[go: up one dir, main page]

WO2025177724A1 - Information processing device, program, and information processing method - Google Patents

Information processing device, program, and information processing method

Info

Publication number
WO2025177724A1
WO2025177724A1 PCT/JP2025/000751 JP2025000751W WO2025177724A1 WO 2025177724 A1 WO2025177724 A1 WO 2025177724A1 JP 2025000751 W JP2025000751 W JP 2025000751W WO 2025177724 A1 WO2025177724 A1 WO 2025177724A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
array antenna
channel response
information processing
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2025/000751
Other languages
French (fr)
Japanese (ja)
Inventor
基史 多和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SoftBank Corp
Original Assignee
SoftBank Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SoftBank Corp filed Critical SoftBank Corp
Publication of WO2025177724A1 publication Critical patent/WO2025177724A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/72Diversity systems specially adapted for direction-finding

Definitions

  • the present invention relates to an information processing device, a program, and an information processing method.
  • Non-Patent Document 1 describes robust Loss-MIMO (Line of Sight-Multi Input Multi Output) transmission.
  • Prior art documents [Non-Patent Documents] [Non-patent Document 1] M. Tawada, Y. Ohta and A. Nagate, "Design of Robust LoS-MIMO Transmission in HAPS Feeder Link," 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), London, United Kingdom, 2022, pp. 1-7, doi: 10.1109/VTC2022-Fall57202.2022.10012950.
  • the learning execution unit may input the channel response data included in the training data to the neural network, and update the neural network using the cosine similarity between the estimated direction vector output from the neural network and the vector of the direction of the first antenna relative to the array antenna indicated by the positional relationship included in the training data as a loss function.
  • the learning execution unit may update the neural network so that the cosine similarity becomes 1.
  • an information processing method executed by a computer.
  • the information processing method may include a training data acquisition step of acquiring training data including the positional relationship between a first antenna possessed by a mobile object and an array antenna including a plurality of second antennas, and channel response data indicating the channel response sampled in space and frequency between the first antenna and the array antenna when the first antenna and the array antenna are in the positional relationship.
  • the information processing method may also include a learning execution step of using the plurality of training data acquired in the training data acquisition step to execute training of a neural network that inputs the channel response data and outputs an estimated direction of the first antenna relative to the array antenna.
  • the third antenna and the second array antenna may be used for LoS-MIMO transmission, and the multiple fourth antennas may be arranged at intervals that meet the requirements for LoS-MIMO transmission.
  • an information processing method executed by a computer may include an NN acquisition step of acquiring a neural network that receives as input the channel response generated using a plurality of training data sets including the positional relationship between a first antenna equipped on a first mobile body and a first array antenna including a plurality of second antennas, and a channel response sampled in space and frequency between the first antenna and the first array antenna when the first antenna and the first array antenna are in the positional relationship, and outputs the direction of the first antenna relative to the first array antenna.
  • the information processing method may include a channel response acquisition step of acquiring a channel response sampled in space and frequency between a third antenna equipped on a second mobile body and a second array antenna including a plurality of fourth antennas.
  • the information processing method may include a direction acquisition step of inputting the channel response acquired in the channel response acquisition step to the neural network, and acquiring the direction of the third antenna relative to the second array antenna output from the neural network.
  • the information processing method may include a communication adjustment step of adjusting wireless communication between the third antenna and the second array antenna based on the direction acquired in the direction acquisition step.
  • FIG. 10A and 10B show an example of the relationship between a moving body 200 and an array antenna 302 in the system 10 according to the present embodiment.
  • FIG. 1 is an explanatory diagram for schematically explaining DOA estimation by a neural network used by the information processing device 100.
  • FIG. 10 is an explanatory diagram illustrating a method for acquiring a channel response.
  • FIG. 2 is an explanatory diagram for roughly explaining the processing content of the information processing device 100.
  • FIG. 2 is an explanatory diagram for explaining input data 110.
  • FIG. 2 is an explanatory diagram for explaining input data 110.
  • FIG. 2 is an explanatory diagram for explaining input data 110.
  • FIG. 2 is an explanatory diagram for explaining input data 110.
  • FIG. 2 is an explanatory diagram for explaining input data 110.
  • 2 illustrates an example of a functional configuration of an information processing device 100.
  • 1 shows a schematic diagram of an example of the configuration of a HAPS 400, which is an example of a moving body 200.
  • 1 shows
  • HAPS High-Altitude Platform Station
  • the feeder link between the fixed terrestrial station and the HAPS requires a high-capacity communication line to accommodate the communication traffic of terminals within the area formed.
  • An effective solution to this problem is to improve channel capacity through the spatial multiplexing effect of LoS-MIMO, which accommodates changes in the distance and angle between the transmitter and receiver as the HAPS moves.
  • millimeter wave bands such as 39 GHz are globally specified as frequencies allocated to HAPS communication systems.
  • the antenna element spacing is set to half a wavelength or less to suppress images, but to achieve LoS-MIMO transmission, the element spacing becomes several hundred wavelengths. In this case, it becomes difficult to apply conventional direction estimation algorithms.
  • the information processing device 100 employs a direction estimation method using a neural network (NN) for array antennas with wide element spacing, such as those used in LoS-MIMO transmission systems.
  • NN neural network
  • FIG. 1 shows a schematic example of the relationship between a mobile object 200 and an array antenna 302 in a system 10 according to this embodiment.
  • the system 10 includes an information processing device 100, which is not shown in FIG. 1.
  • the system 10 may include an array antenna 302 including a plurality of antennas 310, and a communication device 300 that performs communication using the array antenna 302.
  • the mobile object 200 is illustrated as a HAPS, but this is not limiting.
  • the mobile object 200 may be an airplane or unmanned aerial vehicle that moves through the air.
  • the mobile object 200 may also be a car or the like that moves on the ground.
  • the mobile object 200 is equipped with an antenna 210.
  • the antenna 210 may be an array antenna.
  • the antenna 210 does not have to be an array antenna.
  • the antenna 210 may be an example of a first antenna, and the antenna 310 may be an example of a second antenna.
  • the array antenna 302 is illustrated as a UXA (Uniform Cross Array), but this is not limited to this.
  • the array antenna 302 may also be a ULA (Uniform Linear Array).
  • the communication device 300 may be any device that can communicate with the mobile unit 200 using the array antenna 302. If the mobile unit 200 is a HAPS, the communication device 300 may be a ground station, and the mobile unit 200 and the communication device 300 may perform feeder link communication.
  • Array antennas for LoS-MIMO also have element spacing requirements, and in the case of ULA, the following formula 1 must be satisfied.
  • Figure 2 is an explanatory diagram that provides an overview of DOA estimation using a neural network, as used by the information processing device 100.
  • the information processing device 100 employs DOA estimation using a neural network as an alternative to conventional array signal processing.
  • a known characteristic of neural networks is the Universal Approximation Theorem, which states that any function can be expressed with any degree of precision by increasing the number of nodes, as long as there is one or more hidden layers.
  • the information processing device 100 takes advantage of this characteristic and uses a neural network as a black box for DOA estimation.
  • the information processing device 100 may collect data on the channel response and direction of arrival of radio waves as actual data.
  • the information processing device 100 may collect data on the channel response and direction of arrival of radio waves through simulation.
  • the information processing device 100 uses channel response information included in the teacher data as input data 110 of the DOA estimation NN 120.
  • the information processing device 100 outputs data 130 as a three-dimensional direction vector v and an antenna position vector of a mobile object 200, which is a source of radio waves.
  • the loss function L is the cosine similarity between the two, and the DOA estimation NN 120 is optimized so that L becomes 1.
  • a channel vector h between one transmitting antenna and n receiving antennas can be expressed by equation 112 in Fig. 5 using the direct component h LoS , the multipath component h NLoS , and the power ratio K factor K, assuming Nakagami-Rice fading.
  • K factor takes a large value, so the LoS component becomes dominant, and under the condition of K>>1, (h and h LoS are nearly equal.)
  • h LoS is determined by the relative positions of the transmitting and receiving antennas, and can be expressed by equation 114 in FIG. 6 using the distance di from the transmitting antenna to the i-th receiving antenna.
  • the information processing device 100 may use a channel vector of m frequency components contained in the communication signal between the mobile object 200 and the communication device 300. With frequency indices as subscripts, the input data u can be expressed by equation 116 in Figure 7. The information processing device 100 may convert each element into an argument as shown in equation 118 in Figure 8, and use this as input data u.
  • FIG. 9 shows an example of the functional configuration of the information processing device 100.
  • the information processing device 100 includes a memory unit 140, a measurement data receiving unit 142, a teacher data acquisition unit 144, a learning execution unit 146, an NN output unit 148, a channel response acquisition unit 150, a direction acquisition unit 152, and a communication adjustment unit 154. Note that it is not essential for the information processing device 100 to include all of these units.
  • the measurement data receiving unit 142 receives measurement data.
  • the measurement data includes the positional relationship between the antenna 210 of the mobile unit 200 and the array antenna 302 including multiple antennas 310, and channel response data indicating the channel response sampled in space and frequency between the antenna 210 and the array antenna 302 when the antenna 210 and the array antenna 302 are in this positional relationship.
  • the measurement data receiving unit 142 may receive measurement data from the communication device 300 including channel response data indicating the channel response measured by channel sounding using the array antenna 302 by the communication device 300 in a situation where the positional relationship between the antenna 210 and the array antenna 302 is known.
  • the measurement data receiving unit 142 stores the received measurement data in the memory unit 140 as training data.
  • Antenna 210 and array antenna 302 may be used for LoS-MIMO transmission.
  • Multiple antennas 310 may be arranged at intervals that meet the requirements for LoS-MIMO transmission.
  • the teacher data acquisition unit 144 acquires multiple pieces of teacher data from the storage unit 140.
  • the teacher data acquisition unit 144 may acquire all of the teacher data stored in the storage unit 140.
  • the teacher data acquisition unit 144 may also acquire multiple pieces of teacher data selected by a user of the information processing device 100, etc., from the teacher data stored in the storage unit 140.
  • the learning execution unit 146 uses multiple pieces of training data acquired by the training data acquisition unit 144 to perform neural network training, taking channel response data as input and outputting the estimated direction of the antenna 210 relative to the array antenna 302.
  • the input channel response data may include channel vectors for each of multiple frequencies.
  • the information processing device 100 may use the neural network that has been trained by the learning execution unit 146 to perform control to adjust communication between the mobile body 200 and the communication device 300 that are currently communicating using the antenna 210 and the array antenna 302.
  • the channel response acquisition unit 150 acquires channel response data indicating the channel response sampled in space and frequency between the antenna 210 (sometimes referred to as the third antenna) equipped on the mobile body 200 (sometimes referred to as the second mobile body) during communication and the array antenna 302 (sometimes referred to as the second array antenna) including multiple antennas 310 (sometimes referred to as the fourth antenna) used by the communication device 300.
  • the direction acquisition unit 152 inputs the channel response data acquired by the channel response acquisition unit 150 into the neural network that has been trained by the learning execution unit 146, and acquires the direction of the third antenna relative to the second array antenna output from the neural network.
  • FIG 10 shows a schematic diagram of an example of the configuration of a HAPS 400, which is an example of a mobile object 200.
  • the HAPS 400 provides wireless communication services to user terminals 70 within a communication area 404 formed by emitting a beam 402 toward the ground.
  • the HAPS 400 includes wings 420, a photovoltaic power generation unit 430, a propeller 440, an elevator 450, a central unit 460, and a pod 470.
  • the photovoltaic power generation unit 430 includes a photovoltaic panel that receives light and generates electricity.
  • the photovoltaic panel may be a so-called solar power generation panel.
  • the HAPS 400 is equipped with multiple batteries (not shown). The multiple batteries are distributed and arranged in all or some of the wing sections 420, central section 460, and pod 470. The multiple batteries are charged with electricity generated by the photovoltaic power generation unit 430.
  • a flight control unit 462 and a communications control unit 464 are located within the central section 460.
  • the flight control unit 462 controls the flight of the HAPS 400.
  • the communications control unit 464 controls communications for the HAPS 400.
  • the flight control device 462 controls the flight of the HAPS 400, for example, by controlling the rotation of the propeller 440.
  • the flight control device 462 also controls the flight of the HAPS 400, for example, by changing the angle of the elevator 450.
  • the flight control device 462 may be equipped with various sensors, such as a positioning sensor such as a GPS sensor, a gyro sensor, an acceleration sensor, and a wind speed sensor, and may manage the position, attitude, direction of movement, speed of movement of the HAPS 400, and the wind speed around the HAPS 400.
  • the communication control device 464 uses a service link (SL) antenna to form a communication area 404 on the ground.
  • the communication control device 464 may use the SL antenna to form a service link with a terrestrial user terminal 70.
  • SL service link
  • the communication control device 464 may use an FL (Feeder Link) antenna to form a feeder link with the terrestrial gateway 40.
  • the communication control device 464 may access the network 30 via the gateway 40.
  • the FL antenna may be an example of an antenna 210.
  • the gateway 40 may be an example of a communication device 300.
  • the user terminal 70 may be any type of communications terminal capable of communicating with the HAPS 400.
  • the user terminal 70 may be a mobile phone such as a smartphone.
  • the user terminal 70 may also be a tablet terminal or a PC (Personal Computer).
  • the user terminal 70 may also be a so-called IoT (Internet of Things) device.
  • the user terminal 70 may include anything that falls under the so-called IoE (Internet of Everything) category.
  • HAPS 400 relays communications between network 30 and user terminal 70, for example, via a feeder link and a service link. HAPS 400 may provide wireless communication services to user terminal 70 by relaying communications between user terminal 70 and network 30.
  • Network 30 includes a mobile communication network.
  • the mobile communication network may conform to any of the following communication methods: LTE (Long Term Evolution), 5G (5th Generation), 3G (3rd Generation), and 6G (6th Generation) or later.
  • Network 30 may also include the Internet.
  • the HAPS 400 transmits data received from a user terminal 70 within the communication area 404 to the network 30. Furthermore, when the HAPS 400 receives data addressed to a user terminal 70 within the communication area 404 via the network 30, it transmits the data to the user terminal 70.
  • the management device 500 manages multiple HAPS 400.
  • the management device 500 may communicate with the HAPS 400 via the network 30 and the gateway 40.
  • the management device 500 controls the HAPS 400 by sending instructions.
  • the management device 500 may cause the HAPS 400 to circle above a target area on the ground so that the communication area 404 covers the target area. For example, while flying in a circular orbit above the target area, the HAPS 400 maintains a feeder link with the gateway 40 by adjusting the direction of the FL antenna, and maintains coverage of the target area by the communication area 404 by adjusting the direction of the SL antenna.
  • FIG. 11 shows a schematic diagram of an example of the hardware configuration of a computer 1200 that functions as the information processing device 100.
  • a program installed on the computer 1200 can cause the computer 1200 to function as one or more "parts" of an apparatus according to this embodiment, or can cause the computer 1200 to perform operations associated with the apparatus according to this embodiment or one or more "parts," and/or can cause the computer 1200 to perform a process or steps of the process according to this embodiment.
  • Such a program may be executed by the CPU 1212 to cause the computer 1200 to perform specific operations associated with some or all of the blocks in the flowcharts and block diagrams described herein.
  • the computer 1200 includes a CPU 1212, RAM 1214, and a graphics controller 1216, which are interconnected by a host controller 1210.
  • the computer 1200 also includes input/output units such as a communications interface 1222, a storage device 1224, a DVD drive, and an IC card drive, which are connected to the host controller 1210 via an input/output controller 1220.
  • the DVD drive may be a DVD-ROM drive, a DVD-RAM drive, or the like.
  • the storage device 1224 may be a hard disk drive, a solid-state drive, or the like.
  • the computer 1200 also includes a ROM 1230 and legacy input/output units such as a keyboard, which are connected to the input/output controller 1220 via an input/output chip 1240.
  • the CPU 1212 operates according to programs stored in the ROM 1230 and RAM 1214, thereby controlling each unit.
  • the graphics controller 1216 acquires image data generated by the CPU 1212 into a frame buffer provided in the RAM 1214 or into the graphics controller itself, and causes the image data to be displayed on the display device 1218.
  • the communication interface 1222 communicates with other electronic devices via a network.
  • the storage device 1224 stores programs and data used by the CPU 1212 in the computer 1200.
  • the DVD drive reads programs or data from a DVD-ROM or the like and provides them to the storage device 1224.
  • the IC card drive reads programs and data from an IC card and/or writes programs and data to an IC card.
  • ROM 1230 stores therein a boot program and the like that is executed by computer 1200 upon activation, and/or programs that depend on the hardware of computer 1200.
  • I/O chip 1240 may also connect various I/O units to I/O controller 1220 via USB ports, parallel ports, serial ports, keyboard ports, mouse ports, etc.
  • CPU 1212 may execute a communication program loaded into RAM 1214 and instruct communication interface 1222 to perform communication processing based on the processing described in the communication program.
  • communication interface 1222 reads transmission data stored in a transmission buffer area provided in RAM 1214, storage device 1224, DVD-ROM, or a recording medium such as an IC card, and transmits the read transmission data to the network, or writes received data received from the network to a reception buffer area or the like provided on the recording medium.
  • the CPU 1212 may also cause all or a necessary portion of a file or database stored on an external recording medium such as the storage device 1224, a DVD drive (DVD-ROM), an IC card, etc. to be read into the RAM 1214, and perform various types of processing on the data on the RAM 1214. The CPU 1212 may then write back the processed data to the external recording medium.
  • an external recording medium such as the storage device 1224, a DVD drive (DVD-ROM), an IC card, etc.
  • CPU 1212 may perform various types of processing on data read from RAM 1214, including various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, information search/replacement, etc., as described throughout this disclosure and specified by the program's instruction sequence, and write the results back to RAM 1214.
  • CPU 1212 may also search for information in files, databases, etc. on the recording medium.
  • CPU 1212 may search for an entry whose attribute value of the first attribute matches a specified condition from among the multiple entries, read the attribute value of the second attribute stored in the entry, and thereby obtain the attribute value of the second attribute associated with the first attribute that satisfies a predetermined condition.
  • the blocks in the flowcharts and block diagrams in this embodiment may represent stages of a process in which an operation is performed or "parts" of a device responsible for performing the operation. Particular stages and “parts" may be implemented by dedicated circuitry, programmable circuitry provided with computer-readable instructions stored on a computer-readable storage medium, and/or a processor provided with computer-readable instructions stored on a computer-readable storage medium.
  • Dedicated circuitry may include digital and/or analog hardware circuits, and may include integrated circuits (ICs) and/or discrete circuits.
  • Programmable circuitry may include reconfigurable hardware circuits, such as field programmable gate arrays (FPGAs) and programmable logic arrays (PLAs), including logical ANDs, ORs, exclusive ORs, NOT ANDs, NOT ORs, and other logical operations, flip-flops, registers, and memory elements.
  • FPGAs field programmable gate arrays
  • PLAs programmable logic arrays
  • a computer-readable storage medium may include any tangible device capable of storing instructions that are executed by an appropriate device.
  • a computer-readable storage medium having instructions stored thereon comprises an article of manufacture, including instructions that can be executed to create means for performing the operations specified in the flowcharts or block diagrams.
  • Examples of computer-readable storage media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, etc.
  • Computer-readable storage media may include floppy disks, diskettes, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), electrically erasable programmable read-only memory (EEPROM), static random access memory (SRAM), compact disc read-only memory (CD-ROM), digital versatile disc (DVD), Blu-ray disc, memory stick, integrated circuit card, etc.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or flash memory erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • SRAM static random access memory
  • CD-ROM compact disc read-only memory
  • DVD digital versatile disc
  • Blu-ray disc memory stick, integrated circuit card, etc.
  • the computer-readable instructions may be provided to a general-purpose computer, a special-purpose computer, or a processor of another programmable data processing device or programmable circuit, either locally or via a local area network (LAN) or a wide area network (WAN) such as the Internet, so that the processor of the programmable data processing device, such as a computer, or the programmable circuit executes the computer-readable instructions to generate means for performing the operations specified in the flowchart or block diagram.
  • the computer may be a PC (personal computer), tablet computer, smartphone, workstation, server computer, general-purpose computer, special-purpose computer, etc., or may be a computer system in which multiple computers are connected.
  • Such a computer system in which multiple computers are connected is also called a distributed computing system, and is a computer in the broad sense.
  • a distributed computing system multiple computers collectively execute a program by each executing a portion of the program and passing data between computers as needed during program execution.
  • processors include computer processors, central processing units, processing units, microprocessors, digital signal processors, controllers, microcontrollers, etc.
  • a computer may have one processor or multiple processors.
  • each processor executes a portion of a program and passes data between processors as needed during program execution, allowing the multiple processors to collectively execute a program.
  • each of the multiple processors may execute a portion of each task in small chunks by switching tasks for each time slice. In this case, which portion of a program each processor executes changes dynamically. Which portion of a program each of the multiple processors executes may also be statically determined by programming that takes multiprocessors into consideration.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is an information processing device comprising: a teacher data acquisition unit that acquires teacher data including the positional relationship between a first antenna provided to a mobile body and an array antenna including a plurality of second antennas, and channel response data indicating a channel response, sampled by space and frequency, between the first antenna and the array antenna when the first antenna and the array antenna are in the aforementioned positional relationship; and a training execution unit that uses a plurality of items of the teacher data acquired by the teacher data acquisition unit to execute training of a neural network that receives input of the channel response data and outputs an estimated direction of the first antenna with reference to the array antenna.

