設備を分析する場合、分析部22は、当該設備が不良であると判定するための基準として第3の閾値を用いる。一方、推定部12によって撮影時の環境がトンネル外であると推定された設備画像に被写体として含まれる設備を分析する場合、分析部22は、当該設備が不良であると判定する基準として、第3の閾値より高い第4の閾値を用いる。 In this case, the analysis unit 22 determines whether the equipment is defective using a lower standard as the difficulty of determining whether it is defective increases depending on the environment at the time of photographing. For example, when analyzing equipment included as a subject in an equipment image in which the estimation unit 12 has estimated that the environment at the time of photographing was inside a tunnel, the analysis unit 22 uses the third threshold as the standard for determining that the equipment is defective. On the other hand, when analyzing equipment included as a subject in an equipment image in which the estimation unit 12 has estimated that the environment at the time of photographing was outside a tunnel, the analysis unit 22 uses a fourth threshold, which is higher than the third threshold, as the standard for determining that the equipment is defective.
一例として、分析部22が上述した良否判定モデルを用いる場合について説明する。当該構成において、推定部12によって撮影時の環境がトンネル内であると推定された設備画像が良否判定モデルに入力された場合を想定する。この場合、良否判定モデルから出力された確信度が第3の閾値より高ければ、分析部22は、良否判定モデルから出力された、設備の状態が不良であるか否かを示す情報を、分析結果として出力する。一方、良否判定モデルから出力された確信度が第3の閾値より低ければ、分析部22は、良否判定不能を示す分析結果を出力する。 As an example, we will explain a case where the analysis unit 22 uses the above-mentioned pass/fail judgment model. In this configuration, we will assume that an equipment image in which the estimation unit 12 estimates that the environment at the time of shooting was inside a tunnel is input to the pass/fail judgment model. In this case, if the confidence level output from the pass/fail judgment model is higher than the third threshold, the analysis unit 22 outputs the information output from the pass/fail judgment model indicating whether the condition of the equipment is poor or not as the analysis result. On the other hand, if the confidence level output from the pass/fail judgment model is lower than the third threshold, the analysis unit 22 outputs an analysis result indicating that pass/fail judgment is impossible.
続いて、推定部12によって撮影時の環境がトンネル内ではないと推定された設備画像が良否判定モデルに入力された場合を想定する。この場合、良否判定モデルから出力された確信度が第4の閾値より高ければ、分析部22は、良否判定モデルから出力された、設備の状態が不良であるか否かを示す情報を、分析結果として出力する。一方、良否判定モデルから出力された確信度が第4の閾値より低ければ、分析部22は、良否判定不能を示す分析結果を出力する。 Next, consider a case where an equipment image estimated by the estimation unit 12 to be taken in an environment other than a tunnel is input to the quality determination model. In this case, if the confidence level output from the quality determination model is higher than the fourth threshold, the analysis unit 22 outputs the information output from the quality determination model indicating whether the condition of the equipment is poor or not as the analysis result. On the other hand, if the confidence level output from the quality determination model is lower than the fourth threshold, the analysis unit 22 outputs an analysis result indicating that quality determination is impossible.
このように、トンネル外で撮影された車両周辺画像に被写体として含まれる設備に対しては、分析部22は当該設備が不良であると判定する基準を高くするので、不良ではない設備を不良であると判定する過検知を減らすことができる。一方、トンネル内で撮影された車両周辺画像に被写体として含まれる設備に対しては、分析部22は当該設備が不良であると判定する基準を低くするので、過検知を許容しつつ設備の不良を見逃すことを減らすことができる。また、過検出を許容する範囲をトンネル内に限定することで、全体として過検出を抑えつつ不良の見逃しを低減できる。 In this way, for equipment that appears as a subject in images of the vehicle's surroundings taken outside the tunnel, the analysis unit 22 sets higher standards for determining that the equipment is defective, thereby reducing over-detection, in which equipment that is not defective is determined to be defective. On the other hand, for equipment that appears as a subject in images of the vehicle's surroundings taken inside the tunnel, the analysis unit 22 sets lower standards for determining that the equipment is defective, thereby allowing over-detection while reducing the number of times that equipment defects are overlooked. Furthermore, by limiting the range in which over-detection is allowed to the inside of the tunnel, it is possible to suppress over-detection overall while reducing the number of times that defects are overlooked.
また、第3の閾値および第4の閾値は、設備および設備の状態に応じて異なることが好ましい。当該構成により、分析部22は、設備毎および設備の状態毎に、好適に状態を分析することができる。 Furthermore, it is preferable that the third threshold and the fourth threshold differ depending on the equipment and its condition. With this configuration, the analysis unit 22 can appropriately analyze the condition for each piece of equipment and each condition of the equipment.
