[go: up one dir, main page]

WO2025173226A1 - Terminal device, base station device, control method for terminal device, and control method for base station device - Google Patents

Terminal device, base station device, control method for terminal device, and control method for base station device

Info

Publication number
WO2025173226A1
WO2025173226A1 PCT/JP2024/005482 JP2024005482W WO2025173226A1 WO 2025173226 A1 WO2025173226 A1 WO 2025173226A1 JP 2024005482 W JP2024005482 W JP 2024005482W WO 2025173226 A1 WO2025173226 A1 WO 2025173226A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
terminal device
reception quality
base station
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
PCT/JP2024/005482
Other languages
French (fr)
Japanese (ja)
Inventor
克成 上村
幸一郎 北川
泰雨 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to PCT/JP2024/005482 priority Critical patent/WO2025173226A1/en
Publication of WO2025173226A1 publication Critical patent/WO2025173226A1/en
Pending legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data

Definitions

  • the standardization project 3GPP (3rd Generation Partnership Project (registered trademark)) is considering technical specifications for communications standards that will meet the requirements of eMBB (Enhanced Mobile Broadband), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communications) for NR (New Radio, also known as 5G), the fifth generation of mobile communications.
  • eMBB Enhanced Mobile Broadband
  • Massive MTC Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communications
  • 5G New Radio, also known as 5G
  • 3GPP is also planning to study the use of AI/ML in mobility management. For example, studies are planned to be conducted with the aim of improving the performance and reliability of mobility management by predicting (inferring) the future quality of cells using trained learning models and determining in advance the evaluation of events such as handovers based on the predicted results (Non-Patent Document 2).
  • one aspect of the present invention aims to improve the performance of mobility management between terminal devices and base station devices by predicting cell reception quality using a trained model.
  • a terminal device is a terminal device that communicates with a base station device, and includes a receiver that receives, from the base station device, information related to measurement settings including a measurement event for measuring the reception quality of a cell and information indicating permission to use the cell prediction result; a predictor that outputs fluctuations in the reception quality of the cell as the cell prediction result; and a transmitter that reports to the base station device, based on the information indicating permission to use the cell prediction result, the measurement event, a first reception quality actually measured for the measurement event, and a second reception quality based on the cell prediction result.
  • FIG. 1 is a diagram illustrating an example of a configuration of a wireless communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of a terminal device according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of a base station device according to an embodiment.
  • FIG. 10 is a diagram showing an example of reporting a prediction result of cell quality according to an embodiment.
  • FIG. 10 is a diagram showing another example of reporting a prediction result of cell quality according to an embodiment.
  • FIG. 1 is a diagram illustrating an example of the relationship between input data and output data of a trained model according to an embodiment.
  • FIG. 10 is a sequence diagram illustrating an example of an RRC message according to the embodiment. This is a diagram showing the framework for AI/ML for air interface.
  • FIG. 2 illustrates an example of a hardware configuration of a terminal device.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of a base station device.
  • embodiments of the present invention are applicable to any wireless communication system that includes at least a terminal device and a base station device, and are also applicable to future wireless communication systems.
  • LTE and LTE-Advanced are also referred to as E-UTRA (Evolved Universal Terrestrial Radio Access), but the meaning is the same.
  • ⁇ Wireless communication system> 1 is a diagram showing an example of the configuration of a wireless communication system 1 according to an embodiment of the present invention.
  • the wireless communication system 1 according to the embodiment is configured, for example, with a terminal device 10, base station devices 20A and 20B, and a core network 30. Note that when there is no need to distinguish between the base station devices 20A and 20B, they will simply be referred to as the base station device 20. Furthermore, there may be multiple terminal devices 10.
  • the terminal device 10 may be a wireless terminal such as a mobile phone, smartphone, PDA (Personal Digital Assistant), tablet, wearable device, personal computer, vehicle, or other device or equipment (sensor device, etc.) with wireless communication capabilities.
  • the terminal device 10 may also be referred to as a wireless communication device, communication device, receiving device, mobile station, UE (User Equipment), user device, etc.
  • the 5G base station devices 20 connected to the 5GC are gNBs, and the 4G base station devices 20 connected to the EPC are eNBs. Furthermore, the 5G base station devices are connected via the Xn interface, and the 4G base station devices are connected via the X2 interface.
  • the base station device 20 may be configured, for example, as separate units: a CU (Centralized Unit), a DU (Distributed Unit), and a RU (Radio Unit).
  • the CU is connected to the core network.
  • the DU is connected to the terminal device 10 via the RU, for example.
  • the communication path between the CU and DU is realized by a fronthaul interface (F1 interface), for example.
  • Multiple DUs may be connected to one CU.
  • Part of the base station device 20 may be configured as a program that can be executed on a cloud network.
  • data (DL data, downlink data) transmitted from the core network 30 to the terminal device 10 is transmitted from the core network 30 to the base station device 20, and then transmitted (forwarded) from the base station device 20 to the terminal device 10.
  • RRC messages are transmitted as RRC Protocol Data Units (PDUs) and are mapped to logical channels (LCHs), such as the Common Control Channel (CCCH), Dedicated Control Channel (DCCH), Paging Control Channel (PCCH), Broadcast Control Channel (BCCH), or Multicast Control Channel (MCCH).
  • CCCH Common Control Channel
  • DCCH Dedicated Control Channel
  • PCCH Paging Control Channel
  • BCCH Broadcast Control Channel
  • MCCH Multicast Control Channel
  • MAC CEs are transmitted as MAC PDUs (or MAC subPDUs).
  • a MAC subPDU is equivalent to a service data unit (SDU) at the MAC layer plus, for example, 8 bits of header information, and a MAC PDU contains one or more MAC subPDUs.
  • SDU service data unit
  • the processing unit 11 generates, for example, control information for controlling the receiving unit 15 and transmitting unit 17, and outputs this to the control unit 13.
  • the processing unit 11 performs processing related to, for example, the radio resource control layer, the Packet Data Convergence Protocol (PDCP) layer, the Radio Link Control (RLC) layer, and the medium access control layer.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • the transmitter 17 generates, for example, a physical uplink signal based on a control signal provided by the control unit 13, and performs encoding and modulation on the physical uplink signal or physical uplink channel provided by the processing unit 11.
  • the transmitter 17 multiplexes various signals and transmits them to the base station device 20 via the transmitting/receiving antenna unit 19.
  • the prediction unit 213 performs processing to manage the prediction unit 113 of the terminal device 10. Based on information related to mobility management, such as the cell state, reported prediction values, and information for determining the accuracy and error of prediction values, the prediction unit 213 determines whether activation, deactivation, switching, or fallback of the trained model of the terminal device 10 is necessary, and determines whether to have the terminal device 10 perform cell measurement prediction and/or event evaluation prediction.
  • the control unit 23 performs various controls in the base station device 20. For example, the control unit 23 generates control signals or control data that control the receiving unit 25 and transmitting unit 27 based on control information from the processing unit 21. The control unit 23 also controls downlink transmission to the terminal device 10 and uplink reception from the terminal device 10 based on determination information from the prediction unit 213.
  • AI/ML artificial intelligence
  • ML machine learning
  • This framework consists of Data Collection (300), Model Training (301), Management (302), Inference (303), and Model Storage (304).
  • a machine learning model generated and trained using the framework of Figure 8 is called an AI/ML model, or simply a trained model.
  • Data Collection (300) has the function of collecting data and providing training data (Training Data) to Model Training (301), management data (Management Data) to Management (302), and inference data (Inference Data) to Inference (303).
  • Model Training (301) has the function of training, verifying, and testing AI/ML models. Model Training may also generate performance indicators for the model performance testing procedure. It may also perform pre-processing, cleaning, formatting, and transformation of Training Data. Note that building the AI/ML model itself while training is sometimes referred to as learning, but in this invention, the terms are used interchangeably. Model Training has the function of storing trained, verified, and tested AI/ML models, or updated AI/ML models, in Model Storage (304).
  • Management (302) has the functionality to manage and monitor the execution of AI/ML models, including activation, deactivation, switching, and fallback.
  • Monitoring an AI/ML model means conducting performance monitoring to ensure that appropriate inferences (predictions) are being made based on the data input from Data Collection and Inference. In other words, Management evaluates the degree of discrepancy between the output data from Inference and the correct data.
  • Management outputs information (Management Instruction) necessary for managing the functions of Inference (303) to Inference.
  • Management Instructions are commands that indicate, for example, activation, deactivation, switching, and fallback of AI/ML models. It also outputs a Model Transfer/Delivery Request to Model Storage (304) to request the transfer/delivery of AI/ML models. It also outputs a Performance Feedback/Retraining Request to Model Training (301) to train (retrain) and update AI/ML models.
  • Inference (303) has the function of providing output from a process that applies an AI/ML model when inference data provided by Data Collection (300) is used as input. It may also perform pre-processing, cleaning, formatting, and transformation of the inference data. It also outputs data (inference output) that is used by Management to monitor the AI/ML model.
  • Model Storage (304) has the function of storing trained/updated AI/ML models used in Inference.
  • Model Storage (304) has the function of delivering AI/ML models to Inference (303) (Model Transfer/Delivery).
  • the method for generating the trained model performed in Model Training (301) may be any method.
  • the trained model may acquire data on cell measurement values, the amount of fluctuation in measurement values over time, frequency information, the terminal's moving speed, etc. as training data, and output the measurement results of the cell after a certain time has passed (i.e., reception quality) as a predicted value using these as training data.
  • the trained model used may be generated outside the terminal device 10 (for example, the base station device 20 or other external computing device) and transferred to the terminal device 10.
  • the learning algorithm applied to the training, education, and reinforcement of the learning model may be any method that obtains the expected output, and may be, for example, a convolutional neural network, a multilayer neural network, a deep neural network, or a machine learning algorithm implemented using distributed computing. Supervised learning is preferable as the learning method, but unsupervised learning is also acceptable.
  • Figure 8 illustrates an overview of each function and their relationship with respect to the lifecycle of a machine learning model, and does not impose any restrictions on the location where the functions are executed, nor does it impose any restrictions on the input and output of data.
  • the base station device 20 notifies (configures, specifies, transmits) information regarding measurement configuration to the terminal device 10, thereby causing the terminal device 10 to measure frequencies (e.g., NR and/or EUTRA frequencies).
  • the information regarding measurement configuration is notified, for example, by an RRC message (e.g., RRCReconfiguration).
  • RRC Radio Resource Control
  • the information regarding measurement configuration may be referred to as measurement configuration, and hereinafter, the information regarding measurement configuration will be referred to as measurement configuration.
  • the measurement configuration includes at least the following parameters: (1) Measurement object(s)
  • the measurement target includes information about a target on which the terminal device 10 performs measurements, and multiple targets can be set in a list format.
  • the base station device 20 can indicate intra-frequency measurements, inter-frequency measurements, and inter-RAT (Radio Access Technology) E-UTRA measurements as measurement targets. In the case of inter-system EUTRA measurements, EUTRA frequencies are set as the measurement targets.
  • the base station device 20 can also include in the measurement objects a list of cells to which a cell-specific offset is assigned, a block cell list, and an allowed cell list.
  • a cell-specific offset is an offset value added to the measurement result during measurement
  • a block cell list is a list indicating cells that are not applicable (non-target) for event evaluation (described below) or measurement reporting
  • an allowed cell list is a list indicating cells that are applicable (target) for event evaluation or measurement reporting.
  • the base station device 20 sets a measurement object identifier (measObjectId) for each measurement object.
  • the reporting configuration includes information related to a measurement report, and one or more reporting configurations are set for each measurement target in a list format.
  • the base station device 20 sets a reporting configuration identifier (reportConfigId) for each reporting configuration.
  • the measured cell quality is calculated by measuring the synchronization signal block (SSB) or the channel state information reference signal (CSI-RS).
  • Cell quality can be expressed using RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (Received Signal Strength Indicator), SINR (Signal to Interference plus Noise Ratio), or path loss.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Receiveived Signal Strength Indicator
  • SINR Signal to Interference plus Noise Ratio
  • the measurement events (Measurement event(s)) evaluated by the terminal device 10 are specified by the base station device 20. Measurement events are specified in the report settings and managed by an event identifier (eventId). When a measurement event is triggered (established), the terminal device 10 generates a measurement report message (Measurement Report) and transmits it to the base station device 20.
  • the condition (measurement type) indicating the trigger for transmitting the measurement report message is either a periodic report or an event triggered report (Event triggered), and either one of these is specified by the base station device 20.
  • the applicable cell to be evaluated is specified.
  • the applicable cell for event A1 is the serving cell.
  • the applicable cell for event A3 is a cell (neighboring cell) detected on the frequency to be measured that is linked to the reporting configuration that includes event A3.
  • the terminal device 10 initiates the measurement reporting procedure when the measurement type is an event-triggered report, the measurement results meet the conditions indicated by the measurement event, and continue to meet the conditions for a predetermined period of time thereafter.
  • the measurement reporting procedure is initiated when the measurement results of the cell to be measured satisfy (are established) the measurement event corresponding to the event identifier specified in the reporting configuration included in the measurement configuration, and the measurement event continues to be satisfied for a predetermined period of time.
  • the terminal device 10 reports the measurement results of the cell corresponding to the measurement identifier that satisfied the measurement event.
  • the reception quality of the serving cell is defined as Mp, the reception quality of the surrounding cell as Mn, the frequency offset corresponding to the serving frequency as Ofp, the frequency offset corresponding to the frequency of the surrounding cell as Offn, the cell-specific offset corresponding to the serving cell as Ocp, the cell-specific offset corresponding to the surrounding cell as Ocn, the event-specific offset value as Off, the hysteresis value as Hys, and the quality-based threshold as Thresh (Thresh1, Thresh2).
  • the base station device 20 transmits these parameters as part of the measurement configuration to the terminal device 10 using an RRC message.
  • the base station device sets a parameter TTT (Time To Trigger) indicating the length of a predetermined time for the establishment of a measurement event in the terminal device 10.
  • TTT Time To Trigger
  • the terminal device 10 determines that the event entering condition for event A3 is met. Similarly, if the measurement results satisfy Equation 2, the terminal device 10 determines that the event leaving condition for event A3 is met.
  • a terminal device 10 in a communication state moves within a cell formed by a base station device 20 using handover or conditional handover (CHO).
  • conditional handover cell setting information specifying a candidate cell (target cell) as a handover destination and trigger conditions (measurement event types (measurement event, measurement report event)) for handover (conditional handover) are notified in advance from the base station device 20 to the terminal device 10.
  • the measurement event (trigger condition) specified in the conditional handover setting is also referred to as an event condition (Conditional Event).
  • the base station device 20 can configure a maximum of eight candidate cells (i.e., a maximum of eight candidate cell configurations) for the terminal device 10.
  • the terminal device 10 measures the serving cell and surrounding cells.
  • the terminal device 10 also evaluates measurement events based on trigger conditions notified by the base station device 20.
  • one or more pieces of cell configuration information and trigger conditions are collectively referred to as a conditional handover configuration.
  • the conditional handover configuration includes candidate cells and other necessary cell configurations, and is specified in the form of one or more lists.
  • the measurement target cell is a candidate cell included in the conditional handover configuration, and is identified by a physical cell identifier (PCI).
  • PCI physical cell identifier
  • the terminal device 10 considers the cell with the physical cell identifier specified in the RRC message (RRCReconfiguration) included in the conditional handover configuration to be the measurement target cell.
  • time t may be the TTT set for the measurement event, a time specified by the base station device 20, or a uniquely determined fixed value (e.g., 100 microseconds).
  • time t may be scaled at the speed of the terminal device 10, or may be a different value for each cell.
  • multiple predicted values with different prediction times may be output for a single input.
  • the terminal device 10 in Figures 4 and 5 measures multiple cells (cell A, cell B, cell C) belonging to one or more base station devices 20.
  • Figures 4 and 5 show an example in which the cell measurement results in the terminal device 10 are input into a trained model, and the output cell prediction results are illustrated as temporal fluctuations.
  • the trained model used by the terminal device 10 is generated from, for example, training data such as physical cell ID information, fluctuations in reception quality of multiple cells, frequency information of the cell to be measured, the movement speed of the terminal device 10, location information of the terminal device 10 and base station device 20, non-line-of-sight physical cell IDs, transmission power of the base station device 20, weather, and the amount of interference between terminal devices 10.
  • the trained model outputs the reception quality of the input cell after a predetermined time has elapsed, or the amount of fluctuation in reception quality.
  • the terminal device 10 in Figure 4 is instructed by the base station device 20 whether or not to perform event evaluation using the cell prediction result, which is the output of the trained model.
  • the base station device 20 instructs the terminal device 10 whether or not to activate the trained model and trigger a measurement event using the output cell prediction result.
  • the base station device 20 determines whether or not to perform event evaluation using the cell prediction result in the terminal device 10 based on the UE Capability message received from the terminal device 10.
  • the terminal device 10 can notify the evaluation results of the measurement event before actually measuring the cell, making it possible to prevent handover failures due to delays or failures in reporting measurement events related to handover, and is expected to improve the handover success rate.
  • the base station device 20 can receive reports of the establishment of measurement events based on cell prediction results earlier than they actually are, and future cell prediction results can be reported, making it possible to accurately determine whether or not to perform a handover, which is expected to improve the handover success rate.
  • Time T01 indicates the time when the reception quality of cell A falls below that of cell C based on the cell prediction results. In other words, it indicates the time when the entering condition for event A3 is met for cell C.
  • each reception quality takes into account various parameters used to evaluate measurement events, such as the frequency offset notified in the measurement settings, cell-specific offset, event-specific offset value, and hysteresis value.
  • additional prediction information regarding the cell's reception quality may be included in the measurement report message and transmitted.
  • additional prediction information include information indicating that a handover of the source cell (cell A) may occur again after handover to the target cell (cell C) (so-called ping-pong), information indicating the possibility of handover failure or the magnitude of the possibility of handover failure, information indicating the time when the target cell's leaving condition will be met, and information indicating the predicted duration of stay in the target cell after handover.
  • the base station device 20 may individually configure the terminal device 10 as to which additional prediction information to report.
  • Aperiodic instructions from the base station device 20 may be notified using downlink control information included in L1 signaling (PDCCH), using MAC control elements, or using individual or common RRC messages.
  • PDCCH downlink control information included in L1 signaling
  • MAC control elements MAC control elements
  • RRC messages individual or common RRC messages.
  • Time T12 indicates the time at which the terminal device 10 determines that the event establishment condition for event A3 has been satisfied for a predetermined period of time from time T11. In other words, this means that from time T11 to time T12, the reception quality of cell C exceeds the reception quality of cell A, and the terminal device 10 determines that event A3 has been established for cell C.
  • the predetermined period of time is, for example, TTT.
  • additional prediction information regarding the cell's reception quality may be included in the measurement report message and transmitted.
  • the additional prediction information may be, for example, information indicating that a handover of the source cell (cell A) may occur again after handover to the target cell (cell C) (so-called ping-pong), information indicating the possibility of handover failure or the magnitude of the possibility of handover failure, information indicating the time when the target cell's leaving condition will be met, information indicating the predicted stay time in the target cell after handover, etc.
  • the base station device 20 may individually configure the terminal device 10 as to which prediction information to report additionally.
  • a terminal device 10 that has decided not to send a measurement report message reports information about the unreported measurement event to the base station device 20.
  • the terminal device 10 may use a UE assistance information message, which is an RRC message.
  • the information included in the RRC message may include, in addition to information indicating the unreported event, information about the measurement event (measurement identifier), information about the time when the measurement event actually occurred, or the reception quality of the cell, and the reason for the decision that the event was not transmitted.
  • Time T14 indicates the time when the reception quality of cell A falls below that of cell B based on the actual measured reception quality of the cells. In other words, it indicates the time when the entering condition of event A3 is met for cell B. Furthermore, time T15 indicates the timing at which terminal device 10 determines that the entering condition of event A3 has been met continuously for a predetermined time from time T14. In other words, this means that from time T14 to time T15, the reception quality of cell B exceeds the reception quality of cell A, and terminal device 10 determines that event A3 has been met for cell B.
  • the predetermined time is, for example, TTT.
  • the terminal device 10 at time T15 is able to output (predict) the reception quality of each cell at time T16 using the trained model, it will include the cell prediction result at time T16 in a measurement report message triggered and reported at time T15 and transmit it to the base station device 20.
  • the time interval from time T15 to time T16 (e.g., time t2) may be, for example, TTT, or may be based on information indicating a time length specified by the base station device 20.
  • the added cell prediction result may be the same as that described above.
  • the terminal device 10 does nothing and continues making judgments based on the prediction. As shown in Figure 5, if the predicted stay time after handover to cell B continues for a certain period of time (for example, until time T16), the terminal device 10 may stop making judgments about the accuracy of the predicted value included in the measurement report message and resume normal operation.
  • time T16 and time T17 show a state in which the serving cell of terminal device 10 is cell B, and the surrounding cells are cell A and cell C.
  • Time T17 shows the time when the reception quality of cell B falls below that of cell A. In other words, it shows the time when the entering condition for event A3 is met for cell A.
  • time T18 shows the timing at which terminal device 10 determines that the entering condition for event A3 has been met for a predetermined period of time from time T16. In other words, this means that the reception quality of cell A exceeds the reception quality of cell B from time T17 to time T18, and terminal device 10 determines that event A3 is met for cell A.
  • the measurement report message triggered and reported at time T18 may include the cell prediction result at time T19 or additional prediction information and transmit it to the base station device 20.
  • the additional prediction information may be the same as that described above. Furthermore, as shown in FIG.
  • additional prediction information may be transmitted, such as information indicating that the reception quality of another surrounding cell (cell C) will exceed that of the target cell after handover to the target cell (cell A), information indicating the predicted time when the reception quality of another surrounding cell (cell C) will exceed that of the target cell, information indicating the predicted time when the reception quality of another surrounding cell (cell C) will exceed that of the source cell (cell B), and the cell ID of a cell recommended as the target cell (cell C in the case of time T19).
  • FIG. 7 is a sequence diagram illustrating an example of RRC messages exchanged between the terminal device 10 and the base station device 20.
  • the diagram begins with the wireless connection (RRC setup) procedure between the terminal device 10 and the base station device 20 being completed, and the terminal device 10 transitioning to a communicating state (connected state, also referred to as an RRC Connected state). Furthermore, the terminal device 10 generates an RRC message (UE Capability message) and transmits it to the base station device 20 in order to notify the base station device 20 of its own wireless capabilities.
  • RRC setup wireless connection
  • UE Capability message UE Capability message
  • the terminal device 10 may transmit information such as the accuracy of the terminal device's 10 location information (positioning support information), information indicating the maximum time that can be predicted when using a trained model, and the maximum number of cells that can be predicted in a UE Capability message.
  • the base station device 20 transmits a first RRC message (RRC message 1 in the figure) to the terminal device 10 (step S100).
  • the first RRC message is, for example, an individual RRC message such as an RRCReconfiguration message.
  • the first RRC message is transmitted including a measurement setting for setting a measurement event for the terminal device 10.
  • the first RRC message may also include a trained model setting that instructs activation, deactivation, switching, or fallback of the trained model used by the terminal device 10.
  • the base station device 20 When instructing activation, deactivation, or switching of a trained model, the base station device 20 notifies the identifier (Model ID) of the target trained model.
  • the base station device 20 may also instruct activation or deactivation at the same time as switching the trained model.
  • the terminal device 10 transmits a second RRC message (RRC message 2 in the figure) to the base station device 20 (step S101).
  • the second RRC message is, for example, an RRCReconfigurationComplete message.
  • the second RRC message is also used by the base station device 20 to notify that activation, deactivation, switching, or fallback of a trained model specified by the base station device 20 has been successfully completed.
  • the terminal device 10 for which the measurement settings have been set and the learned model is activated, transmits a third RRC message (RRC message 3 in the figure) to the base station device 20 based on the measurement settings (step S102).
  • the third RRC message is, for example, a measurement report message.
  • the timing of transmission of the third RRC message by the terminal device 10 and the information contained in the third RRC message are the same as those described in Figures 4 and 5.
  • the terminal device 10 and the base station device 20 may be configured to operate by combining the operations of Figures 4 and 5. For example, when determining an event establishment condition, the operation of Figure 4 (i.e., evaluating a measurement event using the cell prediction result) may be performed, and when determining an event departure condition, the operation of Figure 5 (i.e., evaluating a measurement event using the cell measurement result and adding the cell prediction result to a report) may be performed, or vice versa. Alternatively, the operation of Figure 4 may be continued normally, and if it is determined that the cell prediction result is incorrect, it may switch to the operation of Figure 5. In other words, if the terminal device 10 and the base station device 20 determine that the accuracy of the output of the trained model in use is low, they fall back to conventional operation that uses actual cell measurement values when evaluating measurement events.
  • the base station device 20 may explicitly specify which operation to perform in an RRC message, or the operation may be switched using downlink control information or MAC control elements included in L1 signaling (PDCCH).
  • PDCH downlink control information or MAC control elements included in L1 signaling
  • the terminal device 10 and the base station device 20 predict the reception quality of the cell using a trained model, and transmit and receive measurement report messages including the predicted results of the reception quality of the cell, thereby improving the performance of mobility management between the terminal device 10 and the base station device 20.
  • Second Embodiment The second embodiment will be described. Note that a description of configurations, functions, or procedures common to the first and second embodiments will be omitted. That is, the following mainly describes the differences from the first embodiment.
  • the terminal device 10 and base station device 20 use the cell prediction result, which is the output of the trained model, to evaluate a measurement event (event condition (Conditional Event)) used to trigger a conditional handover (CHO).
  • the terminal device 10 is instructed by the base station device 20 whether or not it is permitted to evaluate an event condition using the cell prediction result, which is the output of the trained model.
  • the base station device 20 instructs the terminal device 10 whether or not it is permitted to activate the trained model and perform a conditional handover using the output cell prediction result.
  • the base station device 20 determines whether or not to evaluate an event condition using the cell prediction result in the terminal device 10 based on the UE Capability message received from the terminal device 10.
  • the base station device 20 may instruct the terminal device 10 whether or not to perform either or both of (1) evaluation of a measurement event using the cell prediction result and (2) evaluation of an event condition using the cell prediction result.
  • the instruction may be given using downlink control information included in L1 signaling (PDCCH), a MAC control element, or an individual or common RRC message.
  • the terminal device 10 is able to evaluate event conditions before actually measuring the cell, which is expected to improve the success rate of conditional handover. Furthermore, the terminal device 10 is able to accurately determine whether or not to perform a conditional handover, which is expected to improve the success rate of conditional handover and reduce the frequency of radio link failures after a conditional handover.
  • the terminal device 10 evaluates the event condition using the reception quality of the target cell after a predetermined time has elapsed from the current time (cell prediction result), and if the event condition set based on the cell prediction result is met, it performs a conditional handover to the target cell.
  • the predetermined time may be the same as the TTT set for the measurement event, or may be a value specified by the base station device 20.
  • the terminal device 10 When the terminal device 10 executes a conditional handover using the cell prediction result, it reports (transmits) information indicating whether or not the cell prediction result was used to the base station device 20. For example, the terminal device 10 may add information indicating whether or not the cell prediction result was used to an RRC message (RRCReconfigurationComplete) that notifies the completion of the execution of the conditional handover.
  • RRC message RRCReconfigurationComplete
  • the terminal device 10 may evaluate the event condition based on the actually measured reception quality of the target cell (first reception quality, cell measurement result), and if the set event condition is met, determine whether to perform conditional handover based on the predicted reception quality of the target cell (second reception quality, cell prediction result).
  • the cell prediction result used is the cell prediction result obtained after a predetermined time has elapsed since the time the event condition was met.
  • the predetermined time may be the same as the TTT set in the event condition, or may be a value specified by the base station device 20.
  • the terminal device 10 may determine not to perform a conditional handover based on the cell prediction result if a radio link failure is predicted after the conditional handover; more specifically, if the reception quality of other surrounding cells is predicted to exceed that of the target cell within a short time after handover to the target cell, if a handover of the source cell is performed again after handover to the target cell, if the reception quality of the target cell falls below a predetermined value after a predetermined time, if the event leaving condition of the target cell is satisfied, or if the predicted stay time in the target cell after handover is less than a predetermined time.
  • Each of the parameters used in the above determination may be notified to the terminal device 10 in advance by the base station device 20.
  • the terminal device 10 may transmit a measurement report message including the established measurement identifier to the base station device 20.
  • it may use another RRC message (e.g., UE assistance information) to transmit information indicating that a conditional handover will not be performed and the reason for this determination.
  • RRC message e.g., UE assistance information
  • FIG. 10 is a diagram showing an example of the hardware configuration of a base station device 20.
  • the base station device 20 has, as hardware components, an RF circuit 42 equipped with an antenna 41, a CPU 43, a DSP 44, a memory 45, and a network IF (Interface) 46.
  • the CPU 43 is connected via a bus to enable input and output of various signals and data signals.
  • the memory 45 includes at least one of a RAM such as SDRAM, a ROM, and a flash memory, and stores programs, control information, and data signals.
  • the transmitting/receiving antenna unit 29, transmitting unit 27, and receiving unit 25 are realized, for example, by an RF circuit 42, or an antenna 41 and an RF circuit 42.
  • the control unit 23 and processing unit 21 are realized, for example, by a CPU 43, a DSP 44, a memory 45, a digital electronic circuit (not shown), etc. Examples of digital electronic circuits include an ASIC, an FPGA, and an LSI.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention improves mobility management performance between a terminal device and a base station device. The terminal device comprises a reception unit, a prediction unit, and a transmission unit. The reception unit receives information about measurement settings that include a measurement event for measuring the reception quality of a cell and information that indicates permission to use cell prediction results from the base station device. The prediction unit outputs a reception quality for the cell as cell prediction results. The transmission unit reports the measurement event, a first reception quality that was actually measured with respect to the measurement event, and a second reception quality that is based on the cell prediction results to the base station device on the basis of the information that indicates permission to use cell prediction results.