Description

情報処理装置、プログラム、及び情報処理方法Information processing device, program, and information processing method

 本発明は、情報処理装置、プログラム、及び情報処理方法に関する。 The present invention relates to an information processing device, a program, and an information processing method.

 非特許文献1には、ロバストなLos-MIMO(Line of Sight-Multi Input Multi Output)伝送について記載されている。
 [先行技術文献]
 [非特許文献]
 [非特許文献1]M. Tawada, Y. Ohta and A. Nagate, "Design of Robust LoS-MIMO Transmission in HAPS Feeder Link," 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), London, United Kingdom, 2022, pp. 1-7, doi: 10.1109/VTC2022-Fall57202.2022.10012950.
Non-Patent Document 1 describes robust Loss-MIMO (Line of Sight-Multi Input Multi Output) transmission.
[Prior art documents]
[Non-Patent Documents]
[Non-patent Document 1] M. Tawada, Y. Ohta and A. Nagate, "Design of Robust LoS-MIMO Transmission in HAPS Feeder Link," 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall), London, United Kingdom, 2022, pp. 1-7, doi: 10.1109/VTC2022-Fall57202.2022.10012950.

一般的開示General disclosure

(課題を解決するための手段) (Means for solving problems)

 本発明の一実施態様によれば、情報処理装置が提供される。前記情報処理装置は、移動体が有する第1アンテナと、複数の第2アンテナを含むアレイアンテナとの位置関係と、前記第1アンテナと前記アレイアンテナが前記位置関係であるときの前記第1アンテナと前記アレイアンテナとの間の、空間と周波数とでサンプリングされたチャネル応答を示すチャネル応答データと、を含む教師データを取得する教師データ取得部を備えてよい。前記情報処理装置は、前記教師データ取得部が取得した複数の前記教師データを用いて、前記チャネル応答データを入力とし、前記アレイアンテナを基準とした前記第1アンテナの推定方向を出力とするニューラルネットワークの学習を実行する学習実行部を備えてよい。前記チャネル応答データは、複数の周波数のそれぞれのチャネルベクトルを含んでよい。 According to one embodiment of the present invention, an information processing device is provided. The information processing device may include a training data acquisition unit that acquires training data including the positional relationship between a first antenna possessed by a mobile object and an array antenna including a plurality of second antennas, and channel response data indicating the channel response sampled in space and frequency between the first antenna and the array antenna when the first antenna and the array antenna are in the positional relationship. The information processing device may also include a learning execution unit that uses the plurality of training data acquired by the training data acquisition unit to execute training of a neural network that receives the channel response data as input and outputs an estimated direction of the first antenna relative to the array antenna. The channel response data may include channel vectors for each of a plurality of frequencies.