(情報処理方法S2の流れ)
本例示的実施形態に係る情報処理方法S2の流れについて、図7を参照して説明する。図7は、本例示的実施形態に係る情報処理方法S2の流れを示すフロー図である。
(Flow of information processing method S2)
The flow of the information processing method S2 according to this exemplary embodiment will be described with reference to Fig. 7. Fig. 7 is a flow chart showing the flow of the information processing method S2 according to this exemplary embodiment.
(ステップS21)
ステップS21において、取得部11は、カメラCA1~カメラCA6が撮影した車両周辺画像を取得する。取得部11は、取得した車両周辺画像を、記憶部29に保存する。
(Step S21)
In step S21, the acquisition unit 11 acquires the vehicle surroundings images captured by the cameras CA1 to CA6 and stores the acquired vehicle surroundings images in the storage unit 29.
(ステップS22)
ステップS22において、画像連結部21は、記憶部29に保存されている複数の車両周辺画像を取得する。また、画像連結部21は、取得した複数の車両周辺画像を連結させる。画像連結部21は、連結後の車両周辺画像を、記憶部29に保存する。
(Step S22)
In step S22, the image connection unit 21 acquires a plurality of vehicle surroundings images stored in the storage unit 29. The image connection unit 21 also connects the acquired plurality of vehicle surroundings images. The image connection unit 21 stores the connected vehicle surroundings images in the storage unit 29.
(ステップS23)
推定部12は、記憶部29に保存されている連結後の車両周辺画像を取得する。推定部12は、連結後の車両周辺画像から、撮影時の環境がトンネル内であるか否かを推定する。ステップS23における処理について、図8を参照して説明する。図8は、本例示的実施形態に係る推定部12の処理の一例を示す図である。
(Step S23)
The estimation unit 12 acquires the post-coupling vehicle surroundings image stored in the storage unit 29. The estimation unit 12 estimates whether the environment at the time of image capture was inside a tunnel from the post-coupling vehicle surroundings image. The processing in step S23 will be described with reference to Fig. 8. Fig. 8 is a diagram showing an example of the processing by the estimation unit 12 according to this exemplary embodiment.
図8に示すように、推定部12は、連結後の車両周辺画像c_vpを取得する。次に、推定部12は、図8の上側に示すように、連結後の車両周辺画像c_vpを鉄道車両の走行方向に対応する方向に沿って複数の分割画像(分割画像dp1、分割画像dp2)に分割する。推定部12は、図8の上側において、分割画像dp2の右側も同様に、複数の分割画像に分割する。また、図8の上側に示すように、推定部12は、少なくとも一部の領域が重複するように、連結後の車両周辺画像c_vpを複数の分割画像に分割してもよい。 As shown in FIG. 8, the estimation unit 12 acquires the concatenated vehicle surroundings image c_vp. Next, as shown in the upper part of FIG. 8, the estimation unit 12 divides the concatenated vehicle surroundings image c_vp into multiple split images (split image dp1, split image dp2) along a direction corresponding to the traveling direction of the railway vehicle. In the upper part of FIG. 8, the estimation unit 12 similarly divides the right side of split image dp2 into multiple split images. Furthermore, as shown in the upper part of FIG. 8, the estimation unit 12 may divide the concatenated vehicle surroundings image c_vp into multiple split images so that at least some areas overlap.
続いて、推定部12は、分割画像から部分画像を切り出す。一例として、推定部12は、カメラCA1~カメラCA6が撮影する角度、設備の位置などに基づいて、少なくとも1つの設備が被写体として含まれる部分画像を切り出す構成が挙げられる。例えば、図8に示すように、分割画像dp1から、トロリー線を被写体として含む部分画像tp1を切り出す。 Next, the estimation unit 12 cuts out a partial image from the divided image. As an example, the estimation unit 12 is configured to cut out a partial image that includes at least one piece of equipment as a subject, based on the angles at which cameras CA1 to CA6 take pictures, the position of the equipment, etc. For example, as shown in Figure 8, a partial image tp1 that includes a trolley wire as a subject is cut out from divided image dp1.
そして、推定部12は、各部分画像について、撮影時の環境がトンネル内であるか否かを推定する。推定部が、撮影時の環境がトンネル内であるか否かを推定する方法については、上述した通りである。推定部12は、部分画像および推定結果を、検出部13に供給する。 The estimation unit 12 then estimates, for each partial image, whether the environment at the time of shooting was inside a tunnel. The method by which the estimation unit estimates whether the environment at the time of shooting was inside a tunnel is as described above. The estimation unit 12 supplies the partial image and the estimation results to the detection unit 13.