Description

端末装置、基地局装置、端末装置の制御方法および基地局装置の制御方法Terminal device, base station device, terminal device control method, and base station device control method

 本発明は、端末装置、基地局装置、端末装置の制御方法および基地局装置の制御方法に係わる。 The present invention relates to a terminal device, a base station device, a method for controlling a terminal device, and a method for controlling a base station device.

 標準化プロジェクトである3GPP(3rd Generation Partnership Project(登録商標))において、第5世代移動体通信であるNR(New Radio(「5G」とも称する))として、eMBB(Enhanced Mobile Broadband)、Massive MTC(Machine Type Communications)、およびURLLC(Ultra-Reliable and Low Latency Communications)の要求条件を満足する通信規格の技術仕様が検討されている。 The standardization project 3GPP (3rd Generation Partnership Project (registered trademark)) is considering technical specifications for communications standards that will meet the requirements of eMBB (Enhanced Mobile Broadband), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communications) for NR (New Radio, also known as 5G), the fifth generation of mobile communications.

 3GPPにおいて、AI/ML(Artificial Intelligence/Machine Learning)を用いることでシグナリングや報告値などを最適化する方法について検討がされている。具体的には、端末装置側、あるいはネットワーク側(すなわち、基地局装置、コアネットワーク機器など)に対し、AIの一領域である機械学習(ML)により学習済みの学習モデルを具備させ、所定の入力値を学習済みの学習モデルに入力することによって得られた出力値を実測値の代替、補完、検証用途などに用いる技術が検討されている(非特許文献1)。 3GPP is studying methods for optimizing signaling and reporting values using AI/ML (Artificial Intelligence/Machine Learning). Specifically, they are studying technology that equips terminal devices or the network (i.e., base station devices, core network equipment, etc.) with learning models trained using machine learning (ML), a field of AI, and uses output values obtained by inputting specified input values into the learned learning model as a substitute for, complement to, or verification of actual measured values (Non-Patent Document 1).

 また、3GPPでは、移動管理(モビリティ)についてもAI/MLを用いる検討が行われることになっている。例えば、学習済みの学習モデルによってセルの将来の品質を予測(推論)することや、予測した結果に基づいてハンドオーバーなどのイベント評価を予め判断することにより、従来よりも移動管理を高性能/高信頼化させることを目的とした検討が行われる予定である(非特許文献2)。 In addition, 3GPP is also planning to study the use of AI/ML in mobility management. For example, studies are planned to be conducted with the aim of improving the performance and reliability of mobility management by predicting (inferring) the future quality of cells using trained learning models and determining in advance the evaluation of events such as handovers based on the predicted results (Non-Patent Document 2).

3GPP TR 38.843 V18.0.0(2023-12)3GPP TR 38.843 V18.0.0 (2023-12) RP-234055RP-234055

 しかしながら、従来の移動管理における数々のパラメータは、セルや端末装置の実際の周辺環境に基づいてネットワーク事業者(基地局装置)が定めるものであり、端末装置が予測したセルの品質に従うようには設計されていない。また、測定イベントについても、実測したセルの測定結果に基づいて判断されるため、AI/MLのように予測値を用いて評価した場合は想定していない。そのため、AI/MLによるセルの受信品質(セル品質)の予測を行わせ、それを単純に移動管理に利用することは、却って従来の移動管理の性能を劣化させる可能性があるという問題に対し、これまで具体的な解決策は言及されていない。 However, the various parameters used in conventional mobility management are determined by network operators (base station equipment) based on the actual surrounding environment of the cell and terminal device, and are not designed to conform to the cell quality predicted by the terminal device. Furthermore, measurement events are determined based on the results of actual cell measurements, and therefore are not intended to be evaluated using predicted values like AI/ML. Therefore, there is a problem in that predicting cell reception quality (cell quality) using AI/ML and simply using this for mobility management could actually degrade the performance of conventional mobility management, and no concrete solution has been mentioned to date.

 この問題を鑑みて、本発明の1つの側面に係わる目的は、学習済みのモデルを用いてセルの受信品質の予測を行うことで、端末装置と基地局装置との間の移動管理の性能を向上することである。 In light of this problem, one aspect of the present invention aims to improve the performance of mobility management between terminal devices and base station devices by predicting cell reception quality using a trained model.

 本発明の1つの態様に係わる端末装置は、基地局装置と通信する端末装置であって、セルの受信品質を測定するための測定イベントを含む測定設定に関する情報と、セル予測結果の利用許可を示す情報を基地局装置から受信する受信部と、セルの受信品質の変動をセル予測結果として出力する予測部と、セル予測結果の利用許可を示す情報に基づいて、測定イベントと、測定イベントに関する実際に測定した第1の受信品質、および、セル予測結果に基づく第2の受信品質のそれぞれを、基地局装置に報告する送信部とを備える。 A terminal device according to one aspect of the present invention is a terminal device that communicates with a base station device, and includes a receiver that receives, from the base station device, information related to measurement settings including a measurement event for measuring the reception quality of a cell and information indicating permission to use the cell prediction result; a predictor that outputs fluctuations in the reception quality of the cell as the cell prediction result; and a transmitter that reports to the base station device, based on the information indicating permission to use the cell prediction result, the measurement event, a first reception quality actually measured for the measurement event, and a second reception quality based on the cell prediction result.

 また、本発明の1つの態様に係わる基地局装置は、端末装置と通信する基地局装置であって、セルの受信品質を測定するための測定イベントを含む測定設定に関する情報と、セル予測結果の利用許可を示す情報を端末装置に送信する送信部と、セル予測結果として端末装置が出力する、セルの受信品質の変動の予測に関する制御を行う予測部と、セル予測結果の利用許可を示す情報に基づいて送信された、測定イベントと、測定イベントに関する端末装置が実際に測定した第1の受信品質、および、セル予測結果に基づく第2の受信品質のそれぞれを含む測定報告メッセージを受信する受信部とを備える。 Furthermore, a base station device according to one aspect of the present invention is a base station device that communicates with a terminal device, and includes: a transmitter that transmits to the terminal device information related to measurement settings, including a measurement event for measuring the reception quality of a cell, and information indicating permission to use the cell prediction result; a prediction unit that controls the prediction of fluctuations in the cell reception quality, which is output by the terminal device as the cell prediction result; and a receiver that receives a measurement report message that includes the measurement event transmitted based on the information indicating permission to use the cell prediction result, a first reception quality actually measured by the terminal device related to the measurement event, and a second reception quality based on the cell prediction result.

 上述の態様によれば、学習済みのモデルを用いてセルの受信品質の予測を行うことで、端末装置と基地局装置との間の移動管理の性能を向上することができる。 According to the above-described aspect, by using a trained model to predict cell reception quality, it is possible to improve the performance of mobility management between terminal devices and base station devices.

実施形態に係る無線通信システムの構成の一例を示す図である。1 is a diagram illustrating an example of a configuration of a wireless communication system according to an embodiment. 実施形態に係る端末装置の機能構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a functional configuration of a terminal device according to an embodiment. 実施形態に係る基地局装置の機能構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a functional configuration of a base station device according to an embodiment. 実施形態に係るセル品質の予測結果を報告する一例を示す図である。FIG. 10 is a diagram showing an example of reporting a prediction result of cell quality according to an embodiment. 実施形態に係るセル品質の予測結果を報告する別の一例を示す図である。FIG. 10 is a diagram showing another example of reporting a prediction result of cell quality according to an embodiment. 実施形態に係る学習済みモデルの入力データと出力データの関係の一例を示す図である。FIG. 1 is a diagram illustrating an example of the relationship between input data and output data of a trained model according to an embodiment. 実施形態に係るRRCメッセージの一例を示すシーケンス図である。FIG. 10 is a sequence diagram illustrating an example of an RRC message according to the embodiment. AI/ML for air interfaceのフレームワークを示す図である。This is a diagram showing the framework for AI/ML for air interface. 端末装置のハードウェア構成の一例を示す図である。FIG. 2 illustrates an example of a hardware configuration of a terminal device. 基地局装置のハードウェア構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a hardware configuration of a base station device.

 以下、本発明の実施形態について図面を参照して詳細に説明する。本明細書における課題および実施形態は一例であり、本願の権利範囲を限定するものではない。特に、記載の表現が異なっていたとしても、技術的に同等であれば、本願の技術を適用可能であり、権利範囲を限定するものではない。そして、各実施形態は、処理内容に矛盾がない範囲で適宜組み合わせることが可能である。例えば、非活性期間は不活性期間と称されてもよい。 Embodiments of the present invention will be described in detail below with reference to the drawings. The problems and embodiments described in this specification are merely examples and do not limit the scope of the rights of the present application. In particular, even if the written expressions are different, the technology of the present application can be applied as long as they are technically equivalent, and this does not limit the scope of the rights. Furthermore, each embodiment can be combined as appropriate to the extent that there is no contradiction in the processing content. For example, an inactive period may be referred to as an inactive period.

 本発明の実施形態に係る無線通信システムには、適宜、公知技術が使用されてもよい。適用可能な公知技術は、例えば、5G(NR)、Beyond 5G、5G-Advanced、あるいは6Gやその他の無線通信方式でもよい。本発明の実施形態に係わる無線通信システムは、主にNRを対象とするが、これに限定されるものではない。例えば、本発明の実施形態は、LTE(Long Term Evolution)やLTE-Advancedに対しても適用可能である。また、無線通信システムの一部にNRを用いる無線通信システムにおいても適用可能である。 Publicly known technologies may be used in wireless communication systems according to embodiments of the present invention, as appropriate. Applicable publicly known technologies may be, for example, 5G (NR), Beyond 5G, 5G-Advanced, 6G, or other wireless communication methods. Wireless communication systems according to embodiments of the present invention are primarily targeted at NR, but are not limited to this. For example, embodiments of the present invention are also applicable to LTE (Long Term Evolution) and LTE-Advanced. They are also applicable to wireless communication systems that use NR as part of the wireless communication system.