 前記情報処理装置において、前記学習実行部は、前記教師データに含まれる前記チャネル応答データを前記ニューラルネットワークに入力して、前記ニューラルネットワークから出力された推定方向のベクトルと、前記教師データに含まれる前記位置関係が示す前記アレイアンテナを基準とした前記第1アンテナの方向のベクトルとのコサイン類似度を損失関数として、前記ニューラルネットワークを更新してよい。前記学習実行部は、前記コサイン類似度が1となるように、前記ニューラルネットワークを更新してよい。 In the information processing device, the learning execution unit may input the channel response data included in the training data to the neural network, and update the neural network using the cosine similarity between the estimated direction vector output from the neural network and the vector of the direction of the first antenna relative to the array antenna indicated by the positional relationship included in the training data as a loss function. The learning execution unit may update the neural network so that the cosine similarity becomes 1.

 前記いずれかの情報処理装置において、前記第1アンテナと前記アレイアンテナとは、LoS-MIMO伝送に用いられてよく、前記複数の第2アンテナは、LoS-MIMO伝送の要件を満たす間隔で配置されていてよい。 In any of the information processing devices, the first antenna and the array antenna may be used for LoS-MIMO transmission, and the multiple second antennas may be arranged at intervals that satisfy the requirements for LoS-MIMO transmission.

 前記情報処理装置において、前記移動体は、HAPSであってよく、前記アレイアンテナは、地上に配置されてよい。 In the information processing device, the mobile object may be a HAPS, and the array antenna may be located on the ground.

 本発明の一実施態様によれば、コンピュータを、前記情報処理装置として機能させるためのプログラムが提供される。 According to one embodiment of the present invention, a program is provided for causing a computer to function as the information processing device.

 本発明の一実施態様によれば、コンピュータによって実行される情報処理方法が提供される。前記情報処理方法は、移動体が有する第1アンテナと複数の第2アンテナを含むアレイアンテナとの位置関係と、前記第1アンテナと前記アレイアンテナが前記位置関係であるときの前記第1アンテナと前記アレイアンテナとの間の、空間と周波数とでサンプリングされたチャネル応答を示すチャネル応答データと、を含む教師データを取得する教師データ取得段階を備えてよい。前記情報処理方法は、前記教師データ取得段階において取得した複数の前記教師データを用いて、前記チャネル応答データを入力とし、前記アレイアンテナを基準とした前記第1アンテナの推定方向を出力とするニューラルネットワークの学習を実行する学習実行段階を備えてよい。 According to one embodiment of the present invention, there is provided an information processing method executed by a computer. The information processing method may include a training data acquisition step of acquiring training data including the positional relationship between a first antenna possessed by a mobile object and an array antenna including a plurality of second antennas, and channel response data indicating the channel response sampled in space and frequency between the first antenna and the array antenna when the first antenna and the array antenna are in the positional relationship. The information processing method may also include a learning execution step of using the plurality of training data acquired in the training data acquisition step to execute training of a neural network that inputs the channel response data and outputs an estimated direction of the first antenna relative to the array antenna.

 本発明の一実施態様によれば、情報処理装置が提供される。前記情報処理装置は、第1移動体が備える第1アンテナと複数の第2アンテナを含む第1アレイアンテナとの位置関係と、前記第1アンテナと前記第1アレイアンテナが前記位置関係であるときの前記第1アンテナと前記第1アレイアンテナとの間の、空間と周波数とでサンプリングされたチャネル応答を示すチャネル応答データと、を含む教師データを複数用いて生成された、前記チャネル応答データを入力とし、前記第1アレイアンテナを基準とした前記第1アンテナの方向を出力とするニューラルネットワークを記憶する記憶部を備えてよい。前記情報処理装置は、第2移動体が備える第3アンテナと、複数の第4アンテナを含む第2アレイアンテナとの間の、空間と周波数とでサンプリングされたチャネル応答データを取得するチャネル応答取得部を備えてよい。前記情報処理装置は、前記チャネル応答取得部が取得した前記チャネル応答データを前記ニューラルネットワークに入力して、前記ニューラルネットワークから出力された、前記第2アレイアンテナを基準とした前記第3アンテナの方向を取得する方向取得部を備えてよい。前記情報処理装置は、前記方向取得部が取得した前記方向に基づいて、前記第3アンテナと前記第2アレイアンテナとの間の無線通信を調整する通信調整部を備えてよい。 According to one embodiment of the present invention, there is provided an information processing device. The information processing device may include a storage unit that stores a neural network that receives channel response data generated using a plurality of training data including the positional relationship between a first antenna provided on a first mobile object and a first array antenna including a plurality of second antennas, and channel response data indicating a channel response sampled in space and frequency between the first antenna and the first array antenna when the first antenna and the first array antenna are in the positional relationship, and outputs the direction of the first antenna relative to the first array antenna. The information processing device may include a channel response acquisition unit that acquires channel response data sampled in space and frequency between a third antenna provided on a second mobile object and a second array antenna including a plurality of fourth antennas. The information processing device may include a direction acquisition unit that inputs the channel response data acquired by the channel response acquisition unit to the neural network and acquires the direction of the third antenna relative to the second array antenna output from the neural network. The information processing device may include a communication adjustment unit that adjusts wireless communication between the third antenna and the second array antenna based on the direction acquired by the direction acquisition unit.

 前記第3アンテナと前記第2アレイアンテナとは、LoS-MIMO伝送に用いられてよく、前記複数の第4アンテナは、LoS-MIMO伝送の要件を満たす間隔で配置されていてよい。 The third antenna and the second array antenna may be used for LoS-MIMO transmission, and the multiple fourth antennas may be arranged at intervals that meet the requirements for LoS-MIMO transmission.

 本発明の一実施態様によれば、コンピュータを、前記情報処理装置として機能させるためのプログラムが提供される。 According to one embodiment of the present invention, a program is provided for causing a computer to function as the information processing device.

 本発明の一実施態様によれば、コンピュータによって実行される情報処理方法が提供される。前記情報処理方法は、第1移動体が備える第1アンテナと複数の第2アンテナを含む第1アレイアンテナとの位置関係と、前記第1アンテナと前記第1アレイアンテナが前記位置関係であるときの前記第1アンテナと前記第1アレイアンテナとの間の、空間と周波数とでサンプリングされたチャネル応答と、を含む教師データを複数用いて生成された、前記チャネル応答を入力とし、前記第1アレイアンテナを基準とした前記第1アンテナの方向を出力とするニューラルネットワークを取得するNN取得段階を備えてよい。前記情報処理方法は、第2移動体が備える第3アンテナと、複数の第4アンテナを含む第2アレイアンテナとの間の、空間と周波数とでサンプリングされたチャネル応答を取得するチャネル応答取得段階を備えてよい。前記情報処理方法は、前記チャネル応答取得段階において取得した前記チャネル応答を前記ニューラルネットワークに入力して、前記ニューラルネットワークから出力された、前記第2アレイアンテナを基準とした前記第3アンテナの方向を取得する方向取得段階を備えてよい。前記情報処理方法は、前記方向取得段階において取得した前記方向に基づいて、前記第3アンテナと前記第2アレイアンテナとの間の無線通信を調整する通信調整段階を備えてよい。 According to one embodiment of the present invention, there is provided an information processing method executed by a computer. The information processing method may include an NN acquisition step of acquiring a neural network that receives as input the channel response generated using a plurality of training data sets including the positional relationship between a first antenna equipped on a first mobile body and a first array antenna including a plurality of second antennas, and a channel response sampled in space and frequency between the first antenna and the first array antenna when the first antenna and the first array antenna are in the positional relationship, and outputs the direction of the first antenna relative to the first array antenna. The information processing method may include a channel response acquisition step of acquiring a channel response sampled in space and frequency between a third antenna equipped on a second mobile body and a second array antenna including a plurality of fourth antennas. The information processing method may include a direction acquisition step of inputting the channel response acquired in the channel response acquisition step to the neural network, and acquiring the direction of the third antenna relative to the second array antenna output from the neural network. The information processing method may include a communication adjustment step of adjusting wireless communication between the third antenna and the second array antenna based on the direction acquired in the direction acquisition step.

 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not list all of the necessary features of the present invention. Subcombinations of these features may also constitute inventions.

本実施形態に係るシステム10における移動体200とアレイアンテナ302との関係の一例を概略的に示す。10A and 10B show an example of the relationship between a moving body 200 and an array antenna 302 in the system 10 according to the present embodiment. 情報処理装置100が用いる、ニューラルネットワークによるDOA推定について概略的に説明するための説明図である。FIG. 1 is an explanatory diagram for schematically explaining DOA estimation by a neural network used by the information processing device 100. チャネル応答の取得方法について説明するための説明図である。FIG. 10 is an explanatory diagram illustrating a method for acquiring a channel response. 情報処理装置100の処理内容について概略的に説明するための説明図である。FIG. 2 is an explanatory diagram for roughly explaining the processing content of the information processing device 100. 入力データ110について説明するための説明図である。FIG. 2 is an explanatory diagram for explaining input data 110. 入力データ110について説明するための説明図である。FIG. 2 is an explanatory diagram for explaining input data 110. 入力データ110について説明するための説明図である。FIG. 2 is an explanatory diagram for explaining input data 110. 入力データ110について説明するための説明図である。FIG. 2 is an explanatory diagram for explaining input data 110. 情報処理装置100の機能構成の一例を概略的に示す。2 illustrates an example of a functional configuration of an information processing device 100. 移動体200の一例であるHAPS400の構成の一例を概略的に示す。1 shows a schematic diagram of an example of the configuration of a HAPS 400, which is an example of a moving body 200. 情報処理装置100として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。1 shows an example of a hardware configuration of a computer 1200 that functions as the information processing device 100.

 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 The present invention will be explained below through embodiments of the invention, but the following embodiments do not limit the scope of the invention as claimed. Furthermore, not all of the combinations of features described in the embodiments are necessarily essential to the solution of the invention.

 近年、高度20kmの成層圏を航行するHAPS(High-Altitude Platform Station)を用いたモバイル通信サービスが注目されている。地上固定局とHAPS間のフィーダリンクは、形成されるエリア内の端末の通信のトラフィックを収容するため大容量通信回線が要求される。この解決策には、HAPS移動時の送受間距離と角度の変化に対応するLoS-MIMOによる空間多重化の効果によるチャネル容量の向上が有効である。ところで、HAPS通信システムへの割当周波数としてグローバル特定されているのは39GHz等のミリ波帯となっている。HAPSが上空20kmを旋回することを考慮すると、伝搬損失が大きくなるため、所望SNR(Signal to Noise Ratio)を確保するためには、高利得アンテナの使用が有効となる。しかし、アンテナ利得を大きくするとビーム幅が狭小化するため、地上局とHAPSとの間の電波の到来方向推定とHAPSの移動に対応したビームトラッキングが重要となる。HAPSに搭載されているセンサを用いてHAPSの位置及び姿勢の情報を取得することによって方向の計算をすることはできるが、精度や信頼性はセンサに依存することになる。また、そもそも、精密機器であるセンサをHAPSという過酷環境で運用するリスクもある。レーダシステムを導入することも考えられるが、HAPSに対して新たなHWを追加することは、ペイロード重量制限の観点から望ましくなく、測位用の信号の導入は電力や周波数利用の観点から望ましくない。システム構成をコンパクトにするために、方向推定用専用のアンテナや信号を追加せずLoS-MIMO伝送用のアレイアンテナと信号を用いて方向推定を行うことが望ましい。一般的にMUSIC(MUltiple SIgnal Classification)やESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)に代表されるアレイ信号処理では、イメージを抑圧するためにアンテナ素子間隔を半波長以下にするが、LoS-MIMO伝送を実現するためには、素子間隔は数100波長となる。この場合、従来の方向推定アルゴリズムの適用が困難になる。本実施形態に係る情報処理装置100は、このような、LoS-MIMO伝送システム等の素子間隔が広いアレイアンテナ向けに、ニューラルネットワーク(NN:Neural Network)を利用した方向推定方式を採用する。 In recent years, mobile communication services using HAPS (High-Altitude Platform Station), which travels in the stratosphere at an altitude of 20 km, have been attracting attention. The feeder link between the fixed terrestrial station and the HAPS requires a high-capacity communication line to accommodate the communication traffic of terminals within the area formed. An effective solution to this problem is to improve channel capacity through the spatial multiplexing effect of LoS-MIMO, which accommodates changes in the distance and angle between the transmitter and receiver as the HAPS moves. Incidentally, millimeter wave bands such as 39 GHz are globally specified as frequencies allocated to HAPS communication systems. Considering that HAPS orbits at an altitude of 20 km, propagation loss increases, making the use of high-gain antennas effective in ensuring the desired SNR (Signal-to-Noise Ratio). However, increasing antenna gain narrows the beamwidth, making it important to estimate the direction of arrival of radio waves between the ground station and HAPS and to track the beam accordingly while the HAPS is moving. While direction calculations can be performed by acquiring information on the HAPS's position and attitude using sensors installed on the HAPS, accuracy and reliability depend on the sensors. Furthermore, there are inherent risks in operating precision sensors in the harsh environment of the HAPS. While introducing a radar system is an option, adding new hardware to the HAPS is undesirable due to payload weight limitations, and introducing positioning signals is undesirable due to power and frequency usage considerations. To achieve a compact system configuration, it is desirable to perform direction estimation using an array antenna and signals for LoS-MIMO transmission, without adding dedicated antennas or signals for direction estimation. Generally, in array signal processing such as MUSIC (Multiple Signal Classification) and ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques), the antenna element spacing is set to half a wavelength or less to suppress images, but to achieve LoS-MIMO transmission, the element spacing becomes several hundred wavelengths. In this case, it becomes difficult to apply conventional direction estimation algorithms. The information processing device 100 according to this embodiment employs a direction estimation method using a neural network (NN) for array antennas with wide element spacing, such as those used in LoS-MIMO transmission systems.