ここで、推定部12は、各部分画像に対して推定した撮影時の環境の並び順に基づいて、各部分画像に対する撮影時の環境を修正してもよい。例えば、推定部12は、第1の環境であると推定されたN個以上の部分画像の列と、第2の環境であると推定されたn個以下の部分画像の列と、第1の環境であると推定されたN個以上の部分画像の列とが、この順に並んでいるとする。nは1以上の整数であり、Nはnより大きい整数である。第1の環境は、例えば、「トンネル内」であり、第2の環境は、例えば、「トンネル外」である。 Here, the estimation unit 12 may correct the environment at the time of shooting for each partial image based on the order of the environments at the time of shooting estimated for each partial image. For example, the estimation unit 12 assumes that a sequence of N or more partial images estimated to be a first environment, a sequence of n or less partial images estimated to be a second environment, and a sequence of N or more partial images estimated to be the first environment are arranged in this order. n is an integer equal to or greater than 1, and N is an integer greater than n. The first environment is, for example, "inside a tunnel," and the second environment is, for example, "outside a tunnel."
この場合、推定部12は、第2の環境であると推定されたn個以下の各部分画像に関する撮影時の環境の推定結果を、第1の環境に修正してもよい。例えば、図8において、1つの部分画像tp10の撮影時の環境がトンネル外であると推定され、両隣の2個ずつの部分画像(部分画像tp8~tp9、tp11~tp12)の撮影時の環境がトンネル内であると推定された場合を想定する。この場合、部分画像tp10のみがトンネル外であるとの推定結果は間違っている可能性があるため、推定部12は、部分画像tp10の撮影時の環境を修正し、トンネル内であると推定してもよい。 In this case, the estimation unit 12 may correct the estimated environment at the time of shooting for each of the n or fewer partial images that were estimated to be the second environment to the first environment. For example, in Figure 8, consider a case where the environment at the time of shooting of one partial image tp10 is estimated to be outside the tunnel, and the environments at the time of shooting of the two adjacent partial images (partial images tp8-tp9, tp11-tp12) are estimated to be inside the tunnel. In this case, since the estimation result that only partial image tp10 was outside the tunnel may be incorrect, the estimation unit 12 may correct the environment at the time of shooting of partial image tp10 and estimate it to be inside the tunnel.
このように、或る部分画像(図8における部分画像tp11)の撮影時の環境が、両隣の部分画像(部分画像tp10および部分画像tp12)の撮影時の環境と異なる環境であると推定された場合、或る部分画像のみ撮影時の環境が異なっている可能性は低いため、当該或る部分画像に対する推定結果は間違っている可能性が高いと考えられる。このような場合、推定部12は、当該或る部分画像の撮影時の環境を、両隣の部分画像の撮影時の環境と同じになるように修正する。したがって、推定部12は、部分画像の撮影時の環境を推定する精度を向上させることができる。 In this way, if it is estimated that the environment when a certain partial image (partial image tp11 in Figure 8) was photographed was different from the environment when the adjacent partial images (partial image tp10 and partial image tp12) were photographed, it is unlikely that the environment when only the certain partial image was photographed was different, and therefore it is highly likely that the estimation result for that certain partial image will be incorrect. In such a case, the estimation unit 12 corrects the environment when the certain partial image was photographed so that it is the same as the environment when the adjacent partial images were photographed. Therefore, the estimation unit 12 can improve the accuracy of estimating the environment when the partial image was photographed.
また、撮影された車両周辺画像が複数の環境にまたがった場合を想定する。例えば、図8に示す部分画像tp8は、一部がトンネル外の画像であり、一部がトンネル内の画像である。この場合において、推定部12は、上述した推定モデルの代わりに、部分画像を入力すると、当該部分画像におけるトンネル内の領域を示す情報を出力する推定モデルを用いてもよい。推定部12は、推定モデルから出力される情報を参照し、トンネル内の領域が所定の値以上であった場合、当該部分画像はトンネル内において撮影されたと推定する。当該構成により、推定部12は、後述する設備を検出する処理において、トンネル内の設備を好適に検出させることができる。 Furthermore, consider a case where the captured image of the vehicle's surroundings spans multiple environments. For example, partial image tp8 shown in Figure 8 is partly an image outside the tunnel and partly an image inside the tunnel. In this case, instead of the above-mentioned estimation model, the estimation unit 12 may use an estimation model that, when a partial image is input, outputs information indicating the area inside the tunnel in the partial image. The estimation unit 12 references the information output from the estimation model, and if the area inside the tunnel is equal to or greater than a predetermined value, estimates that the partial image was captured inside the tunnel. With this configuration, the estimation unit 12 can preferably detect facilities inside the tunnel in the facility detection process described below.