 更に、本発明の実施形態は、少なくとも端末装置および基地局装置を備える無線通信システムであれば適用可能であり、将来の無線通信システムにも適用可能である。以下の記載では、LTEおよびLTE-AdvancedのことをE-UTRA(Evolved Universal Terrestrial Radio Access)とも呼称するが、その意味は同じである。 Furthermore, embodiments of the present invention are applicable to any wireless communication system that includes at least a terminal device and a base station device, and are also applicable to future wireless communication systems. In the following description, LTE and LTE-Advanced are also referred to as E-UTRA (Evolved Universal Terrestrial Radio Access), but the meaning is the same.

 以下、本願において開示する基地局装置、端末装置、および無線通信システムの実施の形態を、図面を参照して説明する。なお、以下の実施形態は、開示の技術を限定するものではない。 Below, embodiments of the base station device, terminal device, and wireless communication system disclosed in this application will be described with reference to the drawings. Note that the following embodiments do not limit the disclosed technology.

 <無線通信システム>
 図1は、本発明の実施形態に係る無線通信システム1の構成の一例を示す図である。実施形態に係る無線通信システム1は、例えば、端末装置10、基地局装置20A、20B、およびコアネットワーク30から構成される。なお、基地局装置20Aと20Bを区別しない場合、単に、基地局装置20と記載する。また、端末装置10は、複数であってもよい。
<Wireless communication system>
1 is a diagram showing an example of the configuration of a wireless communication system 1 according to an embodiment of the present invention. The wireless communication system 1 according to the embodiment is configured, for example, with a terminal device 10, base station devices 20A and 20B, and a core network 30. Note that when there is no need to distinguish between the base station devices 20A and 20B, they will simply be referred to as the base station device 20. Furthermore, there may be multiple terminal devices 10.

 端末装置10は、例えば、携帯電話機、スマートフォン、PDA(Personal Digital Assistant)、タブレット、ウェアラブル端末、パーソナルコンピュータ(Personal Computer)、車両等の無線通信機能を有する各種装置や機器(センサー装置等)などの無線端末であってもよい。また、端末装置10を、無線通信装置、通信装置、受信装置、移動局、UE(User Equipment)、ユーザ装置等と言い換えてもよい。 The terminal device 10 may be a wireless terminal such as a mobile phone, smartphone, PDA (Personal Digital Assistant), tablet, wearable device, personal computer, vehicle, or other device or equipment (sensor device, etc.) with wireless communication capabilities. The terminal device 10 may also be referred to as a wireless communication device, communication device, receiving device, mobile station, UE (User Equipment), user device, etc.

 無線通信システム1における基地局装置20およびコアネットワーク30により、端末装置10に無線通信サービスが提供される。コアネットワーク30は、例えば、サービス加入者情報の管理、音声通話等のセッション管理、および端末装置10の位置登録管理などの機能を有する。また、コアネットワーク30は、制御データおよび/またはユーザーデータを、基地局装置20を経由して端末装置10に伝送する。 Wireless communication services are provided to terminal devices 10 by base station devices 20 and core network 30 in wireless communication system 1. The core network 30 has functions such as managing service subscriber information, session management for voice calls, and location registration management for terminal devices 10. The core network 30 also transmits control data and/or user data to terminal devices 10 via base station devices 20.

 コアネットワーク30は、5G(NR)における5GC(5G Core)でよいし、4G(E-UTRA)におけるEPC(Evolved Packet Core)でもよい。また、コアネットワーク30と基地局装置20との間の接続方法は、NSA(Non-Stand Alone)方式でもよいし、SA(Stand Alone)方式でもよい。 The core network 30 may be 5GC (5G Core) in 5G (NR) or EPC (Evolved Packet Core) in 4G (E-UTRA). The connection method between the core network 30 and the base station device 20 may be either the NSA (Non-Stand Alone) method or the SA (Stand Alone) method.

 5GCに接続する5Gの基地局装置20はgNBであり、EPCに接続する4Gの基地局装置20はeNBである。また、5Gの基地局装置間はXnインタフェースで接続されており、4Gの基地局装置間はX2インタフェースで接続される。 The 5G base station devices 20 connected to the 5GC are gNBs, and the 4G base station devices 20 connected to the EPC are eNBs. Furthermore, the 5G base station devices are connected via the Xn interface, and the 4G base station devices are connected via the X2 interface.

 基地局装置20が形成するエリア(カバーエリア)を「セル」と呼ぶことがある。E-UTRAおよび5Gは、複数のセルにより構築されるセルラー通信システムである。本発明の実施形態に関わる無線通信システムとして、TDD(Time Division Duplex)またはFDD(Frequency Division Duplex)のどちらの方式を適用してもよく、セルごとに異なる方式が適用されてもよい。 The area (coverage area) formed by the base station device 20 is sometimes called a "cell." E-UTRA and 5G are cellular communication systems constructed from multiple cells. The wireless communication system related to an embodiment of the present invention may use either TDD (Time Division Duplex) or FDD (Frequency Division Duplex), and different methods may be applied to each cell.

 基地局装置20は、例えば、CU(Centralized Unit)、DU(Distributed Unit)、RU(Radio Unit)に分かれて構成されてもよい。CUは、コアネットワークと接続される。また、DUは、例えば、RUを介して端末装置10と接続される。なお、CUとDUとの間の通信路は、例えば、フロントホールインタフェース(F1インタフェース)により実現される。また、複数のDUが1つのCUに接続されてもよい。基地局装置20の一部がクラウドネットワーク上で実行可能なプログラムで構成されてもよい。 The base station device 20 may be configured, for example, as separate units: a CU (Centralized Unit), a DU (Distributed Unit), and a RU (Radio Unit). The CU is connected to the core network. The DU is connected to the terminal device 10 via the RU, for example. The communication path between the CU and DU is realized by a fronthaul interface (F1 interface), for example. Multiple DUs may be connected to one CU. Part of the base station device 20 may be configured as a program that can be executed on a cloud network.

 図1に示す例では、コアネットワーク30から端末装置10に送信されるデータ(DLデータ、下りリンクデータ)は、コアネットワーク30から基地局装置20に送信され、基地局装置20から端末装置10に送信(転送)される。 In the example shown in Figure 1, data (DL data, downlink data) transmitted from the core network 30 to the terminal device 10 is transmitted from the core network 30 to the base station device 20, and then transmitted (forwarded) from the base station device 20 to the terminal device 10.

 端末装置10からコアネットワーク30に送信されるデータ(ULデータ、上りリンクデータ)は、端末装置10から基地局装置20に送信され、基地局装置20からコアネットワーク30に送信(転送)される。 Data (UL data, uplink data) transmitted from the terminal device 10 to the core network 30 is transmitted from the terminal device 10 to the base station device 20, and then transmitted (forwarded) from the base station device 20 to the core network 30.

 端末装置10および基地局装置20は、無線リソース制御(RRC:Radio Resource Control)層において、RRCメッセージ(RRCシグナリングとも呼ばれる)を送受信する。また、端末装置10および基地局装置20は、媒体アクセス制御(MAC:Medium Access Control)層において、MAC制御要素(MAC CE:MAC Control Element)を送受信する。 The terminal device 10 and the base station device 20 transmit and receive radio resource control (RRC) messages (also called RRC signaling) in the RRC layer. The terminal device 10 and the base station device 20 also transmit and receive medium access control (MAC) control elements (MAC CEs) in the MAC layer.

 RRCメッセージは、RRC PDU(Protocol Data Unit)として送信され、マッピングされる論理チャネル(LCH:Logical Channel)として、共通制御チャネル(CCCH:Common Control Channel)、個別制御チャネル(DCCH:Dedicated Control Channel)、ページング制御チャネル(PCCH:Paging Control Channel)、ブロードキャスト制御チャネル(BCCH:Broadcast Control Channel)、又は、マルチキャスト制御チャネル(MCCH:Multicast Control Channel)などが用いられる。 RRC messages are transmitted as RRC Protocol Data Units (PDUs) and are mapped to logical channels (LCHs), such as the Common Control Channel (CCCH), Dedicated Control Channel (DCCH), Paging Control Channel (PCCH), Broadcast Control Channel (BCCH), or Multicast Control Channel (MCCH).

 MAC CEは、MAC PDU(または、MAC subPDU)として送信される。MAC subPDUは、MAC層におけるサービスデータユニット(SDU:Service Data Unit)に、例えば8ビットのヘッダ情報を加えたものに等しく、MAC PDUは、1以上のMAC subPDUを含む。 MAC CEs are transmitted as MAC PDUs (or MAC subPDUs). A MAC subPDU is equivalent to a service data unit (SDU) at the MAC layer plus, for example, 8 bits of header information, and a MAC PDU contains one or more MAC subPDUs.

 続いて、実施形態に係る物理チャネルおよび物理シグナルとして、同期信号(Primary Synchronization Signal, Secondary Synchronization Signal)、物理報知チャネル(PBCH: Physical Broadcast Channel)、物理ランダムアクセスチャネル(PRACH: Physical Random Access Channel)、物理下りリンク制御チャネル(PDCCH: Physical Downlink Control Channel)、チャネル状態情報参照信号(CSI-RS:Channel State information-Reference Signal)、物理上りリンク制御チャネル(PUCCH: Physical Uplink Control Channel)、物理下りリンク共有チャネル(PDSCH: Physical Downlink Shared Channel)、物理上りリンク共有チャネル(PUSCH: Physical Uplink Shared Channel)、スケジューリング参照信号(SRS: Scheduling Reference Signal)、復調参照信号(DMRS: Demodulation Reference Signal)が少なくとも存在するが、詳細な説明は省略する。 Next, the physical channels and physical signals according to the embodiment include a synchronization signal (Primary Synchronization Signal, Secondary Synchronization Signal), a physical broadcast channel (PBCH: Physical Broadcast Channel), a physical random access channel (PRACH: Physical Random Access Channel), a physical downlink control channel (PDCCH: Physical Downlink Control Channel), and a channel state information reference signal (CSI-RS: Channel State Information Reference Signal). There are at least three types of channels: PUCCH (Physical Uplink Control Channel), PDSCH (Physical Downlink Shared Channel), PUSCH (Physical Uplink Shared Channel), SRS (Scheduling Reference Signal), and DMRS (Demodulation Reference Signal), but detailed explanations will be omitted.

 <端末装置>
 図2は、実施形態に係る端末装置10の機能構成の一例を示す図である。図2に示すように、端末装置10は、例えば、処理部11、制御部13、受信部15、送信部17、および送受信アンテナ部19を備える。処理部11は、例えば、無線リソース処理部111および予測部113を備えて構成される。なお、図2に示す端末装置10の機能構成は、一例に過ぎず、実施形態に係る動作を実行できるのであれば、機能区分および各機能ブロックの名称は異なっていても構わない。また、その他の機能を実現する1つ以上のブロックが存在してもよい。
<Terminal Device>
2 is a diagram illustrating an example of the functional configuration of a terminal device 10 according to an embodiment. As illustrated in FIG. 2, the terminal device 10 includes, for example, a processing unit 11, a control unit 13, a receiving unit 15, a transmitting unit 17, and a transmitting/receiving antenna unit 19. The processing unit 11 includes, for example, a radio resource processing unit 111 and a prediction unit 113. Note that the functional configuration of the terminal device 10 illustrated in FIG. 2 is merely an example, and the functional divisions and names of each functional block may be different as long as the operations according to the embodiment can be performed. Furthermore, one or more blocks that realize other functions may be present.

 処理部11は、例えば、受信部15および送信部17を制御するための制御情報を生成し、制御部13に出力する。処理部11は、例えば、無線リソース制御層、パケットデータ統合プロトコル(PDCP:Packet Data Convergence Protocol)層、無線リンク制御(RLC:Radio Link Control)層、および媒体アクセス制御層に関する処理を実行する。 The processing unit 11 generates, for example, control information for controlling the receiving unit 15 and transmitting unit 17, and outputs this to the control unit 13. The processing unit 11 performs processing related to, for example, the radio resource control layer, the Packet Data Convergence Protocol (PDCP) layer, the Radio Link Control (RLC) layer, and the medium access control layer.

 無線リソース処理部111は、端末装置10の各種設定情報(RRCパラメータ、情報要素(IE:Information element))の管理を行なう。例えば、無線リソース処理部111は、物理上りリンクの各チャネルに配置される情報を生成し、その情報を送信部17に出力する。また、無線リソース処理部111は、基地局装置20からの指示に基づいて、在圏セルおよび周辺セルの測定、送受信処理の開始および停止、DL同期手順(セルサーチ)、UL同期手順(ランダムアクセス手順)、システムインフォメーションの再取得、移動管理に関するイベント評価、移動管理に関する一連の処理などを実行する。 The radio resource processing unit 111 manages various setting information (RRC parameters, information elements (IEs)) for the terminal device 10. For example, the radio resource processing unit 111 generates information to be placed on each physical uplink channel and outputs that information to the transmission unit 17. Furthermore, based on instructions from the base station device 20, the radio resource processing unit 111 performs measurements of the serving cell and surrounding cells, starting and stopping transmission and reception processing, DL synchronization procedures (cell search), UL synchronization procedures (random access procedures), reacquisition of system information, event evaluation related to mobility management, and a series of processes related to mobility management.

 予測部113は、少なくとも1つの学習済みの学習モデル(機械学習済みの機械学習モデル、以後学習済みモデルとも呼称する)を具備し、入力されたデータに基づいて所定の予測値を出力するよう機能する制御処理を行なう。すなわち、予測部113は、学習済みモデルを用いてその使用目的に応じた特有の入力情報の演算、加工を行い、予測値として出力する。予測部113は、無線リソース処理部111からの指示、あるいは基地局装置20からの指示に基づいて、学習済みモデルの活性化、不活性化、スイッチング、フォールバック(学習済みモデルの利用停止)などを実施(実行)し、セル測定の予測、および/または、イベント評価の予測を実施(実行)する。 The prediction unit 113 is equipped with at least one trained learning model (a machine-learned model, hereafter also referred to as the trained model), and performs control processing to output a predetermined predicted value based on input data. In other words, the prediction unit 113 uses the trained model to calculate and process specific input information according to its intended use, and outputs the result as a predicted value. Based on instructions from the radio resource processing unit 111 or instructions from the base station device 20, the prediction unit 113 performs (executes) the activation, deactivation, switching, fallback (stopping use of the trained model), etc. of the trained model, and performs (executes) predictions of cell measurements and/or event evaluations.

 制御部13は、端末装置10における各種の制御を行う。例えば、制御部13は、処理部11からの制御情報に基づいて、受信部15および送信部17を制御するための制御信号または制御データを生成する。また、制御部13は、予測部113からの予測結果に基づいて、基地局装置20への上りリンク送信、スケジューリングリクエスト送信、および、基地局装置20からの下りリンク受信をそれぞれ制御する。 The control unit 13 performs various controls in the terminal device 10. For example, the control unit 13 generates control signals or control data for controlling the receiving unit 15 and the transmitting unit 17 based on control information from the processing unit 11. The control unit 13 also controls uplink transmission to the base station device 20, scheduling request transmission, and downlink reception from the base station device 20 based on the prediction results from the prediction unit 113.

 受信部15は、制御部13から与えられる制御信号に基づいて、送受信アンテナ部19を介して基地局装置20から受信した各種信号を、分離、復調、および復号する。受信部15は、復号した情報を処理部11に出力する。 The receiver 15 separates, demodulates, and decodes various signals received from the base station device 20 via the transmitter/receiver antenna 19 based on control signals provided by the controller 13. The receiver 15 outputs the decoded information to the processor 11.

 送信部17は、制御部13から与えられる制御信号に基づいて、例えば、物理上りリンク信号を生成し、処理部11から与えられる物理上りリンク信号または物理上りリンクチャネルを符号化および変調等を行う。送信部17は、各種信号を多重し、送受信アンテナ部19を介して基地局装置20に送信する。 The transmitter 17 generates, for example, a physical uplink signal based on a control signal provided by the control unit 13, and performs encoding and modulation on the physical uplink signal or physical uplink channel provided by the processing unit 11. The transmitter 17 multiplexes various signals and transmits them to the base station device 20 via the transmitting/receiving antenna unit 19.

 なお、処理部11および制御部13は、例えば、プロセッサおよびメモリを含むプロセッサシステムにより実現される。この場合、プロセッサは、後述する端末装置10の動作を記述したプログラムを実行することにより、処理部11および制御部13の機能を提供する。また、処理部11および制御部13は、1個のプロセッサシステムで実現してもよいし、複数のプロセッサシステムで実現してもよい。或いは、処理部11および制御部13は、DSP(Digital Signal Processor)またはハードウェア回路等で実現してもよい。 The processing unit 11 and the control unit 13 are realized, for example, by a processor system including a processor and memory. In this case, the processor provides the functions of the processing unit 11 and the control unit 13 by executing a program that describes the operation of the terminal device 10, which will be described later. The processing unit 11 and the control unit 13 may also be realized by a single processor system or by multiple processor systems. Alternatively, the processing unit 11 and the control unit 13 may also be realized by a DSP (Digital Signal Processor) or a hardware circuit, etc.

 <基地局装置>
 図3は、実施形態に係る基地局装置20の機能構成の一例を示す図である。図3に示すように、基地局装置20は、例えば、処理部21、制御部23、受信部25、送信部27、および送受信アンテナ部29を備える。処理部21は、例示的に、無線リソース処理部211および予測部213を備えて構成される。なお、図3に示す基地局装置20の機能構成は一例に過ぎず、実施形態に係る動作を実行できるのであれば、機能区分および機能ブロックの名称は異なっていても構わない。また、その他の機能を実現する1つ以上のブロックが存在してもよい。
<Base station equipment>
3 is a diagram illustrating an example of the functional configuration of a base station device 20 according to an embodiment. As illustrated in FIG. 3, the base station device 20 includes, for example, a processing unit 21, a control unit 23, a receiving unit 25, a transmitting unit 27, and a transmitting/receiving antenna unit 29. The processing unit 21 illustratively includes a radio resource processing unit 211 and a prediction unit 213. Note that the functional configuration of the base station device 20 illustrated in FIG. 3 is merely an example, and the names of the functional divisions and functional blocks may be different as long as the operations according to the embodiment can be performed. Furthermore, one or more blocks that realize other functions may be present.

 処理部21は、例えば、受信部25および送信部27を制御するための制御情報を生成し、制御部23に出力する。処理部21は、例えば、無線リソース制御層、パケットデータ統合プロトコル層、無線リンク制御層、および媒体アクセス制御層に関する処理を実行する。 The processing unit 21 generates, for example, control information for controlling the receiving unit 25 and transmitting unit 27, and outputs this to the control unit 23. The processing unit 21 performs processing related to, for example, the radio resource control layer, the packet data integration protocol layer, the radio link control layer, and the medium access control layer.

 無線リソース処理部211は、例えば、物理下りリンク共有チャネルPDSCHに配置される下りリンクデータ、RRCメッセージ、MAC制御要素を生成し、送信部27に出力する。また、無線リソース処理部211は、物理下りリンク制御チャネルPDCCHに配置される制御信号あるいは制御データを生成し、送信部27に出力する。さらに、無線リソース処理部211は、端末装置10の各種設定情報を管理する。無線リソース処理部211は、端末装置10からの信号やRRCメッセージによる通知に基づいて、送受信処理の開始および停止、UL同期手順(ランダムアクセス手順)の開始、システムインフォメーションの更新、ビームの送信角度の調整、移動管理に関するセル設定および測定イベント種別(測定イベント識別子)に関するパラメータの事前設定などを実行する。 The radio resource processing unit 211 generates, for example, downlink data, RRC messages, and MAC control elements to be placed on the physical downlink shared channel PDSCH, and outputs these to the transmission unit 27. The radio resource processing unit 211 also generates control signals or control data to be placed on the physical downlink control channel PDCCH, and outputs these to the transmission unit 27. Furthermore, the radio resource processing unit 211 manages various setting information for the terminal device 10. Based on signals from the terminal device 10 and notifications via RRC messages, the radio resource processing unit 211 performs operations such as starting and stopping transmission and reception processing, starting a UL synchronization procedure (random access procedure), updating system information, adjusting the beam transmission angle, and presetting parameters related to cell settings and measurement event types (measurement event identifiers) related to mobility management.