 図1は、本実施形態に係るシステム10における移動体200とアレイアンテナ302との関係の一例を概略的に示す。システム10は、情報処理装置100を備える、図1においては、情報処理装置100の図示を省略している。システム10は、複数のアンテナ310を含むアレイアンテナ302と、アレイアンテナ302を用いた通信を実行する通信装置300とを備えてよい。 FIG. 1 shows a schematic example of the relationship between a mobile object 200 and an array antenna 302 in a system 10 according to this embodiment. The system 10 includes an information processing device 100, which is not shown in FIG. 1. The system 10 may include an array antenna 302 including a plurality of antennas 310, and a communication device 300 that performs communication using the array antenna 302.

 図1では、移動体200がHAPSである場合を例示しているが、これに限らない。移動体200は、空中を移動する飛行機や無人航空機であってもよい。移動体200は、地上を移動する自動車等であってもよい。移動体200は、アンテナ210を備える。アンテナ210は、アレイアンテナであってよい。アンテナ210は、アレイアンテナでなくてもよい。アンテナ210は、第1アンテナの一例であってよく、アンテナ310は、第2アンテナの一例であってよい。 In FIG. 1, the mobile object 200 is illustrated as a HAPS, but this is not limiting. The mobile object 200 may be an airplane or unmanned aerial vehicle that moves through the air. The mobile object 200 may also be a car or the like that moves on the ground. The mobile object 200 is equipped with an antenna 210. The antenna 210 may be an array antenna. The antenna 210 does not have to be an array antenna. The antenna 210 may be an example of a first antenna, and the antenna 310 may be an example of a second antenna.

 図1では、アレイアンテナ302がUXA(Uniform Cross Array)である場合を例示しているが、これに限らない。アレイアンテナ302は、ULA(Uniform Linear Array)であってもよい。通信装置300は、アレイアンテナ302を用いて移動体200と通信することができれば、どのような装置であってもよい。移動体200がHAPSである場合、通信装置300は地上局であってよく、移動体200と通信装置300とは、フィーダリンク通信を実行してよい。 In FIG. 1, the array antenna 302 is illustrated as a UXA (Uniform Cross Array), but this is not limited to this. The array antenna 302 may also be a ULA (Uniform Linear Array). The communication device 300 may be any device that can communicate with the mobile unit 200 using the array antenna 302. If the mobile unit 200 is a HAPS, the communication device 300 may be a ground station, and the mobile unit 200 and the communication device 300 may perform feeder link communication.

 上述したように、従来手法として、MUSICやESPRITといった部分空間法が存在するが、これらの手法はアレイアンテナの素子間隔に対する条件があり、通常、λ/2以下に設定することが要求される。 As mentioned above, conventional subspace methods such as MUSIC and ESPRIT exist, but these methods impose conditions on the element spacing of the array antenna, which is usually required to be set to λ/2 or less.

 LoS-MIMO用アレイアンテナもまた素子間隔の条件があり、ULAの場合であれば、下記数式1を満たす必要がある。 Array antennas for LoS-MIMO also have element spacing requirements, and in the case of ULA, the following formula 1 must be satisfied.

 ただし、dは素子間隔であり、Dは送受間距離であり、cは光速であり、lはULA素子数であり、fcは中心周波数である。仮に、D=20km、l=5、fc=39GHzとした場合、d=721λとなり、従来のアレイ信号処理の素子間隔の条件に反する。 where d is the element spacing, D is the distance between transmitter and receiver, c is the speed of light, l is the number of ULA elements, and fc is the center frequency. If D = 20 km, l = 5, and fc = 39 GHz, then d = 721λ, which violates the element spacing requirements for conventional array signal processing.

 図2は、情報処理装置100が用いる、ニューラルネットワークによるDOA推定について概略的に説明するための説明図である。 Figure 2 is an explanatory diagram that provides an overview of DOA estimation using a neural network, as used by the information processing device 100.

 情報処理装置100は、従来のアレイ信号処理に代替する方式として、ニューラルネットワークを利用したDOA推定を採用した。ニューラルネットワークの特性として、隠れ層が1以上あれば、ノードの数を増やすことであらゆる関数を任意の精度で表現できるUniversal Approximation Theoremが知られている。情報処理装置100では、この特性を利用して、ニューラルネットワークをブラックボックスとしてDOA推定に利用する。 The information processing device 100 employs DOA estimation using a neural network as an alternative to conventional array signal processing. A known characteristic of neural networks is the Universal Approximation Theorem, which states that any function can be expressed with any degree of precision by increasing the number of nodes, as long as there is one or more hidden layers. The information processing device 100 takes advantage of this characteristic and uses a neural network as a black box for DOA estimation.

 情報処理装置100は、目的変数である到来方向の説明変数を入力データとし、この入力データを、空間周波数でサンプリングしたチャネル応答とする。情報処理装置100は、目的変数である到来方向を出力データとし、出力データを方向ベクトルとして、損失関数をコサイン類似度とする。 The information processing device 100 takes the explanatory variable of the direction of arrival, which is the objective variable, as input data, and treats this input data as a channel response sampled at spatial frequency. The information processing device 100 takes the direction of arrival, which is the objective variable, as output data, treats the output data as a direction vector, and uses cosine similarity as the loss function.

 図3は、チャネル応答の取得方法について説明するための説明図である。仮に移動体200側が送信アレイ、アレイアンテナ302が受信アレイであるとすると、アレイアンテナ302は、移動体200の任意のアンテナからのチャネル応答を、図3に示すようなチャネルサウンディングによって取得する。情報処理装置100は、このチャネル応答取得時の電波の到来方向のデータを、教師データとして取得しておく。 Figure 3 is an explanatory diagram for explaining how to acquire a channel response. If the mobile body 200 side is a transmitting array and the array antenna 302 is a receiving array, the array antenna 302 acquires a channel response from any antenna on the mobile body 200 by channel sounding as shown in Figure 3. The information processing device 100 acquires data on the direction of arrival of the radio waves when acquiring this channel response as training data.

 情報処理装置100は、チャネル応答及び電波の到来方向のデータを、実データとして収集してよい。情報処理装置100は、チャネル応答及び電波の到来方向のデータを、シミュレーションによって収集してよい。 The information processing device 100 may collect data on the channel response and direction of arrival of radio waves as actual data. The information processing device 100 may collect data on the channel response and direction of arrival of radio waves through simulation.

 図4は、情報処理装置100の処理内容について概略的に説明するための説明図である。情報処理装置100は、DOA推定NN120の入力データ110として、教師データに含まれるチャネル応答情報を用いる。情報処理装置100は、出力データ130を、3次元の方向ベクトルvとし、電波の放射源である移動体200のアンテナ位置ベクトル
とのコサイン類似度を損失関数Lとして、Lが1になるようにDOA推定NN120を最適化する。
4 is an explanatory diagram for outlining the processing contents of the information processing device 100. The information processing device 100 uses channel response information included in the teacher data as input data 110 of the DOA estimation NN 120. The information processing device 100 outputs data 130 as a three-dimensional direction vector v and an antenna position vector of a mobile object 200, which is a source of radio waves.
The loss function L is the cosine similarity between the two, and the DOA estimation NN 120 is optimized so that L becomes 1.

 図5、図6、図7、図8は、入力データ110について説明するための説明図である。送信1アンテナと受信nアンテナとの間のチャネルベクトルhは、例えば、仲上ライスフェージングを仮定して、直接は成分のhLoSとマルチパス成分hNLoS、及び電力比KファクターKを用いて、図5の数式112で表すことができる。通常、HAPS通信システムのような見通し環境では、Kファクタは大きな値になることからLoS成分が支配的になり、K>>1の条件下で
(hとhLoSとがニアリーイコールである)となる。LoS-MIMOにおいてhLoSは送受アンテナの位置関係によって決まり、送信アンテナからi番目の受信アンテナまでの距離diを用いて、図6の数式114で表すことができる。
5, 6, 7, and 8 are explanatory diagrams for explaining input data 110. A channel vector h between one transmitting antenna and n receiving antennas can be expressed by equation 112 in Fig. 5 using the direct component h LoS , the multipath component h NLoS , and the power ratio K factor K, assuming Nakagami-Rice fading. Normally, in a line-of-sight environment such as a HAPS communication system, the K factor takes a large value, so the LoS component becomes dominant, and under the condition of K>>1,
(h and h LoS are nearly equal.) In LoS-MIMO, h LoS is determined by the relative positions of the transmitting and receiving antennas, and can be expressed by equation 114 in FIG. 6 using the distance di from the transmitting antenna to the i-th receiving antenna.

 アンテナの配置位置でサンプリングされたチャネル応答データであるが、素子間隔が大きい場合アレイ信号処理では曖昧さが生じることで正しく推定できないことを踏まえて、情報処理装置100は、移動体200と通信装置300との通信信号に含まれる複数の周波数成分m個のチャネルベクトルを利用してよい。周波数のインデックスを下付き添え字として、入力データuを図7の数式116で表すことができる。情報処理装置100は、図8の数式118で示すように、各要素を偏角に変換したものを、入力データuとしてもよい。 Although this is channel response data sampled at the antenna arrangement position, array signal processing cannot accurately estimate data when the element spacing is large due to ambiguity that occurs. Therefore, the information processing device 100 may use a channel vector of m frequency components contained in the communication signal between the mobile object 200 and the communication device 300. With frequency indices as subscripts, the input data u can be expressed by equation 116 in Figure 7. The information processing device 100 may convert each element into an argument as shown in equation 118 in Figure 8, and use this as input data u.

 図9は、情報処理装置100の機能構成の一例を概略的に示す。情報処理装置100は、記憶部140、測定データ受信部142、教師データ取得部144、学習実行部146、NN出力部148、チャネル応答取得部150、方向取得部152、及び通信調整部154を備える。なお、情報処理装置100がこれらの全てを備えることは必須とは限らない。 Figure 9 shows an example of the functional configuration of the information processing device 100. The information processing device 100 includes a memory unit 140, a measurement data receiving unit 142, a teacher data acquisition unit 144, a learning execution unit 146, an NN output unit 148, a channel response acquisition unit 150, a direction acquisition unit 152, and a communication adjustment unit 154. Note that it is not essential for the information processing device 100 to include all of these units.