他の例として、推定部12は、上述した推定モデルから出力される確信度を参照する構成であってもよい。例えば、部分画像を入力し、推定モデルから、トンネル内であると推定する確信度が、トンネル内ではないと推定する確信度より高ければ、推定部12は、当該部分画像はトンネル内において撮影されたと推定する。一方、推定モデルから、トンネル内であると推定する確信度が、トンネル内ではないと推定する確信度より低ければ、推定部12は、当該部分画像はトンネル外において撮影されたと推定する。当該構成においても、推定部12は、後述する設備を検出する処理において、トンネル内の設備を好適に検出させることができる。 As another example, the estimation unit 12 may be configured to reference the confidence level output from the estimation model described above. For example, when a partial image is input, if the confidence level for estimating that the image is inside a tunnel based on the estimation model is higher than the confidence level for estimating that the image is not inside a tunnel, the estimation unit 12 estimates that the partial image was taken inside the tunnel. On the other hand, if the confidence level for estimating that the image is inside a tunnel based on the estimation model is lower than the confidence level for estimating that the image is not inside a tunnel, the estimation unit 12 estimates that the partial image was taken outside the tunnel. Even with this configuration, the estimation unit 12 can effectively detect equipment inside a tunnel in the equipment detection process described below.
さらに他の例として、推定部12は、画素値に基づいて、部分画像がトンネル内で撮影された画像であるか否かを推定してもよい。例えば、推定部12は、部分画像の全画素のうち、所定の値よりも画素値が低い画素の割合を算出する。そして、算出された割合が所定の割合以上の場合(例えば、30%以上の場合)、推定部12は、当該部分画像が撮影された環境はトンネル内であると推定してもよい。当該構成においても、推定部12は、後述する設備を検出する処理において、トンネル内の設備を好適に検出させることができる。 As yet another example, the estimation unit 12 may estimate whether a partial image is an image taken inside a tunnel based on pixel values. For example, the estimation unit 12 calculates the percentage of pixels in the partial image that have pixel values lower than a predetermined value. If the calculated percentage is equal to or greater than a predetermined percentage (e.g., 30% or greater), the estimation unit 12 may estimate that the environment in which the partial image was taken is inside a tunnel. Even with this configuration, the estimation unit 12 can preferably detect facilities inside a tunnel in the facility detection process described below.
(ステップS24)
ステップS24において、検出部13は、ステップS23において推定部12から供給された推定結果を参照し、推定部12から供給された部分画像が撮影された環境はトンネル内であると推定されたか否かを判定する。
(Step S24)
In step S24, the detection unit 13 refers to the estimation result supplied from the estimation unit 12 in step S23 and determines whether the environment in which the partial image supplied from the estimation unit 12 was photographed was estimated to be inside a tunnel.
(ステップS25)
ステップS24において、トンネル内であると推定された場合(ステップS24:YES)、ステップS25において検出部13は、低い基準を用いて、部分画像から被写体として含まれる設備を検出する。検出部13は、検出した設備を含む設備画像および推定部12から供給された推定結果を、分析部22に供給する。
(Step S25)
If it is estimated in step S24 that the subject is inside a tunnel (step S24: YES), in step S25 the detection unit 13 detects equipment included as a subject from the partial image using a low criterion. The detection unit 13 supplies the equipment image including the detected equipment and the estimation result supplied from the estimation unit 12 to the analysis unit 22.
(ステップS26)
ステップS24において、トンネル内ではないと推定された場合(ステップS25:NO)、ステップS26において検出部13は、高い基準を用いて、部分画像から被写体として含まれる設備を検出する。検出部13は、検出した設備を含む設備画像および推定部12から供給された推定結果を、分析部22に供給する。
(Step S26)
If it is estimated in step S24 that the subject is not inside a tunnel (step S25: NO), the detection unit 13 detects equipment included as a subject from the partial image using a high standard in step S26. The detection unit 13 supplies the equipment image including the detected equipment and the estimation result supplied from the estimation unit 12 to the analysis unit 22.
(ステップS27)
ステップS27において、分析部22は、推定部12により推定された環境に応じたパラメータを用いて、設備画像を参照して設備の状態を分析する。
(Step S27)
In step S27, the analysis unit 22 analyzes the state of the equipment by referring to the equipment image, using the parameters according to the environment estimated by the estimation unit 12.
(情報処理装置2の効果)
このように、本例示的実施形態に係る情報処理装置2は、車両周辺画像の撮影時の環境がトンネル内であるか否かを推定し、環境がトンネル内であるか否かに応じた検出の難易度が高いほど低い基準を用いて設備を検出する。
(Effects of information processing device 2)
In this way, the information processing device 2 according to this exemplary embodiment estimates whether the environment at the time the vehicle surroundings image was captured is inside a tunnel, and detects equipment using lower criteria as the difficulty of detection increases depending on whether the environment is inside a tunnel or not.
トンネル内において撮影された車両周辺画像は、暗いために設備が見え難かったり、設備の背景のトンネルの内壁の模様が設備と似ていたりする場合があり、当該車両周辺画像から設備を検出する難易度が高くなる。情報処理装置2は、トンネル内において撮影された車両周辺画像に被写体として含まれる設備を、低い基準を用いて検出するので、トンネル内において撮影された車両周辺画像に被写体として含まれる設備を見逃すことを好適に防ぐことができる。 In images of the vehicle's surroundings taken inside a tunnel, equipment may be difficult to see due to darkness, or the pattern of the tunnel's interior wall in the background of the equipment may resemble the equipment, making it difficult to detect the equipment from the vehicle's surroundings image. The information processing device 2 detects equipment included as subjects in images of the vehicle's surroundings taken inside a tunnel using low standards, thereby effectively preventing equipment included as subjects in images of the vehicle's surroundings taken inside a tunnel from being overlooked.