 予測部213は、端末装置10の予測部113を管理する処理を行う。予測部213は、セルの状態、報告された予測値、予測値の正誤や誤差を判断する情報などの移動管理に関する情報に基づいて、端末装置10の学習済みモデルの活性化、不活性化、スイッチング、フォールバックの要否を判断し、端末装置10にセル測定の予測、および/または、イベント評価の予測を実施させるかの判断を行う。 The prediction unit 213 performs processing to manage the prediction unit 113 of the terminal device 10. Based on information related to mobility management, such as the cell state, reported prediction values, and information for determining the accuracy and error of prediction values, the prediction unit 213 determines whether activation, deactivation, switching, or fallback of the trained model of the terminal device 10 is necessary, and determines whether to have the terminal device 10 perform cell measurement prediction and/or event evaluation prediction.

 制御部23は、基地局装置20における各種の制御を行う。例えば、制御部23は、処理部21からの制御情報に基づいて、受信部25および送信部27を制御する制御信号または制御データを生成する。また、制御部23は、予測部213からの判断情報に基づいて、端末装置10への下りリンク送信、および、端末装置10からの上りリンク受信をそれぞれ制御する。 The control unit 23 performs various controls in the base station device 20. For example, the control unit 23 generates control signals or control data that control the receiving unit 25 and transmitting unit 27 based on control information from the processing unit 21. The control unit 23 also controls downlink transmission to the terminal device 10 and uplink reception from the terminal device 10 based on determination information from the prediction unit 213.

 受信部25は、制御部23から与えられる制御信号に基づいて、送受信アンテナ部29を介して端末装置10またはコアネットワーク30から受信した各種信号を、分離、復調、および復号する。受信部25は、復号した情報を処理部21に出力する。 The receiving unit 25 separates, demodulates, and decodes various signals received from the terminal device 10 or core network 30 via the transmitting/receiving antenna unit 29 based on control signals provided by the control unit 23. The receiving unit 25 outputs the decoded information to the processing unit 21.

 送信部27は、制御部23から与えられる制御信号に基づいて、例えば、下りリンク参照信号を生成する。送信部27は、処理部21から与えられる各種情報を符号化、変調、および多重化等を行うことにより、送受信アンテナ部29を介して端末装置10に信号を送信する。 The transmitter 27 generates, for example, a downlink reference signal based on a control signal provided by the controller 23. The transmitter 27 encodes, modulates, multiplexes, etc., various information provided by the processor 21, and transmits the signal to the terminal device 10 via the transmitter/receiver antenna 29.

 また、送信部27は、端末装置10、別の基地局装置20、またはコアネットワーク30にデータを送信する。受信部25は、端末装置10、別の基地局装置20、またはコアネットワーク30からデータを受信する。 Furthermore, the transmitter 27 transmits data to the terminal device 10, another base station device 20, or the core network 30. The receiver 25 receives data from the terminal device 10, another base station device 20, or the core network 30.

 なお、処理部21および制御部23は、例えば、プロセッサおよびメモリを含むプロセッサシステムにより実現される。この場合、プロセッサは、後述する基地局装置20の動作を記述したプログラムを実行することにより、処理部21および制御部23の機能を提供する。また、処理部21および制御部23は、1個のプロセッサシステムで実現してもよいし、複数のプロセッサシステムで実現してもよい。或いは、処理部21および制御部23は、DSPまたはハードウェア回路等で実現してもよい。 The processing unit 21 and the control unit 23 are realized, for example, by a processor system including a processor and memory. In this case, the processor provides the functions of the processing unit 21 and the control unit 23 by executing a program that describes the operation of the base station device 20, which will be described later. The processing unit 21 and the control unit 23 may also be realized by a single processor system or by multiple processor systems. Alternatively, the processing unit 21 and the control unit 23 may also be realized by a DSP, hardware circuitry, etc.

 <AI/ML for NR air interface>
 図8を用いて3GPPで検討されたAI(人工知能)/ML(機械学習)for air interfaceのフレームワークについて簡単に説明する。当該フレームワークは、Data Collection(300)、Model Training(301)、Management(302)、Inference(303)、Model Storage(304)から構成される。図8のフレームワークを用いて生成、学習した機械学習モデルのことをAI/MLモデル、あるいは単純に学習済みモデルと称する。
<AI/ML for NR air interface>
The AI (artificial intelligence)/ML (machine learning) for air interface framework discussed by 3GPP will be briefly explained using Figure 8. This framework consists of Data Collection (300), Model Training (301), Management (302), Inference (303), and Model Storage (304). A machine learning model generated and trained using the framework of Figure 8 is called an AI/ML model, or simply a trained model.

 Data Collection(300)は、データを収集する機能と、Model Training(301)にトレーニングデータ(Training Data)、Management(302)に管理データ(Management Data)、Inference(303)に推論データ(Inference Data)を提供する機能を持つ。 Data Collection (300) has the function of collecting data and providing training data (Training Data) to Model Training (301), management data (Management Data) to Management (302), and inference data (Inference Data) to Inference (303).

 Model Training(301)は、AI/MLモデルのトレーニング、検証、テストを行う機能を持つ。また、Model Trainingはモデルの性能テスト手順における性能指標を生成してもよい。さらに、Training Dataの前処理(Pre-processing)、クリーニング(cleaning)、初期化(formatting)や変換(transformation)を行ってもよい。なお、トレーニングしつつAI/MLモデル自体を構築することを学習(Leaning)と呼んで区別することもあるが、本発明では特に区別せずに呼称する。Model Trainingは、トレーニング、検証、そしてテストを行ったAI/MLモデル、または、更新されたAI/MLモデルをModel Storage(304)へ格納する機能を持つ。 Model Training (301) has the function of training, verifying, and testing AI/ML models. Model Training may also generate performance indicators for the model performance testing procedure. It may also perform pre-processing, cleaning, formatting, and transformation of Training Data. Note that building the AI/ML model itself while training is sometimes referred to as learning, but in this invention, the terms are used interchangeably. Model Training has the function of storing trained, verified, and tested AI/ML models, or updated AI/ML models, in Model Storage (304).

 Management(302)は、AI/MLモデルの活性化、不活性化、スイッチング、フォールバックなどの実行管理とモニタリングを行う機能を持つ。AI/MLモデルのモニタリングとは、Data CollectionとInferenceから入力されたデータに基づいて適切な推論(予測)が行われているかどうかを保証するための性能評価(Performance monitoring)を行うことを意味する。換言すれば、Managementは、Inferenceの出力データと正解データとの乖離の程度を評価する。 Management (302) has the functionality to manage and monitor the execution of AI/ML models, including activation, deactivation, switching, and fallback. Monitoring an AI/ML model means conducting performance monitoring to ensure that appropriate inferences (predictions) are being made based on the data input from Data Collection and Inference. In other words, Management evaluates the degree of discrepancy between the output data from Inference and the correct data.

 Managementは、Inference(303)の機能管理に必要な情報(Management Instruction)をInferenceへ出力する。Management Instructionは、例えばAI/MLモデルの活性化、不活性化、スイッチング、フォールバックを示すコマンドである。また、Model Storage(304)に対してModel Transfer/Delivery Requestを出力し、AI/MLモデルの転送/送達を要求する。また、Model Training(301)に対してPerformance Feedback/Retraining Requestを出力し、AI/MLモデルのトレーニング(再トレーニング)や更新を行わせる。 Management outputs information (Management Instruction) necessary for managing the functions of Inference (303) to Inference. Management Instructions are commands that indicate, for example, activation, deactivation, switching, and fallback of AI/ML models. It also outputs a Model Transfer/Delivery Request to Model Storage (304) to request the transfer/delivery of AI/ML models. It also outputs a Performance Feedback/Retraining Request to Model Training (301) to train (retrain) and update AI/ML models.

 Inference(303)は、Data Collection(300)から提供された推論データ(Inference Data)を入力に用いた場合の、AI/MLモデルを適用したプロセスからの出力を提供する機能を持つ。さらに、Inference Dataの前処理(Pre-processing)、クリーニング(cleaning)、初期化(formatting)や変換(transformation)を行ってもよい。また、Managementに対してAI/MLモデルのモニタリングを行うためにManagementで使用されるデータ(Inference Output)を出力する。 Inference (303) has the function of providing output from a process that applies an AI/ML model when inference data provided by Data Collection (300) is used as input. It may also perform pre-processing, cleaning, formatting, and transformation of the inference data. It also outputs data (inference output) that is used by Management to monitor the AI/ML model.

 Model Storage(304)は、Inferenceで使用されるトレーニング済み/更新済みのAI/MLモデルを保管する機能を持つ。Model Storage(304)は、Inference(303)に対してAI/MLモデルを送達する機能(Model Transfer/Delivery)を持つ。 Model Storage (304) has the function of storing trained/updated AI/ML models used in Inference. Model Storage (304) has the function of delivering AI/ML models to Inference (303) (Model Transfer/Delivery).

 ここで、Model Training(301)で行われる学習済みモデルの生成方法は任意でよく、例えば、セルの測定値のデータと、時間単位の測定値の変動量と、周波数情報、端末の移動速度などを教師データとして取得し、これらを教師データとして、ある時間経過後の当該セルの測定結果(すなわち、受信品質)を予測値として出力する学習済みモデルでもよい。利用する学習済みモデルは端末装置10以外(例えば基地局装置20、その他の外部演算装置)で生成され、端末装置10へ転送されてもよい。また、学習モデルの学習、教育、強化に適用される学習アルゴリズムは期待される出力が得られれば任意の方法でよく、例えば畳み込みニューラルネットワーク、多層ニューラルネットワーク、深層ニューラルネットワークや分散演算を用いて実装される機械学習アルゴリズムであってもよい。学習方法は、教師あり学習が好適であるが、教師なし学習であってもよい。 Here, the method for generating the trained model performed in Model Training (301) may be any method. For example, the trained model may acquire data on cell measurement values, the amount of fluctuation in measurement values over time, frequency information, the terminal's moving speed, etc. as training data, and output the measurement results of the cell after a certain time has passed (i.e., reception quality) as a predicted value using these as training data. The trained model used may be generated outside the terminal device 10 (for example, the base station device 20 or other external computing device) and transferred to the terminal device 10. Furthermore, the learning algorithm applied to the training, education, and reinforcement of the learning model may be any method that obtains the expected output, and may be, for example, a convolutional neural network, a multilayer neural network, a deep neural network, or a machine learning algorithm implemented using distributed computing. Supervised learning is preferable as the learning method, but unsupervised learning is also acceptable.

 なお、図8に示す機能は端末装置10または基地局装置20、またはその他の機器において一部または全てが実行可能である。すなわち、図8は機械学習モデルのライフサイクルに関し各機能の概略とそれぞれの関連性について例示したものであり、その機能を実行する箇所に何ら制限を加えるものではなく、同様に、データの入出力について何ら制限を加えるものではない。 Note that some or all of the functions shown in Figure 8 can be executed by the terminal device 10, the base station device 20, or other devices. In other words, Figure 8 illustrates an overview of each function and their relationship with respect to the lifecycle of a machine learning model, and does not impose any restrictions on the location where the functions are executed, nor does it impose any restrictions on the input and output of data.

 <測定設定・測定報告>
 基地局装置20は、端末装置10に測定設定(measurement configuration)に関する情報を通知(設定、指定、送信)することにより、周波数(例えば、NR、および/または、EUTRAの周波数)の測定を端末装置10に実行させる。なお、測定設定に関する情報は、例えば、RRCメッセージ(例えば、RRCReconfiguration)で通知される。なお、測定設定に関する情報を測定設定と記載してもよく、以降、測定設定に関する情報を測定設定として記載する。
<Measurement settings and measurement report>
The base station device 20 notifies (configures, specifies, transmits) information regarding measurement configuration to the terminal device 10, thereby causing the terminal device 10 to measure frequencies (e.g., NR and/or EUTRA frequencies). Note that the information regarding measurement configuration is notified, for example, by an RRC message (e.g., RRCReconfiguration). Note that the information regarding measurement configuration may be referred to as measurement configuration, and hereinafter, the information regarding measurement configuration will be referred to as measurement configuration.

 測定設定は少なくとも以下のパラメータを含む。
 (1)Measurement object(s)(測定対象)
 測定対象とは、端末装置10が測定を行う対象に関する情報を含み、リスト形式として複数を設定することもできる。基地局装置20は、周波数内測定(intra-frequency measurements)、周波数間測定(inter-frequency measurements)システム間EUTRA測定(inter-RAT(Radio Access Technology) E-UTRA measurements)を測定対象として示すことができる。システム間EUTRA測定の場合、測定対象としてEUTRA周波数が設定される。
The measurement configuration includes at least the following parameters:
(1) Measurement object(s)
The measurement target includes information about a target on which the terminal device 10 performs measurements, and multiple targets can be set in a list format. The base station device 20 can indicate intra-frequency measurements, inter-frequency measurements, and inter-RAT (Radio Access Technology) E-UTRA measurements as measurement targets. In the case of inter-system EUTRA measurements, EUTRA frequencies are set as the measurement targets.

 また、基地局装置20は、測定対象に、セル固有オフセットを与えるセルのリスト、ブロックセルリスト、許可セルリストを含めることができる。セル固有オフセットとは、測定時に測定結果に加算されるオフセット値であり、ブロックセルリストとは、イベント評価(後述)または測定報告として非該当(対象外)となるセルを示すリストであり、許可セルリストとは、イベント評価または測定報告として該当(対象)となるセルを示すリストである。測定対象を管理するため、基地局装置20は、測定対象それぞれに対して測定対象識別子(measObjectId)を設定する。 The base station device 20 can also include in the measurement objects a list of cells to which a cell-specific offset is assigned, a block cell list, and an allowed cell list. A cell-specific offset is an offset value added to the measurement result during measurement, a block cell list is a list indicating cells that are not applicable (non-target) for event evaluation (described below) or measurement reporting, and an allowed cell list is a list indicating cells that are applicable (target) for event evaluation or measurement reporting. To manage measurement objects, the base station device 20 sets a measurement object identifier (measObjectId) for each measurement object.

 (2)Reporting configuration(s)(報告設定)
 報告設定は、測定報告(Measurement report)に関する情報を含み、測定対象毎に一つまたはリスト形式として複数の報告設定が設定される。報告設定を管理するため、基地局装置20は、報告設定それぞれに対して報告設定識別子(reportConfigId)を設定する。
(2) Reporting configuration(s)
The reporting configuration includes information related to a measurement report, and one or more reporting configurations are set for each measurement target in a list format. To manage the reporting configurations, the base station device 20 sets a reporting configuration identifier (reportConfigId) for each reporting configuration.

 (3)Measurement identity(ies)(測定識別子)
 測定識別子(measId)とは、一つの測定対象識別子(measObjectId)と一つの報告設定識別子(reportConfigId)とをリンク(対応付け、関連付け)するための識別子である。測定識別子はリスト形式として複数を設定することもできる。測定識別子によって、一つの測定対象に対して複数の報告設定をリンクしてもよいし、複数の測定対象を同じ報告設定にリンクしてもよい。測定識別子は、トリガ条件を満たした測定イベントを基地局装置20に報告するために測定報告に含めて送信される。
(3) Measurement identity(ies)
The measurement identifier (measId) is an identifier for linking (associating, relating) one measurement object identifier (measObjectId) with one reporting configuration identifier (reportConfigId). Multiple measurement identifiers can be set in a list format. The measurement identifier may link multiple reporting configurations to one measurement object, or multiple measurement objects may be linked to the same reporting configuration. The measurement identifier is transmitted in a measurement report to report a measurement event that satisfies the trigger condition to the base station device 20.

 NRに関する測定対象について、端末装置10は在圏セル(サービングセルとも称する)、リストされた(Listed)セル、検出セルについて測定および報告を行う。リストされたセルとは、基地局装置20より通知されるリストに含まれるセルである。検出セルとは、それ以外の端末装置10が自主的に検出したセルを示す。 With regard to NR measurement targets, the terminal device 10 measures and reports on the serving cell, listed cells, and detected cells. Listed cells are cells included in a list notified by the base station device 20. Detected cells refer to other cells that the terminal device 10 has independently detected.

 測定したセル品質(受信品質、測定品質)は、同期信号ブロック(SSB、Synchronization Signal Block)、またはチャネル状態情報参照信号(CSI-RS)を測定することで計算される。セル品質は、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、RSSI(Received Signal Strength Indicator)、SINR(Signal to Interference plus Noise Ratio)、パスロスのいずれかを用いて表すことができる。 The measured cell quality (reception quality, measurement quality) is calculated by measuring the synchronization signal block (SSB) or the channel state information reference signal (CSI-RS). Cell quality can be expressed using RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (Received Signal Strength Indicator), SINR (Signal to Interference plus Noise Ratio), or path loss.

 端末装置10が評価する測定イベント(Measurement event(s))は基地局装置20より指定される。測定イベントは報告設定で指定され、イベント識別子(eventId)によって管理される。測定イベントがトリガ(成立)した場合、端末装置10は測定報告メッセージ(Measurement Report)を生成して基地局装置20へ送信する。測定報告メッセージの送信契機を示す条件(測定タイプ)は、周期報告、あるいはイベントトリガ報告(Event triggered)であり、そのどちらか一方が基地局装置20より指定される。 The measurement events (Measurement event(s)) evaluated by the terminal device 10 are specified by the base station device 20. Measurement events are specified in the report settings and managed by an event identifier (eventId). When a measurement event is triggered (established), the terminal device 10 generates a measurement report message (Measurement Report) and transmits it to the base station device 20. The condition (measurement type) indicating the trigger for transmitting the measurement report message is either a periodic report or an event triggered report (Event triggered), and either one of these is specified by the base station device 20.

 測定イベントは、イベント毎にその評価対象となる測定対象セル(applicable cell)が定められている。例えば、イベントA1における測定対象セルは在圏セルである。また、イベントA3における測定対象セルは、イベントA3を含んだ報告設定にリンクされる、測定対象の周波数で検出したセル(隣接セル)である。 For each measurement event, the applicable cell to be evaluated is specified. For example, the applicable cell for event A1 is the serving cell. Similarly, the applicable cell for event A3 is a cell (neighboring cell) detected on the frequency to be measured that is linked to the reporting configuration that includes event A3.

 端末装置10は、測定タイプがイベントトリガ報告であって、かつ、測定イベントが示す条件に測定結果が適合し、かつ、その後の所定の時間において継続して適合していた場合に測定報告手順を開始(Initiate)する。換言すると、測定対象セルの測定結果が測定設定に含まれる報告設定で指定されるイベント識別子に対応する測定イベントを満たした(成立した)場合であって、かつ、所定の時間において測定イベントを満足しつづけた場合に測定報告手順が開始される。このとき、端末装置10は測定イベントを満たした測定識別子に対応するセルの測定結果を報告する。 The terminal device 10 initiates the measurement reporting procedure when the measurement type is an event-triggered report, the measurement results meet the conditions indicated by the measurement event, and continue to meet the conditions for a predetermined period of time thereafter. In other words, the measurement reporting procedure is initiated when the measurement results of the cell to be measured satisfy (are established) the measurement event corresponding to the event identifier specified in the reporting configuration included in the measurement configuration, and the measurement event continues to be satisfied for a predetermined period of time. At this time, the terminal device 10 reports the measurement results of the cell corresponding to the measurement identifier that satisfied the measurement event.