 測定データ受信部142は、測定データを受信する。測定データは、移動体200が有するアンテナ210と、複数のアンテナ310を含むアレイアンテナ302との位置関係と、アンテナ210とアレイアンテナ302とが当該位置関係であるときのアンテナ210とアレイアンテナ302と間の、空間と周波数とでサンプリングされたチャネル応答を示すチャネル応答データとを含む。測定データ受信部142は、アンテナ210とアレイアンテナ302との位置関係が既知である状況において、アレイアンテナ302を用いて通信装置300によってチャネルサウンディングによって測定されたチャネル応答を示すチャネル応答データと、当該位置関係とを含む測定データを、通信装置300から受信してよい。測定データ受信部142は、受信した測定データを、教師データとして記憶部140に記憶させる。 The measurement data receiving unit 142 receives measurement data. The measurement data includes the positional relationship between the antenna 210 of the mobile unit 200 and the array antenna 302 including multiple antennas 310, and channel response data indicating the channel response sampled in space and frequency between the antenna 210 and the array antenna 302 when the antenna 210 and the array antenna 302 are in this positional relationship. The measurement data receiving unit 142 may receive measurement data from the communication device 300 including channel response data indicating the channel response measured by channel sounding using the array antenna 302 by the communication device 300 in a situation where the positional relationship between the antenna 210 and the array antenna 302 is known. The measurement data receiving unit 142 stores the received measurement data in the memory unit 140 as training data.

 アンテナ210とアレイアンテナ302とは、LoS-MIMO伝送に用いられてよい。複数のアンテナ310は、LoS-MIMO伝送の要件を満たす間隔で配置されていてよい。 Antenna 210 and array antenna 302 may be used for LoS-MIMO transmission. Multiple antennas 310 may be arranged at intervals that meet the requirements for LoS-MIMO transmission.

 教師データ取得部144は、複数の教師データを記憶部140から取得する。教師データ取得部144は、記憶部140に記憶されている全ての教師データを取得してよい。教師データ取得部144は、記憶部140に記憶されている教師データのうち、情報処理装置100の利用者等によって選択された複数の教師データを取得してもよい。 The teacher data acquisition unit 144 acquires multiple pieces of teacher data from the storage unit 140. The teacher data acquisition unit 144 may acquire all of the teacher data stored in the storage unit 140. The teacher data acquisition unit 144 may also acquire multiple pieces of teacher data selected by a user of the information processing device 100, etc., from the teacher data stored in the storage unit 140.

 学習実行部146は、教師データ取得部144が取得した複数の教師データを用いて、チャネル応答データを入力とし、アレイアンテナ302を基準としたアンテナ210の推定方向を出力とするニューラルネットワークの学習を実行する。図5~図8において説明したように、入力のチャネル応答データは、複数の周波数のそれぞれのチャネルベクトルを含んでよい。 The learning execution unit 146 uses multiple pieces of training data acquired by the training data acquisition unit 144 to perform neural network training, taking channel response data as input and outputting the estimated direction of the antenna 210 relative to the array antenna 302. As described in Figures 5 to 8, the input channel response data may include channel vectors for each of multiple frequencies.

 学習実行部146は、教師データに含まれるチャネル応答データをニューラルネットワークに入力して、ニューラルネットワークから出力された推定方向のベクトルと、教師データに含まれる位置関係が示すアレイアンテナ302を基準としたアンテナ210の方向のベクトルとのコサイン類似度を損失関数として、ニューラルネットワークを更新してよい。学習実行部146は、コサイン類似度が1となるように、ニューラルネットワークを最適化してよい。 The learning execution unit 146 may input the channel response data included in the training data into the neural network, and update the neural network using the cosine similarity between the estimated direction vector output from the neural network and the vector of the direction of the antenna 210 relative to the array antenna 302, as indicated by the positional relationship included in the training data, as a loss function. The learning execution unit 146 may optimize the neural network so that the cosine similarity becomes 1.

 なお、学習実行部146は、これに限らず、教師データに含まれるチャネル応答データを入力した場合に、教師データに含まれる位置関係が示すアレイアンテナ302を基準としたアンテナ210の方向のベクトルにより近い推定方向をニューラルネットワークが出力可能になる、公知の任意の学習方法を用いてもよい。また、学習実行部146は、公知のニューラルネットワークに対して、教師データに含まれるチャネル応答データを入力して、出力が、教師データに含まれる位置関係を示すように、ニューラルネットワークを更新する学習を実行してもよい。 The learning execution unit 146 is not limited to this, and may use any known learning method that enables a neural network to output an estimated direction that is closest to the vector of the direction of antenna 210 relative to array antenna 302, which is indicated by the positional relationship included in the training data, when channel response data included in the training data is input. The learning execution unit 146 may also input channel response data included in the training data to a known neural network and perform learning to update the neural network so that the output indicates the positional relationship included in the training data.

 NN出力部148は、学習実行部146による学習が終了したニューラルネットワークを出力する。NN出力部148は、例えば、学習実行部146による学習が終了したニューラルネットワークを、外部に送信する。 The NN output unit 148 outputs the neural network after learning by the learning execution unit 146. The NN output unit 148, for example, transmits the neural network after learning by the learning execution unit 146 to the outside.

 情報処理装置100は、学習実行部146による学習が終了したニューラルネットワークを用いて、アンテナ210とアレイアンテナ302とを用いて通信中の移動体200と通信装置300との通信を調整する制御を実行してもよい。 The information processing device 100 may use the neural network that has been trained by the learning execution unit 146 to perform control to adjust communication between the mobile body 200 and the communication device 300 that are currently communicating using the antenna 210 and the array antenna 302.

 チャネル応答取得部150は、通信中の移動体200(第2移動体と記載する場合がある。)が備えるアンテナ210(第3アンテナと記載する場合がある。)と、通信装置300が用いる複数のアンテナ310(第4アンテナと記載する場合がある)を含むアレイアンテナ302(第2アレイアンテナと記載する場合がある。)との間の、空間と周波数とでサンプリングされたチャネル応答を示すチャネル応答データを取得する。 The channel response acquisition unit 150 acquires channel response data indicating the channel response sampled in space and frequency between the antenna 210 (sometimes referred to as the third antenna) equipped on the mobile body 200 (sometimes referred to as the second mobile body) during communication and the array antenna 302 (sometimes referred to as the second array antenna) including multiple antennas 310 (sometimes referred to as the fourth antenna) used by the communication device 300.

 方向取得部152は、チャネル応答取得部150が取得したチャネル応答データを、学習実行部146による学習が終了したニューラルネットワークに入力して、当該ニューラルネットワークから出力された、第2アレイアンテナを基準とした第3アンテナの方向を取得する。 The direction acquisition unit 152 inputs the channel response data acquired by the channel response acquisition unit 150 into the neural network that has been trained by the learning execution unit 146, and acquires the direction of the third antenna relative to the second array antenna output from the neural network.

 通信調整部154は、方向取得部152が取得した方向に基づいて、第3アンテナと第2アレイアンテナとの間の無線通信を調整する。通信調整部154は、方向取得部152が取得した方向に従って、通信装置300に対して調整指示を送信してよい。通信調整部154は、方向取得部152が取得した方向に従って、第2移動体に対して調整指示を送信してよい。 The communication adjustment unit 154 adjusts the wireless communication between the third antenna and the second array antenna based on the direction acquired by the direction acquisition unit 152. The communication adjustment unit 154 may send an adjustment instruction to the communication device 300 according to the direction acquired by the direction acquisition unit 152. The communication adjustment unit 154 may send an adjustment instruction to the second mobile body according to the direction acquired by the direction acquisition unit 152.

 情報処理装置100がこのような調整処理を実行しない場合、情報処理装置100は、チャネル応答取得部150、方向取得部152、及び通信調整部154を備えなくてもよい。 If the information processing device 100 does not perform such adjustment processing, the information processing device 100 does not need to include the channel response acquisition unit 150, direction acquisition unit 152, and communication adjustment unit 154.

 図10は、移動体200の一例であるHAPS400の構成の一例を概略的に示す。HAPS400は、地上に向けてビーム402を照射することにより形成した通信エリア404内のユーザ端末70に無線通信サービスを提供する。HAPS400は、翼部420、光発電部430、プロペラ440、エレベータ450、中央部460、及びポッド470を備える。 Figure 10 shows a schematic diagram of an example of the configuration of a HAPS 400, which is an example of a mobile object 200. The HAPS 400 provides wireless communication services to user terminals 70 within a communication area 404 formed by emitting a beam 402 toward the ground. The HAPS 400 includes wings 420, a photovoltaic power generation unit 430, a propeller 440, an elevator 450, a central unit 460, and a pod 470.

 光発電部430は、光を受けて発電する光発電パネルを含む。光発電パネルは、いわゆる太陽光発電パネルであってよい。HAPS400は、不図示の複数のバッテリを備える。複数のバッテリは、翼部420、中央部460、及びポッド470のうちの全て又は一部に、分散して配置される。複数のバッテリは、光発電部430によって発電された電力によって充電される。 The photovoltaic power generation unit 430 includes a photovoltaic panel that receives light and generates electricity. The photovoltaic panel may be a so-called solar power generation panel. The HAPS 400 is equipped with multiple batteries (not shown). The multiple batteries are distributed and arranged in all or some of the wing sections 420, central section 460, and pod 470. The multiple batteries are charged with electricity generated by the photovoltaic power generation unit 430.

 中央部460内には、飛行制御装置462及び通信制御装置464が配置される。飛行制御装置462は、HAPS400の飛行を制御する。通信制御装置464は、HAPS400の通信を制御する。 A flight control unit 462 and a communications control unit 464 are located within the central section 460. The flight control unit 462 controls the flight of the HAPS 400. The communications control unit 464 controls communications for the HAPS 400.

 飛行制御装置462は、例えば、プロペラ440の回転を制御することによってHAPS400の飛行を制御する。また、飛行制御装置462は、例えば、エレベータ450の角度を変更することによってHAPS400の飛行を制御する。飛行制御装置462は、GPSセンサ等の測位センサ、ジャイロセンサ、加速度センサ、及び風速センサ等の各種センサを備えて、HAPS400の位置、姿勢、移動方向、移動速度、及びHAPS400の周囲の風速を管理してよい。 The flight control device 462 controls the flight of the HAPS 400, for example, by controlling the rotation of the propeller 440. The flight control device 462 also controls the flight of the HAPS 400, for example, by changing the angle of the elevator 450. The flight control device 462 may be equipped with various sensors, such as a positioning sensor such as a GPS sensor, a gyro sensor, an acceleration sensor, and a wind speed sensor, and may manage the position, attitude, direction of movement, speed of movement of the HAPS 400, and the wind speed around the HAPS 400.

 通信制御装置464は、SL(Service Link)アンテナを用いて、地上に通信エリア404を形成する。通信制御装置464は、SLアンテナを用いて、地上のユーザ端末70とサービスリンクを形成してよい。 The communication control device 464 uses a service link (SL) antenna to form a communication area 404 on the ground. The communication control device 464 may use the SL antenna to form a service link with a terrestrial user terminal 70.

 通信制御装置464は、FL(Feeder Link)アンテナを用いて、地上のゲートウェイ40との間でフィーダリンクを形成してよい。通信制御装置464は、ゲートウェイ40を介して、ネットワーク30にアクセスしてよい。FLアンテナは、アンテナ210の一例であってよい。ゲートウェイ40は、通信装置300の一例であってよい。 The communication control device 464 may use an FL (Feeder Link) antenna to form a feeder link with the terrestrial gateway 40. The communication control device 464 may access the network 30 via the gateway 40. The FL antenna may be an example of an antenna 210. The gateway 40 may be an example of a communication device 300.

 ユーザ端末70は、HAPS400と通信可能であればどのような通信端末であってもよい。例えば、ユーザ端末70は、スマートフォン等の携帯電話である。ユーザ端末70は、タブレット端末及びPC(Personal Computer)等であってもよい。ユーザ端末70は、いわゆるIoT(Internet of Thing)デバイスであってもよい。ユーザ端末70は、いわゆるIoE(Internet of Everything)に該当するあらゆるものを含み得る。 The user terminal 70 may be any type of communications terminal capable of communicating with the HAPS 400. For example, the user terminal 70 may be a mobile phone such as a smartphone. The user terminal 70 may also be a tablet terminal or a PC (Personal Computer). The user terminal 70 may also be a so-called IoT (Internet of Things) device. The user terminal 70 may include anything that falls under the so-called IoE (Internet of Everything) category.