一方、トンネル外において撮影された車両周辺画像に対して、情報処理装置2は、高い基準を用いて設備を検出する。そのため、情報処理装置2は、設備以外の被写体を設備であると過検知することを好適に防ぐことができる。 On the other hand, for images of the vehicle's surroundings taken outside the tunnel, the information processing device 2 detects equipment using high standards. As a result, the information processing device 2 can effectively prevent overdetection of subjects other than equipment as equipment.
〔ソフトウェアによる実現例〕
情報処理装置1、2の一部又は全部の機能は、集積回路(ICチップ)等のハードウェアによって実現してもよいし、ソフトウェアによって実現してもよい。
[Software implementation example]
Some or all of the functions of the information processing devices 1 and 2 may be realized by hardware such as an integrated circuit (IC chip), or by software.
後者の場合、情報処理装置1、2は、例えば、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータによって実現される。このようなコンピュータの一例(以下、コンピュータCと記載する)を図9に示す。コンピュータCは、少なくとも1つのプロセッサC1と、少なくとも1つのメモリC2と、を備えている。メモリC2には、コンピュータCを情報処理装置1、2として動作させるためのプログラムPが記録されている。コンピュータCにおいて、プロセッサC1は、プログラムPをメモリC2から読み取って実行することにより、情報処理装置1、2の各機能が実現される。 In the latter case, information processing devices 1 and 2 are realized, for example, by a computer that executes program instructions, which are software that realizes each function. An example of such a computer (hereinafter referred to as computer C) is shown in Figure 9. Computer C has at least one processor C1 and at least one memory C2. Memory C2 stores program P for operating computer C as information processing devices 1 and 2. In computer C, processor C1 reads and executes program P from memory C2, thereby realizing each function of information processing devices 1 and 2.
プロセッサC1としては、例えば、CPU(Central Processing Unit)、GPU(Graphic Processing Unit)、DSP(Digital Signal Processor)、MPU(Micro Processing Unit)、FPU(Floating point number Processing Unit)、PPU(Physics Processing Unit)、TPU(Tensor Processing Unit)、量子プロセッサ、マイクロコントローラ、又は、これらの組み合わせなどを用いることができる。メモリC2としては、例えば、フラッシュメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又は、これらの組み合わせなどを用いることができる。 The processor C1 may be, for example, a CPU (Central Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), MPU (Micro Processing Unit), FPU (Floating point number Processing Unit), PPU (Physics Processing Unit), TPU (Tensor Processing Unit), quantum processor, microcontroller, or a combination of these. The memory C2 may be, for example, a flash memory, HDD (Hard Disk Drive), SSD (Solid State Drive), or a combination of these.
なお、コンピュータCは、プログラムPを実行時に展開したり、各種データを一時的に記憶したりするためのRAM(Random Access Memory)を更に備えていてもよい。また、コンピュータCは、他の装置との間でデータを送受信するための通信インタフェースを更に備えていてもよい。また、コンピュータCは、キーボードやマウス、ディスプレイやプリンタなどの入出力機器を接続するための入出力インタフェースを更に備えていてもよい。 Computer C may further include RAM (Random Access Memory) for expanding program P during execution and for temporarily storing various data. Computer C may also include a communications interface for sending and receiving data to and from other devices. Computer C may also include an input/output interface for connecting input/output devices such as a keyboard, mouse, display, or printer.
また、プログラムPは、コンピュータCが読み取り可能な、一時的でない有形の記録媒体Mに記録することができる。このような記録媒体Mとしては、例えば、テープ、ディスク、カード、半導体メモリ、又はプログラマブルな論理回路などを用いることができる。コンピュータCは、このような記録媒体Mを介してプログラムPを取得することができる。また、プログラムPは、伝送媒体を介して伝送することができる。このような伝送媒体としては、例えば、通信ネットワーク、又は放送波などを用いることができる。コンピュータCは、このような伝送媒体を介してプログラムPを取得することもできる。 Furthermore, the program P can be recorded on a non-transitory, tangible recording medium M that can be read by the computer C. Such a recording medium M can be, for example, a tape, disk, card, semiconductor memory, or programmable logic circuit. The computer C can acquire the program P via such a recording medium M. The program P can also be transmitted via a transmission medium. Such a transmission medium can be, for example, a communications network or broadcast waves. The computer C can also acquire the program P via such a transmission medium.
〔付記事項1〕
本発明は、上述した実施形態に限定されるものでなく、請求項に示した範囲で種々の変更が可能である。例えば、上述した実施形態に開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。
[Additional Note 1]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims. For example, embodiments obtained by appropriately combining the technical means disclosed in the above-described embodiments are also included in the technical scope of the present invention.