 ここで、在圏セルの受信品質をMp、周辺セルの受信品質をMn、在圏周波数に対応する周波数オフセットをOfp、周辺セルの周波数に対応する周波数オフセットをOfn、在圏セルに対応するセル固有オフセットをOcp、周辺セルに対応するセル固有オフセットをOcn、イベント別のオフセット値をOff、ヒステリシス値をHys、品質ベースの閾値をThresh(Thresh1、Thresh2)と定義する。基地局装置20は、これらのパラメータを測定設定の一部として端末装置10へRRCメッセージを用いて送信する。なお、基地局装置は、測定イベントの成立に関する所定の時間の長さを示すパラメータTTT(TimeToTrigger)を端末装置10に設定する。 Here, the reception quality of the serving cell is defined as Mp, the reception quality of the surrounding cell as Mn, the frequency offset corresponding to the serving frequency as Ofp, the frequency offset corresponding to the frequency of the surrounding cell as Offn, the cell-specific offset corresponding to the serving cell as Ocp, the cell-specific offset corresponding to the surrounding cell as Ocn, the event-specific offset value as Off, the hysteresis value as Hys, and the quality-based threshold as Thresh (Thresh1, Thresh2). The base station device 20 transmits these parameters as part of the measurement configuration to the terminal device 10 using an RRC message. The base station device sets a parameter TTT (Time To Trigger) indicating the length of a predetermined time for the establishment of a measurement event in the terminal device 10.

 端末装置10は、測定結果の平均化/平滑化のためのフィルタリング(L3フィルタリング)後のセルの測定結果が数式1を満たした場合、イベントA3のイベント成立条件(entering condition)が満たされたと判断する。同様に、端末装置10は、測定結果が数式2を満たした場合、イベントA3のイベント離脱条件(leaving condition)が満たされたと判断する。 If the cell measurement results after filtering (L3 filtering) for averaging/smoothing the measurement results satisfy Equation 1, the terminal device 10 determines that the event entering condition for event A3 is met. Similarly, if the measurement results satisfy Equation 2, the terminal device 10 determines that the event leaving condition for event A3 is met.

[数式1]Mn+Ofn+Ocn-Hys>Mp+Ofp+Ocp+Off [Formula 1] Mn + Offn + Ocn - Hys > Mp + Ofp + Ocp + Off

[数式2]Mn+Ofn+Ocn+Hys<Mp+Ofp+Ocp+Off [Equation 2] Mn + Ofn + Ocn + Hys < Mp + Ofp + Ocp + Off

 <コンディショナルハンドオーバー>
 通信中状態の端末装置10は、ハンドオーバーまたはコンディショナルハンドオーバー(CHO:Conditional Handover)を用いて基地局装置20が形成するセルを移動する。コンディショナルハンドオーバーにおいては、ハンドオーバー先の候補セル(ターゲットセル)を指定するセル設定情報、およびハンドオーバー(コンディショナルハンドオーバー)のトリガ条件(測定イベント種別(測定イベント、測定報告イベント))が、基地局装置20から端末装置10に対し事前に通知される。また、コンディショナルハンドオーバー設定で指定される測定イベント(トリガ条件)のことをイベント条件(Conditional Event)とも称する。
<Conditional handover>
A terminal device 10 in a communication state moves within a cell formed by a base station device 20 using handover or conditional handover (CHO). In conditional handover, cell setting information specifying a candidate cell (target cell) as a handover destination and trigger conditions (measurement event types (measurement event, measurement report event)) for handover (conditional handover) are notified in advance from the base station device 20 to the terminal device 10. The measurement event (trigger condition) specified in the conditional handover setting is also referred to as an event condition (Conditional Event).

 このとき、基地局装置20は、端末装置10に対して、最大で8個の候補セル(すなわち、最大で8個の候補セルの設定)を設定できる。端末装置10は、在圏セルおよび周辺セルを測定する。また、端末装置10は、基地局装置20から通知されるトリガ条件に基づいて測定イベントを評価する。以降、1または複数のセル設定情報とトリガ条件とをまとめてコンディショナルハンドオーバー設定とも称する。コンディショナルハンドオーバー設定は、候補セルおよびその他の必要なセル設定を包含し、1または複数のリスト形式で指定される。ここで、測定対象セルは、コンディショナルハンドオーバー設定に含まれる候補セルであり、物理セル識別子(PCI)により識別される。換言すると、端末装置10は、コンディショナルハンドオーバー設定に内含されるRRCメッセージ(RRCReconfiguration)で指定される物理セル識別子のセルを測定対象セルとみなす。 At this time, the base station device 20 can configure a maximum of eight candidate cells (i.e., a maximum of eight candidate cell configurations) for the terminal device 10. The terminal device 10 measures the serving cell and surrounding cells. The terminal device 10 also evaluates measurement events based on trigger conditions notified by the base station device 20. Hereinafter, one or more pieces of cell configuration information and trigger conditions are collectively referred to as a conditional handover configuration. The conditional handover configuration includes candidate cells and other necessary cell configurations, and is specified in the form of one or more lists. Here, the measurement target cell is a candidate cell included in the conditional handover configuration, and is identified by a physical cell identifier (PCI). In other words, the terminal device 10 considers the cell with the physical cell identifier specified in the RRC message (RRCReconfiguration) included in the conditional handover configuration to be the measurement target cell.

 基地局装置20と端末装置10は、コンディショナルハンドオーバー設定をハンドオーバー条件再設定識別子(CondReconfigId)によってそれぞれ識別し、管理する。基地局装置20と端末装置10はハンドオーバー条件再設定識別子に対応するコンディショナルハンドオーバー設定のそれぞれについて、追加、削除、または変更を行うことができる。また、ハンドオーバー条件再設定識別子(CondReconfigId)は、測定設定に含まれる測定識別子(measId)とリンクすることによってイベント条件を指定することができる。 The base station device 20 and the terminal device 10 each identify and manage conditional handover settings using a handover condition reconfiguration identifier (CondReconfigId). The base station device 20 and the terminal device 10 can add, delete, or change each conditional handover setting corresponding to a handover condition reconfiguration identifier. In addition, the handover condition reconfiguration identifier (CondReconfigId) can specify an event condition by linking it to a measurement identifier (measId) included in the measurement setting.

 端末装置10は、トリガ条件が成立した(コンディショナルハンドオーバー条件をTTT区間継続して満足した)場合、イベント条件に対応する候補セルのセル設定をハンドオーバー先のセルとして適用する。すなわち、コンディショナルハンドオーバーが成功した後は、他のセルに対応するセル設定は不要になる。したがって、コンディショナルハンドオーバーが成功した端末装置は、移動先セル以外のセルに対応するセル設定を自律的に削除する。 When the trigger condition is met (the conditional handover condition is continuously satisfied for the TTT interval), the terminal device 10 applies the cell configuration of the candidate cell corresponding to the event condition as the handover destination cell. In other words, after the conditional handover is successful, cell configurations corresponding to other cells are no longer necessary. Therefore, a terminal device for which the conditional handover is successful autonomously deletes cell configurations corresponding to cells other than the destination cell.

 コンディショナルハンドオーバーイベントの別の例として、品質ベースのイベント条件A3、イベント条件A4とイベント条件A5がある。イベント条件A3の成立条件、離脱条件は対応する測定イベントのイベントA3と同じであり、イベント条件A4とイベント条件A5の成立条件、離脱条件はそれぞれ対応するイベントA4とイベントA5と同じである。 Other examples of conditional handover events include quality-based event condition A3, event condition A4, and event condition A5. The conditions for achieving and leaving event condition A3 are the same as those for the corresponding measurement event, event A3, and the conditions for achieving and leaving event condition A4 and event condition A5 are the same as those for the corresponding events A4 and A5, respectively.

 以上の事項を考慮しつつ、図面を参照しながら本発明の実施形態について説明する。なお、本発明の実施形態の説明において、本発明の実施形態に関連した公知の機能や構成についての具体的な説明が、本発明の実施形態の要旨を不明瞭にする場合には、その詳細な説明を省略する。 Taking the above points into consideration, embodiments of the present invention will be described with reference to the drawings. Note that in describing embodiments of the present invention, if specific descriptions of well-known functions or configurations related to the embodiments of the present invention obscure the gist of the embodiments of the present invention, such detailed descriptions will be omitted.

 <第1の実施形態>
 図4~5は、第1の実施形態に係る端末装置10の予測部113が予測するセルの受信品質の変動の一例とそれに伴う測定報告の対応関係について示した図である。横軸は時間の変動、縦軸は受信品質の変動を示している。
First Embodiment
4 and 5 are diagrams showing an example of fluctuations in cell reception quality predicted by the prediction unit 113 of the terminal device 10 according to the first embodiment and the corresponding relationship between the corresponding measurement reports. The horizontal axis represents the fluctuations over time, and the vertical axis represents the fluctuations in reception quality.

 図6は、端末装置10の予測部113と、予測部113で実行される学習済みモデルの入力データと出力データの関係の一例を示す図である。予測部113には、学習済みの学習モデル(学習済みモデル)が入力される。入力される学習済みモデルは、基地局装置20が選択して設定(通知、指定)されてもよく、端末装置10が自律的に選択してもよい。このとき、複数の学習済みモデルが選択されてもよいし、好適な1つの学習済みモデルが選択されてもよい。予測部113は、学習済みモデルが既に選択済みの場合、学習済みモデルの交換(スイッチング)を行ってもよい。 FIG. 6 is a diagram showing an example of the relationship between the prediction unit 113 of the terminal device 10 and the input data and output data of a trained model executed by the prediction unit 113. A trained model (trained model) that has already been trained is input to the prediction unit 113. The input trained model may be selected and set (notified, specified) by the base station device 20, or may be selected autonomously by the terminal device 10. At this time, multiple trained models may be selected, or a single suitable trained model may be selected. If a trained model has already been selected, the prediction unit 113 may switch the trained model.

 また、端末装置10は、学習済みモデルの活性化/不活性化を行う。学習済みモデルの活性化/不活性化は、基地局装置20が選択して設定(通知、指定)されてもよく、端末装置10が自律的に選択してもよい。端末装置10と基地局装置20は、学習済みモデルにそれぞれモデル識別子(Model ID)を割り当てて管理してもよい。端末装置10は、測定イベント、および/または、測定量(RSRP、RSRQなど)ごとに別の学習済みモデルを使用してもよい。基地局装置20は、測定イベント、および/または、測定量(RSRP、RSRQなど)ごとに別の学習済みモデルを使用するよう端末装置10に指示してもよい。 Furthermore, the terminal device 10 activates/deactivates the trained model. The activation/deactivation of the trained model may be selected and set (notified, specified) by the base station device 20, or may be selected autonomously by the terminal device 10. The terminal device 10 and base station device 20 may each assign a model identifier (Model ID) to each trained model and manage them. The terminal device 10 may use a different trained model for each measurement event and/or measurement quantity (RSRP, RSRQ, etc.). The base station device 20 may instruct the terminal device 10 to use a different trained model for each measurement event and/or measurement quantity (RSRP, RSRQ, etc.).

 予測部113は、端末装置10が測定したセルの受信品質を表すデータ(セル測定結果)が入力される。また、予測部113において活性化され、動作中の学習済みモデルは、入力されたセルの受信品質のそれぞれに対し、所定の時間(例えば時刻t)経過後の受信品質の変動の予測値を表すデータ(セル予測結果)を出力する。例えば、セル0、セル1、…、セルn(nは自然数)に対応する測定結果がm0、m1、…、mnである場合、出力される予測値はe0、e1、…、enとなる。予測値は、セルの受信品質の変動の程度を示す入力からの符号付きの差分値でもよいし、同じ測定量(quantity)の絶対値でもよいし、予測値と異なる測定量の絶対値でもよい。例えば、セルの受信品質としてRSRPを入力し、出力としてRSRQの予測値が出力されてもよい。 The prediction unit 113 receives as input data (cell measurement results) representing the cell reception quality measured by the terminal device 10. The trained model activated and operating in the prediction unit 113 outputs data (cell prediction results) representing a predicted value of the fluctuation in reception quality after a predetermined time (e.g., time t) has elapsed for each of the input cell reception qualities. For example, if the measurement results corresponding to cell 0, cell 1, ..., cell n (n is a natural number) are m0, m1, ..., mn, the output predicted values will be e0, e1, ..., en. The predicted value may be a signed difference value from the input indicating the degree of fluctuation in the cell reception quality, or it may be the absolute value of the same measurement quantity, or it may be the absolute value of a measurement quantity different from the predicted value. For example, RSRP may be input as the cell reception quality, and a predicted value of RSRQ may be output as the output.

 上述したように、出力される予測値は入力値のそれぞれ時刻tの後のそれぞれのセルの受信品質である。ここで、時刻tは、測定イベントに対して設定されるTTTでもよいし、基地局装置20から指定される時間でもよいし、一意に定まる固定値(例えば100マイクロ秒)でもよい。あるいは、時刻tは、端末装置10の速度でスケーリングされてもよいし、セル毎に異なる値であってもよい。さらに、複数の値が指定されることで、1つの入力に対して予測時間の異なる複数の予測値が出力されてもよい。 As described above, the output predicted value is the reception quality of each cell after the time t of each input value. Here, time t may be the TTT set for the measurement event, a time specified by the base station device 20, or a uniquely determined fixed value (e.g., 100 microseconds). Alternatively, time t may be scaled at the speed of the terminal device 10, or may be a different value for each cell. Furthermore, by specifying multiple values, multiple predicted values with different prediction times may be output for a single input.

 図4~5の端末装置10は、1または複数の基地局装置20に属する複数のセル(セルA、セルB、セルC)を測定している。図4~5は端末装置10におけるセル測定結果を学習済みモデルに入力し、その出力結果であるセル予測結果の時間的な変動を図示した例を示している。端末装置10が用いる学習済みモデルは、例えば、教師データとして物理セルIDの情報、複数のセルの受信品質の変動、測定するセルの周波数情報、端末装置10の移動速度、端末装置10と基地局装置20の位置情報、見通し外(Non Line of sight)となる物理セルID、基地局装置20の送信電力、天候、端末装置10間の干渉量などにより生成される。学習済みモデルは、セルの受信品質を入力することで入力されたセルの所定の時間経過後の受信品質、あるいは受信品質の変動量を出力する。 The terminal device 10 in Figures 4 and 5 measures multiple cells (cell A, cell B, cell C) belonging to one or more base station devices 20. Figures 4 and 5 show an example in which the cell measurement results in the terminal device 10 are input into a trained model, and the output cell prediction results are illustrated as temporal fluctuations. The trained model used by the terminal device 10 is generated from, for example, training data such as physical cell ID information, fluctuations in reception quality of multiple cells, frequency information of the cell to be measured, the movement speed of the terminal device 10, location information of the terminal device 10 and base station device 20, non-line-of-sight physical cell IDs, transmission power of the base station device 20, weather, and the amount of interference between terminal devices 10. By inputting the reception quality of a cell, the trained model outputs the reception quality of the input cell after a predetermined time has elapsed, or the amount of fluctuation in reception quality.

 図4および図5の開始時点において、端末装置10はコネクティッドモード(接続状態)であり、セルAを在圏セルとして基地局装置20と通信を行っている。セルBとセルCは、周辺セルとして測定の対象となるセルである。また、基地局装置20は、測定設定としてセルBまたはセルCに対して測定イベントを評価する設定を端末装置10に設定している。測定イベントは少なくとも在圏セルと周辺セルの受信品質を比較するイベントA3が設定される。 At the start of Figures 4 and 5, the terminal device 10 is in connected mode (connected state) and is communicating with the base station device 20, with cell A as the serving cell. Cells B and C are neighboring cells that are the subject of measurement. The base station device 20 also sets a measurement setting in the terminal device 10 that evaluates a measurement event for cell B or cell C. At least event A3, which compares the reception quality of the serving cell and neighboring cells, is set as the measurement event.

 図4の端末装置10は、基地局装置20より学習済みモデルの出力であるセル予測結果を用いたイベント評価を行ってよいか否かが指示される。換言すれば、基地局装置20は、端末装置10に対し、学習済みモデルを活性化し、出力されたセル予測結果を用いて測定イベントをトリガしてよいか否かを指示する。基地局装置20は、端末装置10におけるセル予測結果を用いたイベント評価の有無について、受信した端末装置10のUE Capabilityメッセージに基づいて判断する。 The terminal device 10 in Figure 4 is instructed by the base station device 20 whether or not to perform event evaluation using the cell prediction result, which is the output of the trained model. In other words, the base station device 20 instructs the terminal device 10 whether or not to activate the trained model and trigger a measurement event using the output cell prediction result. The base station device 20 determines whether or not to perform event evaluation using the cell prediction result in the terminal device 10 based on the UE Capability message received from the terminal device 10.

 学習済みモデルから取得したセル予測結果を用いることで、端末装置10は実際にセルの測定を行う前に測定イベントの評価結果を通知することが可能となり、ハンドオーバーに関わる測定イベント報告の遅延や失敗に伴うハンドオーバーの失敗を未然に防ぐことが可能となり、ハンドオーバー成功率が向上することが期待される。基地局装置20は、セル予測結果に基づく測定イベントの成立の報告を実際より早く得られ、また、今後のセル予測結果が報告されることにより、ハンドオーバーの実施の有無について精度よく判断可能となり、ハンドオーバー成功率が向上することが期待される。 By using the cell prediction results obtained from the trained model, the terminal device 10 can notify the evaluation results of the measurement event before actually measuring the cell, making it possible to prevent handover failures due to delays or failures in reporting measurement events related to handover, and is expected to improve the handover success rate. The base station device 20 can receive reports of the establishment of measurement events based on cell prediction results earlier than they actually are, and future cell prediction results can be reported, making it possible to accurately determine whether or not to perform a handover, which is expected to improve the handover success rate.

 端末装置10は、セル予測結果を用いる場合、成立した測定イベントを基地局装置20に報告する際に、セル予測結果を用いた測定イベントの報告であるか否かを示す情報を追加して報告(送信)を行う。例えば、端末装置10は、従来と異なる測定報告メッセージを送信してもよいし、1ビットの識別子を測定報告メッセージに追加してもよいし、その他の識別可能な情報を追加しても報告を行ってもよい。 When using cell prediction results, the terminal device 10 reports (transmits) a measurement event that has occurred to the base station device 20 by adding information indicating whether the measurement event is a measurement event that used the cell prediction results. For example, the terminal device 10 may transmit a measurement report message that differs from conventional ones, may add a one-bit identifier to the measurement report message, or may add other identifiable information before reporting.

 例えば、端末装置10は、実際に測定したセルの受信品質(第1の受信品質、セル測定結果)に加え、予測したセルの受信品質(第2の受信品質、セル予測結果)を測定報告メッセージに追加して報告してもよい。追加する予測したセルの受信品質は、測定イベントの測定対象セル、在圏セル、周辺セルのいずれか、あるいはこれらの組み合わせである。または、基地局装置20から、予測するセル情報(例えば物理セルID)が指定されてもよい。予測したセルの受信品質は、現在の時刻から所定の時間が経過した後のセルの受信品質である。所定の時間は、測定イベントに設定されたTTTと同じ時間でもよいし、基地局装置20から指定された値でもよい。 For example, the terminal device 10 may add the predicted cell reception quality (second reception quality, cell prediction result) to the measurement report message in addition to the actually measured cell reception quality (first reception quality, cell measurement result). The predicted cell reception quality to be added may be the measurement target cell of the measurement event, the serving cell, or a neighboring cell, or a combination of these. Alternatively, the base station device 20 may specify cell information to be predicted (e.g., a physical cell ID). The predicted cell reception quality is the cell reception quality after a predetermined time has elapsed from the current time. The predetermined time may be the same as the TTT set in the measurement event, or a value specified by the base station device 20.