 HAPS400は、例えば、フィーダリンクと、サービスリンクとを介して、ネットワーク30とユーザ端末70との通信を中継する。HAPS400は、ユーザ端末70とネットワーク30との通信を中継することによって、ユーザ端末70に無線通信サービスを提供してよい。 HAPS 400 relays communications between network 30 and user terminal 70, for example, via a feeder link and a service link. HAPS 400 may provide wireless communication services to user terminal 70 by relaying communications between user terminal 70 and network 30.

 ネットワーク30は、移動体通信ネットワークを含む。移動体通信ネットワークは、LTE(Long Term Evolution)通信方式、5G(5th Generation)通信方式、3G(3rd Generation)通信方式、及び6G(6th Generation)通信方式以降の通信方式のいずれに準拠していてもよい。ネットワーク30は、インターネットを含んでもよい。 Network 30 includes a mobile communication network. The mobile communication network may conform to any of the following communication methods: LTE (Long Term Evolution), 5G (5th Generation), 3G (3rd Generation), and 6G (6th Generation) or later. Network 30 may also include the Internet.

 HAPS400は、例えば、通信エリア404内のユーザ端末70から受信したデータをネットワーク30に送信する。また、HAPS400は、例えば、ネットワーク30を介して、通信エリア404内のユーザ端末70宛のデータを受信した場合に、当該データをユーザ端末70に送信する。 The HAPS 400 transmits data received from a user terminal 70 within the communication area 404 to the network 30. Furthermore, when the HAPS 400 receives data addressed to a user terminal 70 within the communication area 404 via the network 30, it transmits the data to the user terminal 70.

 管理装置500は、複数のHAPS400を管理する。管理装置500は、ネットワーク30及びゲートウェイ40を介して、HAPS400と通信してよい。管理装置500は、指示を送信することによってHAPS400を制御する。管理装置500は、通信エリア404によって地上の対象エリアをカバーさせるべく、HAPS400に、対象エリアの上空を旋回させてよい。HAPS400は、例えば、対象エリアの上空を円軌道で飛行しつつ、FLアンテナの指向方向を調整することによってゲートウェイ40との間のフィーダリンクを維持し、SLアンテナの指向方向を調整することによって通信エリア404による対象エリアのカバーを維持する。 The management device 500 manages multiple HAPS 400. The management device 500 may communicate with the HAPS 400 via the network 30 and the gateway 40. The management device 500 controls the HAPS 400 by sending instructions. The management device 500 may cause the HAPS 400 to circle above a target area on the ground so that the communication area 404 covers the target area. For example, while flying in a circular orbit above the target area, the HAPS 400 maintains a feeder link with the gateway 40 by adjusting the direction of the FL antenna, and maintains coverage of the target area by the communication area 404 by adjusting the direction of the SL antenna.

 図11は、情報処理装置100として機能するコンピュータ1200のハードウェア構成の一例を概略的に示す。コンピュータ1200にインストールされたプログラムは、コンピュータ1200を、本実施形態に係る装置の1又は複数の「部」として機能させ、又はコンピュータ1200に、本実施形態に係る装置に関連付けられるオペレーション又は当該1又は複数の「部」を実行させることができ、及び/又はコンピュータ1200に、本実施形態に係るプロセス又は当該プロセスの段階を実行させることができる。そのようなプログラムは、コンピュータ1200に、本明細書に記載のフローチャート及びブロック図のブロックのうちのいくつか又はすべてに関連付けられた特定のオペレーションを実行させるべく、CPU1212によって実行されてよい。 FIG. 11 shows a schematic diagram of an example of the hardware configuration of a computer 1200 that functions as the information processing device 100. A program installed on the computer 1200 can cause the computer 1200 to function as one or more "parts" of an apparatus according to this embodiment, or can cause the computer 1200 to perform operations associated with the apparatus according to this embodiment or one or more "parts," and/or can cause the computer 1200 to perform a process or steps of the process according to this embodiment. Such a program may be executed by the CPU 1212 to cause the computer 1200 to perform specific operations associated with some or all of the blocks in the flowcharts and block diagrams described herein.

 本実施形態によるコンピュータ1200は、CPU1212、RAM1214、及びグラフィックコントローラ1216を含み、それらはホストコントローラ1210によって相互に接続されている。コンピュータ1200はまた、通信インタフェース1222、記憶装置1224、DVDドライブ、及びICカードドライブのような入出力ユニットを含み、それらは入出力コントローラ1220を介してホストコントローラ1210に接続されている。DVDドライブは、DVD-ROMドライブ及びDVD-RAMドライブ等であってよい。記憶装置1224は、ハードディスクドライブ及びソリッドステートドライブ等であってよい。コンピュータ1200はまた、ROM1230及びキーボードのようなレガシの入出力ユニットを含み、それらは入出力チップ1240を介して入出力コントローラ1220に接続されている。 The computer 1200 according to this embodiment includes a CPU 1212, RAM 1214, and a graphics controller 1216, which are interconnected by a host controller 1210. The computer 1200 also includes input/output units such as a communications interface 1222, a storage device 1224, a DVD drive, and an IC card drive, which are connected to the host controller 1210 via an input/output controller 1220. The DVD drive may be a DVD-ROM drive, a DVD-RAM drive, or the like. The storage device 1224 may be a hard disk drive, a solid-state drive, or the like. The computer 1200 also includes a ROM 1230 and legacy input/output units such as a keyboard, which are connected to the input/output controller 1220 via an input/output chip 1240.

 CPU1212は、ROM1230及びRAM1214内に格納されたプログラムに従い動作し、それにより各ユニットを制御する。グラフィックコントローラ1216は、RAM1214内に提供されるフレームバッファ等又はそれ自体の中に、CPU1212によって生成されるイメージデータを取得し、イメージデータがディスプレイデバイス1218上に表示されるようにする。 The CPU 1212 operates according to programs stored in the ROM 1230 and RAM 1214, thereby controlling each unit. The graphics controller 1216 acquires image data generated by the CPU 1212 into a frame buffer provided in the RAM 1214 or into the graphics controller itself, and causes the image data to be displayed on the display device 1218.

 通信インタフェース1222は、ネットワークを介して他の電子デバイスと通信する。記憶装置1224は、コンピュータ1200内のCPU1212によって使用されるプログラム及びデータを格納する。DVDドライブは、プログラム又はデータをDVD-ROM等から読み取り、記憶装置1224に提供する。ICカードドライブは、プログラム及びデータをICカードから読み取り、及び/又はプログラム及びデータをICカードに書き込む。 The communication interface 1222 communicates with other electronic devices via a network. The storage device 1224 stores programs and data used by the CPU 1212 in the computer 1200. The DVD drive reads programs or data from a DVD-ROM or the like and provides them to the storage device 1224. The IC card drive reads programs and data from an IC card and/or writes programs and data to an IC card.

 ROM1230はその中に、アクティブ化時にコンピュータ1200によって実行されるブートプログラム等、及び/又はコンピュータ1200のハードウェアに依存するプログラムを格納する。入出力チップ1240はまた、様々な入出力ユニットをUSBポート、パラレルポート、シリアルポート、キーボードポート、マウスポート等を介して、入出力コントローラ1220に接続してよい。 ROM 1230 stores therein a boot program and the like that is executed by computer 1200 upon activation, and/or programs that depend on the hardware of computer 1200. I/O chip 1240 may also connect various I/O units to I/O controller 1220 via USB ports, parallel ports, serial ports, keyboard ports, mouse ports, etc.

 プログラムは、DVD-ROM又はICカードのようなコンピュータ可読記憶媒体によって提供される。プログラムは、コンピュータ可読記憶媒体から読み取られ、コンピュータ可読記憶媒体の例でもある記憶装置1224、RAM1214、又はROM1230にインストールされ、CPU1212によって実行される。これらのプログラム内に記述される情報処理は、コンピュータ1200に読み取られ、プログラムと、上記様々なタイプのハードウェアリソースとの間の連携をもたらす。装置又は方法が、コンピュータ1200の使用に従い情報のオペレーション又は処理を実現することによって構成されてよい。 The programs are provided on a computer-readable storage medium such as a DVD-ROM or IC card. The programs are read from the computer-readable storage medium, installed in storage device 1224, RAM 1214, or ROM 1230, which are also examples of computer-readable storage media, and executed by CPU 1212. The information processing described in these programs is read by computer 1200, resulting in cooperation between the programs and the various types of hardware resources described above. An apparatus or method may be configured by implementing the operation or processing of information in accordance with the use of computer 1200.

 例えば、通信がコンピュータ1200及び外部デバイス間で実行される場合、CPU1212は、RAM1214にロードされた通信プログラムを実行し、通信プログラムに記述された処理に基づいて、通信インタフェース1222に対し、通信処理を命令してよい。通信インタフェース1222は、CPU1212の制御の下、RAM1214、記憶装置1224、DVD-ROM、又はICカードのような記録媒体内に提供される送信バッファ領域に格納された送信データを読み取り、読み取られた送信データをネットワークに送信し、又はネットワークから受信した受信データを記録媒体上に提供される受信バッファ領域等に書き込む。 For example, when communication is performed between computer 1200 and an external device, CPU 1212 may execute a communication program loaded into RAM 1214 and instruct communication interface 1222 to perform communication processing based on the processing described in the communication program. Under the control of CPU 1212, communication interface 1222 reads transmission data stored in a transmission buffer area provided in RAM 1214, storage device 1224, DVD-ROM, or a recording medium such as an IC card, and transmits the read transmission data to the network, or writes received data received from the network to a reception buffer area or the like provided on the recording medium.

 また、CPU1212は、記憶装置1224、DVDドライブ(DVD-ROM)、ICカード等のような外部記録媒体に格納されたファイル又はデータベースの全部又は必要な部分がRAM1214に読み取られるようにし、RAM1214上のデータに対し様々なタイプの処理を実行してよい。CPU1212は次に、処理されたデータを外部記録媒体にライトバックしてよい。 The CPU 1212 may also cause all or a necessary portion of a file or database stored on an external recording medium such as the storage device 1224, a DVD drive (DVD-ROM), an IC card, etc. to be read into the RAM 1214, and perform various types of processing on the data on the RAM 1214. The CPU 1212 may then write back the processed data to the external recording medium.

 様々なタイプのプログラム、データ、テーブル、及びデータベースのような様々なタイプの情報が記録媒体に格納され、情報処理を受けてよい。CPU1212は、RAM1214から読み取られたデータに対し、本開示の随所に記載され、プログラムの命令シーケンスによって指定される様々なタイプのオペレーション、情報処理、条件判断、条件分岐、無条件分岐、情報の検索/置換等を含む、様々なタイプの処理を実行してよく、結果をRAM1214に対しライトバックする。また、CPU1212は、記録媒体内のファイル、データベース等における情報を検索してよい。例えば、各々が第2の属性の属性値に関連付けられた第1の属性の属性値を有する複数のエントリが記録媒体内に格納される場合、CPU1212は、当該複数のエントリの中から、第1の属性の属性値が指定されている条件に一致するエントリを検索し、当該エントリ内に格納された第2の属性の属性値を読み取り、それにより予め定められた条件を満たす第1の属性に関連付けられた第2の属性の属性値を取得してよい。 Various types of information, such as various types of programs, data, tables, and databases, may be stored on the recording medium and may undergo information processing. CPU 1212 may perform various types of processing on data read from RAM 1214, including various types of operations, information processing, conditional judgment, conditional branching, unconditional branching, information search/replacement, etc., as described throughout this disclosure and specified by the program's instruction sequence, and write the results back to RAM 1214. CPU 1212 may also search for information in files, databases, etc. on the recording medium. For example, if multiple entries each having an attribute value of a first attribute associated with an attribute value of a second attribute are stored on the recording medium, CPU 1212 may search for an entry whose attribute value of the first attribute matches a specified condition from among the multiple entries, read the attribute value of the second attribute stored in the entry, and thereby obtain the attribute value of the second attribute associated with the first attribute that satisfies a predetermined condition.