〔付記事項2〕
上述した実施形態の一部又は全部は、以下のようにも記載され得る。ただし、本発明は、以下の記載する態様に限定されるものではない。
[Additional Note 2]
Some or all of the above-described embodiments can also be described as follows: However, the present invention is not limited to the following described aspects.
(付記1)
車両周辺画像を取得する取得手段と、前記車両周辺画像を参照して撮影時の環境を推定する推定手段と、前記車両周辺画像から被写体として含まれる設備を検出するための基準として、前記推定された環境に応じた検出の難易度が高いほど低い基準を用いて当該設備を検出する検出手段と、を含む、情報処理装置。
(Appendix 1)
An information processing device including: an acquisition means for acquiring a vehicle surroundings image; an estimation means for estimating the environment at the time of photographing by referring to the vehicle surroundings image; and a detection means for detecting equipment included as a subject from the vehicle surroundings image using a lower criterion as the difficulty of detection according to the estimated environment increases.
(付記2)
前記推定された環境に応じたパラメータを用いて、前記車両周辺画像から取得された設備画像であって、当該車両周辺画像に被写体として含まれる設備を含む設備画像を参照して当該設備の状態を分析する分析手段をさらに備える、付記1に記載の情報処理装置。
(Appendix 2)
The information processing device described in Appendix 1 further includes an analysis means for analyzing the state of the equipment by referring to an equipment image obtained from the vehicle surroundings image, the equipment image including the equipment included as a subject in the vehicle surroundings image, using parameters corresponding to the estimated environment.
(付記3)
前記推定手段は、前記撮影時の環境として、トンネル内であるか否かを推定し、前記検出手段は、前記検出するための基準として、トンネル内である場合に前記トンネル内でない場合より低い基準を用いる、付記1または2に記載の情報処理装置。
(Appendix 3)
The information processing device described in Appendix 1 or 2, wherein the estimation means estimates whether the environment at the time of shooting is inside a tunnel or not, and the detection means uses a lower standard for the detection when the environment is inside a tunnel than when the environment is not inside a tunnel.
(付記4)
前記推定手段は、前記車両周辺画像を、車両の走行方向に対応する方向に沿って複数の部分画像に分割し、各部分画像に対して推定した前記撮影時の環境の並び順に基づいて、各部分画像に対する撮影時の環境を修正する、付記1~3の何れかに記載の情報処理装置。
(Appendix 4)
The information processing device described in any of Appendices 1 to 3, wherein the estimation means divides the vehicle surroundings image into a plurality of partial images along a direction corresponding to the vehicle's traveling direction, and corrects the environment at the time of shooting for each partial image based on the order of the environment at the time of shooting estimated for each partial image.
(付記5)
情報処理装置が、車両周辺画像を取得することと、前記車両周辺画像を参照して撮影時の環境を推定することと、前記車両周辺画像から被写体として含まれる設備を検出するための基準として、前記推定された環境に応じた検出の難易度が高いほど低い基準を用いて当該設備を検出することと、を含む、情報処理方法。
(Appendix 5)
An information processing method including an information processing device acquiring a vehicle surroundings image, estimating the environment at the time of photographing by referring to the vehicle surroundings image, and detecting equipment included as a subject from the vehicle surroundings image using lower criteria as the difficulty of detection according to the estimated environment increases.
(付記6)
前記情報処理装置は、前記推定された環境に応じたパラメータを用いて、前記車両周辺画像から取得された設備画像であって、当該車両周辺画像に被写体として含まれる設備を含む設備画像を参照して当該設備の状態を分析することをさらに含む、付記5に記載の情報処理方法。
(Appendix 6)
The information processing method described in Appendix 5 further includes the information processing device analyzing the state of the equipment by referring to an equipment image obtained from the vehicle surroundings image, the equipment image including the equipment included as a subject in the vehicle surroundings image, using parameters corresponding to the estimated environment.
(付記7)
コンピュータを情報処理装置として機能させるプログラムであって、前記コンピュータを、車両周辺画像を取得する取得手段と、前記車両周辺画像を参照して撮影時の環境を推定する推定手段と、前記車両周辺画像から被写体として含まれる設備を検出するための基準として、前記推定された環境に応じた検出の難易度が高いほど低い基準を用いて当該設備を検出する検出手段と、として機能させる、プログラム。
(Appendix 7)
A program that causes a computer to function as an information processing device, the program causing the computer to function as an acquisition means that acquires an image of the vehicle's surroundings, an estimation means that estimates the environment at the time of shooting by referring to the image of the vehicle's surroundings, and a detection means that detects equipment included as a subject from the image of the vehicle's surroundings using lower criteria as the difficulty of detection increases according to the estimated environment.