 時刻T01は、セル予測結果に基づいてセルAの受信品質がセルCの受信品質より下回った時刻を示す。換言すれば、セルCに対してイベントA3のイベント成立条件(entering condition)が満たされた時刻を示す。なお、それぞれの受信品質は、測定設定で通知される周波数オフセット、セル固有オフセット、イベント別のオフセット値、ヒステリシス値など、測定イベントの評価に用いる種々のパラメータが考慮されているものとする。 Time T01 indicates the time when the reception quality of cell A falls below that of cell C based on the cell prediction results. In other words, it indicates the time when the entering condition for event A3 is met for cell C. Note that each reception quality takes into account various parameters used to evaluate measurement events, such as the frequency offset notified in the measurement settings, cell-specific offset, event-specific offset value, and hysteresis value.

 時刻T02は、端末装置10が時刻T01から所定の時間継続してイベントA3のイベント成立条件が満足されたと判断する時間を示す。すなわち、学習済みモデルの出力として、時刻T01から時刻T02までの間、セルCのセル予測結果がセルAのセル予測結果を上回り、端末装置10がセルCに対してイベントA3が成立すると予測することを意味する。所定の時間とは例えばTTTでもよいし、基地局装置20から指定された時間長を示す情報に基づいてもよい。ここで、時刻T01の時点の端末装置10が、時刻T02における各セルの受信品質のそれぞれについて学習済みモデルを用いて出力(予測)できる場合、時刻T02を待たずに時刻T01の時点で対応する測定イベントをトリガし、測定報告メッセージを基地局装置20へ送信する。 Time T02 indicates the time at which the terminal device 10 determines that the event establishment condition for event A3 has been satisfied for a predetermined period of time from time T01. In other words, this means that, as the output of the trained model, the cell prediction result for cell C exceeds the cell prediction result for cell A between time T01 and time T02, and the terminal device 10 predicts that event A3 will be established for cell C. The predetermined period of time may be, for example, TTT, or may be based on information indicating a time length specified by the base station device 20. Here, if the terminal device 10 at time T01 can output (predict) the reception quality of each cell at time T02 using the trained model, it triggers the corresponding measurement event at time T01 without waiting for time T02, and transmits a measurement report message to the base station device 20.

 このとき、端末装置10において、時刻T02以降のセルの受信品質が学習済みモデルの出力結果から予測される場合、セルの受信品質に関する追加の予測情報を測定報告メッセージに含めて送信してもよい。追加の予測情報とは、例えば、ターゲットセル(セルC)へのハンドオーバー後に再度ソースセル(セルA)のハンドオーバーが起こり得ること(いわゆるping-pong)を示す情報、ハンドオーバー失敗の可能性の有無、またはハンドオーバー失敗の可能性の大きさを示す情報、ターゲットセルのイベント離脱条件(leaving condition)が満たされる時刻を示す情報、ハンドオーバー後のターゲットセルの滞在予測時間を示す情報、などである。基地局装置20は、どの予測情報を追加で報告させるかについて、端末装置10に個別に設定してもよい。 At this time, if the terminal device 10 predicts the cell's reception quality from time T02 onwards from the output results of the trained model, additional prediction information regarding the cell's reception quality may be included in the measurement report message and transmitted. Examples of additional prediction information include information indicating that a handover of the source cell (cell A) may occur again after handover to the target cell (cell C) (so-called ping-pong), information indicating the possibility of handover failure or the magnitude of the possibility of handover failure, information indicating the time when the target cell's leaving condition will be met, and information indicating the predicted duration of stay in the target cell after handover. The base station device 20 may individually configure the terminal device 10 as to which additional prediction information to report.

 また、端末装置10は、予測値と実際の測定値の乖離の程度を評価し、予測精度について検証する。その結果、時刻T01で送信した測定報告メッセージ(第1の測定報告メッセージ)に含めた予測値が正しくない(予測値の乖離が許容範囲内)と判断した場合、実際の測定結果に基づく測定報告メッセージ(第2の測定報告メッセージ)を送信してもよい。このとき、端末装置10は、第2の測定報告メッセージに対して第1の測定報告メッセージで報告した測定識別子と同一のセルIDの測定結果を少なくとも含めて送信する。 Furthermore, the terminal device 10 evaluates the degree of deviation between the predicted value and the actual measurement value and verifies the prediction accuracy. As a result, if it is determined that the predicted value included in the measurement report message (first measurement report message) transmitted at time T01 is incorrect (the deviation from the predicted value is within an acceptable range), it may transmit a measurement report message (second measurement report message) based on the actual measurement result. At this time, the terminal device 10 transmits the second measurement report message including at least the measurement result for the cell ID that is the same as the measurement identifier reported in the first measurement report message.

 予測値の乖離の判断は、予測値と実際の測定値の差がある閾値以上の場合でもよく、予測値と実際の測定値の差の累積がある閾値以上となった場合でもよい。このときの閾値は評価パラメータとして基地局装置20から端末装置10に事前に設定されてもよい。端末装置10は、時刻T01で送信した測定報告メッセージに含めた予測値が正しい(予測値の乖離が許容範囲外)と判断した場合は特に何もせずに予測に基づく判断を継続する。 A deviation from the predicted value may be determined when the difference between the predicted value and the actual measurement value is equal to or greater than a certain threshold, or when the cumulative difference between the predicted value and the actual measurement value is equal to or greater than a certain threshold. In this case, the threshold may be set in advance as an evaluation parameter by the base station device 20 in the terminal device 10. If the terminal device 10 determines that the predicted value included in the measurement report message transmitted at time T01 is correct (the deviation from the predicted value is outside the allowable range), it does not take any particular action and continues making judgments based on the prediction.

 端末装置10は、予測値を常にモニタし、予測値が正しくないと判断した時点で第2の測定報告メッセージを送信してもよいし、測定報告メッセージの送信毎に判断してもよいし、基地局装置20から設定される情報に基づいて判断してもよい。例えば、端末装置10は、設定された時間間隔に従って第2の測定報告メッセージを周期的に送信してもよいし、第1の測定報告メッセージを送信した回数に基づいて送信してもよいし(例えば、第1の測定報告メッセージをn回(nは基地局装置20から指定された値)送信した後に第2の測定報告メッセージを送信する)、基地局装置20からの指示に基づいて非周期的に送信してもよい。 The terminal device 10 may constantly monitor the predicted value and transmit the second measurement report message when it determines that the predicted value is incorrect, or may make this determination each time a measurement report message is transmitted, or may make this determination based on information set by the base station device 20. For example, the terminal device 10 may transmit the second measurement report message periodically according to a set time interval, or may transmit the second measurement report message based on the number of times the first measurement report message has been transmitted (for example, transmitting the second measurement report message after transmitting the first measurement report message n times (n is a value set by the base station device 20)), or may transmit the second measurement report message aperiodically based on instructions from the base station device 20.

 基地局装置20からの非周期的な指示は、L1シグナリング(PDCCH)に含まれる下りリンク制御情報で通知されてもよいし、MAC制御要素で通知されてもよいし、個別または共通のRRCメッセージで通知されてもよい。 Aperiodic instructions from the base station device 20 may be notified using downlink control information included in L1 signaling (PDCCH), using MAC control elements, or using individual or common RRC messages.

 時刻T03は、セル予測結果に基づいてセルAの受信品質がセルBの受信品質より下回った時刻を示す。換言すれば、セルBに対してイベントA3のイベント成立条件(entering condition)が満たされた時刻を示す。また、時刻T04は、端末装置10が時刻T03から所定の時間継続してイベントA3のイベント成立条件が満足されたと判断する時間を示す。すなわち、学習済みモデルの出力として、時刻T03から時刻T04までの間、セルBのセル予測結果がセルAのセル予測結果を上回り、端末装置10がセルBに対してイベントA3が成立すると予測することを意味する。 Time T03 indicates the time when the reception quality of cell A falls below that of cell B based on the cell prediction result. In other words, it indicates the time when the entering condition of event A3 is met for cell B. Furthermore, time T04 indicates the time at which terminal device 10 determines that the entering condition of event A3 has been met for a predetermined period of time from time T03. In other words, this means that, as the output of the trained model, the cell prediction result of cell B exceeds the cell prediction result of cell A between time T03 and time T04, and terminal device 10 predicts that event A3 will be met for cell B.

 このとき、端末装置10において、時刻T04以降のセルの受信品質が学習済みモデルの出力結果から予測される場合、セルの受信品質に関する追加の予測情報を測定報告メッセージに含めて送信してもよい。追加の予測情報は上述したものと同じでよい。あるいは、図4に示すように、セルBへハンドオーバーした後の滞在予測時間が一定時間継続される場合、端末装置10は追加の予測情報を送信しないでもよい。 At this time, if the terminal device 10 predicts the cell's reception quality from time T04 onwards from the output results of the trained model, it may transmit additional prediction information regarding the cell's reception quality by including it in the measurement report message. The additional prediction information may be the same as that described above. Alternatively, as shown in Figure 4, if the predicted stay time after handover to cell B continues for a certain period of time, the terminal device 10 may not transmit additional prediction information.

 時刻T04~時刻T05の間は、端末装置10の在圏セルがセルBであり、周辺セルがセルA、セルCである状態を示している。時刻T05は、セル予測結果に基づいてセルBの受信品質がセルAの受信品質より下回った時刻を示す。換言すれば、セルAに対してイベントA3のイベント成立条件(entering condition)が満たされた時刻を示す。また、時刻T06は、端末装置10が時刻T05から所定の時間継続してイベントA3のイベント成立条件が満足されたと判断する時間を示す。すなわち、学習済みモデルの出力として、時刻T05から時刻T06までの間、セルAのセル予測結果がセルBのセル予測結果を上回り、端末装置10がセルAに対してイベントA3が成立すると予測することを意味する。 The period between time T04 and time T05 shows a state in which the serving cell of terminal device 10 is cell B, and the surrounding cells are cell A and cell C. Time T05 indicates the time when the reception quality of cell B falls below that of cell A based on the cell prediction result. In other words, it indicates the time when the entering condition for event A3 is met for cell A. Furthermore, time T06 indicates the time at which terminal device 10 determines that the entering condition for event A3 has been met for a predetermined period of time from time T05. In other words, this means that, as the output of the trained model, the cell prediction result for cell A exceeds the cell prediction result for cell B from time T05 to time T06, and terminal device 10 predicts that event A3 will be met for cell A.

 このとき、端末装置10において、時刻T06以降のセルの受信品質が学習済みモデルの出力結果から予測される場合、セルの受信品質に関する追加の予測情報を測定報告メッセージに含めて送信してもよい。追加の予測情報は上述したものと同じでよい。さらに、図4に示すように、ターゲットセル(セルA)へハンドオーバーした後に他の周辺セル(セルC)の受信品質がターゲットセルを上回ること示す情報、他の周辺セル(セルC)の受信品質がターゲットセルを上回る予測時刻を示す情報、ソースセル(セルB)の受信品質を他の周辺セル(セルC)の受信品質が上回る予測時刻を示す情報、などを追加の予測情報として送信してもよい。 At this time, if the terminal device 10 predicts the reception quality of the cell from time T06 onwards from the output results of the trained model, additional prediction information regarding the reception quality of the cell may be included in the measurement report message and transmitted. The additional prediction information may be the same as that described above. Furthermore, as shown in FIG. 4, the additional prediction information may include information indicating that the reception quality of another surrounding cell (cell C) will exceed that of the target cell after handover to the target cell (cell A), information indicating the predicted time when the reception quality of another surrounding cell (cell C) will exceed that of the target cell, information indicating the predicted time when the reception quality of another surrounding cell (cell C) will exceed that of the source cell (cell B), etc.

 図5の端末装置10は、報告する測定イベントに対し、セル予測結果を追加で報告してよいか否かが基地局装置20より指示される点が図4と異なる。換言すれば、基地局装置20は、端末装置10に対し、イベント評価は実際に測定したセルの受信品質に基づいて行わせる一方で、学習済みモデルを活性化し、出力されたセル予測結果を測定イベントの報告時に追加させるか否かを指示する。基地局装置20は、端末装置10におけるセル予測結果の報告の有無について、受信した端末装置10のUE Capabilityメッセージに基づいて判断する。 The terminal device 10 in Figure 5 differs from Figure 4 in that the base station device 20 instructs the terminal device 10 whether or not to report additional cell prediction results for the measurement event being reported. In other words, the base station device 20 instructs the terminal device 10 to perform event evaluation based on the actually measured cell reception quality, while also instructing the terminal device 10 whether or not to activate the trained model and add the output cell prediction results when reporting the measurement event. The base station device 20 determines whether or not to report cell prediction results in the terminal device 10 based on the UE Capability message received from the terminal device 10.

 端末装置10は学習済みモデルから取得したセル予測結果を通知することによって、適切な移動管理を基地局装置20へ行わせることが可能となり、ハンドオーバー成功率が向上することが期待される。基地局装置20は、測定イベントの成立の報告に加え、基地局装置20の移動管理に使用可能な判断情報が端末装置10から受信することにより、ハンドオーバーの実施の有無について精度よく判断可能となり、ハンドオーバー成功率が向上することが期待される。 By notifying the terminal device 10 of the cell prediction results obtained from the trained model, it becomes possible for the base station device 20 to perform appropriate mobility management, which is expected to improve the handover success rate. In addition to reporting the establishment of a measurement event, the base station device 20 receives from the terminal device 10 judgment information that can be used for mobility management at the base station device 20, which enables the base station device 20 to accurately determine whether or not to perform a handover, which is expected to improve the handover success rate.

 端末装置10は、実際に測定したセルの受信品質に加え、予測したセルの受信品質を測定報告メッセージに追加して報告する。追加する予測したセルの受信品質は、測定イベントの測定対象セル、在圏セル、周辺セルのいずれか、あるいはこれらの組み合わせである。予測したセルの受信品質は、現在の時刻から所定の時間が経過した後のセルの受信品質である。所定の時間は、測定イベントに設定されたTTTと同じ時間でもよいし、基地局装置20から指定された時間長を示す情報に基づいてもよい。 In addition to the actually measured cell reception quality, the terminal device 10 adds the predicted cell reception quality to the measurement report message and reports it. The predicted cell reception quality to be added is either the cell being measured for the measurement event, the serving cell, or a neighboring cell, or a combination of these. The predicted cell reception quality is the cell reception quality after a predetermined time has elapsed from the current time. The predetermined time may be the same as the TTT set for the measurement event, or may be based on information indicating the length of time specified by the base station device 20.

 時刻T11は、実際に測定したセルの受信品質に基づいてセルAの受信品質がセルCの受信品質より下回った時刻を示す。換言すれば、セルCに対してイベントA3のイベント成立条件(entering condition)が満たされた時刻を示す。なお、それぞれの受信品質は、測定設定で通知される周波数オフセット、セル固有オフセット、イベント別のオフセット値、ヒステリシス値など、測定イベントの評価に用いる種々のパラメータが考慮されているものとする。 Time T11 indicates the time when the reception quality of cell A falls below that of cell C based on the actual measured reception quality of the cells. In other words, it indicates the time when the entering condition for event A3 is met for cell C. Note that each reception quality takes into account various parameters used to evaluate measurement events, such as the frequency offset notified in the measurement settings, cell-specific offset, event-specific offset value, and hysteresis value.

 時刻T12は、端末装置10が時刻T11から所定の時間継続してイベントA3のイベント成立条件が満足されたと判断する時間を示す。すなわち、時刻T11から時刻T12まで、セルCの受信品質がセルAの受信品質を上回り、端末装置10がセルCに対してイベントA3が成立したと判断することを意味する。所定の時間とは例えばTTTである。 Time T12 indicates the time at which the terminal device 10 determines that the event establishment condition for event A3 has been satisfied for a predetermined period of time from time T11. In other words, this means that from time T11 to time T12, the reception quality of cell C exceeds the reception quality of cell A, and the terminal device 10 determines that event A3 has been established for cell C. The predetermined period of time is, for example, TTT.

 ここで、時刻T12の時点の端末装置10が、時刻T13における各セルの受信品質のそれぞれについて学習済みモデルを用いて出力(予測)できる場合、時刻T12でトリガされて報告される測定報告メッセージに、時刻T13におけるセル予測結果を含めて基地局装置20へ送信する。時刻T12から時刻T13の時間間隔(例えば時刻t2)は、例えばTTTであってもよいし、基地局装置20から指定された時間長を示す情報に基づいてもよい。追加されるセル予測結果は、予測された値をそのまま報告してもよいし、報告するセルの受信品質からの差分値を計算して報告してもよいし、その他の検出された一定品質以上の周辺セルの結果を報告してもよいし、これらに加えてセル予測結果の誤差の範囲を示す粒度情報を含めて報告してもよい。 Here, if the terminal device 10 at time T12 is able to output (predict) the reception quality of each cell at time T13 using the trained model, it will include the cell prediction result at time T13 in a measurement report message triggered and reported at time T12 and transmit it to the base station device 20. The time interval from time T12 to time T13 (e.g., time t2) may be, for example, TTT, or may be based on information indicating a time length specified by the base station device 20. The added cell prediction result may be the predicted value reported as is, or a difference value from the reception quality of the cell being reported may be calculated and reported, or the results of other detected neighboring cells with a certain quality or higher may be reported, or in addition to these, granularity information indicating the range of error in the cell prediction result may be included in the report.

 または、端末装置10において、時刻T12以降のセルの受信品質が学習済みモデルの出力結果から予測される場合、セルの受信品質に関する追加の予測情報を測定報告メッセージに含めて送信してもよい。追加の予測情報とは、例えば、ターゲットセル(セルC)へのハンドオーバー後に再度ソースセル(セルA)のハンドオーバーが起こり得ること(いわゆるping-pong)を示す情報、ハンドオーバー失敗の可能性の有無、またはハンドオーバー失敗の可能性の大きさを示す情報、ターゲットセルのイベント離脱条件(leaving condition)が満たされる時刻を示す情報、ハンドオーバー後のターゲットセルの滞在予測時間を示す情報、などである。基地局装置20は、どの予測情報を追加で報告させるかについて、端末装置10に個別に設定してもよい。 Alternatively, when the terminal device 10 predicts the cell's reception quality from time T12 onwards from the output results of the trained model, additional prediction information regarding the cell's reception quality may be included in the measurement report message and transmitted. The additional prediction information may be, for example, information indicating that a handover of the source cell (cell A) may occur again after handover to the target cell (cell C) (so-called ping-pong), information indicating the possibility of handover failure or the magnitude of the possibility of handover failure, information indicating the time when the target cell's leaving condition will be met, information indicating the predicted stay time in the target cell after handover, etc. The base station device 20 may individually configure the terminal device 10 as to which prediction information to report additionally.

 また、端末装置10は、時刻T13で予測した予測値に基づいて、実際の測定結果に基づく測定報告メッセージを送信すべきでないと判断してもよい。測定報告メッセージの送信の判断は、上述した追加の予測情報に基づいてもよい。追加の予測情報を用いる場合、基地局装置20から判断に用いる閾値情報(時間あるいは割合を示す閾値など)が端末装置10に設定される。測定報告メッセージを送信すべきでないと判断した場合、端末装置10は、測定報告メッセージの送信をキャンセルしてもよいし、測定報告メッセージの送信を抑制してもよいし、測定イベントに対応する測定識別子をサスペンドしてもよいし、測定イベントに対応する報告設定の評価を停止してもよいし、測定イベントがイベント成立条件を満たさない(トリガしない)とみなしてもよい。 Furthermore, the terminal device 10 may determine that it should not transmit a measurement report message based on the actual measurement results, based on the predicted value predicted at time T13. The decision to transmit the measurement report message may also be based on the additional prediction information described above. When using the additional prediction information, threshold information (such as a threshold indicating a time or percentage) used for the decision is set in the terminal device 10 by the base station device 20. When it is determined that it should not transmit a measurement report message, the terminal device 10 may cancel the transmission of the measurement report message, suppress the transmission of the measurement report message, suspend the measurement identifier corresponding to the measurement event, stop evaluating the reporting settings corresponding to the measurement event, or consider the measurement event to not satisfy the event establishment condition (not be triggered).