 上で説明したプログラム又はソフトウエアモジュールは、コンピュータ1200上又はコンピュータ1200近傍のコンピュータ可読記憶媒体に格納されてよい。また、専用通信ネットワーク又はインターネットに接続されたサーバシステム内に提供されるハードディスク又はRAMのような記録媒体が、コンピュータ可読記憶媒体として使用可能であり、それによりプログラムを、ネットワークを介してコンピュータ1200に提供する。 The programs or software modules described above may be stored on computer-readable storage media on or near computer 1200. Recording media such as a hard disk or RAM provided within a server system connected to a dedicated communications network or the Internet can also be used as computer-readable storage media, thereby providing the programs to computer 1200 via the network.

 本実施形態におけるフローチャート及びブロック図におけるブロックは、オペレーションが実行されるプロセスの段階又はオペレーションを実行する役割を持つ装置の「部」を表わしてよい。特定の段階及び「部」が、専用回路、コンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプログラマブル回路、及び/又はコンピュータ可読記憶媒体上に格納されるコンピュータ可読命令と共に供給されるプロセッサによって実装されてよい。専用回路は、デジタル及び/又はアナログハードウェア回路を含んでよく、集積回路(IC)及び/又はディスクリート回路を含んでよい。プログラマブル回路は、例えば、フィールドプログラマブルゲートアレイ(FPGA)、及びプログラマブルロジックアレイ(PLA)等のような、論理積、論理和、排他的論理和、否定論理積、否定論理和、及び他の論理演算、フリップフロップ、レジスタ、並びにメモリエレメントを含む、再構成可能なハードウェア回路を含んでよい。 The blocks in the flowcharts and block diagrams in this embodiment may represent stages of a process in which an operation is performed or "parts" of a device responsible for performing the operation. Particular stages and "parts" may be implemented by dedicated circuitry, programmable circuitry provided with computer-readable instructions stored on a computer-readable storage medium, and/or a processor provided with computer-readable instructions stored on a computer-readable storage medium. Dedicated circuitry may include digital and/or analog hardware circuits, and may include integrated circuits (ICs) and/or discrete circuits. Programmable circuitry may include reconfigurable hardware circuits, such as field programmable gate arrays (FPGAs) and programmable logic arrays (PLAs), including logical ANDs, ORs, exclusive ORs, NOT ANDs, NOT ORs, and other logical operations, flip-flops, registers, and memory elements.

 コンピュータ可読記憶媒体は、適切なデバイスによって実行される命令を格納可能な任意の有形なデバイスを含んでよく、その結果、そこに格納される命令を有するコンピュータ可読記憶媒体は、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を作成すべく実行され得る命令を含む、製品を備えることになる。コンピュータ可読記憶媒体の例としては、電子記憶媒体、磁気記憶媒体、光記憶媒体、電磁記憶媒体、半導体記憶媒体等が含まれてよい。コンピュータ可読記憶媒体のより具体的な例としては、フロッピー(登録商標)ディスク、ディスケット、ハードディスク、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、消去可能プログラマブルリードオンリメモリ(EPROM又はフラッシュメモリ)、電気的消去可能プログラマブルリードオンリメモリ(EEPROM)、静的ランダムアクセスメモリ(SRAM)、コンパクトディスクリードオンリメモリ(CD-ROM)、デジタル多用途ディスク(DVD)、Blu-ray(登録商標)ディスク、メモリスティック、集積回路カード等が含まれてよい。 A computer-readable storage medium may include any tangible device capable of storing instructions that are executed by an appropriate device. As a result, a computer-readable storage medium having instructions stored thereon comprises an article of manufacture, including instructions that can be executed to create means for performing the operations specified in the flowcharts or block diagrams. Examples of computer-readable storage media may include electronic storage media, magnetic storage media, optical storage media, electromagnetic storage media, semiconductor storage media, etc. More specific examples of computer-readable storage media may include floppy disks, diskettes, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), electrically erasable programmable read-only memory (EEPROM), static random access memory (SRAM), compact disc read-only memory (CD-ROM), digital versatile disc (DVD), Blu-ray disc, memory stick, integrated circuit card, etc.

 コンピュータ可読命令は、アセンブラ命令、命令セットアーキテクチャ(ISA)命令、マシン命令、マシン依存命令、マイクロコード、ファームウェア命令、状態設定データ、又はSmalltalk(登録商標)、JAVA(登録商標)、C++等のようなオブジェクト指向プログラミング言語、及び「C」プログラミング言語又は同様のプログラミング言語のような従来の手続型プログラミング言語を含む、1又は複数のプログラミング言語の任意の組み合わせで記述されたソースコード又はオブジェクトコードのいずれかを含んでよい。 Computer-readable instructions may include either assembler instructions, instruction set architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or source or object code written in any combination of one or more programming languages, including object-oriented programming languages such as Smalltalk®, JAVA®, C++, etc., and conventional procedural programming languages such as the "C" programming language or similar programming languages.

 コンピュータ可読命令は、コンピュータ等のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路が、フローチャート又はブロック図で指定されたオペレーションを実行するための手段を生成するために当該コンピュータ可読命令を実行すべく、ローカルに又はローカルエリアネットワーク(LAN)、インターネット等のようなワイドエリアネットワーク(WAN)を介して、汎用コンピュータ、特殊目的のコンピュータ、若しくは他のプログラム可能なデータ処理装置のプロセッサ、又はプログラマブル回路に提供されてよい。ここで、コンピュータは、PC(パーソナルコンピュータ)、タブレット型コンピュータ、スマートフォン、ワークステーション、サーバコンピュータ、汎用コンピュータ、または特殊目的のコンピュータ等であってよく、複数のコンピュータが接続されたコンピュータシステムであってもよい。このような複数のコンピュータが接続されたコンピュータシステムは分散コンピューティングシステムとも呼ばれ、広義のコンピュータである。分散コンピューティングシステムにおいては、複数のコンピュータのそれぞれがプログラムの一部ずつを実行し、必要に応じてコンピュータ間でプログラム実行中のデータを受け渡すことによって、複数のコンピュータが集合的に プログラムを実行する。 The computer-readable instructions may be provided to a general-purpose computer, a special-purpose computer, or a processor of another programmable data processing device or programmable circuit, either locally or via a local area network (LAN) or a wide area network (WAN) such as the Internet, so that the processor of the programmable data processing device, such as a computer, or the programmable circuit executes the computer-readable instructions to generate means for performing the operations specified in the flowchart or block diagram. Here, the computer may be a PC (personal computer), tablet computer, smartphone, workstation, server computer, general-purpose computer, special-purpose computer, etc., or may be a computer system in which multiple computers are connected. Such a computer system in which multiple computers are connected is also called a distributed computing system, and is a computer in the broad sense. In a distributed computing system, multiple computers collectively execute a program by each executing a portion of the program and passing data between computers as needed during program execution.

 プロセッサの例としては、コンピュータプロセッサ、中央処理装置、処理ユニット、マイクロプロセッサ、デジタル信号プロセッサ、コントローラ、マイクロコントローラ等を含む。コンピュータは、1つのプロセッサまたは複数のプロセッサを備えてよい。複数のプロセッサを備えるマルチプロセッサシステムにおいては、それぞれのプロセッサがプログラムの一部ずつを実行し、必要に応じてプロセッサ間でプログラム実行中のデータを受け渡すことによって、複数のプロセッサが集合的にプログラムを実行する。例えば、マルチタスクの実行において、複数のプロセッサのそれぞれは、タイムスライス毎にタスクスイッチすることにより各タスクの一部分ずつを細切れに実行してよい。この場合、各プロセッサが1つのプログラムのうちどの部分を実行するかは、動的に変化する。複数のプロセッサのそれぞれがプログラムのどの部分を実行するかは、マルチプロセッサを意識したプログラミングにより静的に定められてもよい。 Examples of processors include computer processors, central processing units, processing units, microprocessors, digital signal processors, controllers, microcontrollers, etc. A computer may have one processor or multiple processors. In a multiprocessor system with multiple processors, each processor executes a portion of a program and passes data between processors as needed during program execution, allowing the multiple processors to collectively execute a program. For example, in multitasking, each of the multiple processors may execute a portion of each task in small chunks by switching tasks for each time slice. In this case, which portion of a program each processor executes changes dynamically. Which portion of a program each of the multiple processors executes may also be statically determined by programming that takes multiprocessors into consideration.

 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 The present invention has been described above using embodiments, but the technical scope of the present invention is not limited to the scope described in the above embodiments. It will be clear to those skilled in the art that various modifications and improvements can be made to the above embodiments. It is clear from the claims that forms incorporating such modifications or improvements can also be included within the technical scope of the present invention.

 請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階などの各処理の実行順序は、特段「より前に」、「先立って」などと明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」などを用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The order of execution of each process, such as operations, procedures, steps, and stages, in the devices, systems, programs, and methods shown in the claims, specifications, and drawings is not specifically stated as "before" or "prior to," and it should be noted that processes can be performed in any order, unless the output of a previous process is used in a subsequent process. Even if the operational flow in the claims, specifications, and drawings is described using terms such as "first," "next," etc. for convenience, this does not mean that the processes must be performed in that order.

10 システム、30 ネットワーク、40 ゲートウェイ、70 ユーザ端末、100 情報処理装置、110 入力データ、112 数式、114 数式、116 数式、118 数式、120 DOA推定NN、130 出力データ、140 記憶部、142 測定データ受信部、144 教師データ取得部、146 学習実行部、148 NN出力部、150 チャネル応答取得部、152 方向取得部、154 通信調整部、200 移動体、210 アンテナ、300 通信装置、302 アレイアンテナ、310 アンテナ、400 HAPS、402 ビーム、404 通信エリア、420 翼部、430 光発電部、440 プロペラ、450 エレベータ、460 中央部、462 飛行制御装置、464 通信制御装置、470 ポッド、500 管理装置、1200 コンピュータ、1210 ホストコントローラ、1212 CPU、1214 RAM、1216 グラフィックコントローラ、1218 ディスプレイデバイス、1220 入出力コントローラ、1222 通信インタフェース、1224 記憶装置、1230 ROM、1240 入出力チップ 10 System, 30 Network, 40 Gateway, 70 User Terminal, 100 Information Processing Device, 110 Input Data, 112 Formula, 114 Formula, 116 Formula, 118 Formula, 120 DOA Estimation NN, 130 Output Data, 140 Memory Unit, 142 Measurement Data Receiving Unit, 144 Teacher Data Acquisition Unit, 146 Learning Execution Unit, 148 NN Output Unit, 150 Channel Response Acquisition Unit, 152 Direction Acquisition Unit, 154 Communication Adjustment Unit, 200 Mobile Object, 210 Antenna, 300 Communication Device, 302 Array Antenna, 310 Antenna, 400 HAPS, 402, beam, 404, communication area, 420, wing section, 430, photovoltaic power generation section, 440, propeller, 450, elevator, 460, center section, 462, flight control unit, 464, communication control unit, 470, pod, 500, management unit, 1200, computer, 1210, host controller, 1212, CPU, 1214, RAM, 1216, graphics controller, 1218, display device, 1220, input/output controller, 1222, communication interface, 1224, storage device, 1230, ROM, 1240, input/output chip

Claims (11)