(付記8)
前記コンピュータを、前記推定された環境に応じたパラメータを用いて、前記車両周辺画像から取得された設備画像であって、当該車両周辺画像に被写体として含まれる設備を含む設備画像を参照して当該設備の状態を分析する分析手段としてさらに機能させる、付記7に記載のプログラム。
(Appendix 8)
The program described in Appendix 7 further causes the computer to function as an analysis means for analyzing the state of equipment by referring to an equipment image obtained from the vehicle surroundings image, the equipment image including equipment that is included as a subject in the vehicle surroundings image, using parameters according to the estimated environment.
〔付記事項3〕
上述した実施形態の一部又は全部は、更に、以下のように表現することもできる。
[Appendix 3]
Some or all of the above-described embodiments can also be expressed as follows.
少なくとも1つのプロセッサを備え、前記プロセッサは、車両周辺画像を取得する取得処理と、前記車両周辺画像を参照して撮影時の環境を推定する推定処理と、前記車両周辺画像から被写体として含まれる設備を検出するための基準として、前記推定された環境に応じた検出の難易度が高いほど低い基準を用いて当該設備を検出する検出処理とを実行する情報処理装置。 An information processing device comprising at least one processor, which executes an acquisition process for acquiring a vehicle surroundings image, an estimation process for estimating the environment at the time of image capture by referencing the vehicle surroundings image, and a detection process for detecting equipment included as a subject in the vehicle surroundings image using lower criteria as the difficulty of detection increases according to the estimated environment.
なお、この情報処理装置は、更にメモリを備えていてもよく、このメモリには、前記取得処理と、前記推定処理と、前記検出処理とを前記プロセッサに実行させるためのプログラムが記憶されていてもよい。また、このプログラムは、コンピュータ読み取り可能な一時的でない有形の記録媒体に記録されていてもよい。 The information processing device may further include a memory, and this memory may store a program for causing the processor to execute the acquisition process, the estimation process, and the detection process. The program may also be recorded on a computer-readable, non-transitory, tangible recording medium.
1、2 情報処理装置
11 取得部
12 推定部
13 検出部
22 分析部
1, 2 Information processing device 11 Acquisition unit 12 Estimation unit 13 Detection unit 22 Analysis unit
Claims (8)
前記車両周辺画像を参照して撮影時の環境を推定する推定手段と、
前記車両周辺画像から被写体として含まれる設備を検出するための基準として、前記推定された環境に応じた検出の難易度が高いほど低い基準を用いて当該設備を検出する検出手段と、
を備える、情報処理装置。 an acquisition means for acquiring an image of the surroundings of the vehicle;
an estimation means for estimating an environment at the time of capturing the vehicle surroundings image by referring to the vehicle surroundings image;
a detection means for detecting equipment included as a subject in the vehicle surroundings image using a lower criterion as the difficulty of detection according to the estimated environment increases; and
An information processing device comprising:
請求項1に記載の情報処理装置。 and further comprising an analysis means for analyzing a state of an equipment by referring to an equipment image acquired from the vehicle surroundings image, the equipment image including the equipment included as a subject in the vehicle surroundings image, using parameters according to the estimated environment.
The information processing device according to claim 1 .
前記検出手段は、前記検出するための基準として、トンネル内である場合に前記トンネル内でない場合より低い基準を用いる、
請求項1または2に記載の情報処理装置。 the estimation means estimates whether the environment at the time of photographing is inside a tunnel,
the detection means uses a lower standard for the detection when the vehicle is inside a tunnel than when the vehicle is not inside a tunnel;
3. The information processing device according to claim 1.
前記車両周辺画像を、車両の走行方向に対応する方向に沿って複数の部分画像に分割し、各部分画像に対して推定した前記撮影時の環境の並び順に基づいて、各部分画像に対する撮影時の環境を修正する、
請求項1または2に記載の情報処理装置。 The estimation means
Dividing the vehicle surroundings image into a plurality of partial images along a direction corresponding to a traveling direction of the vehicle, and correcting the environment at the time of photographing each partial image based on the order of the environment at the time of photographing estimated for each partial image.
3. The information processing device according to claim 1.
車両周辺画像を取得することと、
前記車両周辺画像を参照して撮影時の環境を推定することと、
前記車両周辺画像から被写体として含まれる設備を検出するための基準として、前記推定された環境に応じた検出の難易度が高いほど低い基準を用いて当該設備を検出することと、
を含む、情報処理方法。 The information processing device
Acquiring an image of the vehicle's surroundings;
estimating an environment at the time of capturing an image by referring to the vehicle surroundings image;
detecting the facility using a lower criterion as a criterion for detecting the facility included as a subject from the vehicle surroundings image, the higher the difficulty of detection according to the estimated environment; and
An information processing method, including:
前記推定された環境に応じたパラメータを用いて、前記車両周辺画像から取得された設備画像であって、当該車両周辺画像に被写体として含まれる設備を含む設備画像を参照して当該設備の状態を分析することをさらに含む、
請求項5に記載の情報処理方法。 The information processing device includes:
and analyzing a state of the equipment by referring to an equipment image acquired from the vehicle surroundings image, the equipment image including the equipment included as a subject in the vehicle surroundings image, using parameters according to the estimated environment.