 端末装置10は、予測値を常にモニタし、予測値が正しくないと判断した時点で実際の測定結果に基づく測定報告メッセージを送信してもよい。予測値の正誤の判断は上述した方法と同じでよい。測定報告メッセージの送信の判断に基づいて測定報告メッセージを送信していなかった場合は、更に、実際に測定イベントが成立した時刻の情報やセルの受信品質を含めてもよい。また、端末装置10は、予測値が正しくないと判断したこと示す情報を基地局装置20へ送信してもよい。 The terminal device 10 may constantly monitor the predicted value and transmit a measurement report message based on the actual measurement results when it determines that the predicted value is incorrect. The accuracy of the predicted value may be determined in the same manner as described above. If the measurement report message was not transmitted based on the determination to transmit a measurement report message, the message may further include information on the time when the measurement event actually occurred and the reception quality of the cell. The terminal device 10 may also transmit information to the base station device 20 indicating that it has determined that the predicted value is incorrect.

 測定報告メッセージを送信しないと判断した端末装置10は、未報告の測定イベントに関する情報を基地局装置20に報告する。例えば、端末装置10は、RRCメッセージであるUE assistance informationメッセージを用いてもよい。RRCメッセージに含める情報は、未報告を示す情報に加え、測定イベントの情報(測定識別子)、実際に測定イベントが成立した時刻の情報、またはセルの受信品質、未送信と判断した判断理由を含めてもよい。 A terminal device 10 that has decided not to send a measurement report message reports information about the unreported measurement event to the base station device 20. For example, the terminal device 10 may use a UE assistance information message, which is an RRC message. The information included in the RRC message may include, in addition to information indicating the unreported event, information about the measurement event (measurement identifier), information about the time when the measurement event actually occurred, or the reception quality of the cell, and the reason for the decision that the event was not transmitted.

 時刻T14は、実際に測定したセルの受信品質に基づいてセルAの受信品質がセルBの受信品質より下回った時刻を示す。換言すれば、セルBに対してイベントA3のイベント成立条件(entering condition)が満たされた時刻を示す。また、時刻T15は、端末装置10が時刻T14から所定の時間継続してイベントA3のイベント成立条件が満足されたと判断するタイミングを示す。すなわち、時刻T14から時刻T15まで、セルBの受信品質がセルAの受信品質を上回り、端末装置10がセルBに対してイベントA3が成立したと判断することを意味する。所定の時間とは例えばTTTである。 Time T14 indicates the time when the reception quality of cell A falls below that of cell B based on the actual measured reception quality of the cells. In other words, it indicates the time when the entering condition of event A3 is met for cell B. Furthermore, time T15 indicates the timing at which terminal device 10 determines that the entering condition of event A3 has been met continuously for a predetermined time from time T14. In other words, this means that from time T14 to time T15, the reception quality of cell B exceeds the reception quality of cell A, and terminal device 10 determines that event A3 has been met for cell B. The predetermined time is, for example, TTT.

 ここで、時刻T15の時点の端末装置10が、時刻T16における各セルの受信品質のそれぞれについて学習済みモデルを用いて出力(予測)できる場合、時刻T15でトリガされて報告される測定報告メッセージに、時刻T16におけるセル予測結果を含めて基地局装置20へ送信する。時刻T15から時刻T16の時間間隔(例えば時刻t2)は、例えばTTTであってもよいし、基地局装置20から指定された時間長を示す情報に基づいてもよい。追加されるセル予測結果は上述したものと同じでよい。 Here, if the terminal device 10 at time T15 is able to output (predict) the reception quality of each cell at time T16 using the trained model, it will include the cell prediction result at time T16 in a measurement report message triggered and reported at time T15 and transmit it to the base station device 20. The time interval from time T15 to time T16 (e.g., time t2) may be, for example, TTT, or may be based on information indicating a time length specified by the base station device 20. The added cell prediction result may be the same as that described above.

 端末装置10は、時刻T15で送信した測定報告メッセージに含めた予測値が正しかった場合は特に何もせずに予測に基づく判断を継続する。図5に示すように、セルBへハンドオーバーした後の滞在予測時間が一定時間(例えば時刻T16まで)継続される場合、端末装置10は測定報告メッセージに含めた予測値の正誤の判断を中止し、通常の動作を再開してもよい。 If the predicted value included in the measurement report message sent at time T15 is correct, the terminal device 10 does nothing and continues making judgments based on the prediction. As shown in Figure 5, if the predicted stay time after handover to cell B continues for a certain period of time (for example, until time T16), the terminal device 10 may stop making judgments about the accuracy of the predicted value included in the measurement report message and resume normal operation.

 時刻T16~時刻T17の間は、端末装置10の在圏セルがセルBであり、周辺セルがセルA、セルCである状態を示している。時刻T17は、セルBの受信品質がセルAの受信品質より下回った時刻を示す。換言すれば、セルAに対してイベントA3のイベント成立条件(entering condition)が満たされた時刻を示す。また、時刻T18は、端末装置10が時刻T16から所定の時間継続してイベントA3のイベント成立条件が満足されたと判断するタイミングを示す。すなわち、時刻T17から時刻T18までの間、セルAの受信品質がセルBの受信品質を上回り、端末装置10がセルAに対してイベントA3が成立すると判断することを意味する。 The period between time T16 and time T17 shows a state in which the serving cell of terminal device 10 is cell B, and the surrounding cells are cell A and cell C. Time T17 shows the time when the reception quality of cell B falls below that of cell A. In other words, it shows the time when the entering condition for event A3 is met for cell A. Furthermore, time T18 shows the timing at which terminal device 10 determines that the entering condition for event A3 has been met for a predetermined period of time from time T16. In other words, this means that the reception quality of cell A exceeds the reception quality of cell B from time T17 to time T18, and terminal device 10 determines that event A3 is met for cell A.

 ここで、時刻T18の時点の端末装置10が、時刻T19における各セルの受信品質のそれぞれについて学習済みモデルを用いて出力(予測)できる場合、時刻T18でトリガされて報告される測定報告メッセージに、時刻T19におけるセル予測結果、あるいは更に、追加の予測情報を含めて基地局装置20へ送信してもよい。追加の予測情報は上述したものと同じでよい。さらに、図5に示すように、ターゲットセル(セルA)へハンドオーバーした後に他の周辺セル(セルC)の受信品質がターゲットセルを上回ること示す情報、他の周辺セル(セルC)の受信品質がターゲットセルを上回る予測時刻を示す情報、ソースセル(セルB)の受信品質を他の周辺セル(セルC)の受信品質が上回る予測時刻を示す情報、ターゲットセルとして推奨するセルID(時刻T19の場合はセルC)などを追加の予測情報として送信してもよい。 Here, if the terminal device 10 at time T18 can output (predict) the reception quality of each cell at time T19 using a trained model, the measurement report message triggered and reported at time T18 may include the cell prediction result at time T19 or additional prediction information and transmit it to the base station device 20. The additional prediction information may be the same as that described above. Furthermore, as shown in FIG. 5, additional prediction information may be transmitted, such as information indicating that the reception quality of another surrounding cell (cell C) will exceed that of the target cell after handover to the target cell (cell A), information indicating the predicted time when the reception quality of another surrounding cell (cell C) will exceed that of the target cell, information indicating the predicted time when the reception quality of another surrounding cell (cell C) will exceed that of the source cell (cell B), and the cell ID of a cell recommended as the target cell (cell C in the case of time T19).

 図7は、端末装置10と基地局装置20間でやり取りされるRRCメッセージの例について説明するためのシーケンス図である。なお、図示を省略するが、端末装置10と基地局装置20との間の無線接続(RRCセットアップ)手順が完了し、端末装置10の状態が、通信中状態(接続状態、RRC Connected状態とも称する)に移行している状態から開始する。また、端末装置10は、自装置の無線能力を基地局装置20に通知するために、RRCメッセージ(UE Capabilityメッセージ)を生成し、基地局装置20に送信しているとする。 Figure 7 is a sequence diagram illustrating an example of RRC messages exchanged between the terminal device 10 and the base station device 20. Although not shown, the diagram begins with the wireless connection (RRC setup) procedure between the terminal device 10 and the base station device 20 being completed, and the terminal device 10 transitioning to a communicating state (connected state, also referred to as an RRC Connected state). Furthermore, the terminal device 10 generates an RRC message (UE Capability message) and transmits it to the base station device 20 in order to notify the base station device 20 of its own wireless capabilities.

 端末装置10は、端末装置10の位置情報精度(ポジショニングサポート情報)、学習済みモデルを利用した場合に予測可能な最大時間を示す情報、予測可能な最大セル数などの情報をUE Capabilityメッセージに含めて送信してもよい。 The terminal device 10 may transmit information such as the accuracy of the terminal device's 10 location information (positioning support information), information indicating the maximum time that can be predicted when using a trained model, and the maximum number of cells that can be predicted in a UE Capability message.

 基地局装置20は、第1のRRCメッセージ(図中のRRC message1)を端末装置10に送信する(ステップS100)。第1のRRCメッセージは、例えば、RRCReconfigurationメッセージのように、個別のRRCメッセージが用いられる。第1のRRCメッセージは、端末装置10に対して測定イベントを設定するための測定設定を含めて送信される。また、第1のRRCメッセージは、端末装置10で使用する学習済みモデルの活性化、不活性化、スイッチング、フォールバックを指示する学習済みモデル設定含めてもよい。学習済みモデルの活性化、不活性化、スイッチングを指示する場合、基地局装置20は、対象となる学習済みモデルの識別子(Model ID)を通知する。基地局装置20は、学習済みモデルのスイッチングと同時に活性化、あるいは不活性化を指示してもよい。 The base station device 20 transmits a first RRC message (RRC message 1 in the figure) to the terminal device 10 (step S100). The first RRC message is, for example, an individual RRC message such as an RRCReconfiguration message. The first RRC message is transmitted including a measurement setting for setting a measurement event for the terminal device 10. The first RRC message may also include a trained model setting that instructs activation, deactivation, switching, or fallback of the trained model used by the terminal device 10. When instructing activation, deactivation, or switching of a trained model, the base station device 20 notifies the identifier (Model ID) of the target trained model. The base station device 20 may also instruct activation or deactivation at the same time as switching the trained model.

 端末装置10は、第1のRRCメッセージに対する応答として、第2のRRCメッセージ(図中のRRC message2)を基地局装置20に送信する(ステップS101)。第2のRRCメッセージは、例えば、RRCReconfigurationCompleteメッセージである。第2のRRCメッセージは基地局装置20から指定された学習済みモデルの活性化、不活性化、スイッチング、フォールバックが正常に完了したことを通知するためにも使用される。 In response to the first RRC message, the terminal device 10 transmits a second RRC message (RRC message 2 in the figure) to the base station device 20 (step S101). The second RRC message is, for example, an RRCReconfigurationComplete message. The second RRC message is also used by the base station device 20 to notify that activation, deactivation, switching, or fallback of a trained model specified by the base station device 20 has been successfully completed.

 測定設定が設定され、学習済みモデルが活性化している端末装置10は、測定設定に基づいて第3のRRCメッセージ(図中のRRC message3)を基地局装置20に送信する(ステップS102)。第3のRRCメッセージは、例えば、測定報告メッセージ(Measurement Report)である。端末装置10は、第3のRRCメッセージの送信タイミング、および、第3のRRCメッセージに含まれる情報は図4~5で説明した内容と同様である。 The terminal device 10, for which the measurement settings have been set and the learned model is activated, transmits a third RRC message (RRC message 3 in the figure) to the base station device 20 based on the measurement settings (step S102). The third RRC message is, for example, a measurement report message. The timing of transmission of the third RRC message by the terminal device 10 and the information contained in the third RRC message are the same as those described in Figures 4 and 5.

 または、端末装置10と基地局装置20は、図4と図5の動作を組み合わせて動作するように構成されてもよい。例えば、イベント成立条件を判断する場合は図4の動作(すなわち、セル予測結果を用いて測定イベントを評価する)を行い、イベント離脱条件を判断する場合は図5の動作(すなわち、セル測定結果を用いて測定イベントを評価し、セル予測結果を報告に追加する)を行ってもよく、その逆でもよい。または、通常は図4の動作を継続し、セル予測結果が正しくないと判断した場合、図5の動作に切り替えるようにしてもよい。すなわち、端末装置10と基地局装置20は、利用中の学習済みモデルの出力の精度が低いと判断される場合は、測定イベントを評価については実際のセル測定値を用いた従来の動作にフォールバックする。 Alternatively, the terminal device 10 and the base station device 20 may be configured to operate by combining the operations of Figures 4 and 5. For example, when determining an event establishment condition, the operation of Figure 4 (i.e., evaluating a measurement event using the cell prediction result) may be performed, and when determining an event departure condition, the operation of Figure 5 (i.e., evaluating a measurement event using the cell measurement result and adding the cell prediction result to a report) may be performed, or vice versa. Alternatively, the operation of Figure 4 may be continued normally, and if it is determined that the cell prediction result is incorrect, it may switch to the operation of Figure 5. In other words, if the terminal device 10 and the base station device 20 determine that the accuracy of the output of the trained model in use is low, they fall back to conventional operation that uses actual cell measurement values when evaluating measurement events.

 または、どちらの動作を行うかが基地局装置20からRRCメッセージで明示的に指定されてもよいし、L1シグナリング(PDCCH)に含まれる下りリンク制御情報やMAC制御要素で動作が切り替えられるように構成されてもよい。 Alternatively, the base station device 20 may explicitly specify which operation to perform in an RRC message, or the operation may be switched using downlink control information or MAC control elements included in L1 signaling (PDCCH).

 このように、第1の実施形態によれば、端末装置10および基地局装置20は、学習済みのモデルを用いてセルの受信品質の予測を行い、セルの受信品質の予測結果を含む測定報告メッセージの送受信を行うことで、端末装置10と基地局装置20との間の移動管理の性能を向上することができる。 In this way, according to the first embodiment, the terminal device 10 and the base station device 20 predict the reception quality of the cell using a trained model, and transmit and receive measurement report messages including the predicted results of the reception quality of the cell, thereby improving the performance of mobility management between the terminal device 10 and the base station device 20.

 <第2の実施形態>
 第2の実施形態について記載する。なお、第1の実施形態および第2の実施形態において共通する構成、機能、または手順については説明を省略する。すなわち、以下では、主に、第1の実施形態と異なる点について説明する。
Second Embodiment
The second embodiment will be described. Note that a description of configurations, functions, or procedures common to the first and second embodiments will be omitted. That is, the following mainly describes the differences from the first embodiment.

 第2の実施形態の端末装置10と基地局装置20は、コンディショナルハンドオーバー(CHO:Conditional Handover)のトリガに用いる測定イベント(イベント条件(Conditional Event))の評価に対して学習済みモデルの出力であるセル予測結果を用いる。端末装置10は、基地局装置20より学習済みモデルの出力であるセル予測結果を用いたイベント条件の評価を行ってよいか否かが指示される。換言すれば、基地局装置20は、端末装置10に対し、学習済みモデルを活性化し、出力されたセル予測結果を用いてコンディショナルハンドオーバーを実行してよいか否かを指示する。基地局装置20は、端末装置10におけるセル予測結果を用いたイベント条件の評価の有無について、受信した端末装置10のUE Capabilityメッセージに基づいて判断する。 In the second embodiment, the terminal device 10 and base station device 20 use the cell prediction result, which is the output of the trained model, to evaluate a measurement event (event condition (Conditional Event)) used to trigger a conditional handover (CHO). The terminal device 10 is instructed by the base station device 20 whether or not it is permitted to evaluate an event condition using the cell prediction result, which is the output of the trained model. In other words, the base station device 20 instructs the terminal device 10 whether or not it is permitted to activate the trained model and perform a conditional handover using the output cell prediction result. The base station device 20 determines whether or not to evaluate an event condition using the cell prediction result in the terminal device 10 based on the UE Capability message received from the terminal device 10.

 なお、基地局装置20は、端末装置10に対し、(1)セル予測結果を用いた測定イベントの評価、(2)セル予測結果を用いたイベント条件の評価の、いずれか、または両方を実行してよいか否かを指示してもよい。指示する方法は、L1シグナリング(PDCCH)に含まれる下りリンク制御情報を用いてもよいし、MAC制御要素を用いてもよいし、個別または共通のRRCメッセージを用いてもよい。 The base station device 20 may instruct the terminal device 10 whether or not to perform either or both of (1) evaluation of a measurement event using the cell prediction result and (2) evaluation of an event condition using the cell prediction result. The instruction may be given using downlink control information included in L1 signaling (PDCCH), a MAC control element, or an individual or common RRC message.

 学習済みモデルから取得したセル予測結果を用いることで、端末装置10は実際にセルの測定を行う前にイベント条件を評価することが可能となり、コンディショナルハンドオーバー成功率が向上することが期待される。また、端末装置10はコンディショナルハンドオーバーの実施の有無について精度よく判断可能となり、コンディショナルハンドオーバー成功率の向上とコンディショナルハンドオーバー後の無線リンク障害の発生頻度の低下が期待される。 By using the cell prediction results obtained from the trained model, the terminal device 10 is able to evaluate event conditions before actually measuring the cell, which is expected to improve the success rate of conditional handover. Furthermore, the terminal device 10 is able to accurately determine whether or not to perform a conditional handover, which is expected to improve the success rate of conditional handover and reduce the frequency of radio link failures after a conditional handover.

 例えば、端末装置10は、現在の時刻から所定の時間が経過した後のターゲットセルの受信品質(セル予測結果)を用いたイベント条件の評価を行い、かつ、セル予測結果に基づいて設定されたイベント条件が成立した場合、当該ターゲットセルに対してコンディショナルハンドオーバーを実行する。所定の時間は、測定イベントに設定されたTTTと同じ時間でもよいし、基地局装置20から指定された値でもよい。 For example, the terminal device 10 evaluates the event condition using the reception quality of the target cell after a predetermined time has elapsed from the current time (cell prediction result), and if the event condition set based on the cell prediction result is met, it performs a conditional handover to the target cell. The predetermined time may be the same as the TTT set for the measurement event, or may be a value specified by the base station device 20.

 端末装置10は、セル予測結果を用いてコンディショナルハンドオーバーを実行した場合、セル予測結果を用いたか否かを示す情報を基地局装置20に報告(送信)を行う。例えば、端末装置10は、コンディショナルハンドオーバーの実行完了を通知するRRCメッセージ(RRCReconfigurationComplete)にセル予測結果を用いたか否かを示す情報を追加してもよい。 When the terminal device 10 executes a conditional handover using the cell prediction result, it reports (transmits) information indicating whether or not the cell prediction result was used to the base station device 20. For example, the terminal device 10 may add information indicating whether or not the cell prediction result was used to an RRC message (RRCReconfigurationComplete) that notifies the completion of the execution of the conditional handover.

 あるいは、端末装置10は、実際に測定したターゲットセルの受信品質(第1の受信品質、セル測定結果)に基づいてイベント条件の評価を行い、設定されたイベント条件が成立した場合、そのままコンディショナルハンドオーバーを実行するか否かについて、予測した当該ターゲットセルの受信品質(第2の受信品質、セル予測結果)に基づいて判断してもよい。セル予測結果は、イベント条件が成立した時刻から所定の時間が経過した後のセル予測結果を用いる。所定の時間は、イベント条件に設定されたTTTと同じ時間でもよいし、基地局装置20から指定された値でもよい。 Alternatively, the terminal device 10 may evaluate the event condition based on the actually measured reception quality of the target cell (first reception quality, cell measurement result), and if the set event condition is met, determine whether to perform conditional handover based on the predicted reception quality of the target cell (second reception quality, cell prediction result). The cell prediction result used is the cell prediction result obtained after a predetermined time has elapsed since the time the event condition was met. The predetermined time may be the same as the TTT set in the event condition, or may be a value specified by the base station device 20.