 移動体が有する第1アンテナと、複数の第2アンテナを含むアレイアンテナとの位置関係と、前記第1アンテナと前記アレイアンテナが前記位置関係であるときの前記第1アンテナと前記アレイアンテナとの間の、空間と周波数とでサンプリングされたチャネル応答を示すチャネル応答データと、を含む教師データを取得する教師データ取得部と、
 前記教師データ取得部が取得した複数の前記教師データを用いて、前記チャネル応答データを入力とし、前記アレイアンテナを基準とした前記第1アンテナの推定方向を出力とするニューラルネットワークの学習を実行する学習実行部と
 を備える情報処理装置。
a training data acquisition unit that acquires training data including a positional relationship between a first antenna of a mobile object and an array antenna including a plurality of second antennas, and channel response data that indicates a channel response sampled in space and frequency between the first antenna and the array antenna when the first antenna and the array antenna are in the positional relationship;
a learning execution unit that uses the plurality of teacher data acquired by the teacher data acquisition unit to execute learning of a neural network that receives the channel response data as an input and outputs an estimated direction of the first antenna relative to the array antenna.
 前記チャネル応答データは、複数の周波数のそれぞれのチャネルベクトルを含む、請求項1に記載の情報処理装置。 The information processing device of claim 1, wherein the channel response data includes channel vectors for each of a plurality of frequencies.  前記学習実行部は、前記教師データに含まれる前記チャネル応答データを前記ニューラルネットワークに入力して、前記ニューラルネットワークから出力された推定方向のベクトルと、前記教師データに含まれる前記位置関係が示す前記アレイアンテナを基準とした前記第1アンテナの方向のベクトルとのコサイン類似度を損失関数として、前記ニューラルネットワークを更新する、請求項1又は2に記載の情報処理装置。 The information processing device of claim 1 or 2, wherein the learning execution unit inputs the channel response data included in the training data to the neural network, and updates the neural network using, as a loss function, the cosine similarity between the estimated direction vector output from the neural network and the vector of the direction of the first antenna relative to the array antenna indicated by the positional relationship included in the training data.  前記第1アンテナと前記アレイアンテナとは、LoS-MIMO(Line of Sight Multiple Input Multiple Output)伝送に用いられ、
 前記複数の第2アンテナは、LoS-MIMO伝送の要件を満たす間隔で配置されている、請求項1から3のいずれか一項に記載の情報処理装置。
The first antenna and the array antenna are used for LoS-MIMO (Line of Sight Multiple Input Multiple Output) transmission,
The information processing device according to claim 1 , wherein the plurality of second antennas are arranged at intervals that satisfy requirements for LoS-MIMO transmission.
 前記移動体は、HAPS(High-Altitude Platform Station)であり、
 前記アレイアンテナは、地上に配置される、
 請求項4に記載の情報処理装置。
the moving object is a High-Altitude Platform Station (HAPS),
The array antenna is disposed on the ground.
The information processing device according to claim 4 .
 コンピュータを、請求項1から5のいずれか一項に記載の情報処理装置として機能させるためのプログラム。 A program for causing a computer to function as the information processing device described in any one of claims 1 to 5.  移動体が有する第1アンテナと複数の第2アンテナを含むアレイアンテナとの位置関係と、前記第1アンテナと前記アレイアンテナが前記位置関係であるときの前記第1アンテナと前記アレイアンテナとの間の、空間と周波数とでサンプリングされたチャネル応答を示すチャネル応答データと、を含む教師データを取得する教師データ取得段階と、
 前記教師データ取得段階において取得した複数の前記教師データを用いて、前記チャネル応答データを入力とし、前記アレイアンテナを基準とした前記第1アンテナの推定方向を出力とするニューラルネットワークの学習を実行する学習実行段階と
 を備える情報処理方法。
a training data acquisition step of acquiring training data including a positional relationship between a first antenna and an array antenna including a plurality of second antennas possessed by a mobile object, and channel response data indicating a channel response sampled in space and frequency between the first antenna and the array antenna when the first antenna and the array antenna are in the positional relationship;
a learning execution step of executing learning of a neural network using the plurality of teacher data acquired in the teacher data acquisition step, with the channel response data as input and an estimated direction of the first antenna relative to the array antenna as output.
 第1移動体が備える第1アンテナと複数の第2アンテナを含む第1アレイアンテナとの位置関係と、前記第1アンテナと前記第1アレイアンテナが前記位置関係であるときの前記第1アンテナと前記第1アレイアンテナとの間の、空間と周波数とでサンプリングされたチャネル応答を示すチャネル応答データと、を含む教師データを複数用いて生成された、前記チャネル応答データを入力とし、前記第1アレイアンテナを基準とした前記第1アンテナの方向を出力とするニューラルネットワークを記憶する記憶部と、
 第2移動体が備える第3アンテナと、複数の第4アンテナを含む第2アレイアンテナとの間の、空間と周波数とでサンプリングされたチャネル応答データを取得するチャネル応答取得部と、
 前記チャネル応答取得部が取得した前記チャネル応答データを前記ニューラルネットワークに入力して、前記ニューラルネットワークから出力された、前記第2アレイアンテナを基準とした前記第3アンテナの方向を取得する方向取得部と、
 前記方向取得部が取得した前記方向に基づいて、前記第3アンテナと前記第2アレイアンテナとの間の無線通信を調整する通信調整部と
 を備える情報処理装置。
a storage unit configured to store a neural network that receives as input a positional relationship between a first antenna provided to a first moving object and a first array antenna including a plurality of second antennas, the neural network being generated using a plurality of pieces of training data including: channel response data indicating a channel response sampled in space and frequency between the first antenna and the first array antenna when the first antenna and the first array antenna are in the positional relationship; and
a channel response acquisition unit that acquires channel response data sampled in space and frequency between a third antenna provided in the second mobile object and a second array antenna including a plurality of fourth antennas;
a direction acquisition unit that inputs the channel response data acquired by the channel response acquisition unit into the neural network and acquires a direction of the third antenna relative to the second array antenna, the direction being output from the neural network;
a communication adjustment unit that adjusts wireless communication between the third antenna and the second array antenna based on the direction acquired by the direction acquisition unit.
 前記第3アンテナと前記第2アレイアンテナとは、LoS-MIMO(Line of Sight Multiple Input Multiple Output)伝送に用いられ、
 前記複数の第4アンテナは、LoS-MIMO伝送の要件を満たす間隔で配置されている、請求項8に記載の情報処理装置。
The third antenna and the second array antenna are used for LoS-MIMO (Line of Sight Multiple Input Multiple Output) transmission,
The information processing device according to claim 8 , wherein the plurality of fourth antennas are arranged at intervals that satisfy requirements for LoS-MIMO transmission.
 コンピュータを、請求項8又は9に記載の情報処理装置として機能させるためのプログラム。 A program for causing a computer to function as the information processing device described in claim 8 or 9.  第1移動体が備える第1アンテナと複数の第2アンテナを含む第1アレイアンテナとの位置関係と、前記第1アンテナと前記第1アレイアンテナが前記位置関係であるときの前記第1アンテナと前記第1アレイアンテナとの間の、空間と周波数とでサンプリングされたチャネル応答と、を含む教師データを複数用いて生成された、前記チャネル応答を入力とし、前記第1アレイアンテナを基準とした前記第1アンテナの方向を出力とするニューラルネットワークを取得するNN取得段階と、
 第2移動体が備える第3アンテナと、複数の第4アンテナを含む第2アレイアンテナとの間の、空間と周波数とでサンプリングされたチャネル応答を取得するチャネル応答取得段階と、
 前記チャネル応答取得段階において取得した前記チャネル応答を前記ニューラルネットワークに入力して、前記ニューラルネットワークから出力された、前記第2アレイアンテナを基準とした前記第3アンテナの方向を取得する方向取得段階と、
 前記方向取得段階において取得した前記方向に基づいて、前記第3アンテナと前記第2アレイアンテナとの間の無線通信を調整する通信調整段階と
 を備える情報処理方法。
an NN acquisition step of acquiring a neural network that receives as input a channel response generated using a plurality of training data including a positional relationship between a first antenna provided in a first mobile object and a first array antenna including a plurality of second antennas, and a channel response sampled in space and frequency between the first antenna and the first array antenna when the first antenna and the first array antenna are in the positional relationship, and that outputs a direction of the first antenna relative to the first array antenna;
a channel response acquisition step of acquiring a channel response sampled in space and frequency between a third antenna provided on the second mobile station and a second array antenna including a plurality of fourth antennas;
a direction acquisition step of inputting the channel response acquired in the channel response acquisition step into the neural network and acquiring a direction of the third antenna relative to the second array antenna output from the neural network;
a communication adjustment step of adjusting wireless communication between the third antenna and the second array antenna based on the direction acquired in the direction acquisition step.
PCT/JP2025/000751 2024-02-22 2025-01-10 Information processing device, program, and information processing method Pending WO2025177724A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2024-025225 2024-02-22
JP2024025225A JP7578854B1 (en) 2024-02-22 2024-02-22 Information processing device, program, and information processing method

Publications (1)

Publication Number Publication Date
WO2025177724A1 true WO2025177724A1 (en) 2025-08-28

Family

ID=93332380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2025/000751 Pending WO2025177724A1 (en) 2024-02-22 2025-01-10 Information processing device, program, and information processing method

Country Status (2)

Country Link
JP (1) JP7578854B1 (en)
WO (1) WO2025177724A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220196782A1 (en) * 2020-12-22 2022-06-23 Samsung Electronics Co., Ltd. Three-dimensional angle of arrival capability in electronic devices
US20220321164A1 (en) * 2019-08-20 2022-10-06 Verity Ag Angle information estimation of ultra-wideband wireless signals
CN115685054A (en) * 2021-07-30 2023-02-03 大唐移动通信设备有限公司 Location estimation method, device and terminal
JP2023522314A (en) * 2020-04-14 2023-05-30 クアルコム,インコーポレイテッド Neural network-based line-of-sight detection for positioning
JP2023087576A (en) * 2021-12-13 2023-06-23 ソフトバンク株式会社 Information processing device, program, information processing system, and information processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220321164A1 (en) * 2019-08-20 2022-10-06 Verity Ag Angle information estimation of ultra-wideband wireless signals
JP2023522314A (en) * 2020-04-14 2023-05-30 クアルコム,インコーポレイテッド Neural network-based line-of-sight detection for positioning
US20220196782A1 (en) * 2020-12-22 2022-06-23 Samsung Electronics Co., Ltd. Three-dimensional angle of arrival capability in electronic devices
CN115685054A (en) * 2021-07-30 2023-02-03 大唐移动通信设备有限公司 Location estimation method, device and terminal
JP2023087576A (en) * 2021-12-13 2023-06-23 ソフトバンク株式会社 Information processing device, program, information processing system, and information processing method

Also Published As

Publication number Publication date
JP2025128521A (en) 2025-09-03
JP7578854B1 (en) 2024-11-06

Similar Documents

Publication Publication Date Title
JP7019091B1 (en) Controls, programs, systems, and control methods
JP7408039B2 (en) Aircraft, control device, program, and control method
US20240306014A1 (en) Operation of sectorized communications from aerospace platforms using reinforcement learning
US12244394B2 (en) Information processing device, program, information processing system, and information processing method
JP6868054B2 (en) Control devices, programs, systems, and control methods
Medina-Pazmiño et al. Analysis and determination of minimum requirements for a data link communication system for unmanned aerial vehicles-UAV's
CN115189779A (en) Low-orbit satellite equipment testing method based on unmanned aerial vehicle and unmanned aerial vehicle
KR102584996B1 (en) Method, storage medium and electronic device for radio network design
JP7578854B1 (en) Information processing device, program, and information processing method
WO2021181717A1 (en) Communication control apparatus, program, flying object, system, and control method
JP2022102158A (en) Base station equipment, programs, systems and control methods
JP7069099B2 (en) Systems, controls, programs, and control methods
JP6896789B2 (en) Control devices, programs, systems, and control methods
Chen et al. Design and verification of high-speed data transmission system for the elliptical orbit satellite
JP7171648B2 (en) Optical communication device, program, system, and optical communication method
JP7297173B1 (en) COMMUNICATION CONTROL DEVICE, PROGRAM, AIRCRAFT, AND COMMUNICATION CONTROL METHOD
JP7502178B2 (en) Base station device, program, system and control method
WO2021065223A1 (en) System, communication device, program, and control method
JP7741931B1 (en) Information processing device, aircraft, program, and wireless base station
US20240418817A1 (en) Method and system for selectively applying deep learning for classification of platforms carrying radio frequency emitters
CN117425203A (en) Positioning method, ground control platform and storage medium
Olson et al. Evaluation of the use of cubesats in atmospheric profiling
WO2021106287A1 (en) System, communication control device, program, and control method
JP2025151386A (en) Information processing device, program, information processing system, and information processing method
JP2025151334A (en) Information processing device, program, information processing system, and information processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 25758221

Country of ref document: EP

Kind code of ref document: A1