The information processing method according to claim 5 .
前記コンピュータを、
車両周辺画像を取得する取得手段と、
前記車両周辺画像を参照して撮影時の環境を推定する推定手段と、
前記車両周辺画像から被写体として含まれる設備を検出するための基準として、前記推定された環境に応じた検出の難易度が高いほど低い基準を用いて当該設備を検出する検出手段と、
として機能させる、プログラム。 A program that causes a computer to function as an information processing device,
The computer
an acquisition means for acquiring an image of the surroundings of the vehicle;
an estimation means for estimating an environment at the time of capturing the vehicle surroundings image by referring to the vehicle surroundings image;
a detection means for detecting equipment included as a subject in the vehicle surroundings image using a lower criterion as the difficulty of detection according to the estimated environment increases; and
A program that functions as a
前記推定された環境に応じたパラメータを用いて、前記車両周辺画像から取得された設備画像であって、当該車両周辺画像に被写体として含まれる設備を含む設備画像を参照して当該設備の状態を分析する分析手段としてさらに機能させる、
請求項7に記載のプログラム。
The computer
and further functioning as an analysis means for analyzing a state of equipment by referring to an equipment image acquired from the vehicle surroundings image, the equipment image including the equipment included as a subject in the vehicle surroundings image, using the parameters according to the estimated environment.
The program according to claim 7.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2024/007469 WO2025181991A1 (en) | 2024-02-29 | 2024-02-29 | Information processing device, information processing method, and program |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2024/007469 WO2025181991A1 (en) | 2024-02-29 | 2024-02-29 | Information processing device, information processing method, and program |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2025181991A1 true WO2025181991A1 (en) | 2025-09-04 |
Family
ID=96920177
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2024/007469 Pending WO2025181991A1 (en) | 2024-02-29 | 2024-02-29 | Information processing device, information processing method, and program |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2025181991A1 (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015165381A (en) * | 2014-02-05 | 2015-09-17 | 株式会社リコー | Image processing apparatus, device control system, and image processing program |
| JP2016033717A (en) * | 2014-07-31 | 2016-03-10 | セコム株式会社 | Object detection device |
-
2024
- 2024-02-29 WO PCT/JP2024/007469 patent/WO2025181991A1/en active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015165381A (en) * | 2014-02-05 | 2015-09-17 | 株式会社リコー | Image processing apparatus, device control system, and image processing program |
| JP2016033717A (en) * | 2014-07-31 | 2016-03-10 | セコム株式会社 | Object detection device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105430384B (en) | Method and system for video quality diagnosis | |
| US7940955B2 (en) | Vision-based method of determining cargo status by boundary detection | |
| US20220004818A1 (en) | Systems and Methods for Evaluating Perception System Quality | |
| US11108970B2 (en) | Flicker mitigation via image signal processing | |
| US20160071244A1 (en) | Method and system for image haze removal based on hybrid dark channel prior | |
| JP7391542B2 (en) | Image processing system, image processing method, and program | |
| US20190199898A1 (en) | Image capturing apparatus, image processing apparatus, control method, and storage medium | |
| US10791252B2 (en) | Image monitoring device, image monitoring method, and recording medium | |
| CN112528861B (en) | Foreign body detection method and device applied to the ballast bed in railway tunnel | |
| US20220207750A1 (en) | Object detection with image background subtracted | |
| CN114037741A (en) | Adaptive target detection method and device based on event camera | |
| KR20150077654A (en) | Device for detecting object, device for detecting object for vehicle and method thereof | |
| WO2025181991A1 (en) | Information processing device, information processing method, and program | |
| JP7384158B2 (en) | Image processing device, moving device, method, and program | |
| CN112132925A (en) | Method and apparatus for reconstructing color of underwater images | |
| JP7600909B2 (en) | Anomaly detection system and anomaly detection method | |
| JP2000020722A (en) | Device and method for extracting object from moving image | |
| CN112949423B (en) | Object recognition method, object recognition device and robot | |
| WO2025181989A1 (en) | Information processing device, information processing method, and program | |
| JP2002190027A (en) | System and method for measuring speed by image recognition | |
| TWI476735B (en) | Abnormal classification detection method for a video camera and a monitering host with video image abnormal detection | |
| US20200065979A1 (en) | Imaging system and method with motion detection | |
| JP3502468B2 (en) | Distributed monitoring equipment | |
| JP4677621B2 (en) | Anomaly detection system and anomaly detection method | |
| JP7746849B2 (en) | Monitoring support system, method and program |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24927271 Country of ref document: EP Kind code of ref document: A1 |