 端末装置10は、セル予測結果に基づいて、コンディショナルハンドオーバー後に無線リンク障害(Radio Link Failure)が予測される場合、より具体的には、ターゲットセルへハンドオーバーしてから短時間のうちに他の周辺セルの受信品質がターゲットセルを上回ると予測される場合、ターゲットセルへのハンドオーバー後に再度ソースセルのハンドオーバーが実行される場合、ターゲットセルの受信品質が所定の時間後に所定の値を下回る場合、ターゲットセルのイベント離脱条件(leaving condition)が満たされる場合、ハンドオーバー後のターゲットセルの滞在予測時間が所定の時間未満の場合、にコンディショナルハンドオーバーを実行しないと判断してもよい。上記判断に用いるそれぞれのパラメータは基地局装置20から事前に端末装置10に通知されてもよい。 The terminal device 10 may determine not to perform a conditional handover based on the cell prediction result if a radio link failure is predicted after the conditional handover; more specifically, if the reception quality of other surrounding cells is predicted to exceed that of the target cell within a short time after handover to the target cell, if a handover of the source cell is performed again after handover to the target cell, if the reception quality of the target cell falls below a predetermined value after a predetermined time, if the event leaving condition of the target cell is satisfied, or if the predicted stay time in the target cell after handover is less than a predetermined time. Each of the parameters used in the above determination may be notified to the terminal device 10 in advance by the base station device 20.

 端末装置10は、コンディショナルハンドオーバーを実行しないと判断した場合、成立した測定識別子を含む測定報告メッセージを基地局装置20に送信してもよい。または別のRRCメッセージ(例えばUE assistance information)を用いてコンディショナルハンドオーバーの非実行を示す情報とその判断理由を含めて送信してもよい。 If the terminal device 10 determines not to perform a conditional handover, it may transmit a measurement report message including the established measurement identifier to the base station device 20. Alternatively, it may use another RRC message (e.g., UE assistance information) to transmit information indicating that a conditional handover will not be performed and the reason for this determination.

 このように、第2の実施形態によれば、端末装置10および基地局装置20は、学習済みのモデルを用いてセルの受信品質の予測を行い、セルの受信品質の予測結果に基づくコンディショナルハンドオーバーを実行することで、端末装置10と基地局装置20との間の移動管理の性能を向上することができる。 In this way, according to the second embodiment, the terminal device 10 and the base station device 20 predict the cell reception quality using a trained model and perform conditional handover based on the predicted cell reception quality, thereby improving the performance of mobility management between the terminal device 10 and the base station device 20.

 なお、上述した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するものではない。本発明は、その趣旨を逸脱することなく、変更や改良され得ると共に、本発明はその等価物も含む。 Note that the above-described embodiments are intended to facilitate understanding of the present invention and are not intended to limit the present invention. The present invention may be modified or improved without departing from its spirit, and the present invention also includes equivalents.

 <各実施の形態における各装置のハードウェア構成>
 図9と図10に基づいて、各実施の形態の無線通信システムにおける各装置のハードウェア構成を説明する。
<Hardware configuration of each device in each embodiment>
The hardware configuration of each device in the wireless communication system of each embodiment will be described with reference to FIGS.

 図9は、端末装置10のハードウェア構成の一例を示す図である。図9に示すように、端末装置10は、ハードウェアの構成要素として、例えばアンテナ31を備えるRF(Radio Frequency)回路32と、CPU(Central Processing Unit)33と、メモリ34とを有する。さらに、端末装置10は、CPU33に接続されるLCD(Liquid Crystal Display)等の表示装置を有してもよい。メモリ34は、例えばSDRAM(Synchronous Dynamic Random Access Memory)等のRAM(Random Access Memory)、ROM(Read Only Memory)、及びフラッシュメモリの少なくともいずれかを含み、プログラムや制御情報やデータ信号を格納する。 Figure 9 is a diagram showing an example of the hardware configuration of terminal device 10. As shown in Figure 9, terminal device 10 has, as hardware components, an RF (Radio Frequency) circuit 32 equipped with an antenna 31, a CPU (Central Processing Unit) 33, and memory 34. Furthermore, terminal device 10 may have a display device such as an LCD (Liquid Crystal Display) connected to CPU 33. Memory 34 includes at least one of RAM (Random Access Memory) such as SDRAM (Synchronous Dynamic Random Access Memory), ROM (Read Only Memory), and flash memory, and stores programs, control information, and data signals.

 図2に示す端末装置10の機能構成と図9に示す端末装置10のハードウェア構成との対応を説明する。送受信アンテナ部19、送信部17、及び受信部15は、例えばRF回路32、あるいはアンテナ31及びRF回路32により実現される。制御部13及び処理部11は、例えばCPU33、メモリ34、不図示のデジタル電子回路等により実現される。デジタル電子回路としては例えば、例えばASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、LSI(Large Scale Integration)等が挙げられる。 The correspondence between the functional configuration of the terminal device 10 shown in FIG. 2 and the hardware configuration of the terminal device 10 shown in FIG. 9 will be explained. The transmitting/receiving antenna unit 19, transmitting unit 17, and receiving unit 15 are realized, for example, by an RF circuit 32, or an antenna 31 and an RF circuit 32. The control unit 13 and processing unit 11 are realized, for example, by a CPU 33, memory 34, a digital electronic circuit (not shown), etc. Examples of digital electronic circuits include an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), and an LSI (Large Scale Integration).

 図10は、基地局装置20のハードウェア構成の一例を示す図である。図10に示すように、基地局装置20は、ハードウェアの構成要素として、例えばアンテナ41を備えるRF回路42と、CPU43と、DSP44と、メモリ45と、ネットワークIF(Interface)46とを有する。CPU43は、バスを介して各種信号やデータ信号の入出力が可能なように接続されている。メモリ45は、例えばSDRAM等のRAM、ROM、及びフラッシュメモリの少なくともいずれかを含み、プログラムや制御情報やデータ信号を格納する。 FIG. 10 is a diagram showing an example of the hardware configuration of a base station device 20. As shown in FIG. 10, the base station device 20 has, as hardware components, an RF circuit 42 equipped with an antenna 41, a CPU 43, a DSP 44, a memory 45, and a network IF (Interface) 46. The CPU 43 is connected via a bus to enable input and output of various signals and data signals. The memory 45 includes at least one of a RAM such as SDRAM, a ROM, and a flash memory, and stores programs, control information, and data signals.

 図3に示す基地局装置20の機能構成と図10に示す基地局装置20のハードウェア構成との対応を説明する。送受信アンテナ部29、送信部27、及び受信部25は、例えばRF回路42、あるいはアンテナ41及びRF回路42により実現される。制御部23と処理部21は、例えばCPU43、DSP44、メモリ45、不図示のデジタル電子回路等により実現される。デジタル電子回路としては、例えばASIC、FPGA、LSI等が挙げられる。 The correspondence between the functional configuration of the base station device 20 shown in FIG. 3 and the hardware configuration of the base station device 20 shown in FIG. 10 will be explained. The transmitting/receiving antenna unit 29, transmitting unit 27, and receiving unit 25 are realized, for example, by an RF circuit 42, or an antenna 41 and an RF circuit 42. The control unit 23 and processing unit 21 are realized, for example, by a CPU 43, a DSP 44, a memory 45, a digital electronic circuit (not shown), etc. Examples of digital electronic circuits include an ASIC, an FPGA, and an LSI.

1 無線通信システム
10 端末装置
20 基地局装置
30 コアネットワーク
11、21 処理部
13、23 制御部
15、25 受信部
17、27 送信部
19、29 送受信アンテナ部
31、41 アンテナ
32、42 RF回路
33、43 CPU
34、45 メモリ
44 DSP
46 ネットワークIF
111、211 無線リソース処理部
113、213 予測部
300 Data Collection
301 Model Training
302 Management
303 Inference
304 Model Storage
REFERENCE SIGNS LIST 1 wireless communication system 10 terminal device 20 base station device 30 core network 11, 21 processing units 13, 23 control units 15, 25 receiving units 17, 27 transmitting units 19, 29 transmitting and receiving antenna units 31, 41 antennas 32, 42 RF circuits 33, 43 CPU
34, 45 Memory 44 DSP
46 Network IF
111, 211 Radio resource processing unit 113, 213 Prediction unit 300 Data Collection
301 Model Training
302 Management
303 Inference
304 Model Storage

Claims (12)

 基地局装置と通信する端末装置であって、
 セルの受信品質を測定するための測定イベントを含む測定設定に関する情報と、セル予測結果の利用許可を示す情報を前記基地局装置から受信する受信部と、
 前記セルの受信品質の変動の予測をセル予測結果として出力する予測部と、
 前記セル予測結果の利用許可を示す情報に基づいて、前記測定イベントと、前記測定イベントに関する実際に測定した第1の受信品質、および、前記セル予測結果に基づく第2の受信品質のそれぞれを、前記基地局装置に報告する送信部とを備える、端末装置。
A terminal device that communicates with a base station device,
a receiving unit that receives information about a measurement configuration including a measurement event for measuring the reception quality of a cell and information indicating permission to use a cell prediction result from the base station device;
a prediction unit that outputs a prediction of fluctuations in the reception quality of the cell as a cell prediction result;
A terminal device comprising: a transmitting unit that reports to the base station device, based on information indicating permission to use the cell prediction result, the measurement event, a first reception quality actually measured for the measurement event, and a second reception quality based on the cell prediction result.
 前記セルの受信品質の変動を予測するための機械学習を行った学習済みの学習モデルに前記セルの第1の受信品質を入力することで、前記セルの第2の受信品質を前記学習モデルから取得する予測部を備える、請求項1に記載の端末装置。 The terminal device according to claim 1, further comprising a prediction unit that inputs the first reception quality of the cell into a trained learning model that has undergone machine learning to predict fluctuations in the reception quality of the cell, and obtains the second reception quality of the cell from the trained learning model.  前記セル予測結果の利用が許可されている場合、かつ、前記第1の受信品質が前記測定イベントの成立条件を所定の時間満たす場合に、前記測定イベントに関するセルの前記第1の受信品質と前記第2の受信品質のそれぞれを測定報告メッセージに含めて送信する、請求項1に記載の端末装置。 The terminal device according to claim 1, wherein, when use of the cell prediction result is permitted and when the first reception quality satisfies the condition for the measurement event for a predetermined time, the terminal device transmits a measurement report message including the first reception quality and the second reception quality of the cell related to the measurement event.  前記第1の受信品質が前記測定イベントの成立条件を所定の時間満たす場合であっても、前記セルへのハンドオーバーが適切ではないと予測した場合、前記測定イベントの成立を抑制する、請求項3に記載の端末装置。 The terminal device of claim 3, wherein even if the first reception quality satisfies the condition for the measurement event to be established for a predetermined period of time, if it predicts that handover to the cell is inappropriate, the establishment of the measurement event is suppressed.  前記セル予測結果の利用が許可されている場合、前記測定イベントを前記第1の受信品質では評価せず、前記第2の受信品質が前記測定イベントの成立条件を所定の時間満たす場合に、前記測定イベントに関するセルの前記第1の受信品質と前記第2の受信品質のそれぞれを測定報告メッセージに含めて送信する、請求項1に記載の端末装置。 The terminal device of claim 1, wherein, when use of the cell prediction result is permitted, the measurement event is not evaluated using the first reception quality, and when the second reception quality satisfies the condition for the measurement event for a predetermined time, the terminal device transmits a measurement report message including the first reception quality and the second reception quality of the cell related to the measurement event.  前記測定イベントに対応するコンディショナルハンドオーバー設定が設定されている場合であって、前記コンディショナルハンドオーバー設定の測定対象セルにおける前記第2の受信品質が前記測定イベントの成立条件を所定の時間満たす場合、前記測定イベントに対応するコンディショナルハンドオーバー手順を実行する、請求項1に記載の端末装置。 The terminal device according to claim 1, wherein, when a conditional handover setting corresponding to the measurement event is configured and the second reception quality in the measurement target cell for the conditional handover setting satisfies the establishment condition of the measurement event for a predetermined period of time, the terminal device executes a conditional handover procedure corresponding to the measurement event.  端末装置と通信する基地局装置であって、
 セルの受信品質を測定するための測定イベントを含む測定設定に関する情報と、セル予測結果の利用許可を示す情報を前記端末装置に送信する送信部と、
 セル予測結果として前記端末装置が出力する、前記セルの受信品質の変動の予測に関する制御を行う予測部と、
 前記セル予測結果の利用許可を示す情報に基づいて送信された、前記測定イベントと、前記測定イベントに関する前記端末装置が実際に測定した第1の受信品質、および、前記セル予測結果に基づく第2の受信品質のそれぞれを含む測定報告メッセージを受信する受信部とを備える、基地局装置。
A base station device that communicates with a terminal device,
a transmitter that transmits to the terminal device information relating to measurement configuration including a measurement event for measuring the reception quality of a cell and information indicating permission to use a cell prediction result;
a prediction unit that performs control related to prediction of fluctuations in reception quality of the cell, which is output by the terminal device as a cell prediction result;
A base station device comprising: a receiving unit that receives a measurement report message including the measurement event transmitted based on information indicating permission to use the cell prediction result, a first reception quality actually measured by the terminal device for the measurement event, and a second reception quality based on the cell prediction result.
 前記端末装置が具備する前記セルの受信品質の変動を予測するための機械学習を行った学習済みの学習モデルに対し、前記セルの第1の受信品質を入力させることで、前記セルの第2の受信品質を前記学習モデルから取得する、請求項7に記載の基地局装置。 The base station device of claim 7, wherein the first reception quality of the cell is input to a trained learning model that has undergone machine learning to predict fluctuations in the reception quality of the cell provided in the terminal device, and the second reception quality of the cell is obtained from the training model.  前記端末装置が実際に測定した前記第1の受信品質と、前記セル予測結果に基づく前記第2の受信品質との乖離の程度を評価するための評価パラメータを前記端末装置に設定する、請求項7に記載の基地局装置。 The base station device according to claim 7, wherein an evaluation parameter is set in the terminal device for evaluating the degree of deviation between the first reception quality actually measured by the terminal device and the second reception quality based on the cell prediction result.  前記測定イベントに対応するコンディショナルハンドオーバー設定を前記端末装置に設定し、前記セル予測結果に基づく前記コンディショナルハンドオーバー手順の実行を許可する、請求項7に記載の基地局装置。 The base station device according to claim 7, wherein a conditional handover setting corresponding to the measurement event is configured in the terminal device, and execution of the conditional handover procedure based on the cell prediction result is permitted.  基地局装置と通信する端末装置の制御方法であって、
 セルの受信品質を測定するための測定イベントを含む測定設定に関する情報と、セル予測結果の利用許可を示す情報を前記基地局装置から受信するステップと、
 前記セルの受信品質の変動の予測をセル予測結果として出力するステップと、
 前記セル予測結果の利用許可を示す情報に基づいて、前記測定イベントと、前記測定イベントに関する実際に測定した第1の受信品質、および、前記セル予測結果に基づく第2の受信品質のそれぞれを、前記基地局装置に報告するステップとを実行する、端末装置の制御方法。
A method for controlling a terminal device that communicates with a base station device, comprising:
receiving, from the base station device, information on measurement configuration including a measurement event for measuring the reception quality of a cell and information indicating permission to use a cell prediction result;
outputting the prediction of fluctuations in the reception quality of the cell as a cell prediction result;
A control method for a terminal device, which executes a step of reporting to the base station device each of the measurement event, a first reception quality actually measured for the measurement event, and a second reception quality based on the cell prediction result, based on information indicating permission to use the cell prediction result.
 端末装置と通信する基地局装置の制御方法であって、
 セルの受信品質を測定するための測定イベントを含む測定設定に関する情報と、セル予測結果の利用許可を示す情報を前記端末装置に送信するステップと、
 セル予測結果として前記端末装置が出力する、前記セルの受信品質の変動の予測に関する制御を行うステップと、
 前記セル予測結果の利用許可を示す情報に基づいて送信された、前記測定イベントと、前記測定イベントに関する前記端末装置が実際に測定した第1の受信品質、および、前記セル予測結果に基づく第2の受信品質のそれぞれを含む測定報告メッセージを受信するステップとを実行する、基地局装置の制御方法。
A method for controlling a base station device that communicates with a terminal device, comprising:
transmitting information regarding measurement configuration including a measurement event for measuring the reception quality of a cell and information indicating permission to use the cell prediction result to the terminal device;
performing control related to prediction of fluctuations in reception quality of the cell, which is output by the terminal device as a cell prediction result;
A control method for a base station device, which executes a step of receiving a measurement report message including the measurement event transmitted based on information indicating permission to use the cell prediction result, a first reception quality actually measured by the terminal device for the measurement event, and a second reception quality based on the cell prediction result.
PCT/JP2024/005482 2024-02-16 2024-02-16 Terminal device, base station device, control method for terminal device, and control method for base station device Pending WO2025173226A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2024/005482 WO2025173226A1 (en) 2024-02-16 2024-02-16 Terminal device, base station device, control method for terminal device, and control method for base station device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2024/005482 WO2025173226A1 (en) 2024-02-16 2024-02-16 Terminal device, base station device, control method for terminal device, and control method for base station device

Publications (1)

Publication Number Publication Date
WO2025173226A1 true WO2025173226A1 (en) 2025-08-21

Family

ID=96773752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/005482 Pending WO2025173226A1 (en) 2024-02-16 2024-02-16 Terminal device, base station device, control method for terminal device, and control method for base station device

Country Status (1)

Country Link
WO (1) WO2025173226A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210076267A1 (en) * 2018-05-29 2021-03-11 Telefonaktiebolaget Lm Ericsson (Publ) Reporting an Indication of One or More Estimated Signal Parameters
JP2022108674A (en) * 2021-01-13 2022-07-26 株式会社デンソー Terminal device, base station device, and base station management device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210076267A1 (en) * 2018-05-29 2021-03-11 Telefonaktiebolaget Lm Ericsson (Publ) Reporting an Indication of One or More Estimated Signal Parameters
JP2022108674A (en) * 2021-01-13 2022-07-26 株式会社デンソー Terminal device, base station device, and base station management device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; NR and NG-RAN Overall Description; Stage 2 (Release 18)", 3GPP DRAFT; 38300-I00, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 12 January 2024 (2024-01-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052597622 *

Similar Documents

Publication Publication Date Title
US11622291B2 (en) AI/ML data collection and usage possibly for MDTs
US8849346B2 (en) Method and telecommunications network for deactivating or activating a cell in such a network
US20190028942A1 (en) Cell handover method and system, and device
US9532289B2 (en) Information processing method and apparatus
KR20210020904A (en) Handover method and apparatus
CN109275168B (en) System and method for optimizing switching parameter settings of terminals on public transport platforms
WO2023197245A1 (en) Methods and apparatuses for an ai or ml based cco mechanism
WO2020062648A1 (en) Mobile communication network switching method, device, user equipment and storage medium
JP2020530689A (en) Providing instructions related to measurement by wireless communication devices regarding signals from wireless communication networks
CN117441372A (en) Method, UE and network node for handling MPM reconfiguration in a communication network
CN116803120A (en) Prediction in distributed networks
EP2434806B1 (en) Method, device and system for cell measurement and report
WO2012023161A1 (en) A method and apparatus for carrier aggregation preparation control in a mobile communications system
CN116349308A (en) Cell reselection related information associated with a network slice or closed access group of a wireless network
WO2025173226A1 (en) Terminal device, base station device, control method for terminal device, and control method for base station device
CN105264959B (en) A kind of switching method and equipment
WO2019185143A1 (en) Method and apparatus for characterizing a radio frequency environment in a telecommunications network
CN117793766A (en) A communication method and device
US20240147331A1 (en) Ai/ml assisted csi-pilot based beam management and measurement reduction
JP7248782B2 (en) Control device, terminal device, control method, and program
JP2023010464A (en) User equipment, base station and communication control method
WO2025022478A1 (en) Terminal device, base station device, and handover control method
WO2025194355A1 (en) Measurement event prediction method based on artificial intelligence (ai)/ml model
WO2025210191A1 (en) Using an ai/ml model for handover and cell reselection
CN120186659A (en) Communication method and device, and computer readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24924763

Country of ref document: EP

Kind code of ref document: A1